Only a convertible will do

Why it is valuable and necessary to have “open top” coordinators,

& a different proposal for the Initiator-Coordinator part of the BT protocol

Alastair Green, 24 May 2001

Copyright © 2001, Choreology Ltd (apart from Mark Little’s mail message).

 Subject to OASIS IPR policy.

Summary

1. We should have an “open top” coordinator (one which exposes the two phases of the 2PC to the application).

2. We should not have any bootstrap API defined in any algorithmic or interface definition language.

3. We should define a primordial BTP Manager actor (also needed for recovery) to which the initiator sends a BEGIN message to it, in order to create atoms (and cohesions), and from which it receives a BEGUN response. These two messages constitute the Initiator-Manager message set.

4. The Initiator-Coordinator protocol per se is a sub-set of the Composer-Coordinator protocol. The Composer-Coordinator protocol is the Coordinator-Participant protocol plus the Context Retrieval protocol (needed for augmentation of application messages).

5. The Context Retrieval protocol contains the messages GET_CONTEXT and CONTEXT.

Introduction

At the last face-to-face in Mt Laurel we took a decision to standardize the Initiator-Coordinator protocol. I would like to explore the principles behind this “interface”, as there is active disagreement about what it should look like. This became apparent in the discussion on implicit prepare, and is reflected in recent notes by Mark Little on the minutes.

Savas Parastadis disagreed with the idea that the initiator (client to the coordinator) would be able to send PREPARE, then receive VOTE, then send either CONFIRM or CANCEL. He averred that the initiator should not be able to take responsibility for deciding the outcome of the atomic BT (atom hereafter), but rather that the coordinator should contain the decision-making logic (as is true in top-level coordinators in conventional transaction systems).

I disagree with Savas, but his approach usefully raises several points upon which we need precise agreement, in order to write the spec.

Separately, in this document I also want to present an alternative to Mark Little’s proposed interface (see his e-mail of 21 May 2001, appended to this document). This alternative also takes account of the cohesion composer-atom coordinator interface.

Part I: “Open-top” versus “closed-top”

The traditional “closed top” coordinator

In many conventional transaction systems the client has a demarcation API (such as X/Open tx_ or the OTS Current:: or TransactionFactory/Terminator interfaces). Such interfaces offer some kind of begin or start verb, and then allow the client to state that they wish to rollback or commit the transaction so started.

The commit verb or message is a request to the coordinator to execute the whole of the two-phase commit protocol. The client blocks while the coordinator attempts to service this request, and (at minimum) the client learns the decision of the coordinator after the first phase (voting) has completed. Optionally the client may block until the second phase (outcome delivery) has finished, in which case it is possible to communicate the fact that a participant “freelanced” and delivered an heuristic outcome (one which is at variance with the coordinator’s instructions). [qualify this for the pedants amongst us]

Figure 1: “Closed Top” Coordinator

In this “closed top” model, the coordinator enshrines a decision-making algorithm, which cannot be varied by the application (client). This algorithm (leaving aside optimizations) is as follows:

1. The coordinator collects votes from all participants.

2. If it fails to obtain a vote then the outcome of the transaction is set to abort.

3. If any participant votes to rollback (abort) then the outcome is set to abort.

4. A participant may abstain, by stating that it has made no changes to significant state on behalf of this transaction (vote read-only as it sometimes described).

5. Only if all participants vote yes (to commit), or abstain, will the outcome be set to commit.

Note that this algorithm represents the coordinator’s role in only the first phase of the 2PC.
The interposed coordinator

The need to create interposed (sub-) coordinators has led some transaction systems to “open the top” of their coordinator implementations. If a participant acts as a sub-coordinator then it communicates with a superior coordinator. The superior will first send a PREPARE to the sub-coordinator. It will then follow the first-phase algorithm already described. However, wherever we have said “set the outcome to”, we should now say “send the decision (abort, commit) as a vote to the superior”. The outcome of the interposed, inferior transaction is not yet known. Only when the superior coordinator sends an outcome message (in our terms, CONFIRM or CANCEL) will it be possible for the interposed coordinator to set the outcome state.

Figure 2: Interposed (Sub-) Coordinator

In the case of interposition we allow the client to the sub-coordinator to ask for preparation, to receive the result, and to decide what the outcome is, and when it should be delivered. When interposed, a coordinator becomes more passive: it is a state machine whose transitions are induced externally in two cases (prepare, outcome), rather than only once (attempt to commit) in the closed-top model.

It is worth remarking that the external stimulus to begin the first phase is always originally emitted by application logic. Traditionally this would take the form of requesting 2PC be started. The second phase stimulus upon an interposed coordinator is produced by the coordinator acting on behalf of the client application, and not by direct transmission from the client.

The “Open Top” Atomic BT Coordinator

An atomic business transaction (atom) coordinator in BTP is required to be able to live within a cohesive business transaction (cohesion). It may also be required to act as one half of a sub-coordinator (interposition). Either of these circumstances places it in a subordinate, inferior role. It must therefore be as “open” as the interposed coordinator already described.

Atoms are enrolled in cohesions. This creates a “working set” of atoms which the composer of a cohesion can modulate. Atoms may be prepared and then confirmed or cancelled by a composer. The composer has the responsibility for communicating with atom coordinators to tell them when to prepare, and what the outcome is. The atom coordinators must therefore be “open top”. Its immediate superior must tell it when to prepare, must receive its prepare status, and if VOTE/Ready must send it the outcome. In other words it must support the interface, obey the protocol of, play the role of, a participant, just as a sub-coordinator does.

Figure 3: Cohesive BT Composer and Atomic BT Coordinator

Once we accept that fact, it becomes clear that the atom (freestanding, not part of a cohesion) will have to bear an identical relationship to its initiator, as it does to an enclosing cohesion. In other words, a cohesion is (from one point of view) an example of an initiator. But it is an initiator that is failure recoverable with relation to outcome delivery, for a defined set of enrolled atoms.

In principle I think it is critical that we retain the ability to place all outcome determination logic in the hands of the application (business process). Only the application can know what is required to select the atomic confirmation set. An implementation might provide a mechanism for the application to choose from a set of predefined selection algorithms (perhaps by a plug-in approach).

As an aside, the easiest way of creating a single atomic transaction (if we wish to use the protocol for a conventional atomic action, to support ACID) would be to create a freestanding atom (independent of a cohesion), and then to coordinate its outcome via the same (open top) protocol as the cohesion would use. It would be possible to create an API to “close the top” for this case, but that should not affect our view of the interoperable protocol (which is not an API). Alternatively one could insist that all atoms are related to, enrolled in, cohesions. This seems unnecessary to me. In fact it would preclude late enrollment, which is one of the useful features of cohesions.

Part II: Five interoperable protocols

An “interoperable XML-based protocol”, not an API

One of the reasons I take a different approach to Mark on his proposed “interface” (see Appendix to this document) is that it should not be an interface, but a message set with associated contractual obligations, just like the proposed (draft) set for the coordinator-participant protocol.

This issue is most vivid when we look at the idea of a “begin” instruction (message, verb, method …). If this is an XML document, BTP schema-valid, then the question arises: “who do we address this message to?”. If this is not a message, but an API call, then we need to define an object or library to contain the function or method “begin”, and this must be written in/incarnated by some algorithmic language (C++, Java, C#) or some interface definition language with algorithmic language mappings (COM, CORBA, DCE etc). In which case we have started to define an algorithmic-language specific API, requiring mappings or variants for each supported algorithmic language. This is a complex and unnecessary road down which to travel.

It might be objected that all we need to do is create some well-defined primordial actor like a BTP manager, which would accept the message BEGIN. This then raises the issue of how to create such a manager. Which returns us to the necessity for some API for some particular language like Java or whatever.

#1 The Initiator-Manager protocol

I think the solution to this is not to define a bootstrap, but to leave that to the implementation. A BTP Manager is probably needed for recovery purposes, so I will assume that the bootstrap is to create such a manager, and to give its address to the initiator (which also generates its own address). It will then send a BEGIN message to the manager to create a coordinator, receiving back the coordinator address in the form of a BEGUN message. (A coordinator is an addressable computation, implementation undefined, which can receive messages sent by agreed carrier protocols using BT Protocol Addresses.) Once this is known to the initiator then it can send messages (XML document instances) to that address. To receive replies it must generate a BT Protocol Address for itself, which is communicated to the coordinator.

#2 The message set required for Initiator-Coordinator

#3 (including the Context Retrieval protocol)

In fact the extensions to the proposed message set for initiator-coordinator interworking are minimal, if we take the “open top” approach described in the first part of this document.

From the Initiator’s standpoint the Coordinator is a Participant (analogous to interposition). The Coordinator therefore supports (will receive or send) the following messages (among others):

PREPARE

VOTE

CANCEL

CANCELLED

CONFIRM

CONFIRMED

If we add a message

GET_CONTEXT

to which the reply is

CONTEXT

(which is already defined as a member of the message set, broadly speaking) then we have the set of messages required to define the relationship between the a freestanding atom’s coordinator and its initiator. This pair (which I refer to as the Context Retrieval protocol) are clearly needed for augmentation or infection of application messages.

#4 The Composer-Coordinator protocol, whose message set is identical to

#5 The Coordinator-Participant protocol

If we add the remaining messages for which the Participant is an endpoint (which are already defined)

ENROLL

ENROLLED

RESIGN

REDIRECT

PARTICIPANT_STATUS

COORDINATOR_STATUS

then we have the set required to defined the relationship between an atomic coordinator and a cohesive composer. Note that the status values that a composer returns are identical to those returned by a coordinator.

Incidentally, it might be clearer if we renamed PARTICIPANT_STATUS and

COORDINATOR_STATUS

INFERIOR_STATUS

SUPERIOR_STATUS

or something analogous.

A comment on Mark’s proposal

I’ve already dealt with begin. If we have a BTP manager (which is needed for redirection), then we could create a BEGIN message from Initiator to Manager. I agree with the need for a clean-up timeout. I am not sure how useful it is to propagate that as part of the context.

The other “verbs” proposed are basically different names for the messages and statuses defined in the existing proposed protocol set. I agree with the need for them, but think they should not be treated differently than the existing proposal.

The FTF diagram revisited

Appendix: MarkLittle’s proposal of 21 May

As promised, here is the proposed coordinator interface, which will allow interoperable coordinator web services to be provided. What we are after is a service that handles the creation and management of atom coordinators. Although there are several possible ways in which this can be accomplished, I'll propose just one, which I believe is the simplest and most intuitive:

(i) begin: creates and begins a new atom and returns the id for it. If the creator of the atom would like it to have a default lifetime then a timeout parameter could be supplied: if after this timeout the atom has not been completed (got past prepare) then it will automatically be undone. This allows the service to automatically manage its own resources (atoms), especially in the cases of failure and potential denial of service attacks, i.e., I would find it hard to believe that any publicly available service would simply allow a user to create atoms that live forever as it would then be relatively straightforward to deliberately call this service many times in order to restrict access from other users and (eventually) use up all available resources. Suggestion: we have a General exception that can be returned if non-specific errors occur; this method may throw this exception.

(ii) prepare: takes an atom id and attempts to prepare it. Returns the result of this. Depending on the outcome of the timeouts discussion, it is possible that prepare could

result in a heuristic outcome, and so this method should throw corresponding exceptions (TwoPhaseViolation). In addition, if the id refers to an atom that the service does not know about, the InvalidAtom exception is thrown.

(iii) confirm: takes an id of a previously prepared atom and attempts to confirm it. If the atom has not been previously prepared then the NotPrepared exception is thrown. If a heuristic occurs, then the TwoPhaseViolation exception is thrown. In addition, if the id refers to an atom that the service does not know about, the InvalidAtom exception is thrown.

(iv) undo: takes an atom id and attempts to undo it (the atom need not have been previously confirmed). If a heuristic occurs, then the TwoPhaseViolation exception is thrown. In addition, if the id refers to an atom that the service does not know about, the InvalidAtom exception is thrown.

(v) getStatus: takes an atom id and returns its status. Possible status values are:

StatusUnknown: the service cannot determine the status at this point. This should hopefully) be a transient condition, and a subsequent call to getStatus should eventually result in a different outcome.

StatusActive: the atom is currently in its active phase.

StatusPrepared: the atom is in the prepared phase.

StatusPreparing: the atom is currently preparing.

StatusConfirming: the atom is currently confirming.

StatusConfirmed: the atom has been confirmed. Since the service may discard an atom once it has completed, this value is not guaranteed to be returned forever. If an application wants to guarantee that it knows the outcome of an atom then it should enlist its own participant.

StatusUndoing: the atom is currently undoing.

StatusUndone: the atom has been undone. Since the service may discard an atom once it has completed, this value is not guaranteed to be returned forever. If an application wants to guarantee that it knows the outcome of an atom then it should enlist its own participant.

StatusNoAtom: the service has know knowledge about the supplied atom. This may mean that is never existed, or has finished and tidied-up. If the caller was a previously enlisted participant then it can know that the atom was undone, since otherwise the service (atom) would either be active, or maintaining a durable log of

participants it had not yet told to confirm (c.f., a transaction's intentions list/log).

(vi) enlistParticipant: takes an atom id and a participant reference (url), and enlists that participant in the desired atom. If the atom is no longer in the active phase then the Inactive exception is thrown. If the service has no record of the atom then the InvalidAtom exception is thrown.

(vii) recover: takes an atom id and an old participant reference, and a new participant reference. This instructs the service to run recovery on the specified atom and to replace the specified old participant with the new one. This is used when a failed participant recovers at a different location and can be used to try to drive recovery quicker than would otherwise be the case, i.e., drive it from the recovering participant. This really depends upon what we think the failure scenarios are, but in our experience this is useful: even if we allow a participant to re-register itself in, say, UDDI, it requires the atom to periodically check that service to find the new location.

"Periodically" may not be fast enough in some cases, and a hint from a recovered participant to drive recovery now would be desirable.]

Coordinator

Participant

result

Initiator

vote

prepare

outcome

finish

commit

result (may be heuristic)

Initiator

result (may be heuristic)

commit

outcome

vote

result

Participant qua

Coordinator

finish

prepare

outcome

vote

Participant

Sub-coordinator

finish

prepare

vote

Participant

vote

finish

outcome

Coordinator of

Atomic BT

Composer

of Cohesive BT

prepare

finish

outcome

prepare

Specified

Composer

Participant

Coordinator

Service

Initiator

Not specified

Manager

#3

#1

#2

#4

#5

