
J O H A N N E S K E P L E R U N I V E R S I T Y L I N Z
INSTITUTE OF APPLIED COMPUTER SCIENCE

DEPARTMENT OF INFORMATION SYSTEMS

o.Univ.-Prof. Dipl.-Ing. Mag. Dr. G e r t i K a p p e l

Technical Report

X-Ray –
Towards Integrating XML and Relational Database Systems

Gerti Kappel
Elisabeth Kapsammer
Werner Retschitzegger

July 2000

- 1 -

X-Ray -
Towards Integrating XML and Relational Database Systems

Gerti Kappel, Elisabeth Kapsammer, Werner Retschitzegger

Institute of Applied Computer Science, Department of Information Systems (IFS)
University of Linz, Altenbergerstraße 69, A-4040 Linz, Austria

{gk, ek, wr}@ifs.uni-linz.ac.at

Abstract. Relational databases get more and more employed in order to store
the content of a web site. At the same time, XML is fast emerging as the domi-
nant standard at the hypertext level of web site management describing pages
and links between them. Thus, the integration of XML with relational database
systems to enable the storage, retrieval and update of XML documents is of
major importance. Data model heterogeneity, however, and schema heteroge-
neity makes this a challenging task. This paper presents X-Ray, a generic ap-
proach for integrating XML with relational database systems. The key idea is
that mappings may be defined between XML DTDs and relational schemata
while preserving their autonomy. This is made possible by introducing a meta
schema and meta knowledge for resolving data model heterogeneity and
schema heterogeneity. Since the mapping knowledge is not hard-coded but
rather reified within the meta schema, maintainability and changeability is en-
hanced. The meta schema provides the basis for X-Ray to automatically com-
pose XML documents out of the relational database when requested and de-
compose them when they have to be stored.

1 Introduction

Web-based information systems no longer aim at purely providing read-only access
to their content, which is simply represented in terms of web pages stored in the web
server’s directory. Nowadays, not least due to new requirements emerging from sev-
eral application areas such as electronic commerce, the employment of databases to
store the content of a web site turns out to be worthwhile [17], [25]. This allows to
easily handle both retrieval and update of large amounts of data in a consistent way
on a large distributed scale [15]. Besides using databases at the content level, the
Extensible Markup Language (XML) [33] is fast emerging as the dominant standard
for representing the hypertext level of a web site, i.e., the logical composition of web
pages and the navigation structure [1], [10], [32]. XML is a subset of SGML. As
such, XML tags allow to describe the meaning of the content itself. New tags and
attribute names can be defined, document structures can be nested to any level of
complexity and documents can be associated with a type specification called docu-
ment type definition (DTD).

- 2 -

Because of the increasing importance of XML and database systems (DBS), the
integration of them with respect to storage, retrieval, and update is a major need [11],
[32]. Regarding the kind of DBS used for the integration, one can distinguish four
different approaches [3], [18]. First, special-purpose DBS are particularly tailored to
store, retrieve, and update XML documents. Examples thereof are research prototypes
such as Rufus [30], Lore [20], Strudel [17] and Natix [21] as well as commercial
systems such as eXcelon [24] and Tamino [28]. Second, because of the rich data
modeling capabilities of object-oriented DBS, they are well-suited for storing hyper-
text documents [5], [33]. Object-oriented DBS and special-purpose DBS, however,
are neither in wide-spread use nor mature enough to handle large scale data in an
efficient way. Object-relational DBS would be also appropriate for mapping to and
from XML documents since the nested structure of the object-relational model blends
well with XML’s nested document model. Similar arguments as above, however, hold
against their short-term usage. Thus, the more promising alternative to store XML
documents are relational database systems (RDBS). Such an integration would pro-
vide several advantages such as reusing a mature technology, seamlessly querying
data represented in XML documents and relations, and the possibility to make legacy
data already stored within an RDBS available for the web.

Concerning the kind of storage within an RDBS, there exist three basic alterna-
tives. The most straightforward approach would be to store XML documents as a
whole within a single database attribute. Another possibility would be to interpret
XML documents as graph structures and provide a relational schema allowing to store
arbitrary graph structures [18], [19], [27], [31]. The third approach is that the struc-
ture of XML documents in terms of, e.g., a DTD is mapped to a corresponding rela-
tional schema wherein XML documents are stored according to the mapping [4], [8],
[14], [16], [23], [29]. Only the last of these alternatives allows to really exploit the
features of RDBS such as querying mechanisms, optimization, concurrency control
and the like. Thus, this approach is further investigated in the paper.

Despite of the benefits of the mapping approach, the problem is that when defining
the mapping between an XML DTD and a relational schema, one has to cope with
data model heterogeneity and schema heterogeneity. Data model heterogeneity refers
to the fact that there are fundamental differences between concepts provided by XML
and those provided by RDBS, which have to be considered when defining a certain
mapping. These differences concern, e.g., structuring, typing and identification is-
sues, relationships, default declarations, and the order of stored instances (cf. Section
2). Schema heterogeneity in our context means that, even if the DTD and the rela-
tional schema to which the DTD should be mapped represent the same part of the
universe of discourse, the design of both is likely to be different. This difference can
be first of all the result of data model heterogeneity, meaning that one and the same
real world entity has to be represented in terms of different concepts. Another reason
may be that document design and database design have different goals in mind. For
example, to make browsing more effective, documents are very redundant data
sources since the same piece of information may occur in several documents and
navigated to by several different access paths. In RDBS, on the contrary, redundancy
is eliminated by means of normalization techniques to avoid inconsistencies and up-

- 3 -

date problems. A third reason for schema heterogeneity may be that the DTD and the
corresponding relational schema have been developed independent of each other
without having any integration in mind. Consider for example business to business
electronic commerce, where a supplier wants to store the product catalogue of another
supplier represented in XML within an already existing relational database. In this
scenario, the autonomy of both the DTD and the relational schema should be pre-
served in that neither of them has to be changed.

Existing approaches deal with these heterogeneity problems in various rather re-
stricted ways. First, to reduce the heterogeneity a priori it is assumed that at least one
of the schemata to be mapped to can be adapted to the other one [14]. This, however,
contradicts the requirement of autonomy. Second, there is only a certain pre-defined
way of mapping provided [29], thereby preventing user-defined mappings which
might eventually better resolve a certain heterogeneity with respect to, e.g., space or
performance issues. Third, the mapping knowledge is often hard-coded within appli-
cations thus making maintenance in case of changes very difficult. With respect to
these drawbacks, this paper proposes X-Ray, a generic approach for integrating XML
with RDBS. The key idea is that mappings can be dynamically defined between
DTDs and relational schemata thus coping with data model heterogeneity and
schema heterogeneity. The integration fully preserves the autonomy of both the DTD
and the relational schema, which in turn ensures the continuity of already existing
applications working with the XML documents or the RDBS. This is made possible
by introducing a meta schema storing information about the DTD, the relational
schema and the mapping knowledge itself. The meta schema is responsible for me-
diation with respect to data model heterogeneity and schema heterogeneity and thus
represents the core component of X-Ray. Since the mapping knowledge is not hard-
coded but rather reified within the meta schema, maintainability and changeability is
enhanced. This meta schema provides the basis for X-Ray to automatically compose
XML documents out of the relational database when requested and decompose them
when they have to be stored.

XML-DBMS introduced in [4] is closely related to X-Ray. Whereas in X-Ray the
mapping knowledge may be specified in terms of tuples of the predefined meta
schema, XML-DBMS provides a mapping language DTD. A specific user-defined
XML document obeying this mapping language DTD, represents the mapping knowl-
edge for yet another DTD and a relational schema. Based on our previous experience,
however, using also a meta schema approach for mapping between objects and rela-
tions [22], working with a meta schema is quite intuitive and, thus, also suggested for
X-Ray.

The remainder of the paper is organized as follows. Section 2 presents an in-depth
analysis of data model heterogeneity between XML and RDBS. Section 3 introduces
different mapping possibilities between XML and RDBS. Section 4 defines a set of
reasonable mappings to mediate between the different structuring mechanisms sup-
ported by XML and RDBS. The design of the meta schema is discussed in Section 5.
Finally, Section 6 concludes the paper with a summary and gives an outlook to future
work.

- 4 -

2 Comparison of Concepts

This section is dedicated to an in-depth investigation of the similarities and differ-
ences between XML concepts and RDB concepts. It provides the basis for analyzing
different mapping possibilities as done in Section 3 and Section 4 and represents the
prerequisite for developing a meta schema in order to bridge the heterogeneous con-
cepts (cf. Section 5). Note, that whenever necessary, it is distinguished between con-
cepts as defined by the original relational model and their realization by the SQL
standard [2].

2.1 Levels of Abstraction

For discussing and comparing the basic concepts of XML from a database point of
view, it is important to keep in mind that they belong to different levels of abstraction
as illustrated in Fig. 1. These levels comprise the data model level, the schema level,
and the instance level.

Data Model
Level

Instance
Level

Schema
Level

XML Document

Element
Element Value

AttributeElement Type

DTD (optional)

Attribute
Attribute Value

Element Type a
Element Type b
...

Attribute x
Attribute y
...

XML Concepts

Relational Database

Relation Attribute

Tuple Value

Relational Schema

Relation A
Relation B
...

Attribute X
Attribute Y
...

Relational Concepts

Legend: ... consists of
... may consist of

Fig. 1. Concepts at Different Levels of Abstraction

Regarding the data model concepts provided by RDBS and XML, there are fun-
damental differences leading to data model heterogeneity, which aggravates the inte-
gration of both paradigms. The heterogeneity of the data models is mainly due to the
different purposes RDBS and XML have been developed for. The aim of RDBS is to
store large amounts of data enabling efficient access and ensuring their consistency
[2]. In contrast, XML is intended to serve as a format for structuring and exchanging
hypertext documents [1], [32]. Data model heterogeneity is discussed in the following
sub sections focussing on typing mechanisms, null values and default values, identifi-
cation, relationships, and order of instances. Since from a database perspective, many
concepts supported by DTDs are inadequate for schema definition, e.g., the typing
mechanisms, XML is often referred to as a data format, only, having no appropriate
data model. Consequently, there are already several efforts to replace DTDs by means
of richer XML schema definition languages which are in contrast to DTDs expressed

- 5 -

by means of XML itself [7]. Extensions include a richer set of primitive data types as
well as mechanisms to enable inheritance. However, since there is no standard up to
now, the rest of the paper builds on DTDs, only.

Analogous to heterogeneity at the data model level, there may also be heterogene-
ity at the schema level. This is very likely since the schema, i.e., type, of an XML
document is allowed to be irregular, implicit, partial, incomplete, not always known
ahead of time, and may change frequently and without notice, which demonstrates the
close resemblance to semi-structured data [34]. In case that XML documents are
based on a DTD, applications are able to validate their structure with respect to the
DTD by means of an XML parser [14]. The specification of the DTD can be included
directly within an XML document or stored within a separate file. Since DTDs are
optional, it is not clear at this time if more XML documents will be governed by
DTDs or if more documents will exist without such a type description [29]. These are
fundamental differences to RDBS where the existence of an a priori schema, which is
stored directly within the database, is mandatory, and the validity of tuples with re-
spect to this schema is checked by the system before inserting them into the database.

At the instance level, we consider a certain XML document and a certain relational
database, respectively. XML documents are self-describing, meaning that parts of the
schema definition in terms of tags are replicated within each XML document, no
matter if the schema is defined explicitly in form of a DTD or not. This is in contrast
to RDBS where the schema exists only once for the whole database. Storing the
schema along with the data provides flexibility with respect to both integrating het-
erogeneous sources and changes to the structure. However, the replicated schema
information implies space cost for storage, time cost for retrieval, and the danger of
inconsistencies in case of updates [14].

2.2 Structuring and Typing Mechanisms

The basic mechanisms used to specify the structure of XML documents and relational
schemata are element types and attributes for XML as well as relations and attributes
for RDBS, respectively (cf. Fig. 1). The name of an XML element type has to be
unique throughout the DTD1, the name of a relation is required to be unique within
the whole relational schema. The name of an XML attribute has to be unique within
its element type, an RDBS attribute’s name has to be unique within its relation. In
contrast to these similarities, there are major differences with respect to typing
mechanisms.

In RDBS, atomic domains can be specified for attributes only, whereas XML al-
lows to specify atomic domains for both attributes and element types. In contrast to
RDBS, supporting a large variety of predefined atomic domains, the set of predefined
atomic domains in XML is rather restricted. Concerning XML attributes, the prede-
fined domains comprise a string type (CDATA), an enumeration type, and some special
types including, e.g., ID and IDREF(S) (cf. Section 2.4). Concerning XML element

1 By means of so called namespaces [6], XML allows element types within a DTD having the same

name. Namespaces, however, are not further considered in this paper.

- 6 -

types, there is only one possible atomic domain namely #PCDATA. This domain is
different from CDATA in that if values contain tags, these tags are interpreted by an
XML parser. Element types that contain an atomic domain, only, are furtheron called
atomic element types (cf. Table 1).

Table 1. Kinds of Element Types

Kind of Element Type (ET) Atomic Domain Component ET Attributes

Atomic ET ✔ ✘ ~

Composite ET with Element Content ✘ ✔ ~

Composite ET with Mixed Content ✔ ✔ ~

Empty ET ✘ ✘ ~

Legend : ✔ ... contains
✘ ... does not contain
~ ... no influence

Besides atomic domains, element types are allowed to contain other element types
furtheron called component element types used to build arbitrarily deep part-of hierar-
chies by means of nesting. For each XML document it is required that all component
element types are rooted in a single element type. An element type containing other
element types is furtheron called composite element type. This is in contrast to RDBS,
where part-of hierarchies cannot be realized by means of nesting since relations con-
sist of atomic-valued attributes, only. However, part-of hierarchies can be expressed
in RDBS by means of foreign key constraints (cf. Section 2.4). Since composite ele-
ment types may have an atomic domain in addition to component element types, they
are further distinguished into composite element types with mixed content and com-
posite element types with element content (cf. Table 1). Concerning the latter, it has to
be specified whether component element types occur in a sequence, or as choice
meaning that they are mutual exclusive. Element types that neither contain compo-
nent element types nor have an atomic domain are called empty element types. An
element type can be also declared to have ANY content, meaning that there is no re-
striction concerning the kind of the element type. Finally, each element type no mat-
ter if it is an atomic, composite, or empty element type may contain XML attributes.

Table 1 summarizes the different kinds of element types by denoting their charac-
teristics (concerning examples it is referred to Sections 3 and 4). Note, that the XML
standard specification [6] does not provide any terminology for such a distinction.

Concerning the instance level (cf. Fig. 1), XML documents contain elements each
of them marked by a start tag and an end tag in terms of the name of a specific ele-
ment type. The element may contain component elements expressed by nested tags as
well as attributes. Both elements and attributes are allowed to contain values, there-
fore we distinguish between element values and attribute values. Attribute names and
their values are placed within the start tag, whereas values of elements occur between
start tag and end tag. Consequently, schema information of the DTD is replicated
within XML documents in that each element and each attribute value is annotated
with the corresponding element type name and attribute name, respectively. The in-

- 7 -

stance level of an RDBS is quite simpler, since values exclusively belong to attrib-
utes, which are in turn composed to tuples.

2.3 Null Values and Default Values

Similar to RDBS, XML allows to express null values as well as default values.
Whereas in RDBS, however, the concept of null values is defined for attributes only,
XML supports null values for both attributes and elements. Default values may be
applied to XML attributes, only.

Concerning XML attributes, the so-called default declaration within a DTD re-
quires to specify for each attribute one of the following constraints:

• #REQUIRED, meaning that a value is required in the sense of NOT NULL of RDBS

• #IMPLIED , denoting the optional nature of an attribute value, expressed by the
omission of NOT NULL in RDBS. Note, that in case there is no value provided for
such an XML attribute at the instance level, the attribute name is omitted within
the XML document, too.

• #FIXED <ConstValue> , defining a constant value which is not possible in RDBS

• <DefaultValue> , specifying a default value analogous to the DEFAULT clause in
RDBS

Concerning an element, whether it may be omitted or not is specified within the
DTD by means of cardinality constraints. The cardinality specifies how often the
element of a certain element type occurs as component element of its composite ele-
ment. Since element types may be components of more than one composite element
type, each of its occurrences as component element type can exhibit another cardinal-
ity. The cardinality symbols are ‘?’ (null or 1), ‘* ’ (null or more), ‘+’ (1 or more) and
no symbol (exactly 1). It is emphasized that there is a semantic difference between
start tag being directly followed by an end tag and start and end tag being omitted at
all from the XML document. The former matches to one of three different specifica-
tions within the DTD:

• An element is specified as an empty element type.

• An element is specified as an atomic element type, whose value is an empty
string.

• An element is specified as a composite element type, but within the XML docu-
ment, no component elements exist.

In contrast to that, the omission of tags indicates a null value in that a correspond-
ing element does not exist.

2.4 Identification

In RDBS, the unique identification of tuples is done by means of a primary key,
which may be composed of one or more attributes of the corresponding relation (cf.

- 8 -

Table 2). In XML, only a single attribute of an element type can be designated as
identifying attribute by means of the special attribute type ID which may in turn con-
tain a string value (cf. Fig. 2).

DTD: <!ELEMENT owner (accommodation+)>
<!ATTLIST owner myIdentifier ID #REQUIRED>

XML document : <owner myIdentifier=”4711”> </owner>

Fig. 2. Exemplary Identification in XML

The scope of identification in RDBS is a single relation, i.e., the value of the pri-
mary key uniquely identifies each tuple within a relation. In XML, the scope of iden-
tification is broader in the sense that the value of an ID attribute is unique within the
whole XML document. This allows the unique identification of an element not only
with respect to other elements of the same element type but rather across all elements
of any element type.

Table 2. Comparison of Concepts: Identification

RDBS XML

Concept Primary key ID attribute type

Composite Key Yes - one or more
attributes of a relation

No - single attribute of an
element type

Scope of
Identification

Unique identification of
tuple within relation

Unique identification of
element within document

Optional Key Yes Yes

Equality & Identity No distinction No distinction

In XML, element types are not required to contain an ID attribute. This is similar to
RDBS products, where relations need not contain a primary key. Note, this is in con-
trast to the theory of the relational model, where primary keys are mandatory for each
relation [2]. Even in case that an element type has an attribute of type ID , its usage
may be optional by defining it as #IMPLIED . Since the identification of both tuples in
RDBS and elements in XML is value-based, it is not possible to distinguish between
equality and identity as it is possible in the object-oriented data model [9].

2.5 Relationships

In RDBS, relationships can be expressed between relations by means of foreign keys,
i.e., arbitrary attributes that refer to the primary key of the same relation or of another
relation. The number of tuples which may participate in a relationship can be con-
strained by defining the foreign key as NOT NULL and/or UNIQUE. With this, different
cardinalities can be supported as illustrated in Table 3. XML allows two alternative
ways for specifying relationships between element types comprising IDREF(S) attrib-
utes and component element types (cf. Section 2.2). Attributes of type IDREF(S) rep-

- 9 -

resent some kind of foreign key referencing attributes of type ID . The distinction
between IDREF attributes and IDREFS attributes concerns their cardinality, in that the
former are single-valued and the latter are multi-valued.

Table 3. Comparison of Concepts: Relationships

RDBS XML

Concept Foreign key attribute IDREF(S) attribute Component ET

Participants Relations (tuples) Element types (elements)

Typing of
Participants

Tuples of a certain
relation

It is not possible to
constrain the type of the
participating elements

The participating ele-
ments are restricted by
the composition structure

Cardinality (0..1):*, 1:*,
(0..1):(0..1), 1:(0..1)

(0..1):*, 1:*, *:*, (1..*):* 1:1, 1:*, 1:(1..*), 1:(0..1)

Legend : 0..1 ... zero or one
1..* ... one or more
* zero or more

In contrast to RDBS, where the participating tuples are constrained to the partici-
pating relation, the participating elements cannot be constrained to be of a certain
element type.

2.6 Order

In contrast to relations and tuples in RDBS, the element types and elements of an
XML document adhere to both an explicit and implicit order. The order of element
types can be explicitly defined within a DTD by using the sequence operator ‘,’. The
example shown in Fig. 3 specifies that an element of type village comprises the fol-
lowing three component element types in the specified order, i.e., name has to occur
first, then country, and then accommodation.

DTD: <!ELEMENT village (name, country, accommodation*)>

XML document : <village>
<name>Innsbruck</name>
<country>Tyrol</country>
<accommodation>Hotel Post</accommodation>
<accommodation>Hotel Admiral</accommodation>
<accommodation>Hotel Anker</accommodation>

</village>

Fig. 3. Explicit and Implicit Order

At the instance level, the order of concrete elements is defined implicitly by the
position of elements within the XML document (cf. also Fig. 3). Note, that this im-
plicit order may not contradict the explicit order defined by the corresponding DTD.
In our example the order of the particular accommodation elements is given at the
instance level by occurring at a certain position within an element of type village. It
is important to be aware, that elements occurring as component elements of different
composite elements do not always have to exhibit the same order.

- 10 -

DTD: <!ELEMENT village (accommodation|restaurant)*>

XML document : <village>
<restaurant>Einkehr</restaurant>
<accommodation>Hotel Post</accommodation>
<accommodation>Hotel Admiral</accommodation>
<restaurant>Verdi Diele</restaurant>
<accommodation>Hotel Anker</accommodation>

</village>

Fig. 4. Implicit Order Between Elements of Different Element Types

For example, elements of type accommodation being component elements of type
village may show a different order than as component elements of type owner . An
implicit order not only concerns elements of the same element type but also elements
of different element types, as is depicted in Fig. 4.

3 Basic Kinds of Mappings Between XML and RDBS

After having analyzed differences between XML concepts and RDBS concepts, let’s
consider the possibilities for mapping a DTD to a relational schema. A straightfor-
ward way would be to map each element type to a relation and each XML attribute to
an attribute of the respective relation (cf. Fig. 5). Due to data model heterogeneity and
schema heterogeneity, however, such a one to one mapping is neither always possible
nor desirable. For example, in the presence of deep element nesting directly mapping
elements to tuples of different relations would lead to excessive fragmentation of the
document over various relations, thus decreasing performance. This section proposes
some basic mapping possibilities representing a prerequisite both for determining
which kind of mapping is reasonable in a certain situation (cf. Section 4) and for
designing the meta schema (cf. Section 5).

When considering the structuring mechanisms of XML and RDBS as discussed in
Section 2.2, three basic kinds of mappings at the data model level may be distin-
guished (cf. Fig. Fig. 6):
(1) ET_R. An element type(ET) is mapped to a relation (R), furtheron called base

relation. Note, that several element types can be mapped to one base relation. An
example for an ET_R mapping is the element type accommodation in Fig. 6.

(2) ET_A. An element type is mapped to a relational attribute (A), whereby the rela-
tion of the attribute represents the base relation of the element type. Note, that
several element types can be mapped to the attributes of one base relation.

(3) A_A. An XML attribute is mapped to a relational attribute whose relation repre-
sents the base relation of the XML attribute. Again, several XML attributes can
be mapped to the attributes of one base relation. The XML attributes name,
street , and village in Fig. 6 give an example.

It has to be emphasized that both element types and attributes can be mapped to a
single base relation and a single attribute, only. Another point is that ET_A and A_A
mappings determine also the instance level, in that database values are mapped to

- 11 -

XML values. Thus, it makes sense that ET_R mappings occur together with ET_A
and A_A mappings.

...

<accommodation

name = “Hilton”

street = “Hauptstraße 13”

village = “Vienna” >

</accommodation>

...

<accommodation

name = “Hotel Mozart”

street = “Gartenweg 2”

village = “Salzburg” >

</accommodation>

...

Accommodation

Name Street VillageName

Hilton Hauptstraße 13 Vienna

Biedermeier Landstraße 65 Vienna
Theater Hotel Wiesenstraße 52 Salzburg
Hotel Bristol Europastraße 35 Salzburg
Gasthof Post Inntalstraße 15 Innsbruck
Hotel Mozart Gartenweg 2 Salzburg
......

Fig. 5. Straightforward Mapping of XML Concepts to Relational Concepts

Furthermore, it is not mandatory that all element types and attributes of a DTD as
well as all relations and attributes of a relational schema have a mapping. An example
at the relational side could be a foreign key that serves for establishing a relationship
but might not be relevant within the XML document and therefore requires no map-
ping. An example at the XML side would be an empty element type that occurs ex-
actly once at a certain position within the XML document and does not require any
mapping, neither.

XML
Concepts

Mapping
Possibilities

RDBS
Concepts

Relation

Attribute

ElementType Attribute

Attribute Attribute

Accommodation

Name

Accommodation
: ElementType

Id
: Attribute

AccID

Name
: ElementType

E
xa

m
pl

e
:

ET_R ET_A A_A ET_R ET_A A_A

Fig. 6. Basic Kinds of Mappings

The examples demonstrate that the omission of mappings is imaginable not only in
case that both DTD and relational schema have been developed independently from
each other, but also if one has been derived from the other one. However, in case that
the cardinality of a relation or an element type respectively, or the default declaration
of an attribute requires the existence of a corresponding instance, a proper mapping is
mandatory.

The three basic kinds of mappings introduced above can be further refined with re-
spect to the determination of an element type’s base relation. First, if an element type
should be mapped, one has to consider the first of its direct or indirect composite
element types that is mapped to a relation or an attribute, thus having a base relation.
This base relation constitutes the parent base relation of the XML element type
which should be mapped and is a candidate for being its base relation, too. If none of
its composite element types is mapped, an arbitrary relation can be chosen as base

- 12 -

relation. Concerning the example in Fig. 7 (cf. also the more comprehensive example
given in Fig. 8), the element types address , street , and country all have the same
parent base relation, namely Accommodation , which represents the base relation of the
composite element type accommodation . Note, that aiming at an intuitive presenta-
tion, Fig. 7 depicts mappings between XML element types and relations in terms of a
UML class diagram. To be able to distinguish between element types and relations,
they are depicted as instances of the corresponding ‘meta class’ ElementType and
Relation , respectively.

address
: ElementType

street
: ElementType

Accommodation
: Relation

base relation

parent base relation

has no mapping,
and consequently
no base relation

base relation

parent b
ase

 re
latio

n

first ET
being mapped, and
consequently has no
parent base relation

accommodations
: ElementType

component ET

component ET

component ET

Country
: Relation

root ET
has no mapping,
and consequently
no base relation

accommodation
: ElementType

country
: ElementType

component ET

base
 re

latio
n

pa
re

nt
 b

as
e

re
la

tio
n

Direct
Mapping

Village
: Relation Indirect

Mapping

DTD Relational
Schema

Fig. 7. Exemplary Mappings

Second, if an XML attribute should be mapped, its element type has to be consid-
ered first. If the attribute’s element type is not mapped, its direct and indirect com-
posite element types have to be considered as done for element types discussed
above. Again, the relation which the first of these element types is mapped to repre-
sents the parent base relation of the XML attribute, thus being a candidate for being
its base relation, too. The parent base relation constitutes also the base relation, if the
XML element type or the attribute, respectively, can be mapped to the relation or one
of its attributes, which is furtheron called direct mapping. For an example, confer to
the element type street in Fig. 7, which is directly mapped to an attribute of its par-
ent base relation Accommodation . Otherwise, a proper base relation may be one of
those relations, reachable by the parent base relation via foreign key relationships,
which is furtheron called indirect mapping. For an example, consider the element
type country , which is indirectly mapped to an attribute of relation Country reach-
able by its parent base relation Accommodation . Indirect mapping is reasonable in case
that the relational attribute, which should be the mapping target, is factored out from
the parent base relation, e.g., due to normalization reasons or because of vertical par-
titioning. Note, that element type address is used to group address data and thus has
no relational counterpart and no base relation at all.

Both direct and indirect mapping is applicable to the three basic mapping possi-
bilities introduced above thus resulting in ET_Rdirect/indirect, ET_Adirect/indirect, and
A_Adirect/indirect mappings. Furthermore, the possibility of a direct mapping always im-
plies the possibility of an indirect mapping due to vertical partitioning.

- 13 -

4 Determining Reasonable Mappings Between XML and RDBS

After introducing the basic kinds of mappings, this section discusses reasonable map-
pings. The determining factors can be categorized into characteristics of the XML
element type (cf. Section 4.1) and characteristics of the XML attribute (cf. Section
4.2). In order to illustrate the subsequent investigations in Fig. 8, we provide a com-
prehensive running example building on the ones given in the previous section.

DTD

<!ELEMENTaccommodations (accommodation*)> <!-- Composite ET with Element Content -->

<!ELEMENTaccommodation (name, address,

email*, phone+, acceptsCreditCard?,
facilities, sauna, pool*, description?)> <!-- Composite ET with Element Content -->

<!ELEMENT name (#PCDATA)> <!-- Atomic ET -->

<!ELEMENT address (street, village, country)> <!-- Composite ET with Element Content -->

<!ELEMENT street (#PCDATA)> <!-- Atomic ET -->

<!ELEMENT village (#PCDATA)> <!-- Atomic ET -->

<!ELEMENT country (#PCDATA)> <!-- Atomic ET -->

<!ELEMENT email (#PCDATA)> <!-- Atomic ET -->

<!ELEMENT phone EMPTY> <!-- Empty ET -->

<!ELEMENT acceptsCreditCard EMPTY> <!-- Empty ET -->

<!ELEMENT facilities EMPTY> <!-- Empty ET -->

<!ELEMENT sauna EMPTY> <!-- Empty ET -->

<!ELEMENT pool EMPTY> <!-- Empty ET -->

<!ELEMENT description (#PCDATA | rating)*> <!-- Composite ET with Mixed Content -->

<!ELEMENT rating (#PCDATA)> <!-- Atomic ET -->

<!ATTLIST accommodation id CDATA #REQUIRED
state CDATA #FIXED “Austria“
kind (hotel | motel) “hotel“>

<!ATTLIST address postalCode CDATA #REQUIRED>
<!ATTLIST village yearOfFoundation CDATA #IMPLIED>
<!ATTLIST phone number CDATA #REQUIRED>
<!ATTLIST sauna available CDATA #REQUIRED>

UML Class Diagram

*
1

*

Phone
@AccID
@Number

1

*

1

*

1

*

11

1..*

*1

EmailAddress
@AccID
@Email

ActualRating
@AccID
@RatingID
RatingOrder

RatingDescription
@AccID
@RatingOrder
Description

Pool
@AccID
@Name

Village
@Name
PostalCode
CountryID

Country
@CountryID
Name

Accommodation
@AccID
Name
Kind
Street
VillageName
AcceptsCreditCard
Sauna

*
1

0..1 History
@VillageName
YearFound

*

PossibleRating
@RatingID
Rating

1

Relational Schema

Accommodation

@AcID Name Kind Street VillageName AcceptsCreditCard Sauna

Village

@Name PostalCode CountryID

Phone

@AccID @Number

ActualRating

@AccID @RatingID RatingOrder

History

@VillageName YearFound

EmailAddress

@AccID @Email

PossibleRating

@RatingID Rating

Country

@CountryID Name

Pool

@AccID @Name

RatingDescription

@AccID @RatingOrder Description

Fig. 8. Exemplary DTD, Relational Schema, and UML Class Diagram

The example is intended to show as many mapping possibilities as possible. Fig. 8
depicts the running example in terms of a DTD and in terms of a relational schema.
The latter is depicted with a table structure and as UML class diagram better visual-
izing relationships. Concerning the relational schema, primary keys are prefixed with
‘@’ and foreign keys are depicted using italic type. Even this small example shows
that data model heterogeneity and schema heterogeneity prevent a simple one to one
mapping. Regarding the DTD illustrated in Fig. 8, there is a single root element type
accommodations having no relational counterpart. Its component element type accom-

- 14 -

modation contains various element types, which have either relational attributes or
relations as counterparts. The different cardinalities specified for each of these ele-
ment types correspond to those defined at the relational side. Regarding the compos-
ite element type address and its atomic component element types street , village ,
and country it can be seen that the relational schema does not contain a relation Ad-

dress with attributes Street , Village , and Country . Even more, there does not exist
any counterpart for address in the relational schema and its component element types
correspond to attributes located in three different relations, connected by ‘*:1 ’ rela-
tionships, namely attribute Street of relation Accommodation , attribute Name of rela-
tion Village , and attribute Name of relation Country . Having three relations instead of
one is the consequence of the normalization process. accommodation as well as some
of its component element types contain attributes. One of these attributes, namely
state , has the fixed value ‘Austria ’ and therefore lacks a relational pendant. The
attribute kind is restricted to an enumeration of two values. The composite element
type description has mixed content, comprising the atomic element type rating

meaning that elements of this type may occur several times mixed with atomic data in
any order within an XML document. Note, that the attributes RatingOrder of the two
classes ActualRating and RatingDescription are not mapped to any XML concept.
They express an absolute order over both rating descriptions and actual ratings with
respect to a certain accommodation. This is not necessary at the XML side, since the
order is implicitly defined by the position of the elements within the XML document.

4.1 Element Type Characteristics

As already mentioned, choosing a certain mapping is based on characteristics of the
element type to be mapped. As illustrated in Fig. 9, these decisive characteristics can
be categorized into three orthogonal dimensions comprising the kind of element type,
if it contains attributes, and its cardinality. Note, that if the element type has been
declared to have ANY content (cf. Section 2.2), a reasonable mapping cannot be de-
termined in advance. Depending on the combination of these characteristics, certain
reasonable mappings can be determined as shown in Table 4. In the following, these
mappings are discussed by means of the running example.

First, we consider composite element types with element content. Mapping this
kind of element type is neither influenced by cardinality nor whether it contains any
attributes. Since there are no values associated with elements of this type, the only
reasonable mapping possibility is ET_R. Depending on whether the element type can
be mapped to its parent base relation or not, ET_Rdirect or ET_Rindirect mapping can be
used. In fact, the lack of any mapping would not result in a loss of information, since
elements of this type contain no values which could be stored in the database.

- 15 -

Kind of Element Type

Contains Attributes

Cardinality

No Yes
?

1
*

+

Composite ET with
Mixed Content

Atomic ET

Empty ET

Composite ET with
 Element Content

Fig. 9. Orthogonal Dimensions Characterizing XML Element Types

Concerning our running example, whereas the root element type accommodations

does not require any mapping, the element type accommodation is mapped to the
relation Accommodation (ET_R mapping). Since accommodation does not have a
parent base relation, we do not distinguish between a direct and an indirect mapping
in this case.

Table 4. Reasonable Mappings of XML Element Types

Kind of Element Type Contains Attributes Cardinality Reasonable Mapping

Composite ET with element content No influence No influence ET_Rdirect/indirect; No mapping

Atomic ET No influence ?, 1 ET_Adirect/indirect

Atomic ET No influence +, * ET_Aindirect

Empty ET No 1 No mapping

Empty ET Yes 1 ET_Rdirect/indirect; No mapping

Empty ET No influence ? ET_Adirect

Empty ET No influence *, + ET_Aindirect

Composite ET with mixed content No influence No influence ET_Aindirect

Next, let us consider the mapping of an atomic element type. The reasonable map-
pings of such element types depend on the cardinality, only, and are not influenced by
the existence of XML attributes. Since atomic element types contain values they al-
ways require a mapping to relational attributes, i.e., an ET_A mapping. In case of
cardinality ‘?’ and ‘1’, an ET_Adirect mapping is possible, since no more than one ele-
ment may occur. However, also an ET_Aindirect mapping may be necessary, when the
relational attribute which the atomic element type should be mapped to is not part of
the parent base relation. In case of cardinality ‘* ’ and ‘+’, ET_Aindirect mapping is re-
quired due to normalization.

Concerning our running example, the most simple case is represented by element
type name which has cardinality ‘1’ and is mapped to attribute Name of base relation
Accommodation representing an ET_Adirect mapping. Accommodation is mapped to
element type accommodation , the direct composite element type of element type name,
i.e., the base relation and the parent base relation are the same. This kind of mapping
also applies to element type street . In this case the direct composite element type
address has no mapping and the indirect composite element type accommodation is

- 16 -

mapped to the relation that contains the relational counterpart Street . The element
types village and country require ET_Aindirect mappings, since their relational coun-
terparts are stored in base relations different to the parent base relation Accommoda-

tion due to normalization reasons. The relational counterparts are attribute Name of
base relation Village and attribute Name of base relation Country , respectively. This
kind of mapping is possible, since Accommodation and Village , as well as Village

and Country are directly connected via foreign key relationships. Element type email

has cardinality ‘* ’ requiring an ET_Aindirect mapping and therefore is mapped to attrib-
ute Email of relation EmailAddress . The same holds true for element type rating

with the difference that the parent base relation Accommodation and the base relation
PossibleRating containing an attribute Rating are indirectly connected via the rela-
tion ActualRating .

Regarding empty element types with a cardinality ‘1’, no matter if there are attrib-
utes or not, no mapping is required since a corresponding element occurs exactly
once without carrying any value. However, if there were attributes, it would make
sense to employ a direct or indirect ET_R mapping since the base relation could serve
as the base relation for the attributes. In case of any other cardinality, the existence of
attributes does not influence the reasonable mappings. An ET_A mapping is required
in any case. It depends on the particular cardinality whether a direct or indirect map-
ping is reasonable.

Referring to our example, the empty element types facilities without attributes
and sauna including a single attribute represent the most simple case both having a
cardinality of one thus requiring no mapping. The attribute available of element
type sauna is mapped to the relational attribute Sauna of the parent base relation of
the element type sauna , namely Accommodation . The optional empty element type
acceptsCreditCard contains no attributes and is mapped directly to the relational
attribute AcceptsCreditCard of its parent base relation Accommodation . Finally, the
empty element types phone and pool having a cardinality of ‘+’ and ‘* ’, respectively,
are mapped via ET_ Aindirect to the relational attribute Number of the relation Phone and
the relational attribute Name of the relation Pool , respectively.

Considering composite element types with mixed content, neither the existence of
attributes nor the cardinality have any influence on the reasonable mappings. Since at
the instance level, several values may occur within a single element, an ET_Aindirect

mapping is required. Our example contains one composite element type with mixed
content, namely description , which is mapped to the attribute Description of the
relation RatingDescription . The attributes RatingOrder of the two relations Actu-

alRating and RatingDescription are, as already mentioned, not mapped to any
XML concept, since they express an absolute order over both rating descriptions and
actual ratings with respect to a certain accommodation.

4.2 XML Attribute Characteristics

The mapping of XML attributes depends on two orthogonal dimensions comprising
the type of the XML attribute and the default declaration (cf. Fig. 10; for the sake of

- 17 -

readability and space restrictions, we do not consider all possible types of XML at-
tributes but rather the more important ones). Considering the different combinations
of these two dimensions three reasonable mapping alternatives may be identified as
shown in Table 5.

Default Declaration

Attribute Type
CDATA ID

Default

Implied

Required

Fixed

IDREF IDREFS Enum.

Fig. 10. Orthogonal Dimensions Characterizing XML Attributes

For XML attributes with default declaration being #FIXED, no mapping is neces-
sary independent of the type of the XML attribute. In our example, the XML attribute
state of the element type accommodation has the constant value Austria . Regarding
XML attributes which are not specified to be #FIXED, it has to be distinguished
whether they are single-valued like CDATA or multi-valued defined by IDREFS. Single-
valued attributes can be directly mapped to relational attributes (A_Adirect) or may re-
quire indirect mapping due to normalization reasons (A_Aindirect), whereas multi-valued
attributes may be mapped indirectly (A_Aindirect), only. Considering ID and IDREF(S) , it
seems conceivable to map them to primary key attributes and foreign key attributes,
respectively, of the relational schema. Due to data model heterogeneity, however, this
is not always feasible, since there are differences concerning scope and composite
keys (cf. Section 2).

Table 5. Reasonable Mappings of XML Attributes

Attribute Type Default Declaration Reasonable Mapping

No influence #FIXED No mapping

CDATA, ID, IDREF, enumeration #REQUIRED, #IMPLIED, Default Value A_Adirect/indirect

IDREFS #REQUIRED, #IMPLIED, Default Value A_Aindirect

In our example, directly mapped single-valued attributes comprise id and kind of
element type accommodation , number of element type phone , and available of ele-
ment type sauna . Single-valued attributes which have to be mapped indirectly are
postalCode of element type address , and yearOfFoundation of element type vil-

lage . Multi-valued attributes are not part of our example. It has to be emphasized that
with one exception the reasonable mappings of an attribute are independent of the
kind of mapping of its element type. In case that the element type of the attribute is
not mapped and any of its composite element types that is not mapped depicts a car-
dinality of ‘* ’, the attribute can be mapped via A_Aindirect, only.

- 18 -

5 The X-Ray Meta Schema

The insights gained in the previous sections concerning data model heterogeneity and
mapping possibilities between XML and relational schemata provide the basis for the
design of the meta schema of X-Ray. The meta schema is the key mechanism for the
genericity of X-Ray allowing to map DTDs and relational schemata. It mediates be-
tween heterogeneous concepts and provides the basis for X-Ray to automatically
compose XML documents out of the relational database when requested and decom-
pose them when they have to be stored. The mapping knowledge is not hard-coded
within an application but rather reified and centrally stored within the meta schema,
thus enhancing maintainability and changeability.

5.1 Basic Components of the Meta Schema

The meta schema consists of three components describing the relevant meta knowl-
edge (cf. Fig. 11). The DBSchema component is responsible for storing information
about relational schemata that shall be mapped to DTDs to make their data available
to XML documents or that shall be used to store XML documents. Analogously, the
XMLDTD component stores schema information about XML documents as specified by
means of DTDs. Finally, the XMLDBSchemaMapping component stores the mapping
knowledge between DBSchema and XMLDTD. The goal of XMLDBSchemaMapping is to
bridge both data model heterogeneity and schema heterogeneity in order to support a
lossless mapping. This means that if an XML document is stored within the database,
it should be possible to reconstruct it by retrieving the corresponding data out of the
database and vice versa. It has to be emphasized that although the meta schema is
designed on the basis of the concepts provided by DTDs, X-Ray does not require the
existence of an explicit DTD. However, there must be at least a common implicit
structure of the XML documents, which can be used by an administrator as input for
XMLDTD and XMLDBSchemaMapping.

XMLDTD ** DBSchema

XMLDBSchemaMapping

Fig. 11. Components of the X-Ray Meta Schema

In X-Ray, a database schema is not limited to be mapped to a single DTD but may
be mapped to several DTDs and vice versa. This is reasonable since, due to presenta-
tion requirements, it may be necessary to represent a particular piece of information
by several XML documents being based on different DTDs. Likewise, if we assume
several relational schemata storing data of the same domain it may be required to
represent these data by XML documents based on the same DTD. Concerning the
storage of the meta knowledge itself, X-Ray comprises both a relational representa-
tion of the meta schema stored within the relational database and an object-oriented
representation for main memory mapping. The latter is being initialized with the
content of the relational meta schema at the beginning of an X-Ray session, herewith

- 19 -

allowing an efficient composition and decomposition of XML documents at runtime.
The object-oriented representation in terms of UML class diagrams is also used
throughout this section to concisely and precisely depict the various meta schema
components.

5.2 Database Schema Component

Concerning the database schema component, it has to be emphasized that it is not
necessary to store meta knowledge about the complete relational schema, but only
about those relations and attributes being relevant for the mapping to the DTD. How-
ever, not only base relations and their attributes are relevant, but also non-base rela-
tions which are the connecting relations between two base relations.

DBSchema

DBRelation

DBConcept

1..*1

1

DBJoinSegmentDBJoinPath

11

* *
DBRelationship

11

**

DBAttribute

1 1..*

1..*

* 1..*

Fig. 12. Meta Schema of the Relational Schema

As illustrated in Fig. 12 DBSchema contains at least one DBRelation , which consists
of at least one DBAttribute . DBAttribute stores among others its atomic domain and
whether it represents a primary key attribute. DBRelation and DBAttribute are gen-
eralized to DBConcept . Relationships (DBRelationship) connect two relations and
specify one or more join segments (DBJoinSegment) comprising the join attributes,
i.e., primary key and foreign key attributes of two relations that realize the relation-
ship. The relationship comprises more than one join segment in case that the primary
key is composed of two or more attributes. In case that parts of an XML document
are stored within different relations, information about the proper join paths (DBJoin-

Path) is necessary. A DBJoinPath consists of one or more relationships. It comprises
more than one relationship if more than two relations have to be joined for composing
or decomposing a particular part of an XML document.

5.3 XML DTD Component

Similar to the database schema component, it is not necessary to store meta knowl-
edge about the complete DTD, but only about those parts being relevant for the map-
ping to the relational schema. The meta knowledge specifies that a DTD (XMLDTD, cf.
Fig. 13) has a certain element type (XMLElemType) that serves as root. For element
types with attributes, XMLAttribute stores information about their atomic domains
and their default declaration. Similar to the database schema component, XMLElem-

Type and XMLAttribute are generalized to XMLConcept . For enumeration attributes

- 20 -

the possible values are stored within XMLAttValEnum . According to the distinction
made in Section 2, XMLElemType is specialized into XMLAtomicET , XMLEmptyET, and
XMLCompositeET . The latter is further specialized into XMLCompositeETMixedContent

and XMLCompositeETElemContent .

XMLCompositeET

*1
XMLElemType

XMLAtomicET XMLEmptyET

XMLAttribute

XMLAttValEnum

*XMLCompositeET
MixedContent

XMLCompositeET
ElemContent

CompositionStructure::
XMLContentParticle

1..*

1

has root elem type
1

0..1

XMLDTD

*

*

1

XMLMain

Composition
Structure

<<access>>

<<access>>

XMLConcept

Fig. 13. Meta Schema of the DTD

The nesting structure of an XMLCompositeETElemContent is described by the pack-
age CompositionStructure (cf. Fig. 14). For an XMLCompositeETMixedContent the
nesting structure needs not to be represented in the meta schema, since, as already
mentioned, component element types are allowed to occur in a choice with cardinality
‘ * ’, only.

XMLMain::XMLElemType

**

*XMLMain::
XMLCompositeETElemContent

XMLContentParticle

XMLSequence XMLChoice

1..*

1

1..*

1

Position

CompositionStructure

has outer most
content particle

Fig. 14. Meta Schema of the XML Composition Structure

For component element types occurring in an XMLSequence or in an XMLChoice , the
cardinality of the element type and in case of a sequence its position have to be
stored. Furthermore, arbitrary combinations of sequences and choices can be de-
scribed.

5.4 Mapping Knowledge

The mapping knowledge is expressed by various associations between the object
classes of the XML DTD component and the database schema component. Fig. 15
illustrates these mapping relationships denoting them with bold lines. For representa-
tion convenience, only those object classes are shown which are part of a mapping
relationship. In order to meet the requirement that the meta schema is able to store

- 21 -

mappings between different DTDs (XMLDTD) and different database schemata
(DBSchema), the mapping between the class XMLConcept and the class DBConcept takes
part in a ternary relationship with the association class XMLDBSchemaMapping. As
discussed in Section 4, deciding on the exact kind of element type is a prerequisite for
deciding a reasonable mapping to a database concept. Consequently, the leaf classes
of the XMLElemType hierarchy are mapped to DBAttribute with two exceptions. The
class XMLCompositeETElemContent is mapped to DBRelation , and the mapping of
class XMLEmptyET is not further refined, since it inherits the (ternary) association to
DBConcept .

XMLCompositeET

1* XMLElemType

XMLAtomicET XMLEmptyET

XMLAttribute

0..1

0..1

XMLCompositeET
ElemContent

DBSchema

has root
elem type

1

0..1

DBRelation

DBConcept

1..*

1

1

1..*

0..1

**XMLDTD

0..1 0..1

XMLDBSchemaMapping

1

0..1

DBAttribute

XMLCompositeET
MixedContent

0..1

0..1

0..1

0..1

XMLConcept

{OR}
0..1

0..1

Fig. 15. Meta Schema Describing the Mapping Knowledge

Besides the mapping relationships depicted in Fig. 15, there are also relationships
to class DBJoinPath (cf. Fig. 12) which are not illustrated for representation conven-
ience. Due to space restrictions, the attributes of the various object classes are also not
shown. An example mapping in terms of the filled-in meta schema is given in the
Appendix.

6 Conclusion and Future Work

The main contribution of this paper is to describe X-Ray, an approach for mapping
between XML DTDs and relational schemata. The mapping knowledge is not hard-
coded but rather reified in terms of instances of a meta schema thus supporting
autonomy of the participating DTDs and relational schemata as well as a generic
integration thereof. On the basis of the meta schema, XML documents may be auto-
maticallycomposed out of data stored within an RDBS and vice versa decomposed
into relational data without any loss of information. The X-Ray prototype builds on
former experience in the area of data model heterogeneity and schema heterogeneity
[22], and is currently used for case studies to investigate the validity of the developed
meta schema.

Future work comprises short-term tasks such as supporting the whole set of XML
concepts like implicit ordering and entity definitions, as well as long-term tasks such

- 22 -

as integrating the XML Linking Language (XLink) [13] and the XML Pointer Lan-
guage (XPointer) [12]. The latter will support the mapping of several XML docu-
ments and links between them to relational structures and vice versa. Another impor-
tant aspect will be the investigation for simplifying the mapping between heterogene-
ous DTDs and relational schemata by, e.g., simplifying the given DTDs before map-
ping them [29]. In this respect it will be also analyzed, how far the definition of the
mapping knowledge may be automated on the basis of the reasonable mapping pat-
terns described above. Leaving optimization issues aside, an automatically generated
default mapping should be possible. If both legacy DTDs and legacy relational sche-
mata are involved, however, schema heterogeneity will impede an automatic map-
ping.

References

[1] Abiteboul, S., Buneman, P., Suciu, D.: Data on the Web: From Relations to Semistructured Data and
XML. Morgan Kaufmann Publishers, 2000

[2] Atzeni, P., Ceri, S., Paraboschi, S., Torlone, R.: Database Systems – Concepts, Languages and
Architectures. Mc Graw Hill, 1999

[3] Bourret, R.: XML and Databases. Technical University of Darmstadt, http://www.informatik.tu-
darmstadt.de/DVS1/staff/bourret/xml/XMLAndDatabases.htm, June, 2000

[4] Bourret, R., Bornhövd, C., Buchmann, A.P.: A Generic Load/Extract Utility for Data Transfer
Between XML Documents and Relational Databases. 2nd Int. Workshop on Advanced Issues of EC
and Web-based Information Systems (WECWIS), San Jose, California, June, 2000

[5] Böhm, K., Aberer, K.: HyperStorM - Administering Structured Documents Using Object-Oriented
Database Technology. Proc. of the ACM SIGMOD Int. Conf. on Management of Data, Montreal,
Canada, June 1996

[6] Bray, T., Paoli, J., Sperberg-McQueen, C.M.: Extensible Markup Language (XML) 1.0, W3C Rec-
ommendation. http://www.w3.org/TR/1998/REC-xml-19980210, February, 1998

[7] Bray, T., Frankston, C., Malhotra, A.: Document Content Description for XML, Submission to the
World Wide Web Consortium, http://www.w3.org/TR/NOTE-dcd, July 1998.

[8] Carey, M., Florescu, D., Ives, Z., Lu, Y., Shanmugasundaram, J., Shekita, E., Subramanian, S.:
XPERANTO: Publishing Object-Relational Data as XML. Int. Workshop on the Web and Databases
(WebDB), Dallas, May, 2000

[9] Cattell, R. G. G., Barry, D. K. (eds.): The Object Data Standard: ODMG 3.0. Morgan Kaufmann
Publishers, January, 2000

[10] Ceri, S., Fraternali, P., Paraboschi, S.: Design Principles for Data-Intensive Web Sites. ACM SIG-
MOD Record, Vol. 24, No. 1, March 1999

[11] Ceri, S., Fraternali, P., Paraboschi, S.: XML: Current Developments and Future Chal-
lenges for the Database Community. Proc. of the 7th Int. Conf. on Extending Database
Technology (EDBT), Springer, LNCS 1777, Konstanz, March, 2000

[12] DeRose, S., Daniel, R., Maler, E.: XML Pointer Language (XPointer). W3C Working Draft,
http://www.w3.org/TR/xptr, December, 1999

[13] DeRose, S., Maler, E., Orchard, D., Trafford, B.: XML Linking Language (XLink). W3C Working
Draft, http://www.w3.org/TR/xlink, February, 2000

[14] Deutsch, A., Fernandez, M., Suciu, D.: Storing Semistructured Data in Relations. Workshop on
Query Processing for Semistructured Data and Non-Standard Data Formats, Jerusalem, Jan., 1999

[15] Ehmayer, G., Kappel, G., Reich, S.: Connecting Databases to the Web - A Taxonomy of Gateways.
Proc. of the 8th Int. Conf. on Database and Expert Systems Applications (DEXA), Springer LNCS
1308, Toulouse, September, 1997

- 23 -

[16] Fernandez, M., Tan, W-C., Suciu, D.: SilkRoute: Trading between Relations and XML. 9th Int.
World Wide Web Conf. (WWW), Amsterdam, May, 2000

[17] Florescu, D., Levy, A., Mendelzon, A.: Database Techniques for the World Wide Web: A Survey.
ACM SIGMOD Record, Vol. 27, No. 3, September, 1998

[18] Florescu, D., Kossmann, D.: Storing and Querying XML Data Using an RDBMS. IEEE Data Engi-
neering Bulletin, Special Issue on XML, Vol. 22, No. 3, September, 1999

[19] Gardarin, G., Sha, F., Dang-Ngoc, T.-T.: XML-based Components for Federating Multiple Hetero-
geneous Data Sources. Proc. of the 18th Int. Conf. on Conceptual Modeling (ER), Paris, Nov., 1999

[20] Goldman, R., McHugh, J., Widom, J.: From Semistructured Data to XML: Migrating the Lore Data
Model and Query Language. Proc. of the 2nd Int. Workshop on the Web and Databases (WebDB),
Philadelphia, June, 1999

[21] Kanne, C.-C., Moerkotte, G.: Efficient Storage of XML Data. Proc. Of the 16th Int. Conf. On Data
Engineering (ICDE), San Diego, March, 2000

[22] Kappel, G., Preishuber, S., Pröll, E., Rausch-Schott, S., Retschitzegger, W., Wagner, R.R., Gierlin-
ger, Ch.: COMan - Coexistence of Object-Oriented and Relational Technology. Proc. of the 13th Int.
Conf. on the Entity-Relationship Approach (ER), Manchester, December, 1994

[23] Klettke, M., Meyer, H.: XML and Object-Relational Database Systems - Enhancing StructuralMap-
pings Based on Statistics. Int. Workshop on the Web and Databases (WebDB), Dallas, May, 2000

[24] Object Design, Inc.: An XML Data Server for Building Enterprise Web Applications.
http://www.odi.com/excelon/XMLResource/build_ent_web_apps.pdf, 1999

[25] Pröll, B., Sighart, H., Retschitzegger, W., Starck, H.: Ready for Prime Time - Pre-Generation of
Web Pages in TIScover. Proc. of the 8th Int. ACM Conference on Information and Knowledge Man-
agement (CIKM), Kansas City, Missouri, November, 1999

[26] Raumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference Manual.
Addison-Wesley, 1999

[27] Schmidt, A. R., Kersten, M. L., Windhouwer, M. A., Waas, F.: Efficient Relational Storage and
Retrieval of XML Documents. Workshop on the Web and Databases (WebDB), Dallas, May, 2000

[28] Schöning, H., Wäsch, J.: Tamino – An Internet Database System. Proc. of the 7th Int. Conf. on Ex-
tending Database Technology (EDBT), Springer, LNCS 1777, Konstanz, March, 2000

[29] Shanmugasundaram, J., et al.: Relational Databases for Querying XML Documents: Limitations and
Opportunities. Proc. of the 25th Int. Conf. On Very Large Data Bases (VLDB), Edinburgh, 1999

[30] Shoens, K., et al.: The Rufus system: Information organization for semi-structured data. Proc. of the
Int. Conf. On Very Large Data Bases (VLDB), Dublin, Ireland, 1993

[31] Surjanto, B., Ritter, N., Loeser, H.: XML Content Management based on Object-Relational Data-
base Technology. Proc. Of the 1st Int. Conf. On Web Information Systems Engineering (WISE),
Hongkong, June 2000

[32] Widom, J.: Data Management for XML - Research Directions. IEEE Data Engineering Bulletin,
Special Issue on XML, Vol. 22, No. 3, September, 1999

[33] W3C - World-Wide-Web Consortium. http://www.w3.org, 2000
[34] VanZwol, R., Apers, P., Wilschutz, A.: Implementing Semi Structured Data with Moa. Workshop on

Query Processing for Semistructured Data and Non-Standard Data Formats, Jerusalem, Jan., 1999

- 24 -

Appendix: Exemplary Mapping Knowledge

In the following, an expemplary mapping in terms of the filled-in meta schema is given for the example denoted in Fig.
8. The mapping knowledge is illustrated by listing the relations being part of the relational meta schema.

1. XML DTD

XMLDTD
@XMLDTD XMLRootElemType
accomXMLDTD accommodations

XMLContentParticle
@XMLDTD @XMLCP XMLKind
accomXMLDTD accommodations compositeETWithElemContent
accomXMLDTD accommodation compositeETWithElemContent
accomXMLDTD name atomicET
accomXMLDTD address compositeETWithElemContent
accomXMLDTD street atomicET
accomXMLDTD village atomicET
accomXMLDTD country atomicET
accomXMLDTD email atomicET
accomXMLDTD phone emptyET
accomXMLDTD acceptsCreditCard emptyET
accomXMLDTD facilities emptyET
accomXMLDTD sauna emptyET
accomXMLDTD pool emptyET
accomXMLDTD description compositeETWithMixedContent
accomXMLDTD rating atomicET
accomXMLDTD cp1 sequence
accomXMLDTD cp2 sequence

XMLAttribute
@XMLAttId XMLDTD XMLElemType XMLAttribute XMLAttType XMLDefaultDecl XMLAttDefaultVal
1 accomXMLDTD accommodation id CDATA #REQUIRED NULL
2 accomXMLDTD accommodation state CDATA #FIXED Austria
3 accomXMLDTD accommodation kind enum defaultVal hotel
4 accomXMLDTD address postalCode CDATA #REQUIRED NULL
5 accomXMLDTD village yearOfFoundation CDATA #IMPLIED NULL
6 accomXMLDTD phone number CDATA #REQUIRED NULL
7 accomXMLDTD sauna available CDATA #REQUIRED NULL

XMLAttValEnum
@XMLAttId @XMLAttEnumValue
3 hotel
3 motel

XMLCompositeETElemContent
@XMLDTD @XMLCompositeET XMLOuterMostCP XMLCardinality
accomXMLDTD accommodations accommodation *
accomXMLDTD accommodation cp1 1
accomXMLDTD address cp2 1

- 25 -

XMLSequence_CP
@XMLDTD @XMLCompositeCP @XMLPosition XMLComponentCP XMLCardinality
accomXMLDTD cp1 1 name 1
accomXMLDTD cp1 2 address 1
accomXMLDTD cp1 3 email *
accomXMLDTD cp1 4 phone +
accomXMLDTD cp1 5 acceptsCreditCard ?
accomXMLDTD cp1 6 facilities 1
accomXMLDTD cp1 7 sauna 1
accomXMLDTD cp1 8 pool *
accomXMLDTD cp1 9 description ?
accomXMLDTD cp2 1 street 1
accomXMLDTD cp2 2 village 1
accomXMLDTD cp2 3 country 1

XMLChoice_CP
@XMLDTD @XMLCompositeCP @XMLComponentCP XMLCardinality

XMLCompositeETMixedContent_Content
@XMLDTD @XMLCompositeET @XMLComponentET
accomXMLDTD description rating

2. Database Schema

DBSchema
@DBSchema DBName DBConnectString
accomDBSchema oracle816 xray@oradb816

DBAttribute
@DBAttId DBSchema DBRelation DBAttribute DBIsKey DBDataType
1 accomDBSchema Accommodation AccID y NUMBER
2 accomDBSchema Accommodation Name n VARCHAR(50)
3 accomDBSchema Accommodation Kind n CHAR(10)
4 accomDBSchema Accommodation Street n VARCHAR(50)
5 accomDBSchema Accommodation VillageName n VARCHAR(50)
6 accomDBSchema Accommodation AcceptsCreditCards n CHAR(3)
7 accomDBSchema Accommodation Sauna n CHAR(3)
8 accomDBSchema Village Name y VARCHAR(50)
9 accomDBSchema Village PostalCode n VARCHAR(10)
10 accomDBSchema Village CountryID n NUMBER
11 accomDBSchema History VillageName y VARCHAR(50)
12 accomDBSchema History YearFound n Date
13 accomDBSchema Country CountryID y NUMBER
14 accomDBSchema Country Name n VARCHAR(50)
15 accomDBSchema Phone AccID y NUMBER
16 accomDBSchema Phone Number y VARCHAR(30)
17 accomDBSchema EmailAddress AccID y NUMBER
18 accomDBSchema EmailAddress Email y VARCHAR(30)
19 accomDBSchema Pool AccID y NUMBER
20 accomDBSchema Pool Name y VARCHAR(50)
21 accomDBSchema ActualRating AccID y NUMBER
22 accomDBSchema ActualRating RatingID y NUMBER
23 accomDBSchema ActualRating RatingOrder n NUMBER
24 accomDBSchema PossibleRating RatingID y NUMBER
25 accomDBSchema PossibleRating Rating n VARCHAR(30)
26 accomDBSchema RatingDescription AccID y NUMBER
27 accomDBSchema RatingDescription RatingOrder y NUMBER
28 accomDBSchema RatingDescription Description n VARCHAR(50)

- 26 -

DBJoinSegment
@DBRelShipId @DBAtt1 @DBAtt2 DBRelation1 DBRelation2 DBSchema
1 VillageName Name Accommodation Village accomDBSchema
2 Name VillageName Village History accomDBSchema
3 CountryID CountryID Village Country accomDBSchema
4 AccID AccID Accommodation Phone accomDBSchema
5 AccID AccID Accommodation EmailAddress accomDBSchema
6 AccID AccID Accommodation Pool accomDBSchema
7 AccID AccID Accommodation ActualRating accomDBSchema
8 RatingID RatingID ActualRating PossibleRating accomDBSchema
9 AccID AccID Accommodation RatingDescription accomDBSchema

DBJoinInfo
@DBJoinPathId @DBRelShipId DBSchema
1 1 accomDBSchema
2 2 accomDBSchema
3 1 accomDBSchema
3 3 accomDBSchema
4 4 accomDBSchema
5 5 accomDBSchema
6 6 accomDBSchema
7 7 accomDBSchema
7 8 accomDBSchema
8 9 accomDBSchema

3. XML DB Schema Mapping

XMLDBSchemaMapping
@MappingId XMLDTD DBSchema
1 accomXMLDTD accomDBSchema

XMLETMapping
@MappingId @XMLElemType KindOfMapping
1 accommodations NULL
1 accommodation ET_Rdirect

1 name ET_Adirect

1 address NULL
1 street ET_Adirect

1 village ET_Aindirect

1 country ET_Aindirect

1 email ET_Aindirect

1 phone ET_Aindirect

1 acceptsCreditCard ET_Adirect

1 facilities NULL
1 sauna NULL
1 pool ET_Aindirect

1 description ET_Aindirect

1 rating ET_Aindirect

XMLAttributeMapping
@MappingId @XMLAttId KindOfMapping DBAttId DBJoinPathId
1 1 A_Adirect 1 NULL
1 2 NULL NULL NULL
1 3 A_Adirect 3 NULL
1 4 A_Aindirect 9 1
1 5 A_Aindirect 12 2
1 6 A_Adirect 16 NULL
1 7 A_Adirect 7 NULL

- 27 -

XMLElemTypeToRelationMapping
@MappingId @XMLElemType DBRelation
1 accommodation Accommodation

XMLElemTypeToAttMapping
@MappingId @XMLElemType DBAttId
1 name 2
1 street 4
1 village 8
1 country 14
1 email 18
1 phone 16
1 acceptsCreditCard 6
1 pool 20
1 description 28
1 rating 25

XMLCompositeETMixedContent_Content_JoinPath
@MappingId @XMLCompositeET @XMLComponentET DBJoinPathId
1 description rating 7

XMLOuterMostCP_JoinPath
@MappingId @XMLCompositeET DBJoinPathId

XMLSequenceContent_JoinPath
@MappingId @XMLContentParticle @XMLPosition DBJoinPathId
1 cp1 3 5
1 cp1 4 4
1 cp1 8 6
1 cp1 9 8
1 cp2 2 1
1 cp2 3 3

XMLChoiceContent_JoinPath
@MappingId @XMLContentParticle @XMLComponentCP DBJoinPathId

