Organization for the Advancement of Structured Information Systems

Business Transaction Protocol

An OASIS Committee Specification

	Working draft 0.1
	14 June 2001

	Working draft 0.2
	18 June 2001

	Working draft 0.3
	12 July 2001

Copyright notices and acknowledgements

Copyright © 2001, [standard OASIS terms]

Employees of the following companies participated in the finalization of this specification as members of the OASIS Business Transactions Technical Committee:

Applied Theory

BEA Systems, Inc.

Bowstreet, Inc.

Choreology Ltd.

Entrust, Inc.

Hewlett-Packard Company

IPNet Solutions

Talking Blocks Inc.

In addition, the following individual members of OASIS are members of the Technical Committee:

[TBD]

Typographical and Linguistic Conventions and Style

The initial letters of words in terms which are defined (at least in their substantive or infinitive form) in the Glossary are capitalized whenever the term used with that exact meaning, thus:

Cancel

Participant

Application Message

The first occurrence of a word defined in the Glossary is given in bold, thus:

Coordinator

Such words may be given in bold in other contexts (for example, in section headings or captions) to emphasize their status as formally defined terms.

Abbreviations defined in the Glossary are always given in bold:

C (PREPARE (P
The names of abstract BTP protocol messages are given in upper-case throughout:

BEGIN

CONTEXT

RESIGN

XML schemata and instances are given in Courier:

<btp:begin> … </btp-begin>

Illustrative fragments of code in other languages, such as Java, are given in Lucida Console:

int main (String[] args)

{

}

Terms such as MUST, MAY and so on, which are defined in RFC [TDB number], “[TDB title]” are used with the meanings given in that document but are given in lowercase bold, rather than in upper-case:

A Participant must send one of RESIGN, READY or CANCELLED to its Coordinator.

Contents

2Copyright notices and acknowledgements

3Typographical and Linguistic Conventions and Style

4Contents

5A Note on the Specification

6Part 1. Purpose and Features of BTP

6Introduction

7Purpose and Scope of the Business Transaction Protocol

7Relationship to Other Standards and Technologies

8Overview of the Protocol

8A survey of key concepts and roles

11User-defined Participants

11Coordination of Atomic Business Transactions

11The Life-cycle of an Atom

14Composition of Cohesive Business Transactions

16Lifecyle of a Cohesion

17Part 2. Formal Specification of BTP

17Actors, Roles and Relationships

18Manager

18Atom Initiator

18Atom Terminator

18Client

18Service

18Coordinator

19Participant

20Addressing

21Abstract Messages and Associated Contracts

22Standard Qualifiers

23State Tables

24Failure Recovery

25XML Schema for Message Set

26Compounding of Messages

27Carrier Protocol Bindings

28Implementors’ views

28Conformance

28Participant

28Atom coordinator

28Cohesion composer

28Communicator/ message gateway

29Part 3. Appendices

29Glossary

30Examples

A Note on the Specification

After prefatory material, this specification falls into three parts.

The first part (entitled “Purpose and Features of BTP”) is intended to explain why a new business transactions protocol has been created, and to outline and convey its main features and characteristics. This part gives the reader a detailed, but informal view of the protocol.

The second part (entitled “Formal Specification of BTP”) is the definitive guide to implementers, and has precedence over any statement of, or inference from, the first or third parts. This part includes a set of formal definitions of terms, under the heading of “Glossary”.

The third part (entitled “Appendices”) describes the relationship of BTP to other standards initiatives, and gives examples, use-cases, and helpful references. This part is intended to situate and exemplify the BTP protocol, and like the first part, is informal and expository.

Part 1. Purpose and Features of BTP

Introduction

This document, which describes and defines the Business Transaction Protocol (BTP), is a Committee Specification of the Organization for the Advancement of Structured Information Standards (OASIS). The standard has been authored by the collective work of representatives of [TBD number] software product companies (listed on page [TDB]), grouped in the Business Transactions Technical Committee (BT TC) of OASIS.

The OASIS BTP Technical Committee began its work at an inaugural meeting in San Jose, Calif. on 13 March 2001, and this specification was endorsed as a Committee Specification by a [unanimous] vote on [date].

BTP uses a two-phase outcome coordination protocol to create atomic effects (results of computations). BTP also permits the composition of such atomic units of work (atoms) into cohesive business transactions (cohesions) which allow application intervention into the selection of the atoms which will be confirmed, and of those which will be cancelled.

BTP is designed to allow transactional coordination of participants which are part of services offered by multiple autonomous organizations (as well as within a single organization). It is therefore ideally suited for use in a Web Services environment. For this reason this specification defines communications protocol bindings which target the emerging Web Services arena, while preserving the capacity to carry BTP messages over other communication protocols. Protocol message structure and content constraints are schematized in XML, and message content is encoded in XML instances.

The BTP allows great flexibility in the implementation of business transaction participants. Such participants enable the consistent reversal of the effects of atoms. BTP participants may use recorded before- or after-images, or compensation operations to provide the “roll-forward, roll-back” capacity which enables their subordination to the overall outcome of an atomic business transaction.

The BTP is an interoperation protocol which defines the roles which software agents (actors) may occupy, the messages that pass between such actors, and the obligations upon and commitments made by actors-in-roles. It does not define the programming interfaces to be used by application programmers to stimulate message flow or associated state changes.

The BTP is based on a permissive and minimal approach, where constraints on implementation choices are avoided. The protocol also tries to avoid unnecessary dependencies on other standards, with the aim of lowering the hurdle to implementation.

 Purpose and Scope of the Business Transaction Protocol

The Business Transaction Protocol is designed to extend atomic transactional guarantees to linked elements of business processes executing in different organizations. Examples include electronic procurement, shopping carts, financial instrument trade execution, content publication or replication: in short, any interaction where data representing valuable information, goods or services must be manipulated or shared in concert.

BTP is designed to accommodate four underlying requirements:

· Ability to handle multiple possible successful outcomes to a transaction, coupled with the ability to involve operations whose effects may not be isolated or durable; in other words, the ability to relax the ACID properties of classic atomic transactions

· Coordination of autonomous parties, whose relationships are governed by contracts, rather than the dictates of a central design authority

· Discontinuous service, where parties are anticipated to suffer outages during their lifetime, and coordinated work must be able to survive such outages

· Interoperation, using XML, over multiple communications protocols

While the protocol is highly suitable for an inter-organizational Web Service environment, it can also be used to coordinate updates in conventional databases which offer a distributed transaction interface such as XA. It is also capable of integration with conventional atomic transaction services, such as the OMG’s Object Transaction Service.

Unlike flat transactional protocols, BTP allows the creation of cohesive business transactions or cohesions, which have many possible successful outcomes. Cohesions are made up of atomic groups of operations or atoms, which can each be confirmed or cancelled in a highly flexible way, under the control of a supervising business process. At the end of its lifetime a cohesion resolves to a strictly atomic outcome.

Unlike nested transaction protocols, BTP does not anticipate the use of specialized resources, but its cohesion mechanism does provide the structuring and fault isolation benefits of nested transactions.

BTP allows transactions to be processed which possess the well-known ACID (atomicity, consistency, isolation, durability) properties; it also enables transactions to be created where isolation and durability are consciously relaxed.

Relationship to Other Standards and Technologies

[TDB]

Overview of the Protocol

A survey of key concepts and roles

The Business Transaction Protocol (BTP) is an interoperation protocol. It defines the messages that pass between programs, and the roles that those programs play, in terms of the behaviours they must exhibit when receiving or sending such messages

BTP does not define an application programming interface (API), although a simple illustrative API in Java is used in the first part of this specification to help explain how an application can take advantage of BTP. Implementers are free to define any type of API using any language.

BTP provides a stack of facilities:

The purpose of BTP is to coordinate work across a set of services, each of which may be offered by a different organization. To take an example: A customer may want to buy goods, insurance and shipping from different suppliers.

If these goods and services are to be offered for system-to-system procurement then each supplier must make its offer in a standard fashion. In BTP terms this means that each supplier must make its offer within the framework of a BTP Participant interface. This standard interface, or set of predefined messages, can be implemented in any way that makes sense for the supplier’s business. The facility to create user-defined Participants, containing any useful business logic, allows any service to be equipped to take part in a BTP coordinated outcome.

For a coordinated outcome to occur one party to the business transaction must act as (or appoint a delegate to act as) a Coordinator. In our example we might see an arrangement where the customer acts as the Coordinator, and the different suppliers (service offerers) as as Participants:

A purchaser of offered services has to decide which offers to accept, and what combinations of goods or services makes sense. In the example already given it makes little sense to order shipping or insurance services if the goods are not available at a suitable price. The three elements of this multi-part business transaction are therefore tied together: the customer is likely to want all of them or none of them. This “all or nothing” choice is modelled in BTP by atomic business transactions or “atoms”.

Atomic transaction coordination is the part of BTP which allows distributed pieces of work to be gathered into a single unit which either completes as a whole, or is cancelled as a whole. This facility is provided using the well-known two-phase commit protocol (with presumed abort).

Individual atoms can also be linked together in a higher-level coordination unit called a cohesive business transaction or “cohesion”.

A cohesion can contain several candidate atoms. These atoms might represent offers or quotes, from which a buyer will select. The application applies business rules to determine which of these candidates will ultimately be included in the completed cohesion. Atoms can be added to the cohesion, and removed from it, to modulate the pool of candidates over the lifetime of the cohesion. Eventually the application business process will confirm the final set of atoms that has been selected, and the cohesion will resolve to a single atomic outcome for all those atoms (i.e. they will all be confirmed, or will all be cancelled).

We can apply the cohesion facility to the procurement example already given. The customer may decide that insurance is optional in the business transaction. If the goods and shipping can be obtained at a reasonable price and for an appropriate delivery time, then the customer may judge that insurance is certain to be available. Perhaps the price of the standard insurance offered by the shipping supplier is not acceptable. In this case the customer will accept (confirm) the offers for goods and shipping, but reject the insurance offer. The goods and shipping become the final atomic unit of work: they must both be purchased for the business transaction to make sense, or they must both fail. In either eventuality the insurance offer is rejected.

The net effect is that the final atomic outcome is more restricted than in the earlier example of a single atomic transaction, where this kind of partial outcome was not permitted:

The next sections of this overview look in more detail at the three key players in the BTP protocol: user-defined Participants, Coordinators of Atomic Business Transactions and Composers of Cohesive Business Transactions.

They include descriptions of how BTP Atoms and Cohesions fit in to the work of a distributed application (such as a client-web service environment).

User-defined Participants

[TDB]

Coordination of Atomic Business Transactions

The Business Transaction Protocol allows the work of several Participants services to be coordinated. At its heart is a modified version of the well-known two-phase commit protocol. An Initiator application instigates an Atomic Business Transaction. A Coordinator manages the transaction by keeping track of a set of enrolled Participants.

Each Participant carries out work (performs computations) on behalf of the transaction. If the application decides to cancel the transaction (or one of the Participants decides it must cancel) then the whole atom is cancelled. This means that each Participant is instructed to process a Cancel operation. Cancel functionality is defined for each Participant by its creator. A Cancel operation might reverse state changes, or it might process a compensatory action of some other kind.

Conversely, if all Participants are able to complete their work when requested to do so by the controlling application then the transaction is Confirmed. The protocol ensures that a confirmation is processed by all participants in the atomic business transaction (or Atom, for short).

Applications interact with atomic business transactions in three ways. An Atom is created and terminated by application code. An application can send messages from one processing location to another, and can associate such messages with a particular BTP atom. Finally, the application program which receives such messages can Enrol groups of computations (operations) with the Atom. Each enrolled operation group can have many forward operations, that are used to accomplish work as part of the atomic business transaction, and must have one Cancel operation. This group of related, cancellable operations is called a Participant.

The following diagram illustrates the relationship between the key application roles (Initiator, Client and Service) and the key protocol roles (Coordinator and Participant).

[TBD The four-box diagram]

The Life-cycle of an Atom

Examining the typical life-cycle of an atomic business transaction helps to explain these relationships in more detail. Please note that this exposition is informal and explanatory, and glosses over some of the detailed choices offered by BTP to users and implementers. In particular, it does not describe the use of Communicators. This topic is dealt with in a later sub-section of this overview, “Messsage Transmission in BTP”. It also does not show the possibility of spontaneous voting, which is discussed in the same section.

Atom creation

An Initiator application sends BEGIN to a Factory. A Coordinator is allocated to the Atom, and a CONTEXT is generated. The CONTEXT is inserted in a BEGUN, and the BEGUN is sent to the Initiator.

Sending an Atom-associated Application Message from Client to Service

The Initiator, acting as a Client, sends an Application Message to a BTP-aware Service. The message is passed in conjunction with the CONTEXT which was embedded in the BEGUN. The CONTEXT contains an Atomic Identifier, and the Address of the Atom’s Coordinator. The message is received by the Service, along with the CONTEXT. The Service now reacts to the message from the Client, and in the process may use the CONTEXT to create a Coordinator-Participant relationship.

Creating Participants
A BTP-aware Service reacts to an Atom-associated message by invoking some kind of operation or computation. The nature of the work done by this operation is completely determined by the application Service. If the Service wants some of this work to be performed on behalf of, or as part of, the Atomic Business Transaction then it must delegate that part of its work to a Participant.

A Participant can be made up of many operations whose purpose is to progress the work of the application, but is always possesses a single Cancel operation. If the Cancel is invoked then all the work of the forward progress operations will be reversed or, to be more precise, Counter-effected.

The Service may delegate Atom-associated work to more than one Participant. Each Atom-associated Application Message may cause the Service to use a different Participant, or the Service may re-use the same Participant to handle work for different Application Message deliveries.

Enrolling a Participant with a Coordinator
Each Participant is located or created by the Service. A Participant can be thought of as a relationship between a particular Atom (and its associated Coordinator) and a Service. This relationship is created by sending an ENROLL to the Coordinator. This message specifies an Inferior Identifier, which uniquely identifies the Participant, and also provides an Address for the Participant. The Coordinator responds by sending an ENROLLED back to the entity that sent the ENROLL. (The Enroller might be the Service, or the Participant may be charged by the Service with enrolling itself.)

Sending an Application Message back from the Service to the Client

The Service may use any Enrolled Participant to perform work for the Atom concerned. Once the Service has completed its operation in response to the Client’s Application Message, it may send an Application Message back to the Client. The Application Message may be a normal message or a Fault. Any Fault will invalidate Participant enrollments carried out by the Service as a result of the receipt of the original Client Application Message.

Requesting the Termination of an Atom

A Client can transmit as many Atom-associated Application Messages as it likes to one or more Services, each of which may, in turn, involve as many Participants as it likes in performing Atom-associated work. When the Client concludes that all the desired work has been performed it may act as a Terminator, by sending a REQUEST_CONFIRM to the Coordinator. This message asks the Coordinator to perform the two-phase commit coordination protocol with all of its Enrolled Participants.

Performing the “Two-phase Commit” Protocol

The Coordinator, once asked to attempt to bring the Atom to a Confirmed state, processes the first (prepare) phase of the 2PC protocol. It sends a PREPARE to all enrolled Participants. Each Participant is bound to respond by sending a READY, a CANCELLED or a RESIGN.

A RESIGN indicates that the Participant has had no significant involvement with the Atom (has never processed an operation, or its operations’ effects have been nil).

A READY indicates that the Participant has processed its forward operations successfully, and is in a position to either process its Cancel operation or its Confirm operation (i.e. to “roll back” or to “roll forward”).

A CANCELLED indicates that the Participant has not been able to process its forward operations successfully, or has not been able to prepare to execute either of its Confirm or Cancel operations.

If the Coordinator receives a single CANCELLED then the whole Atom must be Cancelled. This is achieved by the Coordinator sending CANCEL to all of its enrolled Participants.

If the Coordinator only receives READY or RESIGN messages then it reacts by sending a CONFIRM to all Participants that sent it a READY.

On receipt of a CONFIRM, a Participant will typically send CONFIRMED to its Coordinator. Likewise, on receipt of a CANCEL, a Participant will usually send CANCELLED to its Coordinator. (It is possible for a Participant to contradict its Coordinator’s instructions by making a unilateral decision to Confirm or Cancel.)

In any event, the Coordinator will send an outcome message to its Terminator. This will be one of CONFIRMED, CANCELLED or MIXED.

(MIXED is only sent if different Participants, enrolled with a single Coordinator, end up sending some combination of CONFIRMED and CANCELLED, such that there is no single outcome. This circumstance is rare, but possible. It indicates that the BTP protocol has been broken, and that some kind of administrative repair will likely be needed.)

Once an outcome has been delivered to the Terminator the Atom is completed or finished, and its Coordinator ceases work.

Composition of Cohesive Business Transactions

Each Atom’s outcome (confirmed or cancelled) is determined by the intersection of two decisions. For an Atom to confirm all its Participants must have sent a READY to the Atom’s Coordinator. In addition the Atom’s Terminator must have indicated that it is happy for the Atom to be confirmed.

An Atom Terminator is responsible for communicating the view of the Initiator application, or of its delegate, on the outcome of the atomic business transaction.

A Coordinator can have two kinds of Terminator. A volatile Terminator has no durable record of its desired outcome, and is therefore not the ultimate decision maker. It expresses its opinion to the Coordinator by sending a REQUEST_CONFIRM or a CANCEL. (It is very likely that the Terminator role in this case will be performed by the Initiator application itself. However, the application may have appointed a proxy or delegate to carry out this role, particularly in a situation where the Initiator application is not expected to survive as long as the Atom.) In the case of REQUEST_CONFIRM the Coordinator then polls its Participants to see whether they are all prepared, i.e. that they have all sent READY back to the Coordinator to indicate they are able to either be confirmed or cancelled. If they all send READY then the Coordinator sends CONFIRM to all of them; if any of them send CANCELLED then the Coordinator sends CANCEL to all of those which sent READY.

A persistent Terminator has a different relationship to the Coordinator. A persistent Terminator asks the Coordinator to poll all of its Participants to establish whether the Atom is capable of being confirmed. It does this by sending a PREPARE to the Coordinator. If the Coordinator’s Participants are all ready (able to confirm or cancel) then the Coordinator returns READY to the Terminator. The Terminator then decides, on the basis of application logic, whether or not to give the final go-ahead for the Atom to be confirmed (by sending CONFIRM), or whether to abort the Atom by sending CANCEL to the Coordinator. For the Terminator to safely send a CONFIRM it must durably record its decision to do so, prior to the message actually being transmitted. (This persistent record enables the Terminator to re-issue the CONFIRM in the event of recovery of the Terminator or the Coordinator after a crash, or long-lasting communications failure.)

 In this latter case, the Terminator is the true decision-maker. It does not merely recommend, or express an opinion, it makes the final decision. The underlying Coordinator enrolls itself, in effect as a Participant of the Terminator, and a “superior-inferior” relationship is created between the two which mimics that between a Coordinator and one of its Participants..

A Cohesion or Cohesive Business Transaction is an example of a persistent Terminator. Any number of Atom Coordinators can be enrolled as its Inferiors. (An Inferior is capable of receiving PREPARE, CONFIRM and CANCEL, and of sending RESIGN, READY, CANCELLED, CONFIRMED and MIXED to a Superior, which is in turn capable of receiving the latter, and sending the former).

A Cohesion is used as a conduit by the application for orderly communication with the underlying enrolled Coordinators. Each Cohesion is represented or managed by a Composer (a role which is analagous to the Atom’s Coordinator).

Typically each Coordinator represents an atomic unit of work that may or may not end up as part of the overall set of confirmed actions that make up the overall business transaction. The Composer sends PREPARE to each Coordinator. If the Coordinator sends READY back then its Atom becomes a candidate for inclusion in the final confirm set of the Cohesion. The application, knowing the service offered by each Atom (and observing its characteristics, such as price), will decide whether or not to ask the Composer to send CONFIRM to each of these Atom’s Coordinators. When the Composer sends a CONFIRM to one or more of its inferior Coordinators, it must durably record its intention in advance. Rejected Coordinators are sent CANCELs.

The final effect of the application’s selection from the pool of Atoms is to either cancel all Atoms, or to confirm a sub-set. The confirm sub-set is guaranteed to receive the CONFIRM message under normal circumstances, and in the event of recovery from component failures. The confirm sub-set is therefore an atomic unit of work; the cohesion as a whole ends up with a disparate (non-atomic) outcome, where some elements are confirmed, and others are cancelled. Atoms within a Cohesion (unlike Participants of an Atom) should therefore not share data prior to confirmation with each other, as they would run the danger of basing confirmed state changes on cancelled partial changes.

Lifecyle of a Cohesion

Part 2. Formal Specification of BTP

Actors, Roles and Relationships

Actors are software agents which process computations. BTP actors are addressable for the purposes of receiving application and BTP protocol messages transmitted over some underlying communications or carrier protocol.

BTP actors play roles in the sending, receiving and processing of messages. These roles are associated with responsibilities or obligations under the terms of software contracts defined by this specification. (These contracts are stated formally in the sections entitled “Abstract Messages and Associated Contracts” and “State Tables”.) A BTP actor’s computations put the contracts into effect.

One actor may play several roles, or each role may be assigned to a distinct actor. This is a choice for the implementer. An actor playing a role is termed an “actor-in-role”.

Some roles share a common interface (where the messages sent are identical, though the behaviour of the receiver may differ). There are two cross-role interfaces of this kind:

Superior

Inferior

These are the roles that BTP actors may perform (with the cross-role interfaces they support, if any, appended in parentheses):

Manager

Atom Initiator

Atom Terminator

Composer Initiator

Composer Terminator

Client

Service

Composer (Superior)

Sub-composer (Superior, Inferior)

Coordinator (Superior, Inferior)

Sub-coordinators (Superior, Inferior)

Participant (Inferior)

Enroller

Resigner

Status Requestorb

Superior Communicator

Inferior Communicator

Redirector

The following diagram illustrates their relationship. In this diagram a line joining two roles indicates that BTP protocol messages (or application messages which are related to BTP protocol messages) flow between the actors which play those two rules.

[TBD]

Manager

Creates Atoms and Cohesions, and hands out the addresses of their coordinators or composers, respectively.

Atom Initiator

Requests the creation of a Coordinator by sending a message to a Manager.

Atom Terminator

Requests a Coordinator to prepare, and sends the atom outcome to a prepared coordinator.

Client

Sends BTP-augmented application request messages to a Service, and receives corresponding application response messages from the Service. A BTP-augmented request consists of an application request message and a related BTP context.

Service

Receives BTP-augmented application request messages from a Client, and sends corresponding application response messages to a Client. The operation that is invoked by receipt of a BTP-augmented application request must be completed before the response is transmitted. The operation may enrol one or more Participants with the Coordinator whose address is embedded in the BTP context of the augmented request.

Coordinator

Receives (and acknowledges) enrollments of Participants. Gathers the votes of all enrolled Participants and reports the aggregate result (where any VOTE/“cancel” acts a veto) to the Coordinator’s superior (either a Terminator or a Composer).

Participant

Is enrolled by …

Include relationship between roles: composer:coordinator:participant

Addressing

Abstract Messages and Associated Contracts

Standard Qualifiers

State Tables

Failure Recovery

XML Schema for Message Set

[TDB Messaging sub-committee]

Compounding of Messages

Carrier Protocol Bindings

Implementors’ views

What is needed/involved in implementing each of the players

Conformance

For each of the vertical roles:

Participant

Atom coordinator

Cohesion composer

Communicator/ message gateway

Part 3. Appendices

Glossary

Examples

User-defined Participants

Atomic Coordination

Cohesion Composition

Implementer or application extensions

Customer

Shipping

Insurance

Goods

Shipping

Goods

Insurance

Customer

 Atomic unit of work

Shipping (

Goods (

Insurance (

Customer

 Cohesion

Atomic unit of work

Shipping

Goods

Insurance

Customer

Shipping Participant

Goods Participant

Insurance Participant

Customer Coordinator

OASIS BTP working draft Specification 0.3 Page 7 of 30

