OASIS Business Transactions Technical Committee

Workflow sub-committee

Business Transactions in Workflow and Business Process Management

Mark Potts (mark.potts@talkingblocks.com)

Copyright © 2001, Talking Blocks Inc. Suite 610, 10 United Nations Plaza.

Sazi Temel (sazi.temel@bea.com)

Copyright © 2001, 140 Allen Road, Liberty Corner, NJ

This document is part of the on-going work of the OASIS Business Transaction Protocol Technical Committee.

Abstract

Process Management Systems (Workflow) control and coordinate the execution of business processes consisting of heterogeneous and distributed activities and tasks. As advancements in distributed systems enable more pervasive computing models; Web services and businesses-to-business collaborative systems are becoming the more predominant methods of creating business applications. Process oriented workflow systems and business-to-business (B2B) applications, whether they are based on Web services or other distributed system technologies, require transactional support in order to guarantee consistent and reliable execution. However, classical (ACID) transactions and extended transaction models based on the ACID transactions are too constraining for the applications that include steps/tasks/activities/services that are disjoint in both time and location.

It is paradoxical that while applications (and data) are becoming more and more loosely coupled, requirement for orchestrated transactions across these distributed services are increasing. The motivation is to create a business transaction protocol to be used in applications that require transactional support beyond classical ACID and extended transactions. The goal of Business Transaction Protocol (BTP) is to orchestrate loosely coupled software services into a single business transaction. There are several other protocols that are developed for various aspects of business process management and B2B collaborations, among them Business Process Modeling Language (BPML), Web Services Flow Language (WSFL), Electronic Business Extended Modeling Language (ebXML) and XLANG.

BTP aims to be an underlying protocol that offers transactional support in terms of coordinating distributed autonomous business functionality, in the form of services, that can either be orchestrated by the application layer or a BPM system. This paper gives an overview of other related protocols and the opportunities that exist for BTP to be complementary for the specific protocols listed above.

Overview of BTP

The Business Transaction Protocol, BTP, is a Committee Specification of the Organization for the Advancement of Structured Information Standards (OASIS). While a short overview included below – one may find detail information on purpose and scope of the OASIS BTP protocol in [1].

BTP is designed to support transactional coordination of participants of services offered by multiple autonomous organizations as well as within a single organization. It is therefore ideally suited for use in Web Services and collaborative business environments such as B2B applications thus the BTP specification defines communications protocol bindings which target the emerging Web Services arena, while preserving the capacity to carry BTP messages over other communication protocols. Protocol message structure and content constraints are schematized in XML, and message content is encoded in XML instances.

BTP uses a two-phase outcome coordination protocol to create atomic results of computations, and permits the composition of such atomic units of work (atoms) into cohesive business transactions (cohesion) which allow application intervention into the selection of the atoms which will be confirmed, and of those which will be cancelled.

The BTP allows great flexibility in the implementation of business transaction participants. Such participants enable the consistent reversal of the effects of atoms. BTP participants may use recorded before- or after-images, or compensation operations to provide the “roll-forward, roll-back” capacity, which enables their subordination to the overall outcome of an atomic business transaction.

The BTP is an interoperation protocol which defines the roles which software agents (actors) may occupy, the messages that pass between such actors, and the obligations upon and commitments made by actors-in-roles. It does not define the programming interfaces to be used by application programmers to stimulate message flow or associated state changes.

BTP is designed to accommodate four underlying requirements:

· Ability to handle multiple possible successful outcomes to a transaction, coupled with the ability to involve operations whose effects may not be isolated or durable; in other words, the ability to relax the ACID properties of classic atomic transactions

· Coordination of autonomous parties, whose relationships are governed by contracts, rather than the dictates of a central design authority

· Discontinuous service, where parties are anticipated to suffer outages during their lifetime, and coordinated work must be able to survive such outages

· Interoperation, using XML, over multiple communications protocols

Positioning

A traditional transaction is normally viewed as atomic, meaning that it is a “consistency-preserving” state update. ACID transactions include this consistency along with guarantees on isolation and durability. With ACID transactions any failure that occurs within the defined transaction will be dealt with such that any partial updates will be rolled back and its effects reversed or erased. For transactions that are longer running or where coordinators of transactions don’t have direct access to all the resources enrolled into the transaction, a different and more relaxed notion of transaction (often called a business transaction) is required. Within a business transaction, individual constituent work may be ACID in nature, but the overall business transaction employs a compensatory approach to reversing or erasing partial work already completed. In this model, the concept of isolation in an ACID transaction is relaxed.
IBM and Microsoft (MS) jointly proposed the stack depiction (shown in figure below a modified version of the IBM/MS joint propose at W3C Web Services Workshop) where “Other-extensions” layer in Wire Stack replaced with “BTP-Transactions”.
As seen in figure below, BTP is a specification that can be added to the wire stack, with some infiltration to the description stack in terms of declaring transactional quality of service. This reduced our overlap into many of the BPM specification and standard initiatives and, at the same time, makes it more complimentary. If a separate specification is introduced for endpoint description, it seems like the most appropriate place for declaration of transaction quality of service.
[image: image4.png]Bt £t oot Yow Wiow t

=181 x|
=181

LY

<l [rioe s [niTezex rresin 1] 4]

IR
o ™

on one side and operations, port types, ports, or services on the other side must be
described by endpoint properties.

As a consequence, endpoint properties are neither WSFL-specific nor WSDL-specific, and
they have to be used within WSFL as well as WSDL. Because of this, we envision a separate.
language for describing endpoint properties, here called Web Services Endpoint Language
(WSEL). WSFL foresees the usage of appropriate extensibility elements to describe endpoint
properties of activities, and assumes that Web Services will be described through endpoint
properties in such a way that matchmaking can be done through service locators (see the
following figure)

expects promises | [<op
WSFL WSEL WSDL

3.1.2 Operational Semantics

Asignificant part of the operational semantics of our metamodel has already been discussed
when the various ingredients of the metamodel have been introduced. The most significant
piece missing is dead-path elimination, which is discussed in the next section, 3.1.2.1
*Death-Path Elimination.” Finally, in Section 3.1.2.2 *Summary: Operational Semantics,” we
summarize the operational semantics in the format of a list.

31,21 Dead-Path Elimination

[image: image1.png]Otheroxtensions”

Business Process
Oronsstraion

Ataohments

Rlabity

Vessage
Sequencing

‘Servios Capebiltes
Confgursion

‘Senvics Dascrition
wspl)

Directory (UDDI)

XML Schema

Inspection

DescriptionStack

‘Discovery Stack

Relationship to Other Standards and Technologies

The goal of Business Transaction Protocol (BTP) is to orchestrate loosely coupled software services in to a single business transaction. There are several other protocols that are developed for various aspects of business process management and business to business collaborations, among them Business Process Modeling Language (BPML), Web Services Flow Language (WSFL) and Electronic Business Extended Modeling Language (ebXML) and XLANG which will be covered briefly, below.

BPMI.org and ebXML are addressing complementary aspects of e-Business process management. While ebXML provides a standard way to describe the public interface of e-Business processes, BPMI.org provides a standard way to describe private implementations.
Business Process Modelling Language (BPML)

BPMI.org is an organisation currently developing the Business Process Modelling Language (BPML) and the Business Process Query Language (BPQL); the basis for additional business process modelling languages that apply to specific applications, within specific verticals. BPML is a meta-language for the modelling of business processes, just as XML is a meta-language for the modelling of business data.

Overview

BPML provides an abstract execution model for collaborative and transactional business processes based on the concept of a transactional, finite-state machine.

Among the BPML requirements relevant in business transaction context are:

· Enable the coordination of collaborative business processes among trading partners and standard business-to-business protocols such as RosettaNet, and ebXML.

· Enable the interleaving of processes and transactions that execute along independent lifelines.

· Enable different Business Process Management Systems to exchange process models and share common process repositories.

· Enable the different types of activities that can occur in en enterprise business process, including;

· Short and long lived transactions

· Access to local and remote resources

· Decision-making

· Synchronous and asynchronous communication

The main concepts included in BPML are:

· Messages,

· Participants,

· Transactions,
· Process,
· Activities and Rules
BPML employs a message-based model in which all participants in the process interact through message exchange. Each process includes a definition of all messages communicated between the process and participants. XML Schema is used to define the structure and type of message content. Participants (IT systems, applications, users, business partners, and other systems) are entities with which the process interacts. Process definitions reflect two types of participants: static and dynamic. Dynamic participants allow the process to take advantage of changing business environments and collaboration models such as market places, Web services, etc. Processes are based on the execution of activities and the flow of information across activities and between activities and participants. There are several types of activities: simple, consume, produce, operation, complex, all, sequence, and process. BPML also supports the join pattern allowing a process to engage in synchronized consumption or production of messages for coordinating activities across multiple participants.

BPML supports two transaction models: coordinated (ACID transactions) and extended (isolation requirement is relaxed). Both models preserve the all-or-nothing nature of the transaction, in case of extended transaction, process level forward and backward recovery applied. Also, in order to guarantee full recovery, BPML supports the notion of compensating activities that revert the result of previously completed activities or activities that cannot be rolled back.

Support for BTP

In the most recent publication from BPMI (Proposal for Addressing Web Services with BPML) section 9.0 has proposed change 12, and Issue 05;

Proposed Change 12:

The current BPML specification names two transaction models – coordinated and extended. Other specifications (BTP, XLANG) refer to short coordinated transactions as atomic, while BTP introduces the notion of non-atomic coordinated transactions, referred to as cohesive.

The term coordinated refers to the property of a transaction whose completion is coordinated across all participants, which may or many not be atomic, depending on the form of coordination being used. We recommend that BPML allow both atomic and non-atomic coordinated models to be described.

We propose that BPML attains consistency with the BTP specification by endorsing the terminology defined there. We anticipate work on the BTP specification to be complete within the next few months, and as such we recommend that changes to the BPML specification occur along that time frame.

The transaction model extended will be renamed open to imply an open nested transaction, while other names may refer to different extended transaction models (e.g. sagas).
Open Issues 05:
Rolling back a transaction generally results in reverting the process to a previous state that existed before the transaction begun, such that the transaction can be said to not have occurred, and can be repeated. The ability to revert an atomic transaction to a previous state is essential for an all-or-nothing guarantee. However, open transactions do not share that property. Open transactions communicate a state to participants without necessarily reverting the transaction state across all participants. As such, the state of an open transaction cannot be automatically reverted without causing inconsistency with regards to external participants.

Open transactions must allow state change to occur as part of a transaction rollback and leave the transaction in said state once completed. The process definition can allow such a transaction to repeat until successful by regarding such a state as an initial state. A classical example is that of a purchase order. A request from the buyer to cancel a pending purchase order may terminate an in-process transaction, but must not cause the seller to lose all recollection of the purchase order. Rather, the seller will change the purchase order state to cancel as part of aborting the transaction.

Support for forward-only transactional updates is a requirement in order to provide a complete audit trail that can record operations performed as part of a transaction and their end-result, even past transactions rollback.
Web Services Flow Language (WSFL)

The Web Services Flow Language (WSFL) is a new proposed standard from IBM that addresses workflow on two levels:

· Taking a directed-graph model approach to defining and executing business processes

· Defining a public interface that allows business processes to advertise themselves as Web services.

Overview

WSFL simply focuses on producing a core model for workflow. It models the basic process and only simple directed edges that control the flow of processing logic from one activity to the next. A directed-edge graph model simply treats each service invocation as an activity (some work that needs to be done), defining the flow, and directions of that flow, of processing control from one activity to another. Control flow decisions can be made at various points in the graph to determine whether; to continue processing, transition between activities or errors have occurred. The graph model can also specify information flow that does not have to directly follow the control flow.

WSFL models the graph using an XML syntax that can be read by both humans and machines. The language, more specifically a business process defined in WSFL, is then consumed by a workflow engine that is capable of interpreting the language such that business processes, activity and control points can be determined. WSFL follows many of the defined conventions of the WfMC but like workflow in general, has a vocabulary of its own. This vocabulary is described below:
1. Business Process: The business process is any collection of activities that when combined accomplish a given business objective. For example, processing a credit card number, hiring a new employee, and submitting a patent are all examples of business processes.

2. Flow Model: The Flow Model is the actual XML representation of the directed graph that models the business process. It is the structure that is used to compose Web services, as defined by their individual Web Services Description Language (WSDL) documents, into workflows. Flow models are sometimes known as flow composition, orchestration, and choreography to name three common synonyms.

3. Global Model: Simply modelling the processing flow between activities within a workflow (which in WSFL-terms means modelling the processing flow between Web services) is not enough. In addition to the flow model, there needs to be a way of specifying exactly how the Web services involved in the process are expected to interact with each other. That is where the global model comes in. The global model is a set of the necessary links that specify how messages can be sent between the Web services in the flow model as the flow is executed.

4. Recursive Composition: One of the interesting things about WSFL is that once you have defined both the global and flow models for a given business process, it is then possible to define the whole business process as a single Web service that may be used by other business processes. In other words, you can recursively compose WSFL business processes within existing WSFL business processes. This enables a great deal of flexibility and the possibility of fine granularity in the models that you define. It also opens up the door to some very exciting business possibilities.

5. Service Provider: A service provider is the party responsible for performing a particular activity within a business process. In WSFL, every activity is a Web service; therefore, every service provider is a Web service provider.

6. Service Provider Type: In order to maintain a clear separation between the definition of the business process and its implementation, WSFL's flow and global models define each activity as being implemented by specific types of service providers rather than by the specific service providers themselves. The service provider type is defined by a Web Service Interface document using WSDL. Service providers must properly implement the appropriate Web service interface in order to be classified as the appropriate type of service provider to handle a particular activity in the business process.

7. Control Link: A control link is the WSFL equivalent to the directed edge, discussed earlier; that is, it is the mechanism through which the workflow processor walks through each of the activities in the business process.

8. Data Link: The data link is the mechanism that the workflow processor uses to control the flow of data through the business process. While in most cases, the data flow will closely follow the control flow, it is quite possible that the way that information flows through the process is different than the sequence of activities that are invoked.

9. Transition Conditions: As a business process is being run, the workflow processor must be able to recognize when a particular activity is finished and when the next activity can be determined and invoked. A transition condition is a true or false statement that the processor may use to determine the current state of any particular activity.

10. Lifecycle Interface: As mentioned above, WSFL business processes are themselves capable of being defined as Web services. The Lifecycle Interface is the WSDL-defined Web service interface that describes the basic set of operations that all WSFL Web services support within a particular Web services application. These operations include the ability to invoke, suspend, resume, stop, and terminate the business process as well to inquire as to its current state.
A business process in WSFL defines Service Provider Types that are separate from actual Service Providers. Any Service Provider who properly implements a defined Service Provider Types definition may fill these roles. Once an appropriate service provider has been identified, a reference to that provider may either be directly referenced with the WSFL document using locator elements, or the workflow engine may decide how exactly the links are resolved. This mechanism has been designed to give WSFL a great deal of flexibility, allowing business processes to be defined regardless of who is actually going to be responsible for implementing each of the individual activities.

The WSFL 1.0 document explains both process definition and structure and web services usage patterns in detail, however there is no explicit reference to transactions, though one may assume that the transactional semantic of process will be handled as in traditional workflow process using compensation activities, etc. The introduction of WSEL (Web Service Endpoint Language) that will be used to define the endpoint properties may be the place where transactional capabilities of a service (support for a particular transaction protocol) will reside.

[image: image5.png]UMM

Methodology

UMM
Metamodel

T Information Model

UMM
Business Process
and Information
Modeling

I

UMM
Business Process and

Semantic subsets

Business Process || Information

¢bXML BP
Specification

Schema

ebXML CC
Document
Metamodel

Extract/Transform

ebXML
Business Process
Specification

Extract/Transform

ebXML
Document
Specification

At the W3C Web Services Workshop that took place in San Jose earlier this year, IBM did address transactions and proposed an incremental approach to transactional quality of service.

First, they suggest that a generalized capability for specifying the operational context of a request, sighting the OMG Extended Structuring Mechanism as an example of such a service. More interestingly, the second phase provides fundamental conversation styles or behaviors that need to be constructed for the web services the generalized capabilities. They then classify these styles as:

Request Atomicity a single operation on a web service occurs completely or not at all. This is a capability that the end-point publishes to users. The end-point may implement this by an internal transaction on its infrastructure, or some other mechanism.

Conversations allow a pair of collaborating services to correlate sequences of requests within a loose unit of work. The pair of services uses architected conversation messages and headers to begin the conversation and end the conversation. They determine if the conversation ended successfully or if one or both participants want the conversation to rollback. The semantics of rollback is that each participant will undo the operations it has performed within the conversation.
Support for BTP

WSFL currently defines nothing in terms of transaction demarcation. WSEL seems the place they may want to declare transaction capabilities of a Service, but as this is out of scope for BTP then there is no overlap here. BTP could well be “piggy-backed” on the service provider invocations (activities) within a business process defined in WSFL and transaction demarcation could be applied to the control link semantics, but this would be an extension of WSFL outside the current specification. As seen in the stack representation earlier in this document, BTP could easily be present in the wire portion of a stack that then implements WSFL for Business Process Management.

Request Atomicity simply implies that each Service Provider offers services that will complete as an atomic piece of work. Conversations relates more closely to a BTP atomic transaction, but limited to atomic transactions that encapsulate a pair or collaborating services – initiator and service provider. In the paper, IBM states that these styles or behavioral mechanisms are by no means complete, and that more complex processing and compensation models will be required and that Service Providers can build on their internal transaction and business logic environments to provide this increased flexibility. This is where BTP can add value in specifying a standard approach to these more complex models.

ebXML – Business Process Specification Schema and UMM

Overview

Within ebXML lies the Business Process Specification Schema (BPSS); a framework for defining business collaborations that consist of “business transactions” and is based upon the UN/CEFACT Modeling Methodology (UMM) specification (see resources).

[image: image2.png]ContextFor
BuiltWith

TImplement other
PartnerRole

Implement one
PartnerRole

To understand what is meant by the very overloaded term “business transaction” in BPSS the following relationships and definitions provide some insight:

1. Two or more Business Partners participate in the Business Collaboration through Roles.

2. Business Collaboration can be either Binary (between two Roles) or Multi-party (webs of Binary Collaborations)

3. Business Collaborations between Roles are expressed as Business Activities
4. Business Activities can be either Business Transaction Activities or Collaborative Activities
5. Business Transaction Activities are activities that conduct a single Business Transaction Collaborative Activities are activities that conduct another Binary Collaboration (this allows for the recursive composition of binary collaborations)

6. Business Transactions are sequenced relative to each other in a Choreography
7. Each Business Transaction consists of one or two predefined Business document flows

Within the definitions and relationships stated above is the Business Transaction, and is defined as being “conducted between two parties playing opposite roles in the transaction. The roles are always a requesting role and a responding role.” A Business Transaction is the lowest level in the composite structure defined above and cannot be decomposed into anything more granular. It represents an atomic piece of work and is expressed as a precise protocol that can be enforced by software managing the transaction. Like a BTP atomic transaction, an ebXML Business Transaction will always either succeed or fail. In BPSS, the successful termination of a Business Transaction constitutes a legally binding agreement between the two Roles (Business Partners playing the roles within a Business Collaboration).

The Business Transaction itself represents Business Document Flows between the requesting and responding roles. In any Business Transaction there will always be a requesting Business Document, and optionally, a responding Business Document. The composition of Business Transactions that defines ordering and transitional conditions is defined within the Business Transaction Choreography, and represents collaborations of Business Transactions.

Within BPSS, there is a defined semantic for specifying Business Transactions and collaborations that can be used to define transaction models and collaborations. This is where Unified Modelling Methodology (UMM) is mentioned within BPSS. Within UMM, there is a set of predefined transaction interaction patterns, defining common combinations of transaction interactions. While the UMM transaction interaction patterns themselves are not part of the ebXML specification, all the security and timing parameters required to express the pattern properties are provided as attributes of elements in the BPSS. The figure below shows the relationship between UMM and BPSS.

The Business Transactions specified in BPSS do not specify a transaction protocol but defines a type of request/response paring defined as document flows, with additional Business signals that help further specify the meaning of acknowledgments and flows related to the transaction.

[image: image3.png]2 2

Requesting Role Responding Role

Request Document

ReceiptAcknowledgment Signal

Requesting | | ~ecepficAstnonlsdgment Signdl
Activity |}
3<,M

ReceiptAcknowledgment Signal

Responding
Activity

Success or failure depends on:

· The receipt or non-receipt of the request, the response and/or business signals,

· The occurrence of time-outs,

· The occurrence of a business exception,

· The occurrence of a control exception,

· The interpretation of the received response and guard expressions on transitions to success or failure.

The requesting party is responsible for determining the success or failure of Business Transaction. Once success or failure is thus established, the Business Transaction is considered closed with respect to both parties.

Support for BTP

Business Transactions within the BPSS are applied to the semantic business level with a simplistic protocol defined for the interaction between two parties (requesting and responding) and determination of success or failure of the transaction.

The following are an high level comparison of properties of business transactions defined in ebXML and BTP:

· ebXML business transactions are atomic as in atoms of BTP.

· ebXML business transactions are pre-defined (see sections on CPP, CPA and BSI, in [7]) re-usable interactions that includes one or two business documents exchange, and one or more signals that indicates the state changes in the transaction, while BTP allows any BTP aware participant/service to be part of the coordinated transactions.

· ebXML business transactions currently are only between two roles – requesting and responding partners. BTP transactions have no limitation of number of participants that take part in the transactions. Transactions are coordinated according to the protocol; they are not predefined message and signal exchanges.

· ebXML business transactions may be based on UMM [8] transaction patterns. A transaction pattern is irrelevant for BTP since coordination is governed by protocol not by a pattern of message exchanges.

· The semantic of the an ebXML transaction is enforced by the Business Service Interface (BSI). While a service participating in a transaction enforces the semantic of functionality, BTP supports recovery of the transaction.

· There is no support for 2PC in ebXML transactions. BTP supports 2PC.

BTP is a lower level protocol and is applicable to the wire stack of Services Architecture where BPSS and the concept of Business Transaction is part of the description and BPM stack.

Where BTP could be applicable is where a “tighter,” lower level coordination protocol (supporting a 2PC model for coordination of requestor and responder) is required for the transaction semantics between roles. More likely is that BTP could be leveraged to support multi-party collaborations when the ebXML BPSS looks into supporting this. The “open top” coordination capabilities that BTP offers could be used to “prepare” multiple binary collaborations and then decide to confirm only a subset – thus allowing ebXML to support not only atomic type Business Transactions for binary and multi-party collaborations but also Cohesive Transactions for multi-party collaborations

ebXML is the one standards initiative covered in this document that will need closer investigation to determine the possibilities of utilization, interoperability and leveragability between the two efforts. Particularly, in case of utilizing BTP in ebXML BP, one should consider issues regarding protocol binding, e.g. carrying BTP messages in ebXML and vice-versa.

XLANG
Overview

XLANG is included in this document because:

1) It completes the coverage of existing protocols that cover long running compensatory transactions,

2) While XLANG today remains a proprietary business process language used in Microsoft’s BizTalk Server there is an expectation that it will eventually be submitted to the W3C.

“There is no W3C submission regarding XLANG yet. We do intend to support standardization of business process description and XLANG is our current public proposal in that direction”.

Microsoft

XLANG is a language that provides a way to orchestrate applications and XML Web services into larger-scale, federated applications by enabling developers to aggregate even the largest applications as components in a long-lived business process.

The goal of XLANG is to make it possible to formally specify business processes as stateful long-running interactions. A business process defined in XLANG always involves more than one service provider (XLANG uses the terminology participant and partners - but for this document we have used party and counterparty for consistency and clarity). The full description of a process shows not only the behavior of each party, but the way these behaviors match to produce the overall process. The focus is on the publicly visible behavior in the form of messages exchanged. Each party clearly implements its behavior using some private means. The details of these private implementations are not a part of the business protocol, and XLANG provides no means to specify them. XLANG aims to specify all the behavior and only the behavior that the party explicitly wants counter-parties to understand in designing their own service processes. The specific high-level feature categories that define the scope of XLANG are listed below.

· Sequential and parallel control flow constructs

· Long running transactions with compensation

· Custom correlation of messages

· Flexible handling of internal and external exceptions

· Modular Behavior Description

· Dynamic service referral

· Multi-role contracts

However the public specification does state; “It is important to understand that the notion of LRT described here [within the spec] is purely local and occurs within a single service instance. There is no distributed coordination regarding an agreed-upon outcome among multiple participant services. We view the achievement of distributed agreement as an orthogonal problem outside the scope of XLANG.”

Compensation in XLANG by itself is primarily an exception-handling feature, which allows the construction of local "transaction-like" process segments. Across two services, agreement has to be programmed at the application level because there is no built-in provision for it.

In conjunction with a standardized distributed agreement protocol, XLANG compensation could fairly easily become a distributed long running transaction feature because the agreement protocol could be used as a source of exceptions as well as providing a control signal for completion.

Support for BTP

There is no overlap with the extended transaction models of BTP, with respect to XLANG, but BTP could be used to coordinate services offered by service providers that implement localised transaction management with XLANG.

Initiatives and Standards bodies

http://www.biztalk.org

http://www.ebxml.org/
http://www.rosettanet.org/
http://www.wfmc.org/
http://www.gotdotnet.com
http://www-4.ibm.com/software/solutions/webservices/
References and Related Documents

[1] OASIS BTP Specification, Draft 0.3, July 12, 2001

[2] W3C Web Services Workshop – “Web Services Architecture: Direction and Position Paper”, Donald F. Ferguson, IBM Corporation April 11-12, 2001
http://www.w3.org/2001/03/WSWS-popa/paper44
[3] WSFL – “Web Services Flow Language (WSFL 1.0)”, Prof.Dr.Frank Leymann, Distinguished Engineer Member IBM Academy of Technology, May 2001

http://www-4.ibm.com/software/solutions/webservcies/pdf/WSFL.pdf
[4] XLANG – “Web Services for Business Process Design”, Satish Thatte, Microsoft Corporation
http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.htm
[5] BPML - “Business Process Modeling Language (BPML) Specification” – Assaf Arkin, BPMI
http://www.bpmi.org/index.esp
[6] BPML and Web Services -“Proposal For Addressing Web Services with BPML” – Assaf Arkin, Intalio, June 1st 2001

http://www.bpmi.org/index.esp
[7] ebXML, BPSS – “Business Process Specification Schema”, ebXML Business Process Project Team, May 11, 2001

www.ebxml.org/specdrafts/cc_and_bp_document_overview_ver_1.01.pdf

[8] ebXML, UN/CEFACT Modelling Methodology – “TMWG N090R9.1” Techniques and Methodologies Working Group, April 4th 2001
http://www.ebxml.org/project_teams/business_process/wip/resources/TMN090R8d.zip
BTP -Transactions

In WSFL activities represent business tasks and interactions between trading partners (that is, service providers). As such, they do have additional business semantics described by properties like legal obligations of each partner side, costs and prices for performing an activity, maximum duration and maximum number of retries, actions (for example, escalations) that should happen if such thresholds are exceeded, contact points who are in charge at both trading partners, security aspects (confidentiality, non-repudiation), at-least- /at-most-/exactly-once execution, and so on. These properties are simply referred to as endpoint properties

In the WSFL spec IBM states, “endpoint properties are neither WSFL-specific nor WSDL-specific, and they have to be used within WSFL as well as WSDL. Because of this, we envision a separate language for describing endpoint properties, here called Web Services Endpoint Language (WSEL)”.

�

Business Collaboration

BPSS supports two levels of business collaborations, Binary Collaborations and Multiparty Collaborations, where multi-party collaborations are webs of binary collaborations. The specification states,

“The current version of the specification schema addresses collaborations between two parties (Binary Collaborations). It is anticipated that a subsequent version will address additional features such as the semantics of economic exchanges and contracts, more complex multi-party choreography, and context based content.”

OASIS Business Transactions Protocol

Page 12 of 14
Workflow sub-committee

