FINANCIAL INFORMATION

EXCHANGE PROTOCOL

(FIX)
Version 4.3 Draft 1
VOLUME 2 – FIX SESSION PROTOCOL
June 8, 2001

Contents

3INTRODUCTION

TRANSMITTING FIXML OR OTHER XML-BASED CONTENT
3
FIX MESSAGE DELIVERY
3
Sequence Numbers:
3
Heartbeats:
4
Ordered Message Processing:
4
Possible Duplicates:
4
Possible Resends:
4
Data Integrity:
4
Message Acknowledgment:
5
Encryption:
5
SESSION PROTOCOL
6
Logon -
6
Message exchange -
7
Logout -
7
Message Recovery -
8
Standard Message header
10
Standard Message trailer
13
ADMINISTRATIVE MESSAGES
14
Heartbeat -
14
Logon -
15
Test Request -
17
Resend Request -
18
Reject (session-level) -
19
Sequence Reset (Gap Fill) -
21
Logout -
23
CheckSum Calculation
24

COMMUNICATION USING THE FIX SESSION PROTOCOL

INTRODUCTION

FIX was written to be independent of any specific communications protocol (X.25, asynch, TCP/IP, etc.) or physical medium (copper, fiber, satellite, etc.) chosen for electronic data delivery. It should be noted that if an “unreliable” or non-stream protocol is used, the Logon, Logout, and ResendRequest message processing is particularly susceptible to unordered delivery and/or message loss.

The protocol is defined at two levels: session and application. The session level is concerned with the delivery of data while the application level defines business related data content. This document focuses on the delivery of data using the “FIX Session Protocol”.
TRANSMITTING FIXML OR OTHER XML-BASED CONTENT

Note that while the FIX Session Protocol is based upon “Tag=Value” syntax for the Standard Header, Standard Trailer, and the Administrative Messages which make up the FIX Session Protocol, it is possible to send FIXML or other XML-based content (“payload”) via the FIX Session Protocol. The FIXML or other XML-based content is enclosed in a traditional, “Tag=Value” FIX standard header via the standard header’s XmlDataLen and XmlData fields and followed by the “Tag=Value” FIX standard trailer. This allows a FIX Engine (software which implements the FIX Session Protocol) to transmit FIXML or other XML-based content via the robust, real-time asynchronous transport which has been in use for many years. The generic MsgType field value for "XML message (e.g. non-FIX MsgType)" can be used when transmitting XML content which is not defined with a FIX MsgType.
FIX MESSAGE DELIVERY

The following section summarizes general specifications for transmitting FIX messages.

Sequence Numbers:

All FIX messages are identified by a unique sequence number. Sequence numbers are initialized at the start of each FIX session (see Session Protocol section) starting at 1 (one) and increment throughout the session. Monitoring sequence numbers will enable parties to identify and react to missed messages and to gracefully synchronize applications when reconnecting during a FIX session.

Each session will establish an independent incoming and outgoing sequence series; participants will maintain a sequence series to assign to outgoing messages and a separate series to monitor for sequence gaps on incoming messages.

Heartbeats:

During periods of message inactivity, FIX applications will generate Heartbeat messages at regular time intervals. The heartbeat monitors the status of the communication link and identifies incoming sequence number gaps. The Heartbeat Interval is declared by the session initiator using the HeartBtInt field in the Logon message. The heartbeat interval timer should be reset after every message is transmitted (not just heartbeats). The HeartBtInt value should be agreed upon by the two firms and specified by the Logon initiator and echoed back by the Logon acceptor. Note that the same HeartBtInt value is used by both sides, the Logon “initiator” and Logon “acceptor”.

Ordered Message Processing:

The FIX protocol assumes complete ordered delivery of messages between parties. Implementers should consider this when designing message gap fill processes. Two options exist for dealing with gaps, either request all messages subsequent to the last message received or ask for the specific message missed while maintaining an ordered list of all newer messages. For example, if the receiver misses the second of five messages, the application could ignore messages 3 through 5 and generate a resend request for messages 2 through 5, or, preferably 2 through 0 (where 0 represents infinity). Another option would involve saving messages 3 through 5 and resending only message 2. In both cases, messages 3 through 5 should not be processed before message 2.

Possible Duplicates:

When a FIX engine is unsure if a message was successfully received at its intended destination or when responding to a resend request, a possible duplicate message is generated. The message will be a retransmission (with the same sequence number) of the application data in question with the PossDupFlag included and set to "Y" in the header. It is the receiving application's responsibility to handle the message (i.e. treat as a new message or discard as appropriate). All messages created as the result of a resend request will contain the PossDupFlag field set to “Y”, messages lacking the PossDupFlag field or with the PossDupFlag field set to “N” should be treated as original transmissions. Note: When retransmitting a message with the PossDupFlag set to Y, it is always necessary to recalculate the CheckSum value. The only fields that can change in a possible duplicate message are the CheckSum, OrigSendingTime, SendingTime, BodyLength and PossDupFlag. Fields related to encryption (SecureDataLen and SecureData) may also require recasting.

Possible Resends:

Ambiguous application level messages may be resent with the PossResend flag set. This is useful when an order remains unacknowledged for an inordinate length of time and the end-user suspects it had never been sent. The receiving application must recognize this flag and interrogate internal fields (order number, etc.) to determine if this order has been previously received. Note: The possible resend message will contain exactly the same body data but will have the PossResend flag and will have a new sequence number. In addition the CheckSum field will require recalculation and fields related to encryption (SecureDataLen and SecureData) may also require recasting.

Data Integrity:

The integrity of message data content can be verified in two ways: verification of message length and a simple checksum of characters.

The message length is indicated in the BodyLength field and is verified by counting the number of characters in the message following the BodyLength field up to, and including, the delimiter immediately preceding the CheckSum tag (“10=”).

The CheckSum integrity check is calculated by summing the binary value of each character from the “8” of “8=“ up to and including the <SOH> character immediately preceding the CheckSum tag field and comparing the least significant eight bits of the calculated value to the CheckSum value (see Appendix B: CheckSum Calculation for a complete description).

Message Acknowledgment:

The FIX session protocol is based on an optimistic model; normal delivery of data is assumed (i.e. no acknowledgment of individual messages) with errors in delivery identified by message sequence number gaps. Each message is identified by a unique sequence number. It is the receiving application's responsibility to monitor incoming sequence numbers to identify message gaps for response with resend request messages.

The FIX protocol does not support individual message acknowledgment. However, a number of application messages require explicit application level acceptance or rejection. Orders, cancel requests, cancel/replace requests and allocation require specific application level response, executions can be rejected with the DK message but do not require explicit acceptance.

Encryption:

The exchange of sensitive data across public carrier networks may make it advisable to employ data encryption techniques to mask the application messages.

The choice of encryption method will be determined by mutual agreement of the two parties involved in the connection.

Any field within a message can be encrypted and included in the SecureData field, however, certain explicitly identified fields must be transmitted unencrypted. The clear (unencrypted) fields can be repeated within the SecureData field to serve as an integrity check of the clear data.

When encryption is employed, it is recommended but not required that all fields within the message body be encrypted. If repeating groups are used within a message and encryption is applied to part of the repeating group, then the entire repeating group must be encrypted.

Embedded in the protocol are fields, which enable the implementation of a public key signature and encryption methodology, straight DES encryption and clear text. The previously agreed upon encryption methodology is declared in the Logon message. (For more detail on implementation of various encryption techniques see the application notes section on the FIX Web Site.)

SESSION PROTOCOL

A FIX session is defined as a bi-directional stream of ordered messages between two parties within a continuous sequence number series. A single FIX session can exist across multiple physical connections. Parties can connect and disconnect multiple times while maintaining a single FIX session. Connecting parties must bi-laterally agree as to when sessions are to be started/stopped based upon individual system and time zone requirements. It is recommended that a new FIX session be established once within each 24 hour period. It is possible to maintain 24 hour connectivity and establish a new set of sequence numbers by sending a Logon message with the ResetSeqNumFlag set.

The FIX session protocol is based on an optimistic model. Normal delivery of data is assumed (i.e. no communication level acknowledgment of individual messages) with errors in delivery identified by message sequence number gaps. This section provides details on the implementation of the FIX session layer and dealing with message sequence gaps.

The following terms are used throughout this section:

· Valid FIX Message is a message that is properly formed according to this specification and contains a valid body length and checksum field

· Initiator establishes the telecommunications link and initiates the session via transmission of the initial Logon message.

· Acceptor is the receiving party of the FIX session. This party has responsibility to perform first level authentication and formally declare the connection request “accepted” through transmission of an acknowledgment Logon message.

A FIX session is comprised of three parts: logon, message exchange and logout.

Logon -

Establishing a FIX connection involves three distinct operations: creation of a telecommunications level link, authentication/acceptance of the initiator by the acceptor and message synchronization (initialization). The sequence of connection follows:

SYMBOL 183 \f "Symbol" \s 8 \h
The session initiator establishes a telecommunication link with the session acceptor.

SYMBOL 183 \f "Symbol" \s 8 \h
The initiator sends a Logon message. The acceptor will authenticate the identity of the initiator by examining the Logon message. The Logon message will contain the data necessary to support the previously agreed upon authentication method. If the initiator is successfully authenticated, the acceptor responds with a Logon message. If authentication fails, the session acceptor should shut down the connection after optionally sending a Logout message to indicate the reason of failure. Sending a Logout in this case is not required because doing so would consume a sequence number for that session, which in some cases may be problematic. The session initiator may begin to send messages immediately following the Logon message, however, the acceptor may not be ready to receive them. The initiator must wait for the confirming Logon message from the acceptor before declaring the session fully established.

After the initiator has been authenticated, the acceptor will respond immediately with a confirming Logon message. Depending on the encryption method being used for that session, this Logon message may or may not contain the same session encryption key. The initiator side will use the Logon message being returned from the acceptor as confirmation that a FIX session has been established. If the session acceptor has chosen to change the session encryption key, the session initiator must send a third Logon back to the other side in order to acknowledge the key change request. This also allows the session acceptor to know when the session initiator has started to encrypt using the new session key. Both parties are responsible for infinite loop detection and prevention during this phase of the session.

SYMBOL 183 \f "Symbol" \s 8 \h
After authentication, the initiator and acceptor must synchronize their messages through interrogation of the MsgSeqNum field before sending any queued or new messages. A comparison of the MsgSeqNum in the Logon message to the internally monitored next expected sequence number will indicate any message gaps. Likewise, the initiator can detect gaps by comparing the acknowledgment Logon message MsgSeqNum to the next expected value. The section on message recovery later in this document deals with message gap handling.

SYMBOL 183 \f "Symbol" \s 8 \h
It is recommended to wait a short period of time following the Logon or to send a TestRequest and wait for a response to it before sending queued or new messages in order to allow both sides to handle resend request processing. Failure to do this could result in a ResendRequest message being issued by one’s counterparty for each queued or new message sent.

SYMBOL 183 \f "Symbol" \s 8 \h
It is also recommended that an engine should store out of sequence messages in a temporary queue and process them in order when the gap is closed. This prevents generating resend requests for n->m, n->m+1, n->m+2, ... which can result in many resent PossDupFlag=Y messages.

SYMBOL 183 \f "Symbol" \s 8 \h
When using the ResetSeqNumFlag to maintain 24 hour connectivity and establish a new set of sequence numbers, the process should be as follows. Both sides should agree on a reset time and the party that will be the initiator of the process. Note that the initiator of the ResetSeqNum process may be different than the initiator of the Logon process. One side will initiate the process by sending a TestRequest and wait for a Heartbeat in response to ensure of no sequence number gaps. Once the Heartbeat has been received, the initiator should send a Logon with ResetSeqNumFlag set to Y and with MsgSeqNum of 1. The acceptor should respond with a Logon with ResetSeqNumFlag set to Y and with MsgSeqNum of 1. At this point new messages from either side should continue with MsgSeqNum of 2. It should be noted that once the initiator sends the Logon with the ResetSeqNumFlag set, the acceptor must obey this request and the message with the last sequence number transmitted “yesterday” may no longer be available. The connection should be shutdown and manual intervention taken, if this process is initiated but not followed properly.

Message exchange -

After completion of the initialization process, normal message exchange begins. The formats for all valid messages are detailed in the sections 'Administrative Messages' and 'Application Messages'.

Logout -

Normal termination of the message exchange session will be completed via the exchange of Logout messages. Termination by other means should be considered an abnormal condition and dealt with as an error. Session termination without receiving a Logout should treat the counterparty as logged out.

It is recommended that before sending the Logout message, a TestRequest should be issued to force a Heartbeat from the other side. This helps to ensure that there are no sequence number gaps.

Before actually closing the session, the Logout initiator should wait for the opposite side to respond with a confirming Logout message. This gives the acceptor a chance to perform any Gap Fill operations that may be necessary. Once the messages from the ResendRequest have been received, the acceptor should issue the Logout. The session may be terminated if the acceptor does not respond in an appropriate timeframe.

Note: Logging out does not affect the state of any orders. All active orders will continue to be eligible for execution after logout.

Message Recovery -

During initialization, or in the middle of a FIX session, message gaps may occur which are detected via the tracking of incoming sequence numbers. The following section provides details on how to recover messages.

As previously stated, each FIX participant must maintain two sequence numbers for each FIX session, one each for incoming and outgoing messages which are initialized at ‘1’ at the beginning of the FIX session. Each message is assigned a unique (by connection) sequence number, which is incremented after each message. Likewise, every message received has a unique sequence number and the incoming sequence counter is incremented after each message.

When the incoming sequence number does not match the expected number corrective processing
is required. Note that the SeqReset-Reset message (used only to recover from a disaster scenario vs. normal resend request processing) is an exception to this rule as it should be processed without regards to its MsgSeqNum. If the incoming message has a sequence number less than expected and the PossDupFlag is not set, it indicates a serious error. It is strongly recommended that the session be terminated and manual intervention be initiated. If the incoming sequence number is greater than expected, it indicates that messages were missed and retransmission of the messages is requested via the Resend Request (see the earlier section, Ordered Message Processing).
Note:
For the purposes of the following paragraphs requester refers to the party requesting the resend and resender refers to the party responding to the request. The process of resending and synchronizing messages is referred as “gap filling”.

Upon receipt of a Resend Request, the resender can respond in one of three ways:

1. retransmit the requested messages (in order) with the original sequence numbers and PossDupFlag set to “Y”

2. issue a SeqReset-GapFill with PossDupFlag set to “Y” message to replace the retransmission of administrative and application messages

3. issue a SeqReset-Reset with PossDupFlag set to “Y” to force sequence number synchronization

During the gap fill process, certain administrative messages should not be retransmitted. Instead, a special SeqReset-GapFill message is generated. The administrative messages which are not to be resent are: Logon, Logout, ResendRequest, Heartbeat, TestRequest and SeqReset-Reset and SeqReset-GapFill. The SeqReset-GapFill can also be used to skip application messages that the sender chooses not to retransmit (e.g. aged orders). This leaves Reject as the only administrative message- which can be resent.

All FIX implementations must monitor incoming messages to detect inadvertently retransmitted administrative messages (PossDupFlag flag set indicating a resend). When received, these messages should be processed for sequence number integrity only; the business/application processing of these message should be skipped (e.g. do not initiate gap fill processing based on a resent ResendRequest).

If there are consecutive administrative messages to be resent, it is suggested that only one SeqReset-GapFill message be sent in their place. The sequence number of the SeqReset-GapFill message is the next expected outbound sequence number. The NewSeqNo field of the GapFill message contains the sequence number of the highest administrative message in this group plus 1. For example, during a Resend operation there are 7 sequential administrative messages waiting to be resent. They start with sequence number 9 and end with sequence number 15. Instead of transmitting 7 Gap Fill messages (which is perfectly legal, but not network friendly), a SeqReset-GapFill message may be sent. The sequence number of the Gap Fill message is set to 9 because the remote side is expecting that as the next next sequence number. The NewSeqNo field of the GapFill message contains the number 16, because that will be the sequence number of the next message to be transmitted.

Sequence number checking is a vital part of FIX session management. However, a discrepancy in the sequence number stream is handled differently for certain classes of FIX messages. The table below lists the actions to be taken when the incoming sequence number is greater than the expected incoming sequence number.

NOTE:
In *ALL* cases except the Sequence Reset - Reset message, the FIX session should be terminated if the incoming sequence number is less than expected and the PossDupFlag is not set. A Logout message with some descriptive text should be sent to the other side before closing the session.
Response by Message Type
Message Type
Action to Be Taken on Sequence # mismatch

Logon
Must always be the first message transmitted. Authenticate and accept the connection. After sending a Logon confirmation back, send a ResendRequest if a message gap was detected in the Logon sequence number.

Logout
If a message gap was detected, issue a ResendRequest to retrieve all missing messages followed by a Logout message which serves as a confirmation of the logout request. DO NOT terminate the session. The initiator of the Logout sequence has responsibility to terminate the session. This allows the Logout initiator to respond to any ResendRequest message.

If this side was the initiator of the Logout sequence, then this is a Logout confirmation and the session should be immediately terminated upon receipt.

The only exception to the “do not terminate the session” rule is for an invalid Logon attempt. The session acceptor has the right to send a Logout message and terminate the session immediately. This minimizes the threat of unauthorized connection attempts.

ResendRequest
Perform the Resend processing first, followed by a ResendRequest of your own in order to fill the incoming message gap.

SeqReset-Reset
Ignore the incoming sequence number. The NewSeqNo field of the SeqReset message will contain the sequence number of the next message to be transmitted.

SeqReset-GapFill
Send a ResendRequest back. Gap Fill messages behave similar to a SeqReset message. However, it is important to insure that no messages have been inadvertently skipped over. This means that GapFill messages must be received in sequence. An out of sequence GapFill is an abnormal condition

All Other Messages
Perform Gap Fill operations.

Standard Message header

Each administrative or application message is preceded by a standard header. The header identifies the message type, length, destination, sequence number, origination point and time.

Two fields help with resending messages. The PossDupFlag is set to Y when resending a message as the result of a session level event (i.e. the retransmission of a message reusing a sequence number). The PossResend is set to Y when reissuing a message with a new sequence number (e.g. resending an order). The receiving application should process these messages as follows:

PossDupFlag - if a message with this sequence number has been previously received, ignore message, if not, process normally.

PossResend - forward message to application and determine if previously received (i.e. verify order id and parameters).

Note that if OnBehalfOfCompID or DeliverToCompID message source identification/routing is used for a FIX session, then it must be used on all Application messages transmitted via that session accordingly (Reject message if not).
The following table provides examples regarding the use of SenderCompID, TargetCompID, DeliverToCompID, and OnBehalfOfCompID when using a single point-to-point FIX session between two firms. Assumption (A=sellside, B =buyside):

SenderCompID
OnBehalfOfCompID
TargetCompID
DeliverToCompID

A to B directly
A

B

B to A directly
B

A

The following table provides examples regarding the use of SenderCompID, TargetCompID, DeliverToCompID, and OnBehalfOfCompID when using a single FIX session to represent multiple firms. Assumption (A=sellside, B and C=buyside, Q=third party):

SenderCompID
OnBehalfOfCompID
TargetCompID
DeliverToCompID
OnBeahlfOfSendingTime

Send from A to B via Q

1)
A sends to Q
A

Q
B

2)
Q sends to B
Q
A
B

A’s SendingTime

B responds to A via Q

1)
B sends to Q
B

Q
A

2)
Q sends to A
Q
B
A

B’s SendingTime

Send from A to B *AND* C via Q

1)
A sends to Q
A

Q
B

2)
Q sends to B
Q
A
B

A’s SendingTime

3)
A sends to Q
A

Q
C

4)
Q sends to C
Q
A
C

A’s SendingTime

B *AND* C send to A via Q

1)
B sends to Q
B

Q
A

2)
Q sends to A
Q
B
A

B’s SendingTime

3)
C sends to Q
C

Q
A

4)
Q sends to A
Q
C
A

C’s SendingTime

The standard message header format is as follows:

Standard Message Header

Tag
Field Name
Req'd
Comments

8
BeginString
Y
FIX.4.3 (Always unencrypted, must be first field in message)

9
BodyLength
Y
(Always unencrypted, must be second field in message)

35
MsgType
Y
(Always unencrypted, must be third field in message)

49
SenderCompID
Y
(Always unencrypted)

56
TargetCompID
Y
(Always unencrypted)

115
OnBehalfOfCompID
N
Trading partner company ID used when sending messages via a third party (Can be embedded within encrypted data section.)

128
DeliverToCompID
N
Trading partner company ID used when sending messages via a third party (Can be embedded within encrypted data section.)

90
SecureDataLen
N
Required to identify length of encrypted section of message. (Always unencrypted)

91
SecureData
N
Required when message body is encrypted. Always immediately follows SecureDataLen field.

34
MsgSeqNum
Y
(Can be embedded within encrypted data section.)

50
SenderSubID
N
(Can be embedded within encrypted data section.)

142
SenderLocationID
N
Sender's LocationID (i.e. geographic location and/or desk) (Can be embedded within encrypted data section.)

57
TargetSubID
N
“ADMIN” reserved for administrative messages not intended for a specific user. (Can be embedded within encrypted data section.)

143
TargetLocationID
N
Trading partner LocationID (i.e. geographic location and/or desk) (Can be embedded within encrypted data section.)

116
OnBehalfOfSubID
N
Trading partner SubID used when delivering messages via a third party. (Can be embedded within encrypted data section.)

144
OnBehalfOfLocationID
N
Trading partner LocationID (i.e. geographic location and/or desk) used when delivering messages via a third party. (Can be embedded within encrypted data section.)

129
DeliverToSubID
N
Trading partner SubID used when delivering messages via a third party. (Can be embedded within encrypted data section.)

145
DeliverToLocationID
N
Trading partner LocationID (i.e. geographic location and/or desk) used when delivering messages via a third party. (Can be embedded within encrypted data section.)

43
PossDupFlag
N
Always required for retransmitted messages, whether prompted by the sending system or as the result of a resend request. (Can be embedded within encrypted data section.)

97
PossResend
N
Required when message may be duplicate of another message sent under a different sequence number. (Can be embedded within encrypted data section.)

52
SendingTime
Y
(Can be embedded within encrypted data section.)

122
OrigSendingTime
N
Required for message resent as a result of a ResendRequest. If data is not available set to same value as SendingTime (Can be embedded within encrypted data section.)

212
XmlDataLen
N
Required when specifying XmlData to identify the length of a XmlData message block. (Can be embedded within encrypted data section.)

213
XmlData
N
Can contain a XML formatted message block (e.g. FIXML). Always immediately follows XmlDataLen field. (Can be embedded within encrypted data section.)
 See Appendix M – FIXML Support

347
MessageEncoding
N
Type of message encoding (non-ASCII characters) used in a message’s “Encoded” fields. Required if any “Encoding” fields are used.

369
LastMsgSeqNumProcessed
N
The last MsgSeqNum value received and processed. Can be specified on every message sent. Useful for detecting a backlog with a counterparty.

370
OnBehalfOfSendingTime
N
Used when a message is sent via a “hub” or “service bureau”. If A sends to Q (the hub) who then sends to B via a separate FIX session, then when Q sends to B the value of this field should represent the SendingTime on the message A sent to Q. (always expressed in UTC (Universal Time Coordinated, also known as “GMT”)

Standard Message trailer

Each message, administrative or application, is terminated by a standard trailer. The trailer is used to segregate messages and contains the three digit character representation of the Checksum value.

The standard message trailer format is as follows:

Standard Message Trailer
Tag
Field Name
Req'd
Comments

93
SignatureLength
N
Required when trailer contains signature. Note: Not to be included within SecureData field

89
Signature
N
Note: Not to be included within SecureData field

10
CheckSum
Y
(Always unencrypted, always last field in message)

ADMINISTRATIVE MESSAGES

The administrative messages address the utility needs of the protocol. The following section describes each message and provides the message layout.

Administrative messages will be generated from both sides of the connection.

Heartbeat -

The Heartbeat monitors the status of the communication link and identifies when the last of a string of messages was not received.

When either end of a FIX connection has not sent any data for [HeartBtInt] seconds, it will transmit a Heartbeat message. When either end of the connection has not received any data for (HeartBtInt + “some reasonable transmission time”) seconds, it will transmit a test request message. If there is still no heartbeat message received after (HeartBtInt + “some reasonable transmission time”) seconds then the connection should be considered lost and corrective action be initiated. If HeartBtInt is set to zero then no regular heartbeat messages will be generated. Note that a test request message can still be sent independent of the value of the HeartBtInt, which will force a Heartbeat message.

Heartbeats issued as the result of Test Request must contain the TestReqID transmitted in the Test Request message. This is useful to verify that the Heartbeat is the result of the Test Request and not as the result of a regular timeout.

The heartbeat format is as follows:

Heartbeat

Tag
Field Name
Req'd
Comments

Standard Header
Y
MsgType = 0

112
TestReqID
N
Required when the heartbeat is the result of a Test Request message.

Standard Trailer
Y

Logon -

The logon message authenticates a user establishing a connection to a remote system. The logon message must be the first message sent by the application requesting to initiate a FIX session.

The HeartBtInt (108) field is used to declare the timeout interval for generating heartbeats (same value used by both sides). The HeartBtInt value should be agreed upon by the two firms and specified by the Logon initiator and echoed back by the Logon acceptor.
Upon receipt of a Logon message, the session acceptor will authenticate the party requesting connection and issue a Logon message as acknowledgment that the connection request has been accepted. The acknowledgment Logon can also be used by the initiator to validate that the connection was established with the correct party.

The session acceptor must be prepared to immediately begin processing messages after receipt of the Logon. The session initiator can choose to begin transmission of FIX messages before receipt of the confirmation Logon, however it is recommended that normal message delivery wait until after the return Logon is received to accommodate encryption key negotiation.

The confirmation Logon can be used for encryption key negotiation. If a session key is deemed to be weak, a stronger session key can be suggested by returning a Logon message with a new key. This is only valid for encryption protocols that allow for key negotiation. (See the FIX Web Site’s Application notes for more information on a method for encryption and key passing.)

The Logon message can be used to specify the MaxMessageSize supported (e.g. can be used to control fragmentation rules for very large messages which support fragmentation). It can also be used to specify the MsgTypes supported for both sending and receiving.

The logon format is as follows:

Logon

Tag
Field Name
Req'd
Comments

Standard Header
Y
MsgType = A

98
EncryptMethod
Y
(Always unencrypted)

108
HeartBtInt
Y
Note same value used by both sides

95
RawDataLength
N
Required for some authentication methods

96
RawData
N
Required for some authentication methods

141
ResetSeqNumFlag
N
Indicates both sides of a FIX session should reset sequence numbers

383
MaxMessageSize
N
Can be used to specify the maximum number of bytes supported for messages received

384
NoMsgTypes
N
Specifies the number of repeating MsgTypes specified

(
372
RefMsgType
N
Specifies a specific, supported MsgType. Required if NoMsgTypes is > 0. Should be specified from the point of view of the sender of the Logon message

(
385
MsgDirection
N
Indicates direction (send vs. receive) of a supported MsgType. Required if NoMsgTypes is > 0. Should be specified from the point of view of the sender of the Logon message

464
TestMessageIndicator
N
Can be used to specify that this FIX session will be sending and receiving “test” vs. “production” messages.

553
Username
N

554
Password
N
Note: minimal security exists without transport-level encryption.

Standard Trailer
Y

Test Request -

The test request message forces a heartbeat from the opposing application. The test request message checks sequence numbers or verifies communication line status. The opposite application responds to the Test Request with a Heartbeat containing the TestReqID.

The TestReqID verifies that the opposite application is generating the heartbeat as the result of Test Request and not a normal timeout. The opposite application includes the TestReqID in the resulting Heartbeat. Any string can be used as the TestReqID (one suggestion is to use a timestamp string).

The test request format is as follows:

Test Request
Tag
Field Name
Req'd
Comments

Standard Header
Y
MsgType = 1

112
TestReqID
Y

Standard Trailer
Y

Resend Request -

The resend request is sent by the receiving application to initiate the retransmission of messages. This function is utilized if a sequence number gap is detected, if the receiving application lost a message, or as a function of the initialization process.

The resend request can be used to request a single message, a range of messages or all messages subsequent to a particular message.

Note: the sending application may wish to consider the message type when resending messages; e.g. if a new order is in the resend series and a significant time period has elapsed since its original inception, the sender may not wish to retransmit the order given the potential for changed market conditions. (The Sequence Reset-GapFill message is used to skip messages that a sender does not wish to resend.)

Note: it is imperative that the receiving application process messages in sequence order, e.g. if message number 7 is missed and 8-9 received, the application should ignore 8 and 9 and ask for a resend of 7-9, or, preferably, 7-0 (0 represents infinity). This latter approach is strongly recommended to recover from out of sequence conditions as it allows for faster recovery in the presence of certain race conditions when both sides are simultaneously attempting to recover a gap.

SYMBOL 183 \f "Symbol" \s 8 \h
To request a single message: BeginSeqNo = EndSeqNo

SYMBOL 183 \f "Symbol" \s 8 \h
To request a range of messages: BeginSeqNo = first message of range, EndSeqNo = last message of range

SYMBOL 183 \f "Symbol" \s 8 \h
To request all messages subsequent to a particular message: BeginSeqNo = first message of range, EndSeqNo = 0 (represents infinity) .

The resend request format is as follows:

Resend Request
Tag
Field Name
Req'd
Comments

Standard Header
Y
MsgType = 2

7
BeginSeqNo
Y

16
EndSeqNo
Y

Standard Trailer
Y

Reject (session-level) -

The reject message should be issued when a message is received but cannot be properly processed due to a session-level rule violation. An example of when a reject may be appropriate would be the receipt of a message with invalid basic data (e.g. MsgType=&) which successfully passes de-encryption, CheckSum and BodyLength checks. As a rule, messages should be forwarded to the trading application for business level rejections whenever possible.

Rejected messages should be logged and the incoming sequence number incremented.

Note: The receiving application should disregard any message that is garbled, cannot be parsed or fails a data integrity check. Processing of the next valid FIX message will cause detection of a sequence gap and a Resend Request will be generated. Logic should be included in the FIX engine to recognize the possible infinite resend loop, which may be encountered in this situation.
Generation and receipt of a Reject message indicates a serious error that may be the result of faulty logic in either the sending or receiving application.

If the sending application chooses to retransmit the rejected message, it should be assigned a new sequence number and sent with PossResend=Y.

Whenever possible, it is strongly recommended that the cause of the failure be described in the Text field (e.g. INVALID DATA - FIELD 35).

If an application-level message received fulfills session-level rules, it should then be processed at a business message-level. If this processing detects a rule violation, a business-level reject should be issued. Many business-level messages have specific “reject” messages, which should be used. All others can be rejected at a business-level via the Business Message Reject message. See the Business Message Reject message
Note that in the event a business message is received, fulfills session-level rules, however, the message cannot be communicated to the business-level processing system, a Business Message Reject with BusinessRejectReason = “Application not available at this time” should be issued.

Scenarios for session-level Reject:

SessionRejectReason

0 = Invalid tag number

1 = Required tag missing

2 = Tag not defined for this message type

3 = Undefined Tag

4 = Tag specified without a value

5 = Value is incorrect (out of range) for this tag

6 = Incorrect data format for value

7 = Decryption problem

8 = Signature problem

9 = CompID problem

10 = SendingTime accuracy problem

11 = Invalid MsgType

(Note other session-level rule violations may exist in which case SessionRejectReason is not specified)

The reject format is as follows:

Reject
Tag
Field Name
Req'd
Comments

Standard Header
Y
MsgType = 3

45
RefSeqNum
Y
MsgSeqNum of rejected message

371
RefTagID
N
The tag number of the FIX field being referenced.

372
RefMsgType
N
The MsgType of the FIX message being referenced.

373
SessionRejectReason
N
Code to identify reason for a session-level Reject message.

58
Text
N
Where possible, message to explain reason for rejection

354
EncodedTextLen
N
Must be set if EncodedText field is specified and must immediately precede it.

355
EncodedText
N
Encoded (non-ASCII characters) representation of the Text field in the encoded format specified via the MessageEncoding field.

Standard Trailer
Y

Sequence Reset (Gap Fill) -

The sequence reset message is used by the sending application to reset the incoming sequence number on the opposing side. This message has two modes: “Sequence Reset-Gap Fill” when GapFillFlag is ‘Y’ and “Sequence Reset-Reset” when GapFillFlag is N or not present. The “Sequence Reset-Reset” mode should ONLY be used to recover from a disaster situation which cannot be otherwise recovered via “Gap Fill” mode. The sequence reset message can be used in the following situations:

· During normal resend processing, the sending application may choose not to send a message (e.g. an aged order). The Sequence Reset – Gap Fill is used to mark the place of that message.

· During normal resend processing, a number of administrative messages are not resent, the Sequence Reset – Gap Fill message is used to fill the sequence gap created.

· In the event of an application failure, it may be necessary to force synchronization of sequence numbers on the sending and receiving sides via the use of Sequence Reset - Reset

The sending application will initiate the sequence reset. The message in all situations specifies NewSeqNo to reset as the value of the next sequence number immediately following the messages and/or sequence numbers being skipped.

If the GapFillFlag field is not present (or set to N), it can be assumed that the purpose of the sequence reset message is to recover from an out-of-sequence condition. The MsgSeqNum in the header should be ignored (i.e. the receipt of a Sequence Reset - Reset message with an out of sequence MsgSeqNum should not generate resend requests). Sequence Reset – Reset should NOT be used as a normal response to a Resend Request (use Sequence Reset – Gap Fill). The Sequence Reset – Reset should ONLY be used to recover from a disaster situation which cannot be recovered via the use of Sequence Reset – Gap Fill. Note that the use of Sequence Reset – Reset may result in the possibility of lost messages

If the GapFillFlag field is present (and equal to Y), the MsgSeqNum should conform to standard message sequencing rules (i.e. the MsgSeqNum of the Sequence Reset-GapFill message should represent the beginning MsgSeqNum in the GapFill range because the remote side is expecting that next message).

The sequence reset can only increase the sequence number. If a sequence reset is received attempting to decrease the next expected sequence number the message should be rejected and treated as a serious error. It is possible to have multiple ResendRequests issued in a row (i.e. 5 to 10 followed by 5 to 11). If sequence number 8, 10, and 11 represent application messages while the 5-7 and 9 represent administrative messages, the series of messages as result of the Resend Request may appear as SeqReset-GapFill with NewSeqNo of 8, message 8, SeqReset-GapFill with NewSeqNo of 10, and message 10. This could then followed by SeqReset-GapFill with NewSeqNo of 8, message 8, SeqReset-GapFill with NewSeqNo of 10, message 10, and message 11. One must be careful to ignore the duplicate SeqReset-GapFill which is attempting to lower the next expected sequence number. This can be detected by checking to see if its MsgSeqNum is less than expected. If so, the SeqReset-GapFill is a duplicate and should be discarded.

The Sequence Reset format is as follows:

Sequence Reset
Tag
Field Name
Req'd
Comments

Standard Header
Y
MsgType = 4

123
GapFillFlag
N

36
NewSeqNo
Y

Standard Trailer
Y

Logout -

The logout message initiates or confirms the termination of a FIX session. Disconnection without the exchange of logout messages should be interpreted as an abnormal condition.

Before actually closing the session, the logout initiator should wait for the opposite side to respond with a confirming logout message. This gives the remote end a chance to perform any Gap Fill operations that may be necessary. The session may be terminated if the remote side does not respond in an appropriate timeframe.

After sending the Logout message, the logout initiator should not send any messages unless requested to do so by the logout acceptor via a ResendRequest.

The logout format is as follows:

Logout
Tag
Field Name
Req'd
Comments

Standard Header
Y
MsgType = 5

58
Text
N

354
EncodedTextLen
N
Must be set if EncodedText field is specified and must immediately precede it.

355
EncodedText
N
Encoded (non-ASCII characters) representation of the Text field in the encoded format specified via the MessageEncoding field.

Standard Trailer
Y

CheckSum Calculation

The checksum of a FIX message is calculated by summing every byte of the message up to but not including the checksum field itself. This checksum is then transformed into a modulo 256 number for transmission and comparison. The checksum is calculated after all encryption is completed, i.e. the message as transmitted between parties is processed.

For transmission, the checksum must be sent as printable characters, so the checksum is transformed into three ASCII digits.

For example, if the checksum has been calculated to be 274 then the modulo 256 value is 18 (256 + 18 = 274). This value would be transmitted a |10=018| where "10="is the tag for the checksum field.

A sample code fragment to generate the checksum field is as follows:

char *GenerateCheckSum(char *buf, long bufLen)

{

static char tmpBuf[4];

long idx;

unsigned int cks;

for(idx = 0L, cks = 0; idx < bufLen; cks += (unsigned int)buf[idx++]);

sprintf(tmpBuf, “%03d”, (unsigned int)(cks % 256));

return(tmpBuf);

}

June 8, 2001
2
FIX4.3 Draft 1

