

CIQ TC Specifications

Customer Information Quality Technical Committee
Name, Address and Party Information Technical Specification
Version 3.0 (draft)
Date Created: 15 August 2004

Last Updated: 30 November 2005

Editors
Max Voskob, Individual Member, OASIS CIQ TC (max.voskob@paradise.net.nz)

Ram Kumar, Individual Member and Chair, OASIS CIQ TC (kumar.sydney@gmail.com)

Contributors

John Glaubitz Vertex Member, CIQ TC

Hido Hasimbegovic Individual Member, CIQT TC

Robert James Individual Member, CIQ TC

Joe Lubenow Individual Member, CIQ TC

Mark Meadows Microsoft Corporation Member, CIQ TC

John Putman Individual Prospective Member, CIQ TC

Michael Roytman Vertex Member, CIQ TC

Colin Wallis New Zealand
Government Member, CIQ TC

David Webber Individual Member, CIQ TC

Abstract
This Technical Specification defines the name (xNL), address (xAL), name and address
(xNAL) and Party Information (xPIL) specifications version 3.0.

Name, Address and Party Information

Intellectual Property Rights, Patents, Licenses and Royalties
CIQ TC Specifications (includes documents, schemas and examples1 and 2) are free of any
Intellectual Property Rights, Patents, Licenses or Royalties. Public is free to download and
implement the specifications free of charge. Please, read OASIS Copyright Notice in
APPENDIX A.
1xAL-Australia.XML

Address examples come from AS/NZ 4819:2003 standard of Standards Australia and
are subject to copyright

2xAL-international.xml
Address examples come from a variety of sources including Universal Postal Union
(UPU) website and the UPU address examples are subject to copyright.

CIQ TC Specifications Version 3.0 - 2 - 1999-2006 @ OASIS

Name, Address and Party Information

TABLE OF CONTENTS

1 SCHEMA DESIGN APPROACH IN VERSION 3.0 ..5

1.1 VERSION 3.0 SCHEMA FILES...5
1.2 FORMAL DESIGN REQUIREMENTS FOR VERSION 3.0 ...5
1.3 MAJOR ENTITIES ..6
1.4 COMMON APPROACHES..6
1.5 NAMESPACES...6
1.6 OTHER SPECIFICATIONS ...6

2 ENTITY “NAME”..7
2.1 SEMANTICS OF “NAME”...7
2.2 DATA TYPES ..9
2.3 ENUMERATIONS...9
2.4 ORDER OF ELEMENTS AND PRESENTATION ..10
2.5 DATA MAPPING..10
2.6 DATA QUALITY..12

2.6.1 Data quality verification and trust...12
2.6.2 Data validation ..12

2.7 EXTENSIBILITY ..12
2.7.1 Practical applications..13

2.8 LINKING AND REFERENCING ..13
2.9 ID ATTRIBUTE..14
2.10 SCHEMA CUSTOMIZATION GUIDELINES ..14

2.10.1 Namespace...14
2.10.2 Reducing the structure...14
2.10.3 Customizing the enumerations...15
2.10.4 Implications ...16

3 ENTITY “ADDRESS” ...17
3.1 SEMANTICS OF “ADDRESS” ...17
3.2 GEO-COORDINATES ...18
3.3 DATA TYPES ..19
3.4 ENUMERATIONS...19
3.5 ORDER OF ELEMENTS AND PRESENTATION ..19
3.6 DATA MAPPING..19
3.7 DATA QUALITY..20
3.8 EXTENSIBILITY ..20
3.9 LINKING AND REFERENCING ..20
3.10 SCHEMA CUSTOMIZATION..20

4 COMBINATION OF “NAME” AND “ADDRESS” ...21
4.1 USE OF ELEMENT XNAL:RECORD ...21
4.2 USE OF ELEMENT XNAL:POSTALLABEL ...21

5 ENTITY “PARTY” ..23
5.1 DEALING WITH JOINT PARTY NAMES ..25
5.2 DATA TYPES ..26
5.3 ENUMERATIONS...26
5.4 ORDER OF ELEMENTS AND PRESENTATION ..26
5.5 DATA MAPPING..26
5.6 DATA QUALITY..26
5.7 EXTENSIBILITY ..26
5.8 LINKING AND REFERENCING ..26
5.9 SCHEMA CUSTOMIZATION..26

CIQ TC Specifications Version 3.0 - 3 - 1999-2006 @ OASIS

Name, Address and Party Information

6 MISCELLANEOUS ...27
6.1 DOCUMENTATION..27
6.2 EXAMPLES...27
6.3 CONTRIBUTIONS FROM PUBLIC..27

APPENDIX A. NOTICES..28

CIQ TC Specifications Version 3.0 - 4 - 1999-2006 @ OASIS

1 Schema design approach in version 3.0 1

2
3
4

5
6

7

8

9

Name, Address and Party schemas of version 3.0 share the same design concepts. The
commonality should simplify understanding and adoption of the schemas. xNAL schema
stands out as it is only a simple container for associating names and addresses.

Name, Address and Party schemas were designed to bring interoperability the way these
most “common” entities are used across all spectrums of business and government.

1.1 Version 3.0 schema files
Following are the different schemas produced for version 3.0:

Schema File name Description Comments

xNL.xsd Entity Name Defines a set of reusable types and elements
for a name of individual or organisation

xNL-types.xsd Entity Name Defines a set of enumerations that suit this
particular application

xAL.xsd Entity Address Defines a set of reusable types and elements
for an address, location name or description

xAL-types.xsd Entity Address Defines a set of enumerations that suit this
particular application

xNAL.xsd Name and Address
binding

Defines two constructs to bind names and
addresses for data exchange or postal
purposes

xPIL.xsd (formerly
xCIL.xsd)

Entity Party
(organisation or
individual)

Defines a set of reusable types and elements
for a detailed description of an organisation or
individual

xPL-types.xsd Entity Party
(organisation or
individual)

Defines a set of enumerations that suit this
particular application

xLink.xsd xLink attributes Defines a subset of xLink attributes as XML
schema

xPRL.xsd (formerly
xCRL.xsd)

Party relationships Defines a simple reusable type for party
relationships (not currently utilised)

 10

11

12
13

14

15
16

17
18

19
20

1.2 Formal design requirements for version 3.0
Following are the formal design requirements taken into consideration for version 3.0
schemas:

• Data structures should be described using W3C XML Schema language

• Data structures should be separated into multiple namespaces for reuse of the main
fundamental entities (e.g. Person Name, Organisation Name, Address)

• Data structures should be able to accommodate all information types used for data
exchanges based on previous versions of the CIQ Specifications

• Data structures should be extensible (also, allow reduction in complexity) to provide
enough flexibility for point-to-point solutions and application-specific scenarios

Name, Address and Party Information

21
22

23
24

25

26
27
28

29

30

31

32

33

34

35

36
37
38
39
40

41

42

• Data structures should allow organisation-specific information to be attached to entities
without breaking the structure

• Implementation complexity should be proportional to the complexity of the subset of
data structures used by the implementer

1.3 Major entities
The entire party information space is divided into a number of complex information types that
are viewed as basic entities. This enables re-use of the basic entities as required. Following
are the entities:

• Name (see xNL.xsd, xNL-types.xsd)

• Address (see xAL.xsd, xAL-types.xsd)

• Name and Address combined (see xNAL.xsd)

• Personal details and specifics (see xPIL.xsd, xPIL-types.xsd)

• Organisation details and specifics (see xPIL.xsd, xPIL-types.xsd)

• Party Relationships (see xPRL.xsd and xLink.xsd)

1.4 Common approaches
The design concepts of name, address and party schemas are very similar in terms of the
way semantic information (e.g. Semantic information for a person name is “Given Name,
“Middle Name’ Surname” etc, i.e. adding semantics to the data) is represented. All the
common concepts are explained in section 2 (Entity “Name”). It is recommended to study that
section in detail before proceeding to other entities.

1.5 Namespaces

Entity Namespace Recommended prefix Schema files

Name urn:oasis:names:tc:ciq:xnl:3 xnl or n xNL.xsd
xNL-types.xsd

Address urn:oasis:names:tc:ciq:xal:3 xal or a xAL.xsd
xAL-types.xsd

Name and
address

urn:oasis:names:tc:ciq:xnal:3 xnal xNAL.xsd

Party urn:oasis:names:tc:ciq:xpil:3 xpil or p xPIL.xsd
xPIL-types.xsd

Party
relationships

urn:oasis:names:tc:ciq:xprl:3 xprl or r xPRL.xsd

xLink http://www.w3.org/1999/xlink xlink xLink.xsd

1.6 Other specifications 43

44 This document contains references to XML Linking Language (XLink) Version 1.0, W3C
Recommendation 27 June 2001 available at http://www.w3.org/TR/xlink/ 45

CIQ TC Specifications Version 3.0 - 6 - 1999-2006 @ OASIS

http://www.w3.org/TR/xlink/

Name, Address and Party Information

2 Entity “Name” 46

47
48

49

50
51
52
53
54

55

Entity “Name” has been modelled independent of any context as a standalone class to reflect
some common understanding of concepts “Person Name” and “Organisation Name”.

2.1 Semantics of “Name”
Name schema is separated into a structural part (xNL.xsd) as shown in the XML schema
diagram below and an “include” that contains enumerations used by the structural part (xNL-
types.xsd). The structural part is expected to remain unchanged over the course of time while
the “include” with enumerations may be easily changed to meet particular implementation
needs.

 56
57

58

59
60

61
62

63

64

65

The structure allows for different semantic levels based on the following paradigm:

• A simple data structure with minimum semantics should fit into the schema with
minimal effort

• A complex data structure should fit into the schema without loss of any semantic
information

CIQ TC Specifications Version 3.0 - 7 - 1999-2006 @ OASIS

Name, Address and Party Information

Example 1 – no semantics 66

67
68
69

An imaginary database does not differentiate between a person and an organisation name
with only one field allocated for storing the entire name information (unstructured data). This
database can be mapped to xNL as follows:

<n:PartyName> 70
 <n:NameLine>Mr Jeremy Apatuta Johnson</n:NameLine> 71
</n:PartyName> 72

73
74
75
76

77

78

79
80

81

In this example, information related to party name, resides in NameLine element. It has no
semantic information that may indicate what kind of name it is and what the individual name
elements are (i.e., the data has not been parsed into first name, last name, title, etc.). What is
known is that it is a name of some party, be it a person or an organisation.

Example 2 – minimal semantics

The next complexity level is when a database differentiates between person and organisation
name. In this case, names can be placed in their respective places inside the structure.

Person name:

<n:PartyName> 82
 <n:PersonName> 83
 <n:NameElement>Mr Jeremy Apatuta Johnson</n:NameElement> 84
 </n:PersonName> 85
</n:PartyName> 86

87
88

89

90

This example shows that name information belongs to an individual, but the semantics of the
individual name elements (e.g. What is “Mr”, “Jeremy”, etc.) are unknown.

Organisation name:

<n:PartyName> 91
 <n:OrganisationName> 92
 <n:NameElement>Khandallah Laundering Ltd.</n:NameElement> 93
 </n:OrganisationName> 94
</n:PartyName> 95

96

97

98

99
100
101

This example is similar to the previous one, except that the name belongs to an organisation.

Example 3 – full semantics

The next complexity level is when a database differentiates between person and organisation
name and also differentiates between different name elements within a name. The data is
structured.

<n:PartyName> 102
 <n:PersonName> 103
 <n:NameElement Abbreviation="true" ElementType="Title">Mr</n:NameElement> 104
 <n:NameElement ElementType="FirstName">Jeremy</n:NameElement> 105
 <n:NameElement ElementType="MiddleName">Apatuta</n:NameElement> 106
 <n:NameElement ElementType="LastName">Johnson</n:NameElement> 107
 <n:NameElement ElementType="GenerationIdentifier">III</n:NameElement> 108
 <n:NameElement ElementType="GenerationIdentifier">Junior</n:NameElement> 109
 <n:NameElement ElementType="Title">PhD</n:NameElement> 110
 </n:PersonName> 111
</n:PartyName> 112

113
114
115

116

117

This example introduces ElementType attribute that indicates the exact meaning of the name
element. This is an additional level of semantics that is supported through enumerated
values. Technically, the enumerations sit in a separate schema “include” (xNL-types.xsd).

An example of such enumeration is a list of name element types for a person name.

CIQ TC Specifications Version 3.0 - 8 - 1999-2006 @ OASIS

Name, Address and Party Information

<xs:simpleType name="PersonNameElementsEnumeration"> 118
 <xs:restriction base="xs:string"> 119
 <xs:enumeration value="PrecedingTitle"/> 120
 <xs:enumeration value="Title"/> 121
 <xs:enumeration value="FirstName"/> 122
 <xs:enumeration value="MiddleName"/> 123
 <xs:enumeration value="LastName"/> 124
 <xs:enumeration value="OtherName"/> 125
 <xs:enumeration value="Alias"/> 126
 <xs:enumeration value="GenerationIdentifier"/> 127
 </xs:restriction> 128
</xs:simpleType> 129

130
131
132
133
134

135

136

137
138
139

140

141

142
143
144
145
146
147
148
149
150

151

152
153
154
155

These and other enumerations used in the CIQ Specifications are built using common sense
and with a culture-specific view of the subject area (in this case Anglo-American culture),
rather than adopted from a specific application. The reason why we say “cultural specific
view” is because some cultures do not have the concept of FirstName, MiddleName and so
on.

2.2 Data types
All elements and attributes in xNL schema have strong data types.

All free-text values of elements (text nodes) and attributes are constrained by simple type
“string” defined in xNL-types.xsd. This type has a limit on the number of characters it may
contain.

Other XML Schema data types are also used throughout the schema.

2.3 Enumerations
The Name, Address and Party schemas come with enumerations designed to satisfy common
usage scenario, but there is always a possibility that a specific application requires
enumerated values that are not part of the standard xNL specifications. It is acceptable for
specific applications to provide their own enumerated values, but it is important that all
participants involved in the data exchange with the application need to be aware of what the
enumerated values are and that they are different from the ones provided by this specification
to enable interoperability. Therefore, some agreement should be in place between the
participants involved in the data exchange process where the enumerations have been
customised to achieve better interoperability.

Example – point-to-point
Assume that participants of some data exchange agreed that for their purpose only a
very simple name structure is required. One of the options for them is to modify
PersonNameElementsEnumeration simple type in xNL-types.xsd file with the following
values:

<xs:simpleType name="PersonNameElementsEnumeration"> 156
 <xs:restriction base="xs:string"> 157
 <xs:enumeration value="Title"/> 158
 <xs:enumeration value="FirstName"/> 159
 <xs:enumeration value="MiddleName"/> 160
 <xs:enumeration value="LastName"/> 161
 </xs:restriction> 162
</xs:simpleType> 163

164

165

Example – locale specific
In Russia, it would be more appropriate to use the following enumeration:

<xs:simpleType name="PersonNameElementsEnumeration"> 166
 <xs:restriction base="xs:string"> 167
 <xs:enumeration value="Title"/> 168
 <xs:enumeration value="Name"/> 169
 <xs:enumeration value="FathersName"/> 170
 <xs:enumeration value="FamilyName"/> 171
 </xs:restriction> 172
</xs:simpleType> 173

CIQ TC Specifications Version 3.0 - 9 - 1999-2006 @ OASIS

Name, Address and Party Information

174
175

176

177
178

179
180

181

182

Again, it is up to the implementers to modify PersonNameElementsEnumeration simple
type in xNL-types.xsd file.

2.4 Order of elements and presentation
Order of name elements should be preserved for correct presentation (e.g. printing name
elements on a envelope).

If an application needs to present the name to a user it may not always be aware about the
correct order of the elements if the semantics of the name elements are not available.

Example – normal order

Mr Jeremy Apatuta Johnson PhD 183

184 could be presented as follows

<n:PartyName> 185
 <n:PersonName> 186
 <n:NameElement>Mr</n:NameElement> 187
 <n:NameElement>Jeremy</n:NameElement> 188
 <n:NameElement>Apatuta</n:NameElement> 189
 <n:NameElement>Johnson</n:NameElement> 190
 <n:NameElement>PhD</n:NameElement> 191
 </n:PersonName> 192
</n:PartyName> 193

194

195
196

197

198
199
200
201

202
203
204
205
206

207

208
209

210

and restored back to Mr Jeremy Apatuta Johnson PhD.

Any other order of NameElement tags in the XML fragment could lead to an incorrect
presentation of the name.

2.5 Data mapping
Mapping data between the xNL schema and a target database is not expected to be an issue
as xNL provides enough flexibility for virtually any level of data decomposition. However, the
main issue lies in the area of mapping a data provider with a data consumer through xNL.
This may be a challenging task that requires additional name parsing software.

For example, consider a data provider that has a person name in one line (free text) and a
data consumer that has a highly decomposed data structure for a person’s name requires first
name, family name and title to reside in their respective fields. There is no way of putting the
provided data (free text) in the target data structure without parsing it first using some parsing
tool. Such parsing is expected to be the responsibility of the data consumer.

Example – complex-to-simple mapping

The source database easily maps to the xNL NameElement qualified with ElementType
attribute set to values as in the diagram

 211
212

213

CIQ TC Specifications Version 3.0 - 10 - 1999-2006 @
OASIS

Name, Address and Party Information

Source database 214

NAME MIDDLENAME SURNAME

John Anthony Jackson
215
216

xNL

<n:PersonName> 217
 <n:NameElement n:ElementType="FirstName">John</n:NameElement> 218
 <n:NameElement n:ElementType="MiddleName">Anthony</n:NameElement> 219
 <n:NameElement n:ElementType="LastName">Jackson</n:NameElement> 220
</n:PersonName> 221

222
223

Target database

FULLNAME

John Anthony Jackson

224

225
226
227

228

229

230
231

232

This type of mapping does not present a major challenge as it is a direct mapping from source
to xNL and then concatenating the data values to form the full name to be stored in a
database field/column.

Example – simple-to-complex mapping

The source database has the name in a simple unparsed form which can be easily mapped to
xNL, but cannot be directly mapped to the target database as in the following diagram:

 233
234
235

Source database

FULLNAME

John Anthony Jackson

236
237

xNL

<n:PersonName> 238
 <n:NameElement>John Anthony Jackson</n:NameElement> 239
</n:PersonName> 240

241

242
243

244
245
246
247

At this point, the name resolution/parsing software splits John Anthony Jackson into a form
acceptable by the target database.

CIQ TC Specifications Version 3.0 - 11 - 1999-2006 @
OASIS

Name, Address and Party Information

248

249

Target database

NAME MIDDLENAME SURNAME

John Anthony Jackson

250

251

252
253
254

255
256
257

258

2.6 Data quality
xNL schema allows for data quality information to be provided as part of the entity using
attribute DataQuality that can be set to either “Valid” or “Invalid”, if such status is known. If
DataQuality attribute is omitted, it is presumed that the validity of the data is unknown.

DataQuality attribute refers to the content of a container, e.g. PersonName, asserting that all
the values are known to be true and correct. This specification has no provision for partial
data quality where some parts of the content are correct and some are not or unknown.

Example – data quality

<n:PersonName n:DataQuality="Valid"> 259
 <n:NameElement>John Anthony Jackson</n:NameElement> 260
</n:PersonName> 261

262
263

264

265
266
267

268

269
270

271

272

273
274

275

276
277

278

In this example John Anthony Jackson is known to be the true and correct value
asserted by the sender of this data.

This feature allows the recipient of data to get an understanding of the quality of data they are
receiving and thereby, assists them to take appropriate measures to handle the data
according to its quality.

2.6.1 Data quality verification and trust
This specification does not mandate any data verification rules or requirements. It is entirely
up to the data exchange participants to establish them.

Also, the participants need to establish if the data quality information can be trusted.

2.6.2 Data validation
This specification does not mandate any data validation rules or requirements. It is entirely up
to the data exchange participants to establish such rules and requirements.

2.7 Extensibility
All elements in Name, Address and Party namespaces are extensible allowing for any
number of attributes from a non-target namespace to be added.

All elements share the same declaration:
<xs:anyAttribute namespace="##other" processContents="lax"/> 279

280
281

282
283

284

285

Although this specification provides an extensibility mechanism, it is up to the participants of
the data exchange process to agree on the use of any extensions to the target namespace.

This specification mandates that an application should not fail if it encounters an attribute from
a non-target namespace. The application may choose to ignore or remove the attribute.

CIQ TC Specifications Version 3.0 - 12 - 1999-2006 @
OASIS

Name, Address and Party Information

2.7.1 Practical applications 286

287

288
289
290

System-specific identifiers
Participants involved in data exchange may wish to add their system specific
identifiers for easy matching of known data, e.g. if system A sends a message
containing a name of a person to system B as in the example below
<n:PartyName xmlns:b="urn:acme.org:corporate:IDs" b:PartyID="123445"> 291
 <n:PersonName> 292
 <n:NameElement>John Johnson</n:NameElement> 293
 </n:PersonName> 294
</n:PartyName> 295

296
297
298
299

300

then Attribute b:PartyID="123445" is not in xNL namespace and acts as an identifier
for system A. When system B returns a response or sends another message and needs
to include information about the same party, it may use the same identifier as in the
following example:

<n:PartyName xmlns:b="urn:acme.org:corporate:IDs" b:PartyID="123445" /> 301

302

303

304
305

The response could include the original payload with the name details.

Additional metadata
Sometime it is required to include some additional metadata that is specific to a
particular system or application. Consider these examples:

<n:PartyName xmlns:x="urn:acme.org:corporate" x:OperatorID="buba7"> 306
 307

308
<n:PartyName xmlns:b="urn:acme.org:corporate "> 309
 <n:PersonName> 310
 <n:NameElement b:Corrected="true">John Johnson</n:NameElement> 311
 </n:PersonName> 312
</n:PartyName> 313

314

315

316
317
318

319
320

321
322

323

2.8 Linking and referencing
Names can be referenced internally (i.e. within some XML infoset that contains both
referencing and referenced elements) through xlink:href pointing at an element with xml:id
with a matching value.

External entities can also be referenced if they are accessible by the recipient via
HTTP(s)/GET.

The following example illustrates PartyName elements that reference other PartyName
elements that reside elsewhere, in this case outside of the document.

<a:Contacts 324
 xmlns:a="urn:acme.org:corporate:contacts" 325
 xmlns:n="urn:oasis:names:tc:ciq:xsdschema:xNL:3.0/20050427" 326
 xmlns:xlink="http://www.w3.org/1999/xlink"> 327
 <n:PartyName xlink:href="http://example.org/party?id=123445" xlink:type="locator"/> 328
 <n:PartyName xlink:href="http://example.org/party?id=83453485" xlink:type="locator"/> 329
</a:Contacts> 330

331
332
333

This example presumes that the recipient of this XML fragment has access to resource
http://example.org/party and that the resource returns PartyName element as an XML
fragment of text/xml MIME type.

CIQ TC Specifications Version 3.0 - 13 - 1999-2006 @
OASIS

Name, Address and Party Information

Usage of xLink attributes may slightly differ from the original xLink specification. See CIQ TC
Party Relationships Specification for more information on using xLink with xNL. The xLink
specification is available at

334
335

http://www.w3.org/TR/xlink/. 336

337

338

339
340
341
342
343
344
345
346

347
348

349
350

Element PartyName can be either of type locator or resource in relation to xLink.

2.9 ID attribute
Attribute ID is used with complex type PersonNameType and elements PersonName and
OrganisationName. This attribute allows unique identification of the collection of data it
belongs to. The value of the attribute should be unique within the scope of the application of
xNL. It is recommended that the value should be globally unique. The term ‘globally unique’
means a unique identifier that is “mathematically guaranteed” to be unique. For example,
GUID (Globaly Unique Identifier) is a unique identifier that is based on the simple principle
that the total number of unique keys (or) is so large that the possibility of the same number
being generated twice is virtually zero.

This unique ID attribute should be used to uniquely identify collections of data as in the
example below:

Application A supplies an xNL fragment containing some PersonName to Application B.
The fragment contains attribute ID with some unique value.

<n:PartyName n:ID="52F89CC0-5C10-4423-B367-2E8C14453926"> 351
 <n:PersonName> 352
 <n:NameElement>Max Voskob</n:NameElement> 353
 </n:PersonName> 354
 <n:OrganisationName> 355
 <n:NameElement>Khandallah Laundering Ltd.</n:NameElement> 356
 </n:OrganisationName> 357
</n:PartyName> 358

359
360

If Application B decides to reply to A and use the same xNL fragment it can only
provide the outer element (n:PartyName in this case) with ID as the only attribute.

<n:PartyName n:ID="52F89CC0-5C10-4423-B367-2E8C14453926" /> 361

362
363

364
365

366
367

368

369
370
371
372

373

374
375

376

377

378

Application A should recognise the value of ID, so no additional data is required from B
in relation to this.

The exact behaviour of the ID attribute is not specified in this document and is left to the users
to decide and implement.

The difference between the ID attribute and xLink attributes is that ID attribute cannot be
resolved to a location of the data – it identifies already known data.

2.10 Schema customization guidelines
The broad nature and cultural diversity of entity “Name” makes it very difficult to produce one
schema that would satisfy all applications and all cultures while keeping the size and
complexity of the schema under control. This specification allows some changes to the
schema by adopters of the schema to fit their specific requirements and constraints.

2.10.1 Namespace
The namespace identifier should be changed if it is possible for an XML fragment valid under
the altered schema to be invalid under the original schema.

2.10.2 Reducing the structure
It is recommended to retain the minimum structure as in the following diagram:

CIQ TC Specifications Version 3.0 - 14 - 1999-2006 @
OASIS

http://www.w3.org/TR/xlink/

Name, Address and Party Information

 379
380
381

382

383
384

385
386

387
388

389

390
391
392

393

394

395

This structure, although somewhat limited, still allows for most names to be represented, with
exception for

• additional names (KnownAs), e.g. maiden name as part of PartyName

• organisation subdivision hierarchy (SubdivisionName), e.g. faculty / school /
department

Any further reduction in structure may lead to loss of flexibility and expressive power of the
schema.

It is not recommended to remove any attributes from the schema as they can be easily
ignored during the processing.

2.10.3 Customizing the enumerations
Enumerations clarifying the meaning for generic elements (e.g. NameElement) were
intentionally taken out of the main schema file into an include file (xNL-types.xsd) to make
customisation easier.

The values of the enumerations can be changed or new ones added as required.

Proprietary enumeration example

Original xNL values for AliasTypeEnumeration Possible proprietary values

MaidenName MaidenName

NameChange CommonUse

CommonUse CivilName

 NickName

 PublishingName

The code for the new proprietary enumeration would look like this: 396

<xs:simpleType name="AliasTypeEnumeration"> 397
 <xs:restriction base="xs:string"> 398
 <xs:enumeration value="MaidenName"/> 399
 <xs:enumeration value="CommonUse"/> 400
 <xs:enumeration value="CivilName"/> 401
 <xs:enumeration value="NickName"/> 402
 <xs:enumeration value="PublishingName"/> 403
 </xs:restriction> 404
</xs:simpleType> 405

CIQ TC Specifications Version 3.0 - 15 - 1999-2006 @
OASIS

Name, Address and Party Information

406
407
408
409

410

411

412
413
414

This level of flexibility allows some customization of the schema through changing the
enumerations only without changing the basic structure of the schema. It is important to
ensure that all schema users involved in data exchange use the same enumerations for
interoperability to be successful.

2.10.4 Implications
Any changes to the schemas are likely to break the compatibility one way or another.

It may be possible that an XML fragment created for the original schema is invalid for the
altered schema or vice versa. This issue needs to be considered before making any changes
to the schema and breaking the compatibility.

CIQ TC Specifications Version 3.0 - 16 - 1999-2006 @
OASIS

Name, Address and Party Information

3 Entity “Address” 415

416
417

418
419

420

421

Entity “Address” has been modelled independent of any context as a standalone class to
reflect some common understanding of concepts “Location” and “Delivery Point”.

The design concepts for “Address” are similar to “Name”. Refer to section 1.4 Common
approaches for more information.

3.1 Semantics of “Address”
The high level schema elements of xAL schema are illustrated in the following diagram:

 422
423

424

425
426
427
428

An address can be structured according to the complexity level of its source.

Example – free text
Suppose that the source database does not differentiate between different address
elements and treats them as Address Line 1, Address Line 2, Address Line “N”, then
the address information can be placed inside a free text container (element
FreeTextAddress).

<a:Address> 429
 <a:FreeTextAddress> 430
 <a:AddressLine>Substation C</a:AddressLine> 431
 <a:AddressLine >17 James Street</a:AddressLine > 432
 <a:AddressLine>SPRINGVALE VIC 3171</a:AddressLine> 433
 </a:FreeTextAddress> 434
</a:Address> 435

436
437
438

It is up to the receiving application to parse this address and map it to the target data
structure. It is possible that some sort of parsing software or human involvement will
be required to accomplish the task.

CIQ TC Specifications Version 3.0 - 17 - 1999-2006 @
OASIS

Name, Address and Party Information

439

440

441
442

Example – semi structured address
Assume that the address was captured in some semi-structured form such as State,
Suburb and Street.

<a:Address> 443
 <a:AdministrativeArea> 444
 <a:Name>WA</a:Name> 445
 </a:AdministrativeArea> 446
 <a:Locality> 447
 <a:Name>OCEAN REEF</a:Name> 448
 </a:Locality> 449
 <a:Thoroughfare> 450
 <a:NameElement>16 Patterson Street</a:NameElement> 451
 </a:Thoroughfare> 452
</a:Address> 453

454
455
456
457
458

459

460

461
462

In this example, the free text information resides in containers that provide some
semantic information on the content. E.g. State -> AdministrativeArea, Suburb ->
Locality, Street -> Thoroughfare. At the same time, the Thoroughfare element
contains street name and number in one line as free text, which may not be detailed
enough for data structures where street name and number are separate fields.

Example – fully structured address
The following example illustrates an address structure that was decomposed into its
atomic elements:

<a:Address> 463
 <a:AdministrativeArea> 464
 <a:Name a:Abbreviation="true" a:NameType="state">VIC</a:Name> 465
 </a:AdministrativeArea> 466
 <a:Locality> 467
 <a:Name>CLAYTON</a:Name> 468
 <a:SubLocality>Technology Park</a:SubLocality> 469
 </a:Locality> 470
 <a:Thoroughfare> 471
 <a:NameElement>Dandenong Road</a:NameElement> 472
 <a:Number a:EnumeratedType="RangeFrom">200</a:Number> 473
 <a:Number a:EnumeratedType="Separator">-</a:Number> 474
 <a:Number a:EnumeratedType="RangeTo">350</a:Number> 475
 <a:SubThoroughfare> 476
 <a:NameElement>Fifth Avenue</a:NameElement> 477
 </a:SubThoroughfare> 478
 </a:Thoroughfare> 479
 <a:Premise> 480
 <a:NameElement>Toshiba Building</a:NameElement> 481
 </a:Premise> 482
 <a:PostalCode> 483
 <a:Number>3168</a:Number> 484
 </a:PostalCode> 485
</a:Address> 486

487

488

3.2 Geo-coordinates
Geo-coordinates can be provided by using Geography Markup Language (GML), an industry
standard (http://www.opengis.net). 489

490
491
492
493

494

495

The reason for using some complex constructs from GML is due to the ambiguity of different
coordinate systems, units and measurements. Also, GML incorporates a huge body of
knowledge and expertise in geographical systems interoperability that can be reused for our
purpose rather than re-inventing what has already been developed.

The content of a:GML must comply with the following requirements:

• Be from the GML namespace

CIQ TC Specifications Version 3.0 - 18 - 1999-2006 @
OASIS

http://www.opengis.net/

Name, Address and Party Information

496
497

498
499
500

501
502

503

504

505
506
507

508

509

510
511

512

513

514
515

516
517

518

519

• Refer to finest level of address details available in the address structure a:GML belongs
to

• Be used unambiguously so that there is no confusion whether the coordinates belong
to the postal delivery point (e.g. Post Box) or a physical address (e.g. flat) as it is
possible to have both in the same address structure.

There is no restriction on the shape of the area a:GML can describe be it a point, polygon or
some other object.

3.3 Data types
All elements and attributes in xAL schema have strong data types.

All free-text values of elements (text nodes) and attributes are constrained by simple type
“string” defined in xAL-types.xsd. This type has a limit on the number of characters it may
contain.

Other XML Schema defined data types are also used throughout xAL namespace.

3.4 Enumerations
Use of enumerations is identical to use of enumerations for entity “Name”. Refer to section
2.3 Enumerations for more information.

Enumerations used in xAL reside in an “include” file xAL-types.xsd.

3.5 Order of elements and presentation
Order of address elements should be preserved for correct presentation in a fashion similar to
what is described in section 2.4 Order of elements and presentation.

Child elements of a:Address can appear in any order as members of xs:all grouping as in the
example below:

Example – order of second level elements in xAL

23 Archer Street : Thoroughfare 520
Chatswood, NSW 2067 : Suburb, State, Post Code 521
Australia : Country 522

523 could be preserved and presented in XML as:

<a:Address> 524
 <a:Thoroughfare /> 525
 <a:Locality /> 526
 <a:AdministrativeArea /> 527
 <a:PostCode /> 528
 <a:Country /> 529
</a:Address> 530

531

532

533
534

535

536

Some other elements can also appear in any order to preserve the original order.

3.6 Data mapping
Mapping data between xAL schema and a database is similar to that of entity “Name” as
described in section 2.5 Data .

Example – normal order

23 Archer Street 537
Chatswood, NSW 2067 538
Australia 539

CIQ TC Specifications Version 3.0 - 19 - 1999-2006 @
OASIS

Name, Address and Party Information

could be presented as follows 540

<a:Address> 541
 <a:FreeTextAddress> 542
 <a:AddressLine>23 Archer Street</a:AddressLine> 543
 <a:AddressLine>Chatswood, NSW 2067</a:AddressLine> 544
 <a:AddressLine>Australia</a:AddressLine> 545
 </a:FreeTextAddress> 546
</a:Address> 547

548 and restored back to
23 Archer Street 549
Chatswood, NSW 2067 550
Australia 551

552

553
554

555

556
557

558

559

560

561
562

563

564

565
566

during data formatting exercise.

Any other order of AddressLine tags in the XML fragment could lead to an incorrect
presentation of the address.

3.7 Data quality
xAL schema allows for data quality information to be provided as part of the entity using
attribute DataQuality as for entity “Name”. Refer to section 2.6 Data for more information.

3.8 Extensibility
All element in Address namespace are extensible as described in section 2.7 Extensibility.

3.9 Linking and referencing
All linking and referencing rules described in section 2.8 Linking and apply to entity
“Address”.

Use of attribute ID is described in section 2.9 ID attribute.

3.10 Schema customization
Schema customisation rules and concepts described in section 2.10 Schema customization
are fully applicable to entity “Address”.

CIQ TC Specifications Version 3.0 - 20 - 1999-2006 @
OASIS

Name, Address and Party Information

4 Combination of “Name” and “Address” 567

568
569

570

571
572

573

574
575

xNAL (Name and Address) schema is a container for combining related names and
addresses. This specification recognises two ways of achieving so:

• Binding multiple names to multiple addresses (element xnal:Record)

• Binding multiple names to a single address for postal purposes (element
xnal:PostalLabel)

4.1 Use of element xnal:Record
Element xnal:Record is a binding container that shows that some names relate to some
addresses as in the following diagram:

 576
577
578
579
580

581

582

The relationship type is application specific, but in general it is assumed that the people
named in the xNL part somehow reside at the addresses specified in the xAL part. Use
attributes from other namespace to specify the type of relationships and roles of names and
addresses.

Example
Mr H G Guy, 9 Uxbridge Street, Redwood, Christchurch 8005

<xnal:Record> 583
 <n:PartyName> 584
 <n:NameLine>Mr H G Guy</n:NameLine> 585
 </n:PartyName> 586
 <a:Address> 587
 <a:Locality> 588
 <a:Name>Christchurch</a:Name> 589
 <a:SubLocality>Redwood</a:SubLocality> 590
 </a:Locality> 591
 <a:Thoroughfare> 592
 <a:Number>9</a:Number> 593
 <a:NameElement>Uxbridge Street</a:NameElement> 594
 </a:Thoroughfare> 595
 <a:PostCode> 596
 <a:Identifier>8005</a:Identifier> 597
 </a:PostCode> 598
 </a:Address> 599
</xnal:Record> 600

601

602
603

4.2 Use of element xnal:PostalLabel
Element xnal:PostalLabel is a binding container that provides elements and attributes for
information often used for postal / delivery purposes, as in the following diagram:

CIQ TC Specifications Version 3.0 - 21 - 1999-2006 @
OASIS

Name, Address and Party Information

 604
605
606

607

608

609

This structure allows for any number of recipients to be linked to a single address with some
delivery specific elements such as Designation and DependencyName.

Example

Attention: Mr S Mart 610
Name Plate Engravers 611
The Emporium 612
855 Atawhai Drive 613
Atawhai 614
Nelson 7001 615

616 Translates into the following xNAL fragment:

<xnal:PostalLabel> 617
 <xnal:Addressee> 618
 <xnal:Designation>Attention: Mr S Mart</xnal:Designation> 619
 <n:PartyName> 620
 <n:NameLine>Name Plate Engravers</n:NameLine> 621
 </n:PartyName> 622
 </xnal:Addressee> 623
 <a:Address> 624
 <a:Locality> 625
 <a:Name>Nelson</a:Name> 626
 <a:SubLocality>Atawhai</a:SubLocality> 627
 </a:Locality> 628
 <a:Thoroughfare> 629
 <a:NameElement>Atawhai Drive</a:NameElement> 630
 <a:Number>855</a:Number> 631
 </a:Thoroughfare> 632
 <a:PostCode> 633
 <a:Identifier>7001</a:Identifier> 634
 </a:PostCode> 635
 </a:Address> 636
</xnal:PostalLabel> 637

638

639

CIQ TC Specifications Version 3.0 - 22 - 1999-2006 @
OASIS

Name, Address and Party Information

5 Entity “Party” 640

641
642
643
644

Entity “Party” encapsulates some most commonly used unique characteristics of Person or
Organisation, such as name, address, personal details, contact details, body features, etc.
The diagram below shows the high level structure of Party. The full schema can be found in
xPIL,xsd file with enumerations in xPIL-types.xsd file. See the sample XML files for examples.

 645

CIQ TC Specifications Version 3.0 - 23 - 1999-2006 @
OASIS

Name, Address and Party Information

646
647

648

649
650

The schema consists of top level containers that may appear in any order or be omitted. The
containers are declared globally and can be reused by other schemas.

The shared elements apply to organisation as well as person.

Name of the party reuses PartyNameType construct from xNL namespace as illustrated in the
following diagram:

 651
652

653
654

Address of the party reuses AddressType construct from xAL namespace as illustrated in the
following diagram:

 655

CIQ TC Specifications Version 3.0 - 24 - 1999-2006 @
OASIS

Name, Address and Party Information

656

657
658

659

660

661

The design paradigm for this schema is similar to those of Name and Address entities.
Likewise, it is possible to combine information at different detail and semantic levels.

The following example illustrates use of some of party constructs

Example – qualification details

<p:Qualifications> 662
 <p:Qualification> 663
 <p:QualificationElement 664
p:ElementType="QualificationName">BComp.Sc.</p:QualificationElement> 665
 <p:QualificationElement 666
p:ElementType="MajorSubject">Mathematics</p:QualificationElement> 667
 <p:QualificationElement 668
p:ElementType="MinorSubject">Statistics</p:QualificationElement> 669
 <p:QualificationElement p:ElementType="Award">Honours</p:QualificationElement> 670
 <p:InstitutionName> 671
 <n:NameLine>University of Technology Sydney</n:NameLine> 672
 </p:InstitutionName> 673
 </p:Qualification> 674
</p:Qualifications> 675

676

677

Example – birth details

<p:BirthInfo p:BirthDateTime="1977-01-22T00:00:00"/> 678

679

680

Example – driver license

<p:Document p:ValidTo="2004-04-22T00:00:00"> 681
 <p:IssuePlace> 682
 <a:Country> 683
 <a:Name>Australia</a:Name> 684
 </a:Country> 685
 <a:AdministrativeArea> 686
 <a:Name>NSW</a:Name> 687
 </a:AdministrativeArea> 688
 </p:IssuePlace> 689
 <p:DocumentElement p:ElementType="DocumentID">74183768C</p:DocumentElement> 690
 <p:DocumentElement p:ElementType="DocumentType">Driver License</p:DocumentElement> 691
 <p:DocumentElement p:ElementType="Priveledge">Silver</p:DocumentElement> 692
 <p:DocumentElement p:ElementType="Restriction">Car</p:DocumentElement> 693
</p:Document> 694

695

696

Example – contact phone number

<p:ContactNumber p:MediaType="Telephone" p:ContactNature="Business Line" 697
p:ContactHours="9:00AM - 5:00PM"> 698
 <p:ContactNumberElement p:ElementType="CountryCode">61</p:ContactNumberElement> 699
 <p:ContactNumberElement p:ElementType="AreaCode">2</p:ContactNumberElement> 700
 <p:ContactNumberElement p:ElementType="LocalNumber">94338765</p:ContactNumberElement> 701
</p:ContactNumber> 702

703

704

705
706
707
708
709

5.1 Dealing with Joint Party Names
xPIL schema represents details of a Party. The Party has a name as specified in
n:PartyName element. A “Party” can be a unique name (e.g. A person or an Organisation) or
a joint name (e.g. Mrs. Sarah Johnson and Mr. James Johnson (or) Mrs. & Mr. Johnson). In
this case, all the other details of the party defined using xPIL apply to the party as a whole
(i.e. to both the persons in the above example) and not to one of the Parties (e.g. say only to

CIQ TC Specifications Version 3.0 - 25 - 1999-2006 @
OASIS

Name, Address and Party Information

710
711
712

713

714

715
716
717

718

719

720
721

722

723

724
725
726

727

728
729

730

731
732

733

734

735

736

737
738

Mrs. Sarah Johnson or Mr. James Johnson in the example). Also, all the addresses specified
in Addresses element relate to the Party as a whole (i.e. applies to both Mrs. and Mr. Johnson
in this example).

5.2 Data types
All elements and attributes in xPIL schema have strong data types.

All free-text values of elements (text nodes) and attributes are constraint by simple type
“string” defined in xPIL-types.xsd. This type has a limit on the number of characters it may
contain.

Other XML Schema defined data types are also used throughout the schema.

5.3 Enumerations
Use of enumerations is identical to use of enumerations for entity “Name”. Refer to section
2.3 Enumerations for more information.

Enumerations used in xPIL reside in an “include” xPIL-types.xsd.

5.4 Order of elements and presentation
Order of elements without qualifier (@...type attribute) should be preserved for correct
presentation in a fashion similar to what is described in section 2.4 Order of elements and
presentation.

5.5 Data mapping
Mapping data between xPIL schema and a database is similar to that of entity “Name” as
described in section 2.5 Data .

5.6 Data quality
xPIL schema allows for data quality information to be provided as part of the entity using
attribute DataQuality as for entity “Name”. Refer to section 2.6 Data for more information.

5.7 Extensibility
All element in Party namespaces are extensible as described in section 2.7 Extensibility.

5.8 Linking and referencing
All linking and referencing rules described in section 2.8 Linking and apply to entity “Party”.

The following example illustrates PartyName elements that reference other PartyName
element that resides elsewhere, in this case outside of the document.

<a:Contacts xmlns:a="urn:acme.org:corporate:contacts"> 739
 <xnl:PartyName xlink:href="http://example.org/party?id=123445"/> 740
 <xnl:PartyName xlink:href="http://example.org/party?id=83453485"/> 741
</a:Contacts> 742

743
744
745

746

747

748
749

This example presumes that the recipient of this XML fragment has access to resource
“http://example.org/party” (possibly over HTTP/GET) and that the resource returns as
PartyName element as an XML fragment of text/xml MIME type.

Use of attribute ID is described in section 2.9 ID attribute.

5.9 Schema customization
Schema customisation rules and concepts described in section 2.10 Schema customization
are fully applicable to entity “Party”.

CIQ TC Specifications Version 3.0 - 26 - 1999-2006 @
OASIS

Name, Address and Party Information

6 Miscellaneous 750

751

752
753
754
755

756

757
758
759

760
761

762

763
764

6.1 Documentation
Although, all schema files are fully documented using XML Schema annotations it is not
always convenient to browse the schema itself. This specification is accompanied by a set of
HTML files auto generated by XML Spy. Note that not all information captured in the schema
annotation tags is in the HTML documentation.

6.2 Examples
Several examples of instance XML documents for name, address and party schemas are
provided as XML files. The examples are informative and demonstrate the application of this
Technical Specification.

The example files and their content are being constantly improved and updated on no
particular schedule.

6.3 Contributions from Public
OASIS CIQ TC is open in the way it conducts its business. We welcome contributions from
public in any form. Please, use “Send A Comment” feature on CIQ TC home page
(http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ciq) to tell us about: 765

766

767

768

769

770

771

772

773

• errors, omissions, misspellings in this specification, schemas or examples

• your opinion in the form of criticisms, suggestions, comments, etc

• willingness to contribute to the work of CIQ TC by becoming a member of the TC

• willingness to contribute indirectly to the work of CIQ TC

• provision of sample data that can be used to test the specifications

• implementation experience

• etc.

CIQ TC Specifications Version 3.0 - 27 - 1999-2006 @
OASIS

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ciq

Name, Address and Party Information

Appendix A. Notices 774

775 Copyright © OASIS Open 2005. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS 776
Intellectual Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at 777
the OASIS website.778

779
780
781
782
783
784
785
786
787

788
789

790
791
792
793
794

795
796
797
798
799

800
801
802
803
804
805

806
807
808
809
810
811
812
813
814
815
816
817

818

This document and translations of it may be copied and furnished to others, and derivative
works that comment on or otherwise explain it or assist in its implementation may be
prepared, copied, published, and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this section are included on all such copies
and derivative works. However, this document itself may not be modified in any way, including
by removing the copyright notice or references to OASIS, except as needed for the purpose
of developing any document or deliverable produced by an OASIS Technical Committee (in
which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must be
followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its
successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and
OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL
NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims
that would necessarily be infringed by implementations of this OASIS Committee
Specification or OASIS Standard, to notify OASIS TC Administrator and provide an indication
of its willingness to grant patent licenses to such patent claims in a manner consistent with
the IPR Mode of the OASIS Technical Committee that produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of
ownership of any patent claims that would necessarily be infringed by implementations of this
specification by a patent holder that is not willing to provide a license to such patent claims in
a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this
specification. OASIS may include such claims on its website, but disclaims any obligation to
do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other
rights that might be claimed to pertain to the implementation or use of the technology
described in this document or the extent to which any license under such rights might or might
not be available; neither does it represent that it has made any effort to identify any such
rights. Information on OASIS' procedures with respect to rights in any document or deliverable
produced by an OASIS Technical Committee can be found on the OASIS website. Copies of
claims of rights made available for publication and any assurances of licenses to be made
available, or the result of an attempt made to obtain a general license or permission for the
use of such proprietary rights by implementers or users of this OASIS Committee
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS
makes no representation that any information or list of intellectual property rights will at any
time be complete, or that any claims in such list are, in fact, Essential Claims.

CIQ TC Specifications Version 3.0 - 28 - 1999-2006 @
OASIS

	Schema design approach in version 3.0
	Version 3.0 schema files
	Formal design requirements for version 3.0
	Major entities
	Common approaches
	Namespaces
	Other specifications

	Entity “Name”
	Semantics of “Name”
	Data types
	Enumerations
	Order of elements and presentation
	Data mapping
	Data quality
	Data quality verification and trust
	Data validation

	Extensibility
	Practical applications

	Linking and referencing
	ID attribute
	Schema customization guidelines
	Namespace
	Reducing the structure
	Customizing the enumerations
	Implications

	Entity “Address”
	Semantics of “Address”
	Geo-coordinates
	Data types
	Enumerations
	Order of elements and presentation
	Data mapping
	Data quality
	Extensibility
	Linking and referencing
	Schema customization

	Combination of “Name” and “Address”
	Use of element xnal:Record
	Use of element xnal:PostalLabel

	Entity “Party”
	Dealing with Joint Party Names
	Data types
	Enumerations
	Order of elements and presentation
	Data mapping
	Data quality
	Extensibility
	Linking and referencing
	Schema customization

	Miscellaneous
	Documentation
	Examples
	Contributions from Public

