1) General Remarks
The below described transformation APIs may be applied to APSs of type "grobjects". An explicit grobject's region/viewcontext attribute or an implicit boundary property needs to be set for defining the bounding extent of the enclosed graphical object during the transformation operations. Viewers will move the APS or scale them in accordance with the API call.
Currently it's assumed that the overlay model will be used, which means that a "transformed" APS may overlay wholly or partially the elements rendered earlier. Transparency can be considered separately.

Applying the "transformation" operation to any grobject just means that this object will be rendered as a whole, for example as repeatable, or scaled, or rotated...
The coordinate system is in NVDC implying a Y up orientation.

Mathematically, all transformations can be represented as 3x3 transformation matrices of the following form:
 a c e

b d f

0 0 1

or [a b c d e f]

There will be two types of the transformation operations. First are the simple transformations, like scale, rotate, translate. The second type is convenient transformations, which internally are presented (implemented) by a chain of the simple transformations.

Also all transformation operations will have an associated parameter, that controls whether the method replaces the current modally defined transform on the target node, or combines with it.

2) Updated IDL Definition for WebCGMPicture Interface
interface WebCGMPicture : WebCGMNode {
 readonly attribute float
width;

 readonly attribute float
height;

 readonly attribute WebCGMString pictid;

 boolean

applyCompanionFile(in WebCGMString fileIRI);

 WebCGMAppStructure
getAppStructureById(in WebCGMString apsId);

 WebCGMNodeList
getAppStructuresByName(in WebCGMString apsName);

 void

highlight(in WebCGMNodeList nodes,

 in WebCGMString type);

 void

clearHighlight();

 void

setPictureVisibility(in WebCGMString visibility);

 void

setStyleProperty(in WebCGMString style,

 in WebCGMString value);

 void

reloadPicture();
 void

translate(in WebCGMString apsId, in WebCGMString dx,

 in WebCGMString dy, in boolean replace);
 void

rotate(in WebCGMString apsId, in WebCGMString a,
 in boolean replace);
 void

scale(in WebCGMString apsId, in WebCGMString sx,

 in WebCGMString sy, in boolean replace);
 void

rotate(in WebCGMString apsId, in WebCGMString a,
 in boolean replace,
 in WebCGMString cx, in WebCGMString cy);
 void

scale(in WebCGMString apsId, in WebCGMString sx,

 in WebCGMString sy, in boolean replace,
 in WebCGMString cx, in WebCGMString cy);
 void

setTransformSP (in WebCGMString style,

 in WebCGMString value);

 WebCGMString

getTransformSP (in WebCGMString style);
};

3) Transformation Methods Description

Simple transformations:

void translate(in WebCGMString apsId, in WebCGMString dx, in WebCGMString dy, in boolean replace);
The specified Application Structure is translated to the distance dx along the X axis and to the distance dy along the Y axis

Parameters
 apsId - Application Structure ID
 dx, dy - are the distances to translate coordinates in X and Y directions respectively
 replace – if true, the method replaces the current transformation, if false combines with it

Mathematically, the Translation transformation is equivalent to the transformation matrix

1 0 dx
0 1 dy

0 0 1

or [1 0 0 1 dx dy]
void rotate(in WebCGMString apsId, in WebCGMString a, in boolean replace);
The specified Application Structure is rotated by the angle of "angle" about the origin point (0,0).

Parameters
 apsId - Application Structure ID
 a - angle of rotation
 replace – if true, the method replaces the current transformation, if false combines with it
Mathematically, the Rotation transormation is equivalent to the transformation matrix

cos(a) –sin(a) 0
sin(a) cos(a) 0

0 0 1

or [cos(a) sin(a) -sin(a) cos(a) 0 0]

void scale(in WebCGMString apsId, in WebCGMString sx, in WebCGMString sy, in boolean replace);
The specified Application Structure is scaled along both direction with factors sx and sy about the origin point (0,0).

Parameters
 apsId - Application Structure ID
 sx, sy - scaling factors
 replace – if true, the method replaces the current transformation, if false combines with it

Mathematically, the Scale transformation is equivalent to the transformation matrix

sx 0 0
0 sy 0

0 0 1
 or [sx 0 0 sy 0 0]

Convenient transformations:

void rotate(in WebCGMString apsId, in WebCGMString a, in boolean replace, in WebCGMString cx, in WebCGMString cy);
The specified Application Structure is rotated by the angle of "angle" around the center point (cx,cy).

Parameters
 apsId - Application Structure ID
 a - angle of rotation
 replace – if true, the method replaces the current transformation, if false combines with it
 cx,cy - rotation center point
If we call the transformation matrices for simple transformations described above respectively MT (for translate), MR (for rotate), MS (for scale), then mathematically, the Rotation around the specific center point is equivalent to the concatenated three simple transfromations:
MT*MR*MT

or
translate (-cx, -cy)

rotate(a)

translate (cx, cy)

void scale(in WebCGMString apsId, in WebCGMString sx, in WebCGMString sy, in boolean replace, in WebCGMString cx, in WebCGMString cy);

The specified Application Structure is scaled along both direction with factors sx and sy around the center point (cx,cy).

Parameters
 apsId - Application Structure ID
 sx, sy - scaling factors
 replace – if true, the method replaces the current transformation, if false combines with it
 cx,cy - scale center point

Mathematically, the Scale transformation is equivalent to the concatenated three simple transfromations:
MT*MS*MT

or

translate (-cx, -cy)

scale(sx,sy)

translate (cx, cy)

4) Transformation Style Properties Methods Description

WebCGMString getTransformSP (in WebCGMString style);

Retrieves a transformation style property by name on the given (Application Structure/Picture). Please refer to the Transformation Style Properties Table for more detailed information on retrievable and modifiable Style Properties.

Parameter

style of type WebCGM String
The name of the transformation style attribute to retrieve.

Return Value
WebCGMString; the Transformation Style Property value as a string, or the empty string if that attribute does not have an explicitly set value (see the inheritance model for further related discusion). The value may be a Delimited String.

Exceptions
No exceptions
void setTransformSP (in WebCGMString style, in WebCGMString value);

Sets the value of a transformation style property by name on the given (Application Structure/Picture). Please refer to the Transformation Style Properties Table for more detailed information on retrievable and modifiable Style Properties.

Parameter

style of type WebCGM String
The name of the transformation style attribute to set.

value of type WebCGM String
The value of the transformation style attribute.

Return Value
No return value

Exceptions
No exceptions

5) Example for APS Rotation
We see two places where to add the transform interface functions to the WebCGM DOM API specification:

- WebCGMAppStructure or
- WebCGMPicture
Let’s assume we put them into the WebCGMPicture interface. An example to rotate an APS around the specific point in (30,40) would look like this:

<script type="text/ecmascript">
 function OnBtnDOM() {
 try {
 // Get layernname
 var cgmDoc = document.getElementById("ivx1").getWebCGMDocument();
 var cgmPic = cgmDoc.firstPicture;
 var result = document.getElementById("_1");
 var gr = cgmPic.getAppStructureById("fleet");
 cgmPic.rotate(gr, "45", “30”, “40”, true);
 }
 catch (e) {
 alert("Catch the exception: " + e.description);
 }
}
</script>

