Explanation of the state tables

The state tables deal with the state transitions of the Superior and Inferior roles and which message can be sent and received in each state. The Inferior table includes the Enroller, as this role is constrained by and constrains the Inferior role as such. The state tables include the persistent changes (log-writing) that are necessary for recovery, and forced state changes imposed by failures.

There are two state tables, one for Superior, one for Inferior. States for the superior have an upper-case letter, for the inferior a lower-case letter.

The state tables cover only a single, bi-lateral Superior:Inferior relationship. The interaction between, for example, multiple Participants of a single atom, and between the upper and lower interfaces of an intermediate such as a sub-Coordinator are dealt with in the definitions of the “decision” events (see below).

Status queries

In BTP the messages SUPERIOR_STATE and INFERIOR_STATE are available to prompt the peer to report its current state by repeating the previous message (when this is allowed) or by sending the other *_STATE message. The “reply_requested” parameter of these messages distinguishes between their use as a prompt and as a reply. An implementation receiving a *_STATE message with “reply_requested” as “true” is not required to immediately reply – it may choose delay any reply until a decision event occurs and then send the appropriate new message (e.g. on receiving INFERIOR_STATE/ready/y while in state E1, a superior is permitted to delay until it has performed “decide to confirm” (or “decide to cancel”). However, this may cause the other side to repeatedly send interrogatory *_STATE messages.

Note that a Superior uses SUPERIOR_STATE/unknown to reply to messages received from an Inferior for a branch that is unknown to the superior (state “Y1”). The messages *_STATE messages with a “state” value “inaccessible” can be used as a reply when any message is received and the implementation is temporarily unable to determine whether the branch is known or what the state is. Other than these cases, the *_STATE messages with “reply requested” equal to “false” are only sent when the other message with “reply requested” equal to “true” has been received and no other message has been sent.

Decision events

The persistent state changes (equivalent to logging in a regular transaction system) are modelled as “decision events” (e.g. “decide to confirm”, “decide to send ready”). These events model the making of a persistent record of the decision – persistent in that it will survive at least some failures that otherwise lose state information. The detailed nature of the decision events depends on the position of the Superior or Inferior within the business transaction tree – whether it is Participant, sub-Coordinator, Atom Coordinator or Cohesion Composer – as specified in <see table TBD>.

In some cases, an implementation may not need to make an active change to have a persistent record of a decision, provided that the implementation will restore itself to the appropriate state on recovery. For example, an (inferior) implementation that “decided to vote ready”, and recorded a timeout in the persistent information for that decision, could treat the presence of an expired record as a record of “decide to cancel autonomously”, provided it always updated the record if it applied the opposite (non-timeout) result.

The event “decide to prepare” is considered semi-persistent. Since the sending of PREPARE indicates that the application exchange to the inferior is complete, it is not meaningful for the branch to revert to an earlier state when the application exchange was not complete. However, implementations are not required to make the sending of PREPARE persistent in terms of recovery – a Superior that experiences failure may transit to the completed state, which will imply the cancellation of the branch.

In the case of a hierarchic tree, the “decide to confirm” and “decide to cancel” decisions of a superior (sub-coordinator) may in fact be the receipt of a confirm or cancel instruction from its own superior, without change of local persistent information (which would be a sub-coordinator record, pointing both up and down the tree).

Disruptions – failure events

Failure events are modelled as “disruption”. A disruption implies the loss of some state (and possibly of some messages in flight). BTP permits, but does not require, recovery of the branch in the active state (unlike many transaction protocols, where a communication or endpoint failure in active state would invariably cause rollback of the transaction). Consequently, from some states, there are several levels of disruption, distinguished by which state the implementation transits to. The different levels of disruption describe possible and legitimate transitions. In addition to those shown, there is an implicit “disruption 0” event, which involves possible interruption of service and loss of messages in transit, but no change of state (either because no state information was lost, or because recovery from persistent information restores the implementation to the same state). An implementation is not required to “support” all levels of disruption, but it is required to preserve state sufficiently to limit the transitions in the case of failure to those shown. For example, when an Inferior “decides to send ready”, that requires the recording of sufficient state information that, regardless of failure, the Inferior will remain in the “e1” state (it may be temporarily unavailable, but when restored to function, it will be in the “e1” state). On the other hand, a Superior that has received an READY message (and is in state “E1”, is not required to persistently record anything and so a failure may cause the Superior to lose all knowledge of the branch, and transit to state “Z”. However, the Superior may choose to persist the existence of the branch, or that it decided to prepare (had sent all the application messages) or that it had received READY. Depending on which of these has been persisted, a failure and restoration may cause a transition to states B1, D1 or (with no loss), E1.

The extra disruption level “0”, which can occur in any state with loss only of messages would typically be an appropriate abstraction for a communication failure.

Invalid cells and assumptions of the communication mechanism

The empty cells in state table represent events that cannot happen. For events corresponding to sending a message or any of the decision events, this prohibition is absolute – e.g. a conformant implementation in the Superior active state “B1” will not send CONFIRM. For events corresponding to receiving a message, the interpretation depends on the properties of the underlying communications mechanism.

For all communication mechanisms, it is assumed that

a) the two directions of the Superior:Inferior communication are not synchronised – that is messages travelling in opposite directions can cross each other to any degree; any number of messages may be in transit in one direction

b) messages may be lost arbitrarily

If the communication mechanisms guarantee that messages, if delivered at all, are delivered to the receiver in the order they were sent by the other side, then receipt of a message in a state where the corresponding cell is empty indicates that the far-side has sent a message out of order – a FAULT message with the Fault Type “WrongState” can be returned. (Note that since messages may be lost, this rule applies only to messages that are delivered)

If the communication mechanisms cannot guarantee ordered delivery, then messages received where the corresponding cell is empty should be ignored. Assuming the far-side is conformant, these messages must be “stale” and have been superseded by messages sent later but already delivered. (If the far-side is non-conformant, there is a problem anyway).

REQUEST_STATUS and STATUS

The REQUEST _STATUS message can be received at any time and never causes a change of state. The entity receiving REQUES _STATUS is expected to reply, to the sender of REQUEST_STATUS with a STATUS message which reports the entitie’s status at the time the reply is sent. This may be different from the state at the time the REQUEST_STATUS was received.

