
[image: image1.png]OASIS)

Customer Information Quality Specifications Version 3.0

Name (xNL), Address (xAL) and Party (xPIL)
Public Review Draft PRD 02
01 June 2007
Specification URIs:

This Version:

http://docs.oasis-open.org/ciq/v3.0/prd02/specs/ciq-specs-v3-prd2.html
http://docs.oasis-open.org/ciq/v3.0/prd02/specs/ciq-specs-v3-prd2.doc
http://docs.oasis-open.org/ciq/v3.0/prd02/specs/ciq-specs-v3-prd2.pdf
Previous Version:

N/A

Latest Version:

http://docs.oasis-open.org/ciq/v3.0/specs/ciq-specs-v3-prd2.html
http://docs.oasis-open.org/ciq/v3.0/specs/ciq-specs-v3-prd2.doc
http://docs.oasis-open.org/ciq/v3.0/specs/ciq-specs-v3-prd2.pdf
Technical Committee:

OASIS Customer Information Quality TC
Chair:

Ram Kumar (kumar.sydney@gmail.com)
Editor:

Ram Kumar (kumar.sydney@gmail.com)
Related work:

This specification replaces or supercedes:
· OASIS CIQ extensible Name Language (xNL) V2.0 Committee Specification
· OASIS CIQ extensible Address Language (xAL) V2.0 Committee Specification

· OASIS CIQ extensible Name and Address Language (xNAL) V2.0 Committee Specification

· OASIS CIQ extensible Customer Information Language (xCIL) V2.0 Committee Specification

Declared XML Namespace(s):

urn:oasis:names:tc:ciq:3.0

Abstract:

This Technical Specification defines the OASIS
Customer Information Quality Specifications Version 3.0 namely, Name (xNL), Address (xAL), Name and Address (xNAL) and Party Information (xPIL) specifications.

Status:

This document was last revised or approved by the OASIS CIQ TC on the above date. The level of approval is also listed above. Check the current location noted above for possible later revisions of this document. This document is updated periodically on no particular schedule.

Technical Committee members should send comments on this specification to the Technical Committee’s email list. Others should send comments to the Technical Committee by using the “Send A Comment” button on the Technical Committee’s web page at www.oasis-open.org/committees/ciq.

For information on whether any patents have been disclosed that may be essential to implementing this specification, and any offers of patent licensing terms, please refer to the Intellectual Property Rights section of the Technical Committee web page (www.oasis-open.org/committees/ciq/ipr.php.

The non-normative errata page for this specification is located at www.oasis-open.org/committees/ciq.

Notices
Copyright © OASIS® 1993–2007. All Rights Reserved. OASIS trademark, IPR and other policies apply.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this section are included on all such copies and derivative works. However, this document itself may not be modified in any way, including by removing the copyright notice or references to OASIS, except as needed for the purpose of developing any document or deliverable produced by an OASIS Technical Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard, to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of any patent claims that would necessarily be infringed by implementations of this specification by a patent holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this specification. OASIS may include such claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS' procedures with respect to rights in any document or deliverable produced by an OASIS Technical Committee can be found on the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this OASIS Committee Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no representation that any information or list of intellectual property rights will at any time be complete, or that any claims in such list are, in fact, Essential Claims.

The names "OASIS", “CIQ”, “xNL”, “xAL”, xNAL”, “xPIL”, “xPRL”, “xCIL”, and “xCRL” are trademarks of OASIS, the owner and developer of this specification, and should be used only to refer to the organization and its official outputs. OASIS welcomes reference to, and implementation and use of, specifications, while reserving the right to enforce its marks against misleading uses. Please see http://www.oasis-open.org/who/trademark.php for above guidance.

Table of Contents
71
Name, Address and Party

71.1 Definitions

82
Schema Design Approach in Version 3.0

82.1 Version 3.0 Schema Files

92.2 Formal Design Requirements for Version 3.0

92.3 Major CIQ Specification Entities

92.4 Common Approaches

102.5 Namespaces

102.6 Other Industry Specifications Used

113
Entity “Name” (extensible Name Language)

113.1 Semantics of “Name”

123.1.1 Example 1 – No Semantics (Unstructured/Free Text Data)

123.1.2 Example 2 – Minimal Semantics (Partially Structured Data)

123.1.3 Example 3 – Full Semantics (Fully Structured Data)

133.2 Data Types

133.3 Code Lists (Enumerations)

133.3.1 What is a Code List?

133.3.2 The importance of Code Lists for CIQ

143.3.3 Customisable Code Lists

143.4 Using Code Lists in CIQ Specifications – Two Options

143.4.1 Why Two Options

153.4.2 Option 1 – “Include” Code Lists/Enumerations (The Default)

153.4.2.1 Representing Code Lists (Default) in CIQ Specifications

153.4.2.1.1 Code List Representation – An Example

153.4.3 Customizing Code Lists

163.4.3.1 End User Customised Code List – An Example

173.4.3.2 Example – Point-to-Point

173.4.3.3 Example – Locale Specific

173.4.4 Option 2 –Code Lists/Enumerations using Genericode

183.4.4.1 Code List Value Validation Methodology

183.4.4.1.1 Two Pass Value Validation

193.4.4.2 Representing Genericode based Code Lists in CIQ Specifications

203.4.4.2.1 Code List Representation in Genericode – An Example

203.4.4.3 Customizing Genericode based Code Lists

213.4.4.4 CIQ Specifications used as a case study by OASIS Code List TC

213.4.4.5 References

213.5 Code List Package

213.6 Order of Elements and Presentation

213.6.1 Example – Normal Order

223.7 Data Mapping

223.7.1 Example – Complex-to-simple Mapping

233.7.2 Example – Simple-to-complex Mapping

233.8 Data Exchange and Interoperability

243.9 Data Interoperability Success Formula

243.10 Data Quality

243.10.1 Example – Data Quality

243.10.2 Data Quality Verification and Trust

243.10.3 Data Validation

253.11 Extensibility

253.11.1 Extending the Schemas to Meet Application Specific Requirements

253.11.2 Practical Applications

253.11.2.1 System-specific Identifiers

253.11.2.2 Additional Metadata

263.12 Linking and Referencing

263.12.1 Using xLink [Optional]

263.12.2 Using Key Reference [Optional]

273.13 ID Attribute

283.14 Schema Customization Guidelines

283.14.1 Namespace

283.14.2 Reducing the Entity Schema Structure

283.14.2.1 Implications of changing Name Entity Schema

283.14.3 Customizing the Code Lists/Enumerations of Name

293.14.4 Using the Code list Methodology (UMCLVV) to customize Name Schema to meet application specific requirements

293.14.4.1 Constraining Name Schema using UMCLVV – An Example

314
Entity “Address” (extensible Address Language)

314.1 Semantics of “Address”

334.1.1 Example – Minimal Semantics (Unstructured/Free Text Data)

334.1.2 Example – Partial Semantics (Partially Structured Data)

334.1.3 Example – Full Semantics (Fully Structured Data)

344.2 Location Coordinates

344.2.1 Using GML

344.2.2 Using the Default Elements

354.3 Data Types

354.4 Code Lists (Enumerations)

364.5 Order of Elements and Presentation

364.5.1 Example – Order of Second Level Elements in xAL

364.6 Data Mapping

364.6.1 Example – Normal Order

374.7 Data Quality

374.8 Extensibility

374.9 Linking and Referencing

374.10 Schema Customization Guidelines

374.10.1 Customizing the Code Lists/Enumerations of Address

384.10.1.1 End User Customised Code List - An Example

384.10.1.2 Implications of changing Address Entity Schema

384.10.2 Using the Code list Methodology (UMCLVV) to customize Address Schema to meet application specific requirements

394.10.2.1 Constraining Address Schema using UMCLVV – An Example

405
Combination of “Name” and “Address” (extensible Name and Address Language)

405.1 Use of element xnal:Record

405.1.1 Example

415.2 Use of element xnal:PostalLabel

415.2.1 Example

425.3 Creating your own Name and Address Application Schema

436
Entity “Party” (extensible Party Information Language)

436.1 Common Elements/Attributes for Person or Organisation

456.2 Party Specific Elements/Attributes

476.3 Organisation Specific Elements/Attributes

486.4 Reuse of xNL and xAL Structure for Person or Organisation Name and Address

486.5 Party Structures - Examples

486.5.1 Example – Qualification Details

486.5.2 Example – Birth Details

496.5.3 Example – Driver License

496.5.4 Example – Contact Phone Number

496.5.5 Example – Electronic Address Identifiers

496.6 Dealing with Joint Party Names

506.7 Representing Relationships with other Parties

506.7.1 Individual Relationship

516.7.2 Group Relationship

526.7.3 Example – Person Relationship with other Persons of type “Friends”

536.7.4 Example – Organisation Relationship with other Organisations of type “Worldwide Branches”

536.7.5 Example – Person Relationship with another Person

536.8 Data Types

546.9 Code Lists (Enumerations)

546.10 Order of Elements and Presentation

546.11 Data Mapping

546.12 Data Quality

546.13 Extensibility

546.14 Linking and Referencing

556.15 Schema Customization Guidelines

556.15.1 Customizing the Code Lists/Enumerations of Party

556.15.1.1 End User Customised Code List - An Example

556.15.1.2 Implications of changing Party Entity Schema

566.15.2 Using the Code list Methodology (UMCLVV) to customize Party Schema to meet application specific requirements

577
Differences in two types of Entity Schemas for CIQ Specifications

577.1 Files for Option 1 (The Default)

587.2 Files for Option 2

587.2.1 XML Schema Files

587.2.2 Genericode Based Code List Files

587.2.2.1 For Name (xNL)

587.2.2.2 For Address (xAL)

597.2.2.3 For Party (xPIL)

597.2.2.4 For Common Types

597.3 Namespace Assignment

597.4 The Difference in Entity Schemas

628
Miscellaneous

628.1 Documentation

628.2 Examples

628.3 Contributions from Public

63A.
Acknowledgements

64B.
Intellectual Property Rights, Patents, Licenses and Royalties

65C.
Revision History

1 Name, Address and Party

1.1 Definitions

Following are the core entities and its definitions used by CIQ TC:
Name

Name of a person or an organization

Address

A physical location or a mail delivery point

Party

A Party could be of two types namely,

· Person

· Organization

An Organization could be a company, association, club, not-for-profit, private firm, public firm, consortium, university, school, etc.

Party data consists of many attributes (e.g. Name, Address, email address, telephone, etc) that are unique to a party. However, a person or organization’s name and address are generally the key identifiers (but not necessarily the unique identifiers) of a “Party”. A “Customer” is of type “Party”.
2 Schema Design Approach in Version 3.0

Name, Address and Party schemas of version 3.0 share the same design concepts. The commonality should simplify understanding and adoption of the schemas. The xNAL schema design concept varies slightly as it is only a simple container for associating names and addresses.
Name, Address and Party schemas are designed to bring interoperability to the way these most “common” entities are used across all spectrums of business and government.
2.1 Version 3.0 Schema Files

Following are the different schemas produced for version 3.0:
	Schema File name
	Description
	Comments

	xNL.xsd
	Entity Name
	Defines a set of reusable types and elements for a name of individual or organisation

	xNL-types.xsd
	Entity Name
	Defines a set of enumerations that suit this particular application

	xAL.xsd
	Entity Address
	Defines a set of reusable types and elements for an address, location name or description

	xAL-types.xsd
	Entity Address
	Defines a set of enumerations that suit this particular application

	xNAL.xsd
	Name and Address binding
	Defines two constructs to bind names and addresses for data exchange or postal purposes

	xPIL.xsd (formerly xCIL.xsd)
	Entity Party (organisation or individual)
	Defines a set of reusable types and elements for a detailed description of an organisation or individual

	xPIL-types.xsd
	Entity Party (organisation or individual)
	Defines a set of enumerations that suit this particular application

	CommonTypes.xsd
	Common Data Types
	Defines a set of commonly used data types in the CIQ Schemas

	xLink-2003-12-31.xsd
	xLink attributes
	Defines a subset of xLink attributes as XML schema

	*.gc files
	Entity Party, Name, and Address
	Defines a set of enumerations/code lists in genericode

2.2 Formal Design Requirements for Version 3.0

Following are the formal design requirements taken into consideration for version 3.0 schemas:

· Data structures should be described using W3C XML Schema language

· Data structures should be separated into multiple namespaces for reuse of the main fundamental entities (e.g. Person Name, Organisation Name, Address)
· Data structures should be able to accommodate all information types used for data exchanges based on previous versions of the CIQ Specifications
· Data structures should be extensible (also, allow reduction in complexity) to provide enough flexibility for point-to-point solutions and application-specific scenarios

· Data structures should allow organisation-specific information to be attached to entities without breaking the structure.
· Implementation complexity should be proportional to the complexity of the subset of data structures used by the implementer
2.3 Major CIQ Specification Entities

The entire party information space is divided into a number of complex information types that are viewed as basic entities. This enables re-use of the basic entities as required. Following are the basic CIQ specification entities:

· Name (Person or Organisation - see xNL.xsd)

· Address (see xAL.xsd)
· Name and Address combined (see xNAL.xsd)
· Personal details of a person (see xPIL.xsd)

· Organisation specific details (see xPIL.xsd)

· Party Relationships (see xPRL.xsd [not available in this release] and xLink-2003-12-31-revised.xsd)
These major entities are supported by code lists to add “semantics” to the data they represent. We categorise the major entities of CIQ Specifications into three namely,
· Name

· Address, and
· Party Centric Information

2.4 Common Approaches

The design concepts of name, address and party schemas are very similar in terms of the way semantic information (e.g. Semantic information for a person name is “Given Name, “Middle Name’ Surname” etc, i.e. adding semantics to the data) is represented.
All the common concepts that are applicable for all key entities of CIQ specifications (Name, Address and Party) are explained in section 3 (Entity “Name”). It is recommended that users study that section in detail before proceeding to other entities.
2.5 Namespaces
	Entity
	Namespace
	Recommended Prefix
	Schema Files

	Name
	urn:oasis:names:tc:ciq:xnl:3
	xnl or n
	xNL.xsd
xNL-types.xsd

	Address
	urn:oasis:names:tc:ciq:xal:3
	xal or a
	xAL.xsd
xAL-types.xsd

	Name and Address
	urn:oasis:names:tc:ciq:xnal:3
	xnal
	xNAL.xsd

	Party
	urn:oasis:names:tc:ciq:xpil:3
	xpil or p
	xPIL.xsd
xPIL-types.xsd

	Party Relationships
	urn:oasis:names:tc:ciq:xprl:3
	xprl or r
	xPRL.xsd

	xLink
	http://www.w3.org/1999/xlink
	xlink
	xLink-2003-12-31.xsd

2.6 Other Industry Specifications Used
This document contains references to XML Linking Language (XLink) Version 1.0, W3C Recommendation 27 June 2001 available at http://www.w3.org/TR/xlink/ . The CIQ TC strongly recommends readers to read the xLink specification from W3C if they want to use this supported feature in CIQ Specifications.
This document contains references to Code List version 1.0, OASIS Committee Specification, May 2007 at http://www.oasis-open.org/committees/codelist. The CIQ TC strongly recommends readers to read the code list specification if they want to use this supported feature in CIQ Specification.
3 Entity “Name” (extensible Name Language)
Entity “Name” has been modelled independent of any context as a standalone class to reflect some common understanding of concepts “Person Name” and “Organisation Name”.
3.1 Semantics of “Name”

Name schema is separated into two parts: a structural part (xNL.xsd) as shown in the XML schema diagram below and separate enumeration/code list files (as schema and genericode) supporting the structure. “Genericode” will be discussed in later sections. The structural part is expected to remain unchanged over the course of time while the code list/enumeration files can be easily changed to meet particular implementation needs.
[image: image2.png]Contanr For defing »
name of 3 Parson, a1
Crgarisaton o corbinatin
e she o5 3 ok

rPar'yllameTylye

(s
Dein name 32 3 e
P e, L i shen
he type ofthe ety
persomorcrganisato) s
unkaown, o ot broken
i i ncisl
ements (e, ursucured,
inparied o' beyond the
provided types. The name
Tarecenad may be
Fomaned i he g oder
ormay notbe 3 1 not
paradbroken o stomic
Rl

(s
Continer for prson name
datl, S person with
many types of names can
ba'ud by this container

(s
A container for orgarisation
e datal, e
gz wih many types
G mamas i be e by
b convsner

HameElement

I3
Hame of the organsatn.
£ ACHE T

A continer for organisatin
subdiion (e, deparimen)
name datl, .. Hardware
Depariment

In the schema structure above (the structure part), “NameElement” stores the name of a party and the supporting enumeration lists provide the semantic meaning of the data.
The structure allows for different semantic levels based on the following paradigm:

· A simple data structure with minimum semantics should fit into the schema with minimal effort

· A complex data structure should fit into the schema without loss of any semantic information

3.1.1 Example 1 – No Semantics (Unstructured/Free Text Data)
A typical database does not differentiate between a person and an organisation name where only one field has been allocated for storing the entire name information (unstructured data). This database can be mapped to xNL as follows:

<n:PartyName>

<n:NameLine>Mr Jeremy Apatuta Johnson</n:NameLine>

</n:PartyName>

In this example, information related to party name, resides in NameLine element. It has no semantic information that may indicate what kind of name it is and what the individual name elements are (i.e., the data has not been parsed into first name, last name, title, etc.). What is known is that it is a name of some party, be it a person or an organisation. This is the maximum level of complexity. Data in this free formatted text form is classified as “poor quality” as it is subject to different interpretations of the data and will cause interoperability problems.
Many common applications fall under this category.
3.1.2 Example 2 – Minimal Semantics (Partially Structured Data)
The medium level of complexity is when a database differentiates between person and organisation name. In this case, names can be placed in their respective places inside the structure.

Person name:

<n:PartyName>

<n:PersonName>

<n:NameElement>Mr Jeremy Apatuta Johnson</n:NameElement>

</n:PersonName>

</n:PartyName>

This example shows that name information belongs to an individual, but the semantics of the individual name elements (e.g. What is “Mr”, “Jeremy”, etc.) are unknown.

Many common applications fall under this category.
Organisation name:

<n:PartyName>

<n:OrganisationName>

<n:NameElement>Khandallah Laundering Ltd.</n:NameElement>

</n:OrganisationName>

</n:PartyName>

This example is similar to the previous one, except that the name belongs to an organisation.
3.1.3 Example 3 – Full Semantics (Fully Structured Data)
The minimum level of complexity is when a database differentiates between person and organisation name and also differentiates between different name elements within a name. The data is structured.
<n:PartyName>

<n:PersonName>

<n:NameElement Abbreviation="true" ElementType="Title">Mr</n:NameElement>

<n:NameElement ElementType="FirstName">Jeremy</n:NameElement>

<n:NameElement ElementType="MiddleName">Apatuta</n:NameElement>

<n:NameElement ElementType="LastName">Johnson</n:NameElement>

<n:NameElement ElementType="GenerationIdentifier">III</n:NameElement>

<n:NameElement ElementType="GenerationIdentifier">Junior</n:NameElement>

<n:NameElement ElementType="Title">PhD</n:NameElement>

</n:PersonName>

</n:PartyName>

This example introduces ElementType attribute that indicates the exact meaning of the name element. Few applications and in particular, applications dealing with data quality and integrity, fall in this category and often, the database supported by these applications are high in the quality of the data it mnages. This is an additional level of semantics that is supported through code list/enumerated values. Technically, the enumerations sit in a separate schema (xNL-types.xsd) and in genericode files.
An example of such enumeration is a list of name element types for a person name.
<xs:simpleType name="PersonNameElementsEnumeration">

<xs:restriction base="xs:string">

<xs:enumeration value="PrecedingTitle"/>

<xs:enumeration value="Title"/>

<xs:enumeration value="FirstName"/>

<xs:enumeration value="MiddleName"/>

<xs:enumeration value="LastName"/>

<xs:enumeration value="OtherName"/>

<xs:enumeration value="Alias"/>

<xs:enumeration value="GenerationIdentifier"/>

</xs:restriction>

</xs:simpleType>

3.2 Data Types

All elements and attributes in xNL schema have strong data types.

All free-text values of elements (text nodes) and attributes are constrained by a simple type “String” defined in CommonTypes.xsd. This type has a limit on the number of characters it may contain.

Other XML Schema data types are also used throughout the schema.
3.3 Code Lists (Enumerations)
3.3.1 What is a Code List?

A code list (also called enumeration) defines a classification schema and a set of classification values to support the scheme. For example, “Administrative Area” is a classification scheme and a set of classification values for this classification scheme could be: State, City, Province, Town, Region, District, etc.

XML Schema describes the structural and lexical constraints on an XML document. Some information items in a document are described in the schema lexically as a simple value whereby the value is a code representing an agreed-upon semantic concept. The value used is typically chosen from a set of unique coded values enumerating related concepts. These sets of coded values are sometimes termed code lists.
3.3.2 The importance of Code Lists for CIQ

Earlier versions of CIQ Name, Address and Party Information specifications had concrete schema grammar to define the party entities. This did not satisfy many name, address and party data usage scenarios that were geographic and cultural specific. For example, in certain countries, the concept of first name, middle name, and last/family/surname does not exist. Representing names from these countries were difficult using earlier schema which had element names as first name, middle name and last name and they were semantically incorrect metadata for the data. For example, in a country where the concept of First Name does not exist, using FirstName element of CIQ specification was semantically incorrect.
3.3.3 Customisable Code Lists

The Name, Address and Party schemas in this version come with code lists/enumerations designed to satisfy common usage scenarios of the data by providing semantically correct metadata to the data. These code lists are customisable to satisfy different name and address data requirements, but at the same time keep the core CIQ schema structure intact i.e., there is no need to change the schema to suit specific requirements. A default set of code list/enumerated values are provided with the schemas and these default values are not complete..

The default code list values/enumerations used in the CIQ Specifications are built using common sense and with a culture-specific view of the subject area (in this case Anglo-American culture, where the terms such as First Name, Middle Name, Last Name are used), rather than adopted from a specific application. The reason why we say “cultural specific view” is because some cultures do not have the concept of First Name, Middle Name, and Last Name and so on.

NOTE: The code list/enumeration values for different code/enumeration lists that is provided as part of the specifications are not complete. They only provides some sample values and it is up to the end users to customise them to meet their data exchange requirements if the default values are incomplete, not appropriate or an over kill
There is always a possibility that a specific application requires enumerated values that are not part of the standard xNL, xAL and xPIL specifications. It is acceptable for specific applications to provide their own enumerated values, but it is important that all participants (could be internal business systems or external systems) involved in data exchange need to be aware of what the enumerated values are and that they are different from the ones provided by this specification to enable interoperability. Therefore, some agreement should be in place between the participants involved in the data exchange process (e.g. Service Level Agreement for data exchange) where the enumerations have been customised to achieve better interoperability. These enumerations should also be governed for effective change management that will help prevent interoperability breakdown.

If there is no requirement to use the customisable enumeration list, make the list empty, but remember that you will loose the semantic meaning of the data.
3.4 Using Code Lists in CIQ Specifications – Two Options

CIQ Specifications provides two options to users (and users have the choice to pick one that suits them, but not use both at the same time) to define and manage code lists. The options are:

· An XML schema file per entity (Name, Address and Party) representing all code lists for the entity. The files are xNL-types.xsd (for Name Entity code lists), xAL-types.xsd (For Address Entity code lists), and xPIL-types.xsd (for Party Entity code lists).
· A genericode file (.gc) per code list for an entity, which is an industry standard for representing, validating, and managing code lists.
3.4.1 Why Two Options

Option 2 uses two pass validation (first pass for XML document structure validation and second pass for code list value validation) and if only this option is provided as part of the specifications, end users implementing CIQ specifications as part of their core set of specifications for their application will be forced to perform two pass validation on just the CIQ instances when their overall specifications might not use genericode approach. This limits the usage of CIQ specifications and hence, two options are provided to enable end users to pick one approach.
3.4.2 Option 1 – “Include” Code Lists/Enumerations (The Default)
“Include” code lists are XML schemas that are “included” by the entity structure XML schemas, i.e., xNL.xsd (Name Entity schema) “includes” xNL-types.xsd code list schema, xAL.xsd (Address Entity schema) “includes” xAL-types.xsd code list schema, and xPIL.xsd (party entity schema) “includes” xPIL-types.xsd schema.
Users can modify the code list schemas to add or delete values depending upon their data exchange requirements without modifying the structure of the entity schemas. Validation of the code list values will be performed by XML parsers as part of the XML document instance validation in “one” pass (i.e., XML document structure validation and the codelist value validation will be performed in one pass). Any changes to the code list schema results in changes to the software code (e.g. java object must be re-created) based on the entity schema as the entity schema “includes” the code list schema.
The code list values for code lists provided as part of CIQ Specifications v3.0 are only sample values and by no means are mandatory values. It is up to the users to populate the code list with their own values by completely ignoring the default code list values. However, when exchanging data with more than one party (trading partner or application), it is important that all the concerned parties are aware of the code list and the values that will be used as part of the data exchange process to ensure interoperability.
3.4.2.1 Representing Code Lists (Default) in CIQ Specifications
Code Lists for each entity are represented in a file. For example, xNL-types.xsd represents five types of code lists namely, “PersonNameElementEnumeration”, “OrganisationNameElementEnumeration”, “PersonNameTypeEnumeration”,“OrganisationNameTypeEnumeration”, and “SubDivisionType-Enumeration”.

3.4.2.1.1 Code List Representation – An Example

The following example shows an XML schema representation of code list for SubDivisionTypeEnumeration provided by CIQ specification as part of xNL-types.xsd.

<xs:simpleType name=SubDivisionTypeEnumeration”>

<xs:annotation>

<xs:documentation> A list of common types for sub divisions

</xs:documentation>

</xs:annotations>

<xs:restriction base=”xs:string”>

<xs:enumeration value=”Department”/>

<xs:enumeration value=”Branch”/>

<xs:enumeration value=”Business Unit”/>

<xs:enumeration value=”School”/>

<xs:enumeration value=”Section”/>

</xs:restriction>

</xs:simpleType>

3.4.3 Customizing Code Lists
Meeting all requirements of different cultures and ethnicity in terms of representing the names in one specification is not trivial. This is the reason why code lists/enumerations are introduced in order to keep the specification/schema simple, but at the same time provide the flexibility to adapt to different requirements.

Code lists clarifying the meaning for generic elements (e.g. NameElement) were intentionally taken out of the main schema file into an “include” file (xNL-types.xsd) to make customisation easier.

The values of the enumerations can be changed or new ones added as required.

NOTE: The code lists values for different enumeration lists that is provided as part of the specification are not complete. They only provides some sample values and it is upto the end users to customise them to meet their data exchange requirements if the default values are incomplete, not appropriate or an over kill
3.4.3.1 End User Customised Code List – An Example
In the following example, the code list “OrganisationNameTypeEnumeration” under “xNL-types.xsd” is customised by replacing the default values with new values to meet user requirements.
	Original xNL values for OrganisationNameTypeEnumeration
	Possible end user customised values

	LegalName
	ReportedName

	NameChange
	OriginalName

	CommonUse
	LegalName

	PublishingName
	

	OfficialName
	

	UnofficialName
	

	Undefined
	

The code for the specification provided original code list would look like this:

<xs:simpleType name="OrganisationNameTypeEnumeration">

<xs:restriction base="xs:string">

<xs:enumeration value="LegalName"/>

<xs:enumeration value="NameChange"/>

<xs:enumeration value="CommonUse"/>
 <xs:enumeration value="PublishingName"/>

<xs:enumeration value="OfficialName"/>

<xs:enumeration value="UnofficialName"/>
 <xs:enumeration value="Undefined"/>

</xs:restriction>

</xs:simpleType>

The code for the new end user customised code list would look like this:

<xs:simpleType name="OrganisationNameTypeEnumeration">

<xs:restriction base="xs:string">

<xs:enumeration value="ReportedName"/>

<xs:enumeration value="OriginalName"/>

<xs:enumeration value="LegalName"/>

</xs:restriction>

</xs:simpleType>

This level of flexibility allows some customization of the schema through changing the code lists only, without changing the basic structure of the schema. It is important to ensure that all schema users involved in data exchange use the same code lists for interoperability to be successful. This has to be negotiated between the data exchange parties and a proper governance process should be in place to manage this process.

3.4.3.2 Example – Point-to-Point
Assume that participants of a data exchange agreed that for their purpose only a very simple name structure is required. One of the options for them is to modify PersonNameElementsEnumeration simple type in the xNL-types.xsd file with the following values and remove the rest of the default values provided by the specification:
<xs:simpleType name="PersonNameElementsEnumeration">

<xs:restriction base="xs:string">

<xs:enumeration value="Title"/>

<xs:enumeration value="FirstName"/>

<xs:enumeration value="MiddleName"/>

<xs:enumeration value="LastName"/>

</xs:restriction>

</xs:simpleType>

3.4.3.3 Example – Locale Specific

In Russia, it would be more appropriate to use the following enumeration:
<xs:simpleType name="PersonNameElementsEnumeration">

<xs:restriction base="xs:string">

<xs:enumeration value="Title"/>

<xs:enumeration value="Name"/>

<xs:enumeration value="FathersName"/>

<xs:enumeration value="FamilyName"/>

</xs:restriction>

</xs:simpleType>

Again, it is up to the implementers involved in data exchange to modify PersonNameElementsEnumeration simple type in xNL-types.xsd file.
3.4.4 Option 2 –Code Lists/Enumerations using Genericode
The OASIS Code List Representation format, “genericode”, is a single industry model and XML format (with a W3C XML Schema) that can encode a broad range of code list information. The XML format is designed to support interchange or distribution of machine-readable code list information between systems. Details about this specification are available at: http://www.oasis-open.org/committees/codelist.

Let us consider an instance where trading partners who use CIQ Specifications for exchanging party related data. The trading partners may wish to agree that different sets of values from the same code lists be allowed at multiple locations within a single document (perhaps allowing the state for the buyer in an order be from a different set of states than that allowed for the seller). Option 1 approach might not be able to accommodate such differentiation very elegantly or robustly, or possibly could not be able to express such varied constraints due to limitations of the schema language's modelling semantics. Moreover it is not necessarily the role of
CIQ Entity schemas to accommodate such differentiation mandated by the use of it. Having a methodology and supporting document types with which to perform code list value validation enables parties involved in document exchange to formally describe the sets of coded values that are to be used and the document contexts in which those sets are to be used. Such a formal and unambiguous description can then become part of a trading partner contractual agreement, supported by processes to ensure the agreement is not being breached by a given document instance.
This option uses a “two” pass validation approach, whereby, the “first” pass validation, allows the XML document instance to be validated for its structure and we-formedness against the entity schema, and the “second” pass validation allows the code list values in XML document instance to be validated against the genericode code lists and this does not involve the entity schemas. Any change to the genericode code list does not require changes to the software code (e.g. java object must be re-created) based on the entity schema as the entity schema has nothing to do with the genericode code list.

3.4.4.1 Code List Value Validation Methodology
OASIS Codelist Technical Committee describes a methodology for validating code list values and supporting document types with which trading partners can agree unambiguously on the sets of code lists, identifiers and other enumerated values against which exchanged documents must validate. The methodology is presented in such a way that any representation of coded values other than just genericodes can be used. The objective of applying this methodology to a set of document instances being validated is to express the lists of values that are allowed in the contexts of information items found in the instances. One asserts that particular values must be used in particular contexts, and the validation process confirms the assertions do not fail.
3.4.4.1.1 Two Pass Value Validation

Schemata describe the structural and lexical constraints on a document. Some information items in a document are described in the schema lexically as a simple value whereby the value is a code representing an agreed-upon semantic concept. The value used is typically chosen from a set of unique coded values enumerating related concepts. This methodology is in support of the second pass of a two-pass validation strategy, where the “first pass” confirms the structural and lexical constraints of a document and the “second pass” confirms the value constraints of a document.

The “first pass” can be accomplished with an XML document schema language such as W3C Schema or ISO/IEC 19757-2 RELAXNG; “the second pass” is accomplished with a transformation language such as a W3C XSLT 1.0 stylesheet or a Python program. The second pass is as an implementation of ISO/IEC 19757-3 Schematron schemas that are utilized by this methodology.
In the figure below, “Methodology context association” depicts a file of context/value associations in the lower centre, where each association specifies for information items in the document instance being validated which lists of valid values in external value list expressions are to be used.

[image: image3.emf]
ISO Schematron is a powerful and yet simple assertion-based schema language used to confirm the success or failure of a set of assertions made about XML document instances. One can use ISO Schematron to express assertions supporting business rules and other limitations of XML information items so as to aggregate sets of requirements for the value validation of documents. The synthesis of a pattern of ISO Schematron assertions to validate the values found in document contexts, and the use of ISO Schematron to validate those assertions are illustrated in “Methodology overview” figure below.

[image: image4.emf]
To feed the ISO Schematron process, one needs to express the contexts of information items and the values used in those contexts. This methodology prescribes an XML vocabulary to create instances that express such associations of values for contexts. The stylesheets provided with this methodology read these instances of context/value associations that point to externally-expressed lists of values and produce an ISO Schematron pattern of assertions that can then be combined with other patterns for business rule assertions to aggregate all document value validation requirements into a single process. The validation process is then used against documents to be validated, producing for each document a report of that document's failures of assertions.

By using this methodology, users can use a default code list values for data exchange by adding more values to the default code list or restricting the values in the default code lists by defining constraints and business rules.
3.4.4.2 Representing Genericode based Code Lists in CIQ Specifications
Each code list for an entity is represented as a separate genericode file. For example, the Name entity five types of code lists namely, “PersonNameElementEnumeration”, “OrganisationNameElementEnumeration”,“PersonNameTypeEnumeration”,“OrganisationNameType-Enumeration”, and “SubDivisionTypeEnumeration”. Each of this code list is represented in a separate genericode file.

3.4.4.2.1 Code List Representation in Genericode – An Example
The following example shows Genericode representation of code list for SubDivisionTypeEnumeration represented in a file called “SubDivisionTypeEnumeration.gc”.

<CodeList>

<SimpleCodeList>

 <Row>

<Value ColumnRef=”code”>

 <SimpleValue>Department</SimpleValue>

</Value>

<Value ColumnRef=”name”>

 <SimpleValue>Department</SimpleValue>

</Value>

 </Row>

 <Row>

<Value ColumnRef=”code”>

 <SimpleValue>Division</SimpleValue>

</Value>

<Value ColumnRef=”name”>

 <SimpleValue>Division</SimpleValue>

</Value>

 </Row>

 <<Row>

<Value ColumnRef=”code”>

 <SimpleValue>Branch</SimpleValue>

</Value>

<Value ColumnRef=”name”>

 <SimpleValue>Branch</SimpleValue>

</Value>

 </Row>

 <Row>

<Value ColumnRef=”code”>

 <SimpleValue>BusinessUnit</SimpleValue>

</Value>

<Value ColumnRef=”name”>

 <SimpleValue>BusinessUnit</SimpleValue>

</Value>

 </Row>

 <Row>

<Value ColumnRef=”code”>

 <SimpleValue>Section</SimpleValue>

</Value>

<Value ColumnRef=”name”>

 <SimpleValue>Section</SimpleValue>

</Value>

 </Row>

</SimpleCodeList>
</CodeList>

3.4.4.3 Customizing Genericode based Code Lists

Taking the same example of customizing code lists in Option 1, OrganisationNameTypeEnumeration code list will be a separate file called “OrganisationNameTypeEnumeration.gc”. To create a completely new set of code lists to replace the default one, a new .gc file with the new set of code list values say, “ReplaceOrganisationNameTypeEnumeration.gc” is created. By applying the constraints rule in a separate file, this new code list replaces the default code list.
The process of customizing the code lists is documented in the methodology for code list and value validation.
3.4.4.4 CIQ Specifications used as a case study by OASIS Code List TC

The OASIS Code List TC has used OASIS CIQ Specification V3.0’s Name entity (xNL.xsd) as a case study to demonstrate how genericode based code list approach can be used to replace XML schema approach to validate code lists (the default approach used by CIQ Speciffications). This document is listed in the reference section.
3.4.4.5 References

Following are the documents that users of CIQ Specifications implementing this approach are strongly recommended to read and understand:

· OASIS Codelist Representation (Genericode) Version 1.0, May 2007, http://docs.oasis- open.org/codelist/cd-genericode-1.0/doc/oasis-code-list-representation-genericode.pdf
· OASIS UBL Methodology for Codelist and value validation, Working Draft 0.8, November 2006, http://www.oasis-open.org/committees/document.php?document_id=21324
· OASIS Code List Adaptation Case Study (OASIS CIQ), May 2007, http://www.oasis-open.org/committees/document.php?document_id=23711
3.5 Code List Package
This CIQ Specification comes with two sets of supporting XML schema packages, one for option 1 and the other for option 2. To assist users in getting a quick understanding of option 2, all code lists for CIQ specifications are represented as genericode files along with default constraints and XSLT and with sample test XML document instance examples. It also contains test scenarios with customised code lists from the default code lists along with business rules, constraints supporting the customised code lists, XSLT and sample XML document instance examples.

The CIQ Specification entity schemas (xNL.xsd, xAL.xsd, xPIL.xsd, and xNAL.xsd) for both option 1 and 2 are in the same namespaces as users will use one of the two. XML document instances of Option 1 can be validated against the entity schemas in option 2. This is not true vice versa as Option 2 entity schemas have additional metadata attributes to support genericode.
A separate document titled, “CIQ Specifications V3.0 Package” explains the structure of the CIQ Specifications V3.0 package.
3.6 Order of Elements and Presentation

Order of name elements should be preserved for correct presentation (e.g. printing name elements on an envelope).

If an application needs to present the name to a user it may not always be aware about the correct order of the elements if the semantics of the name elements are not available.
3.6.1 Example – Normal Order

Mr Jeremy Apatuta Johnson PhD

could be presented as follows

<n:PartyName>

<n:PersonName>

<n:NameElement>Mr</n:NameElement>

<n:NameElement>Jeremy</n:NameElement>

<n:NameElement>Apatuta</n:NameElement>

<n:NameElement>Johnson</n:NameElement>

<n:NameElement>PhD</n:NameElement>

</n:PersonName>

</n:PartyName>

and restored back to Mr Jeremy Apatuta Johnson PhD.

Any other order of NameElement tags in the XML fragment could lead to an incorrect presentation of the name.
3.7 Data Mapping

Mapping data between the xNL schema and a target database is not expected to be problematic as xNL provides enough flexibility for virtually any level of data decomposition. However, the main issue lies in the area of mapping a data provider with a data consumer through xNL.
For example, consider a data provider that has a person name in one line (free text and unparsed) and a data consumer that has a highly decomposed data structure for a person’s name requires first name, family name and title to reside in their respective fields. There is no way of putting the provided data (free text) in the target data structure without parsing it first using some smart name parsing data quality parsing/scrubbing tool and there are plenty in the market. Such parsing/scrubbing is expected to be the responsibility of the data consumer under this scenario and importantly, agreeing in advance with the data provider that the incoming data is not parsed.
3.7.1 Example – Complex-to-simple Mapping

The source database easily maps to the xNL NameElement qualified with the ElementType attribute set to values as in the diagram

[image: image5.png]‘Source database XNL NameElement Target database.
NAVE | Fisiame
MIDDLENAVE - MiddieName FulName
SURNAME ! LasiName

Source Database

	NAME
	MIDDLENAME
	SURNAME

	John
	Anthony
	Jackson

xNL

<n:PersonName>

<n:NameElement n:ElementType="FirstName">John</n:NameElement>

<n:NameElement n:ElementType="MiddleName">Anthony</n:NameElement>

<n:NameElement n:ElementType="LastName">Jackson</n:NameElement>

</n:PersonName>

Target Database

	FULLNAME

	John Anthony Jackson

This type of mapping does not present a major challenge as it is a direct mapping from source to xNL and then concatenating the data values to form the full name to be stored in a database field/column.
3.7.2 Example – Simple-to-complex Mapping

The source database has the name in a simple unparsed form which can be easily mapped to xNL, but cannot be directly mapped to the target database as in the following diagram:

[image: image6.png]‘Source database

XNL NameElement

FulName

Target database.

NANE

MIDDLENANE

SURNAME

Source Database
	FULLNAME

	John Anthony Jackson

xNL

<n:PersonName>

<n:NameElement>John Anthony Jackson</n:NameElement>

</n:PersonName>

At this point, the name resolution/parsing software splits John Anthony Jackson into a form acceptable by the target database.

Target Database

	NAME
	MIDDLENAME
	SURNAME

	John
	Anthony
	Jackson

3.8 Data Exchange and Interoperability

It is the view of the CIQ committee that to enable interoperability of data elements between parties, the best solution is to parse the data elements into its atomic elements thereby preserving the semantics and quality of data. By this way the parties involved in data exchange will be in the best position to understand the semantics and quality of data which eases interoperability. How the data will be exchanged between parties, whether in parsed or unparsed structure, must be negotiated between the parties to enable interoperability.

One cannot expect interoperability to occur automatically without some sort of negotiation between parties (whether internal or external to an organisation) involved in data exchange through service level agreements and other means. Once data exchange agreements between parties are in place, then the process can be automated. Moreover, the entire data exchange and interoperability process should be managed through an effective governance process which should involve all the parties involved in the data exchange process. This enables effective and efficient management of any change to the data exchange process in the future.

3.9 Data Interoperability Success Formula

We at OASIS CIQ TC strongly believe in the following “Data Interoperability Success Formula”:

Data Interoperability = Open Data Architecture + Data Integration + Data Quality + Data Standards + Data Semantics + Data Governance

All components on the right hand side of the above formula are important for successful data interoperability. The term “Open” used here indicates artifacts that are independent of any proprietary solution (e.g. open industry artifacts or artifacts that are open within an enterprise).

3.10 Data Quality

The quality of any information management/processing system is only as good as the quality of the data it processes/stores/manages. No matter how efficient the interoperability of data is, if the quality of data that is interoperated is poor, the business benefit arising out of the information processing system is expected to be poor. To structurally represent the data, understand the semantics of the data to integrate and interoperate the data, quality of the data is critical. CIQ specifications have been designed with the above formula in mind.

xNL schema allows for data quality information to be provided as part of the entity using attribute DataQuality that can be set to either “Valid” or “Invalid” (default values), if such status is known. If DataQuality attribute is omitted, it is presumed that the validity of the data is unknown. Users can customize the DataQuality code list to add more data quality attributes if required.
DataQuality attribute refers to the content of a container, e.g. PersonName, asserting that all the values are known to be true and correct in a particular defined period. This specification has no provision for partial data quality where some parts of the content are correct and some are not or unknown.
3.10.1 Example – Data Quality

<n:PersonName n:DataQuality="Valid"

 n: ValidFrom="2001-01-01T00:00:00"

<n:NameElement>John Anthony Jackson</n:NameElement>

</n:PersonName>

In this example John Anthony Jackson is known to be the true and correct value asserted by the sender of this data and the validity of the data has been recorded as of 2001-01-01.
This feature allows the recipient of data to get an understanding of the quality of data they are receiving and thereby, assists them to take appropriate measures to handle the data according to its quality.

3.10.2 Data Quality Verification and Trust

This specification does not mandate any data verification rules or requirements. It is entirely up to the data exchange participants to establish them.

Also, the participants need to establish if the data quality information can be trusted.

3.10.3 Data Validation

This specification does not mandate any data validation rules or requirements. It is entirely up to the data exchange participants to establish such rules and requirements.
3.11 Extensibility

All elements in Name, Address and Party namespaces are extensible allowing for any number of attributes from a non-target namespace to be added.

All elements share the same declaration:

<xs:anyAttribute namespace="##other" processContents="lax"/>

Although this specification provides an extensibility mechanism, it is up to the participants of the data exchange process to agree on the use of any extensions to the target namespace. Extensions without agreements between data exchange parties will break interoperability.
This specification mandates that an application should not fail if it encounters an attribute from a non-target namespace. The application may choose to ignore or remove the attribute.
3.11.1 Extending the Schemas to Meet Application Specific Requirements

CIQ Specifications does its best to provide the minimum required set of elements and attributes that are commonly used independent of applications to define party data (name, address and other party attributes). If specific applications require some additional set of attributes that are not defined in CIQ specifications, then use of this extensibility mechanism is recommended provided the extensions are agreed with other parties in case of data exchange involving more than one application. If no agreement is in place, interoperability will not be achieved. Use of this extensibility mechanism should be governed.
3.11.2 Practical Applications

3.11.2.1 System-specific Identifiers

Participants involved in data exchanges may wish to add their system specific identifiers for easy matching of known data, e.g. if system A sends a message containing a name of a person to system B as in the example below
<n:PartyName xmlns:b="urn:acme.org:corporate:IDs" b:PartyID="123445">

<n:PersonName>

<n:NameElement>John Johnson</n:NameElement>

</n:PersonName>

</n:PartyName>

then Attribute b:PartyID="123445" is not in xNL namespace and acts as an identifier for system A. When system B returns a response or sends another message and needs to include information about the same party, it may use the same identifier as in the following example:
<n:PartyName xmlns:b="urn:acme.org:corporate:IDs" b:PartyID="123445" />

The response could include the original payload with the name details.

3.11.2.2 Additional Metadata

Sometimes it is required to include some additional metadata that is specific to a particular system or application. Consider these examples:

<n:PartyName xmlns:x="urn:acme.org:corporate" x:OperatorID="buba7">

.............

<n:PartyName xmlns:b="urn:acme.org:corporate ">

<n:PersonName>

<n:NameElement b:Corrected="true">John Johnson</n:NameElement>

</n:PersonName>

</n:PartyName>

In the above examples, “OperatorID” and “Corrected” are additional metadata added to “PartyName” from different namespaces without breaking the structure of the schema.

3.12 Linking and Referencing
Linking and referencing of different resources such as Party name, Party address (internal to the document or external to the document) can be achieved by two ways. It is important for parties involved in data exchange to decide during design time the approach they will be implementing. Implementing both the options will lead to interoperability problems. Just choose one. The two options are:
· Using xLink

· Using Key Reference

3.12.1 Using xLink [Optional]

CIQ now has included in the base typing for implementers wanting to support xLink style referencing. These attributes are optional and so will not impact implementers who simply want to ignore these. Also they are not strongly typed so their use is flexible.

The xLink attributes have been associated with extensible type entities within the CIQ data structure thereby allowing these to be externally referenced to support dynamic value lists. The xBRL community for example uses this approach extensively to indicate the type values of objects in the data structure.

Names can be referenced internally (i.e. within some XML infoset that contains both referencing and referenced elements) through xlink:href pointing at an element with xml:id with a matching value.

External entities can also be referenced if they are accessible by the recipient via HTTP(s)/GET.

The following example illustrates PartyName elements that reference other PartyName elements that reside elsewhere, in this case outside of the document.

<a:Contacts

xmlns:a="urn:acme.org:corporate:contacts"
xmlns:n="urn:oasis:names:tc:ciq:xsdschema:xNL:3.0/20050427"
xmlns:xlink="http://www.w3.org/1999/xlink">

<n:PartyName xlink:href="http://example.org/party?id=123445" xlink:type="locator"/>

<n:PartyName xlink:href="http://example.org/party?id=83453485" xlink:type="locator"/>

</a:Contacts>

This example presumes that the recipient of this XML fragment has access to resource http://example.org/party and that the resource returns PartyName element as an XML fragment of text/xml MIME type.

Usage of xLink attributes in the CIQ specifications may slightly differ from the original xLink specification. See CIQ TC Party Relationships Specification for more information on using xLink with xNL [Not available in this version]. The xLink specification is available at http://www.w3.org/TR/xlink/.

Element PartyName can be either of type locator or resource in relation to xLink.
Implementers are not restricted to only using XLink for this purpose - for example the xlink:href attribute could be re-used for a URL to a REST-based lookup, and so forth. The intent is to provide additional flexibility for communities of practice to develop their own guidelines when adopting CIQ.

3.12.2 Using Key Reference [Optional]

This approach can be used for internal references (i.e. within some XML infoset that contains both referencing and referenced elements).

The following example illustrates PartyName elements that reference other PartyName elements that reside elsewhere, in this case inside the document.

<c:Customers

xmlns:c="urn:acme.org:corporate:customers"

xmlns:a="urn:oasis:names:tc:ciq:xal:3"

xmlns:n="urn:oasis:names:tc:ciq:xnl:3"

xmlns:p="urn:oasis:names:tc:ciq:xpil:3"

<p:Party PartyKey=”111”>

 <n:PartyName>

 <PersonName>

<NameElement ElementType=”FirstName”>Ram</NameElement>

<NameElement ElementType=”LastName”>Kumar</LastName>

 </PersonName>

 </n:PartyName>

 <Contacts>

<Contact PartyKeyRef=”222”>

 </Countacts>

</Party>

<Party PartyKey=”222”>

 <n:PartyName>

 <PersonName>

 <NameElement ElementType=”FirstName”>Joe</NameElement>

 <NameElement ElementType=”LastName”>Sullivan</LastName>

 </PersonName>

 </n:PartyName>

</Party>

</c:Contacts>

3.13 ID Attribute
Attribute ID is used with complex type PersonNameType and elements PersonName and OrganisationName. This attribute allows unique identification of the collection of data it belongs to. The value of the attribute should be unique within the scope of the application of xNL. It is recommended that the value should be globally unique. The term ‘globally unique’ means a unique identifier that is “mathematically guaranteed” to be unique. For example, GUID (Globally Unique Identifier) is a unique identifier that is based on the simple principle that the total number of unique keys (or) is so large that the possibility of the same number being generated twice is virtually zero.

This unique ID attribute should be used to uniquely identify collections of data as in the example below:

Application A supplies an xNL fragment containing some PersonName to Application B. The fragment contains attribute ID with some unique value.

<n:PartyName n:ID="52F89CC0-5C10-4423-B367-2E8C14453926">

<n:PersonName>

<n:NameElement>Max Voskob</n:NameElement>

</n:PersonName>

<n:OrganisationName>

<n:NameElement>Khandallah Laundering Ltd.</n:NameElement>

</n:OrganisationName>

</n:PartyName>

If Application B decides to reply to A and use the same xNL fragment it need only provide the outer element (n:PartyName in this case) with ID as the only attribute.

<n:PartyName n:ID="52F89CC0-5C10-4423-B367-2E8C14453926" />

Application A should recognise the value of ID, so no additional data is required from B in relation to this.

The exact behaviour of the ID attribute is not specified in this document and is left to the users to decide and implement.

The difference between the ID attribute and xLink attributes is that ID attribute cannot be resolved to a location of the data – it identifies already known data.

3.14 Schema Customization Guidelines
The broad nature and cultural diversity of entity “Name” makes it very difficult to produce one schema that would satisfy all applications and all cultures while keeping the size and complexity of the schema manageable. This specification allows some changes to the schema by adopters of the schema to fit their specific requirements and constraints. However, note that any changes to the schema break the OASIS Specifications compatibility.
3.14.1 Namespace

The namespace identifier should be changed if it is possible for an XML fragment valid under the altered schema to be invalid under the original schema.

3.14.2 Reducing the Entity Schema Structure

It is recommended to retain the minimum structure of Name entity as in the following diagram:

[image: image7.png]I

PartyameType.

This structure allows for most names to be represented, with exception for

· organisation subdivision hierarchy (SubdivisionName), e.g. faculty / school / department

Any further reduction in structure may lead to loss of flexibility and expressive power of the schema.

It is not recommended to remove any attributes from the schema. Attributes in the schema can be easily ignored during the processing.

3.14.2.1 Implications of changing Name Entity Schema
Any changes to the Name Entity schema (xNL.xsd) are likely to break the compatibility one way or another.

It may be possible that an XML fragment created for the original schema is invalid for the altered schema or vice versa. This issue needs to be considered before making any changes to the schema that could break the compatibility.
3.14.3 Customizing the Code Lists/Enumerations of Name
Meeting all requirements of different cultures and ethnicity in terms of representing the names in one specification is not trivial. This is the reason why code lists/enumerations are introduced in order to keep the specification/schema simple, but at the same time provide the flexibility to adapt to different requirements.
The values of the code lists/enumerations can be changed or new ones added as required.

NOTE: The code list/enumeration values for different enumeration lists that are provided as part of the specification are not complete. They only provides some sample values and it is up to the end users to customise them to meet their data exchange requirements if the default values are incomplete, not appropriate or an over kill
This level of flexibility allows some customization of the schema through changing the code list/enumerations only, without changing the basic structure of the schema. It is important to ensure that all schema users involved in data exchange use the same code list/enumerations for interoperability to be successful. This has to be negotiated between the data exchange parties and a proper governance process should be in place to manage this process.

3.14.4 Using the Code list Methodology (UMCLVV) to customize Name Schema to meet application specific requirements
The other approach to customize the CIQ Name schema (includes other entity schemas namely Party and Address) without touching it is by using the UMCLVV. In this approach, one can use Schematron patterns to define assertion rules to customize the xNL.xsd schema without touching or modifying it. For example, it is possible to customize xNL.xsd schema to restrict the use of elements, the occurrence of elements, the use of attributes, and the occurrence of attributes, making elements and attributes mandatory, etc.
So, users who believe that many elements and attributes in the CIQ specifications are overwhelming to what their requirements are, can define business rules using Schematron patterns to constraint the CIQ base entity schemas. By constraining the CIQ schemas, users get two major benefits:
· CIQ Specifications that are tailored indirectly with the help of business rules to meet specific application requirements

· Applications that use the customized CIQ Specifications with the help of business rules are still compliant with the CIQ Specifications.

Therefore, by CIQ specifications providing two options for customizing schemas (Option 1 and Option 2), the specifications are powerful to address any specific application requirements for party information.
NOTE: The business rules used to constraint base schemas should be agreed by all the parties that are involved in CIQ based data exchange to ensure interoperability and the rules should be governed.
3.14.4.1 Constraining Name Schema using UMCLVV – An Example

xNL.xsd uses “NameElement” element as part of “PersonName” element to represent the name of a person and this is supported by using the attribute “ElementType” to add semantics to the name. Let us look at the following example:

<n:PersonName>

<n:NameElement n:ElementType=”FirstName>Paruvachi</n:NameElement>

<n:NameElement n:ElementType=”FirstName>Ram</n:NameElement>

<n:NameElement n:ElementType=”MiddleName>Kumar</n:NameElement>

<n:NameElement n:ElementType=”LastName>Venkatachalam</n:NameElement>

<n:NameElement n:ElementType=”LastName>Gounder</n:NameElement>

</n:PersonName>

In the above example, there is no restriction on the number of times First Name and Last Name can occur as per xNL.xsd schema. Some applications might want to apply strict validation and constraint rules on the xNL.xsd schema to avoid use of “First Name” and “Last Name” values to data. This is where UMCLVV can be used to define business rules to constraint the xNL.xsd schema without modifying or touching the schema. The business rule code defined using Schematron pattern for the above constraint is given below:

<rule context=”n:PersonName[not(parent::n:PartyName)]”>

<assert test=count(n:NameElement [@n:ElementType=’FirstName’]=1”

>Must have exactly one FirstName component</assert>

<assert test=count(n:NameElement[@n:ElementType=’LastName’])=1”

>Must have exactly one LastName component</assert>

</rule>
When the pass one validation (structure validation) is performed on the above sample XML instance document, the document is valid against the xNL.xsd. During Pass two validation (business rule constraint and value validation) on the above XML instance document, the following error is reported:
Must have exactly one FirstName component

Must have exactly one LastName component

4 Entity “Address” (extensible Address Language)
Entity “Address” has been modelled independent of any context as a standalone class to reflect some common understanding of concepts “Location” and “Delivery Point”.

The design concepts for “Address” are similar to “Name”. Refer to section 2.4 Common Approaches for more information.
4.1 Semantics of “Address”

The high level schema elements of xAL schema are illustrated in the following diagram:

[image: image8.png]AddressType B

Comple type that dafnes
he sutur of on sddece
[y

-{ FreeTextAddress

Contaner o e e
e semants whare
ez slements e ot
parad

Country detis

AdministiativeArea

Dl of the oplovel ara
isn nthe coutry, s
e v, o, provinge,
land, ren, ic. Note that
o couni da o have
e

Dl of Localty which s
named densiy populated
s (s place) such 3 own,
il subur, et &
loclty composesof many.
indides srecs. My
lociies st m 1
Sminrative res or 3 b
s s, A
loclty can a0 have sub
locdies, For sargle, =
municpaty gty can
Rave many vlages
Sesocned with which e
20 s, Evsmpla
T Nady Stte Ernde
Distic, Bhavan Tabk,
PanvachiVilage 3 vald
e i Inds, Tori M
i the Adminitzaive Area,
Ercde s the sub admin aes,
Bhavani 3 he iy, ond
Pinavach s he s oc oy

Thoroughtare

Dol ofthe Access rute
aong uhich buding: are
locited,such 35 st oad,
chamne,cescant, avenue,
. Thi e s
canishanks on which
Housasioat housas e
locsed whers paopl e

Promises

D af the Preices
whi 3 st e
Whith h 3 i e
such a5 lrg il er (o
Aipor, Hospial, Lniversty)
orcoud b+ bing e 3.
Spariment, house) or 3
Bidng o comple of
Buldngs (o9, 5n sparment
complx r Shoppig cetre)
orevan 3 vacant ond o
LOT). A prmies can have
many sub-adsses such 35
Spartmants n 3 buldng
Raving i o addresss or
bidngs witin 3 arport
Raving i own addesses
incuding 15 oun
thoroughfares

" contanr o sl e
ot o At posiods

N that ot o s

have post codes

 container for postlspecic
siry denfer for remote
i, Note tht
i ecunnies have
RurdDenary

PostaibeiveryPoint

Finl mal devery pom
here the el £ g off
forraciient to ik then up
dracly. €. POBox, Pvate
B3a, pigeon hele, s mal
numbars, et

% dalvery poit where il
i re divred and e
post man picks p the mai
S0 debvar ntha
cient, Exargles
sl post office hers pst
isdelared, > pos offe
contaiing post office
bonesjarsonl mai boes
N that ot ol couiies
have PostOfic. Can be
used o represent overseas
miltary addasses ko 3bng
With PossDsverybain
Game

{ LocationCoordinates.

‘e Locatin Coordnates
(Geocoding) Information

An address can be structured according to the complexity level of its source.

4.1.1 Example – Minimal Semantics (Unstructured/Free Text Data)
Suppose that the source database does not differentiate between different address elements and treats them as Address Line 1, Address Line 2, Address Line “N”, then the address information can be placed inside a free text container (element FreeTextAddress).
<a:Address>

<a:FreeTextAddress>

<a:AddressLine>Substation C</a:AddressLine>

<a:AddressLine >17 James Street</a:AddressLine >

<a:AddressLine>SPRINGVALE VIC 3171</a:AddressLine>

</a:FreeTextAddress>

</a:Address>

It is up to the receiving application to parse this address and map it to the target data structure. It is possible that some sort of parsing software or human involvement will be required to accomplish the task. Data represented in this free formatted text form is classified as “poor quality” as it is subject to different interpretations of the data and will cause interoperability problems.
Many common applications fall under this category.
4.1.2 Example – Partial Semantics (Partially Structured Data)
Assume that the address was captured in some semi-structured form such as State, Suburb and Street.

<a:Address>

<a:AdministrativeArea>

<a:Name>WA</a:Name>

</a:AdministrativeArea>

<a:Locality>

<a:Name>OCEAN REEF</a:Name>

</a:Locality>

<a:Thoroughfare>

<a:NameElement>16 Patterson Street</a:NameElement>

</a:Thoroughfare>

</a:Address>

In this example, the free text information resides in containers that provide some semantic information on the content. E.g. State -> AdministrativeArea, Suburb -> Locality, Street -> Thoroughfare. At the same time, the Thoroughfare element contains street name and number in one line as free text, which may not be detailed enough for data structures where street name and number are separate fields.
Many common applications fall under this category.

4.1.3 Example – Full Semantics (Fully Structured Data)
The following example illustrates an address structure that was decomposed into its atomic elements:
<a:Address>

<a:AdministrativeArea a:Type="state">

<a:NameElement a:Abbreviation="true" a:NameType="Name">VIC</a:NameElement>

</a:AdministrativeArea>

<a:Locality a:Type="suburb">

<a:NameElement a:NameType="Name">CLAYTON</a:NameElement>

<a:SubLocality a:Type="Area">

 <a:NameElement a:NameType="Name">Technology Park</a:NameElement>
 </a:SubLocality>

</a:Locality>

<a:Thoroughfare a:Type="ROAD">

<a:NameElement a:NameType="NameandType">Dandenong Road</a:NameElement>

<a:Number a:IdentifierType="RangeFrom">200</a:Number>

<a:Number a:IdentifierType="Separator">-</a:Number>

<a:Number a:IdentifierType="RangeTo">350</a:Number>

<a:SubThoroughfare a:Type=”AVENUE”>

<a:NameElement a:NameType="NameandType">Fifth Avenue</a:NameElement>

</a:SubThoroughfare>

</a:Thoroughfare>

<a:Premises a:Type="Building">

<a:NameElement a:NameType="Name">Toshiba Building</a:NameElement>

</a:Premises>

<a:PostCode>

<a:Identifier>3168</a:Identifier>

</a:PostalCode>

</a:Address>

Few applications and in particular, applications dealing with data quality and integrity, fall in this category and the quality of data processed by these applications are generally high.
4.2 Location Coordinates
xAL supports representation of location coordinates or called the Geo-coordinates by two ways.

4.2.1 Using GML

Geo-coordinates can be provided by using Geography Markup Language (GML), an industry standard from Open Geospatial Consortium (http://www.opengis.net).
The reason for using some complex constructs from GML is due to the ambiguity of different coordinate systems, units and measurements. Also, GML incorporates a huge body of knowledge and expertise in geographical systems interoperability that can be reused for our purpose rather than re-inventing what has already been developed.

The content of a:GML must comply with the following requirements:

· Be from the GML namespace

· Refer to finest level of address details available in the address structure that a:GML belongs to

· Be used unambiguously so that there is no confusion whether the coordinates belong to the postal delivery point (e.g. Post Box) or a physical address (e.g. flat) as it is possible to have both in the same address structure.

There is no restriction on the shape of the area a:GML can describe be it a point, polygon or some other object. OGC also provides GML Basic Profile schema that is a simplified version of GML Schema.
4.2.2 Using the Default Elements

If end users feel that GML (the full schema or the basic profile schema) from OGC is overkill for their requirement, the CIQ specification provides a default set of basic and commonly used element set for representing location coordinates as shown in the figure below:

[image: image9.png]‘e Locatin Coordnates
{Gaocoding Infomaton

oML

‘Gaocading coordnats of the
s, G (Ssoqraphy
Hiarkp Lingoage om
Open GIS o) i 3n
industey standard for
geocadnalacospatal data
rresenaton

The directon of e
masaramant e o the
e

Massure ofth longtude n degress

Wassure ofthe longtude in mintes

Maasure ofthe ongtude n seconds

T diction o anghuds
masaramant st o the
e

4.3 Data Types

All elements and attributes in xAL schema have strong data types.

All free-text values of elements (text nodes) and attributes are constrained by simple type “string” defined in xAL-types.xsd. This type has a limit on the number of characters it may contain.

Other XML Schema defined data types (e.g. int, string, DateTime) are also used throughout xAL namespace.
4.4 Code Lists (Enumerations)
Use of code lists/enumerations is identical to use of code lists/enumerations for entity “Name”. Refer to section 3.3 for more information.

Code Lists used in xAL for Option 1 reside in an “include” file xAL-types.xsd and for option 2 as separate genericode files.
NOTE: The code list values for different code lists that are provided as part of the specifications are not complete. They only provides some sample values and it is up to the end users to customise them to meet their data exchange requirements if the default values are incomplete, not appropriate or an over kill
4.5 Order of Elements and Presentation

Order of address elements should be preserved for correct presentation in a fashion similar to what is described in section 3.6.
Child elements of a:Address can appear in any order as members of xs:all grouping as in the example below:
4.5.1 Example – Order of Second Level Elements in xAL

23 Archer Street
:
Thoroughfare

Chatswood, NSW 2067
:
Suburb, State, Post Code

Australia

:
Country

could be preserved and presented in XML as:

<a:Address>

<a:Thoroughfare />

<a:Locality />

<a:AdministrativeArea />

<a:PostCode />

<a:Country />

</a:Address>

Other elements can also appear in any order to preserve the original order.

4.6 Data Mapping

Mapping data between xAL schema and a database is similar to that of entity “Name” as described in section 3.7.

4.6.1 Example – Normal Order

23 Archer Street

Chatswood, NSW 2067

Australia

could be presented as follows

<a:Address>

<a:FreeTextAddress>

<a:AddressLine>23 Archer Street</a:AddressLine>

<a:AddressLine>Chatswood, NSW 2067</a:AddressLine>

<a:AddressLine>Australia</a:AddressLine>

</a:FreeTextAddress>

</a:Address>

and restored back to

23 Archer Street

Chatswood, NSW 2067

Australia

during data formatting exercise.

Any other order of AddressLine tags in the XML fragment could lead to an incorrect presentation of the address.
4.7 Data Quality

xAL schema allows for data quality information to be provided as part of the entity using attribute DataQuality as for entity “Name”. Refer to section 3.10 for more information.
4.8 Extensibility

All elements in Address namespace are extensible as described in section 3.11.
4.9 Linking and Referencing

All linking and referencing rules described in section 3.12 apply to entity “Address”.
Use of attribute ID is described in section 3.13.
4.10 Schema Customization Guidelines
Schema customisation rules and concepts described in section 3.14 are fully applicable to entity “Address”.
4.10.1 Customizing the Code Lists/Enumerations of Address
Meeting the 240+ country address semantics in one schema and at the same time keeping the schema simple is not trivial. Some countries have a city and some do not, some countries have counties, provinces or villages and some do not, some countries use canal names to represent the property on the banks of the canal, and, some countries have postal codes and some do not.

Key components of international addresses that vary from country to country are represented in the specification using the schema elements namely, Administrative Area, Sub Administrative Area, Locality, Sub Locality, Premises, Sub Premises, Thoroughfare, and Postal Delivery Point. CIQ TC chose these names because they are independent of any country specific semantic terms such as City, Town, State, Street, etc. Providing valid and meaningful list of code lists/enumerations as default values to these elements that covers all countries is not a trivial exercise. These elements are therefore, customisable using code lists/enumerations to preserve the address semantics of each country which assists in improving the semantic quality of the address. To enable end users to preserve the meaning of the address semantics, the specification provides the ability to customise the schema using code lists/enumerations without changing the structure of the schema itself. At the same time, the schema structure remains intact.
For example, “State” defined in the code list/enumeration list for Administrative Area type could be valid for countries like India, Malaysia and Australia, but not for Singapore as it does not have the concept of “State”. A value “Nagar” in the code list/enumeration list for Sub Locality type could be only valid for countries like India and Pakistan.

If there is no intent to use the code list/enumeration list for the above schema elements, the code list/enumeration list can be ignored. There is no absolute must rule that the default values for the enumeration lists provided by the specification must exist. The list can be empty also. As long as the code list/enumeration list values are agreed between the parties involved in data exchange (whether data exchange between internal business system or with external systems), interoperability is not an issue.

In Option 1 of representing code lists, the values clarifying the meaning of geographical entity types (e.g. AdministrativeAreaType, LocalityAreaType) in xAL.xsd were intentionally taken out of the main schema file into an “include” file (xAL-types.xsd) to make customisation easier. In Option 2 of Code List representation, these code lists are represented as separate .gc file in genericode format.
The values of the code lists/enumerations can be changed or new ones added as required.

NOTE: The code lists values for different enumeration lists that is provided as part of the specification are not complete. They only provides some sample values and it is upto the end users to customise them to meet their data exchange requirements if the default values are incomplete, not appropriate or an over kill
4.10.1.1 End User Customised Code List - An Example
In the example below, we use the country, Singapore. The default values provided by CIQ Specification for AdministrativeAreaType enumeration are given below. The user might want to restrict the values to meet only the address requirements for Singapore. Singapore does not have any administrative areas as it does not have state, city, or districts or provinces. So, the user can customise the schema by making the AdministrativeAreaType enumeration as an empty list as shown in the table below.
	Original xAL values for AdministrativeAreaType Enumeration
	Possible end user customised values

	City
	

	State
	

	Territory
	

	Province
	

This level of flexibility allows some customization of the schema through changing the enumerations only, without changing the basic structure of the schema. It is important to ensure that all schema users involved in data exchange use the same enumerations for interoperability to be successful. This has to be negotiated between the data exchange parties and a proper governance process should be in place to manage this process.
4.10.1.2 Implications of changing Address Entity Schema
Any changes to the Address Entity schema (xAL.xsd) are likely to break the compatibility one way or another.

It may be possible that an XML fragment created for the original schema is invalid for the altered schema or vice versa. This issue needs to be considered before making any changes to the schema that could break the compatibility.
4.10.2 Using the Code list Methodology (UMCLVV) to customize Address Schema to meet application specific requirements

The other approach to customize the CIQ address schema (xAL.xsd) without touching it is by using the UMCLVV. In this approach, one can use Schematron patterns to define assertion rules to customize CIQ address schema without touching it. For example, it is possible to customize CIQ address schema to restrict the use of address entity that are not required for a specific country. For example, a country like Singapore will not need address entities namely, Administrative Area, Sub Administrative Area, Sub Locality, Rural Delivery and Post Office. These entities can be restricted using Schematron based assertion rules. Some might want to just use free text address lines and a few of the address entities like locality and postcode. Schematron assertion rules help users to achieve this.
NOTE: The business rules used to constraint CIQ address schema should be agreed by all the parties that are involved in data exchange of CIQ based address data to ensure interoperability and the rules should be governed.
4.10.2.1 Constraining Address Schema using UMCLVV – An Example
Let us use the country “Singapore” as an example again. Let us say that the country “Singapore” only requires the following address entities defined in xAL.xsd and does not need the rest of the entities defined in xAL.xsd as they are not applicable to the country:
· Locality

· Thoroughfare

· PostCode

This restriction can be achieved without modifying the xAL.xsd schema and by applying the following schematron pattern rules outside of the schema as follows:
<rule context=”a:Address/*”>

<assert test=”(name()=’a:Country’) or (name()=’a:PostCode’) or
 (name()=’a.Thoroughfare’) or (name()=’a:Locality’)”
 >Invalid data element present in the document
 </assert>

</rule>
The above rule restricts the use of other elements and attributes in xAL.xsd when an XML instance document is produced and validated.
Now let us take the following XML instance document:

<a:Address>

<a:Country>

<a:NameElement>Singapore</a:NameElement>

</a:Country>

<a:AdministrativeArea>

<a:NameElement></a:NameElement>

</a:AdministrativeArea>

<a:Locality>

<a:NameElement>NUS Campus</a:NameElement>

</a:Locality>

<a:Thoroughfare>

<a:NameElement>23 Woodside Road</a:NameElement>

</a:Thoroughfare>

<a:Premises>

<a:NameElement></a:NameElement>

</a:Premises>

<a:PostCode>

<a:Identifier>51120</a:Identifier>

</a:PostCode>

</a:Address>

When the above document instance is validated using UMCLVV, pass one validation (structure validation against xAL.xsd) will be successful. Pass two validation (business rules and value validation) will report the following errors:

Invalid data element present in the document

:/a:Address/a:AdministrativeArea

Invalid data element present in the document

:/a:Address/a:Premises
5 Combination of “Name” and “Address” (extensible Name and Address Language)
xNAL (Name and Address) schema is a container for combining related names and addresses. This specification recognises two ways of achieving this and they are:

· Binding multiple names to multiple addresses (element xnal:Record)

· Binding multiple names to a single address for postal purposes (element xnal:PostalLabel)
5.1 Use of element xnal:Record

Element xnal:Record is a binding container that shows that some names relate to some addresses as in the following diagram:

[image: image10.png]Record

The relationship type is application specific, but in general it is assumed that a person defined in the xNL part have some connection/link with an address specified in the xAL part. Use attributes from other namespace to specify the type of relationships and roles of names and addresses.

5.1.1 Example

Mr H G Guy, 9 Uxbridge Street, Redwood, Christchurch 8005

<xnal:Record>

<n:PartyName>

<n:NameLine>Mr H G Guy</n:NameLine>

</n:PartyName>

<a:Address>

<a:Locality>

<a:Name>Christchurch</a:Name>

<a:SubLocality>Redwood</a:SubLocality>

</a:Locality>

<a:Thoroughfare>

<a:Number>9</a:Number>

<a:NameElement>Uxbridge Street</a:NameElement>

</a:Thoroughfare>

<a:PostCode>

<a:Identifier>8005</a:Identifier>

</a:PostCode>

</a:Address>

</xnal:Record>

5.2 Use of element xnal:PostalLabel

Element xnal:PostalLabel is a binding container that provides elements and attributes for information often used for postal / delivery purposes, as in the following diagram. This has two main containers, an addressee and the address:

[image: image11.png]PostalLabel

This s »specilsed contaner
o corine e snd
s for pstal purpeses,
2. 3belon 3n envlops.

Designation &

(X3
When th narn of the
redplent s nt known o the
gt =il veared 1o
Sppaaron the label

£1q. Atenton CEO, Generl
Hisnage,th houschold

[r—

Adrezen s the pary that
istha eciient f th posal
i debvery

i | == |
et b

Crpcai o bsten

e

oserserginms

(X3
The rin e bz »
elonship with 3
depandan name.

T dspendant name shoud
be put nder s dament
S he elaionchip
e

Eq.Exsthoure Goas Tust
i i o Wlingon Lawrs
U Ram Kuar, 0
Sakitisch, atc

o |

o v st et L |

This structure allows for any number of recipients to be linked to a single address with some delivery specific elements such as Designation and DependencyName.
5.2.1 Example

Attention: Mr S Mart
Director
Name Plate Engravers

The Emporium

855 Atawhai Drive

Atawhai

Nelson 7001

translates into the following xNAL fragment:

<xnal:PostalLabel>

<xnal:Addressee>

<xnal:Designation>Attention: Mr S Mart</xnal:Designation>
 <xnal:Designation>Director</xnal:Designation>

<n:PartyName>

<n:NameLine>Name Plate Engravers</n:NameLine>

</n:PartyName>

</xnal:Addressee>

<a:Address>

<a:Locality>

<a:Name>Nelson</a:Name>

<a:SubLocality>Atawhai</a:SubLocality>

</a:Locality>

<a:Thoroughfare>

<a:NameElement>Atawhai Drive</a:NameElement>

<a:Number>855</a:Number>

</a:Thoroughfare>

<a:PostCode>

<a:Identifier>7001</a:Identifier>

</a:PostCode>

</a:Address>

</xnal:PostalLabel>

5.3 Creating your own Name and Address Application Schema
Users can use the xNL and xAL constructs and create their own name and address container schema to meet their specific requirements rather than using a container element called “Record” as in xNAL if they believe that xNAL schema does not meet their requirements. This is where the power of CIQ Specifications comes in to play. It provides the basic party constructs to enable users to reuse the base constructs of CIQ specifications as part of their application specific data model and at the same time meeting their application specific requirements.
For example, users can create a schema called Customers.xsd that could reuse xNL and xAL to represent their customers. This is shown in the following figure:
[image: image12.png][smorga

(Gustomers Bz [moiGusomer B-(=

netOrganisatontiams EJ_\L(-

In the above figure, Person Name is optional.
[image: image13.png]|
(Gusomers (=) metcustoner Bt |

e |

| atadaressype |

In the above figure, “Customer” is of type “Party” as defined in xNL schema. “Customer” is then extended to include “Address” element that is of type “Address” as defined in xAL schema.
6 Entity “Party” (extensible Party Information Language)
Entity “Party” encapsulates some most commonly used unique characteristics/attributes of Person or Organisation, such as name, address, personal details, contact details, physical features, etc.
This assists in uniquely identifying a party with these unique party attributes.

The schema consists of top level containers that may appear in any order or may be omitted. The containers are declared globally and can be reused by other schemas. The full schema for defining a “PARTY” can be found in xPIL,xsd file with enumerations in xPIL-types.xsd file for Code List Option 1 and .gc files for Code List Option 2. See the sample XML files for examples.
6.1 Common Elements/Attributes for Person or Organisation
There are a number of attributes in xPIL that are common to both a person and an organisation and they are shown below:
[image: image14.png]Free tox descpion o the
pary 35l 1, ne 2, Ine .

A contanr ol .
ez

containr o e the
Secouts sl o h party
Such 35wty aczoun,
[e

contanr For ll Kinds of
ahcormmunicaton Ines of
pary used forcontat
pupes. .. hone, a1,
mobls, ager, et

& contanr Fo dafcstion
et and card of the
party hat 1 i 0 the
pany. . e,
dentcaton card, cedt
o ac

-4 HiectronicAddressidentifiers.

continer of iferent types ofdectronc
e of pary (.. aml, chat,
sype, 10

A contar o 3 2 o ey
vt and date o the
vents fthe arganisaton
‘and person

[image: image15.png]-4 identiiers

o contanr For 2 of
Lierrs o recoice the
party such 3 customar
Hdantfr, sl secuky
number, e, tc

A contamr o memberics
oFparty with other
orgrizatons (. ndustry
o) or sl netwrks
s, ssoaion,)

Relarstips withather
paries (arons or
Crganisatons, ad the natre
of eatonshi). Exampes

For person: Conact, bood
veltives, ends, referees,

for Crgaistion
Subsidiry, Parent company,
Branches, Divisions,
Parner, atc

+-4 Revenuos.

Continer for ncome |
v orin o the
pany Colarancaton

ot o dfing the
e charcersts of 3
pary, whih can be an
ndidulor organiaton

A contanr o tacks
vened nfommaton

-1 Vahicies

A contamr o dafne 3l the
Vetides of th party

6.2 Party Specific Elements/Attributes

A number of elements/attributes that are specific to only a person are available in xPIL in addition to the common elements/attributes for person and organisation shown above. These person specific elements/attributes are shown below:
[image: image16.png]B atiributes

o ctorbataduality

Thissnrbure st what

Tevelof st e b given 1o

the parent e, Omit

hi it ohe ts

Quaiy i nknown. I he

it qualy s known, he
aid o

[
il fom

ValidTo

P the dits usly i
wid

% group o cormerly used
s o el e

A e

3 belngs such 3 cstomer,

Contaner o ther person | amployss, e, prospect,
o deie kvt | e

covared i s schema . .
aments that re comrnn Physicalstatus

03 pany

Staws of the paron. ..
ving, decassed, et To
log the dateof the ststus

st or ard, e
e

{ Wartaistatus

Free toxt descpion o the
it sl s, 2
mared,separated,
ivorcad, separsed, etc.

[image: image17.png]Ethicty o he parze, 2.0
Asian, Chine, Afican, ot

Gender

Free toxt gander descrtion,

Free e name of the
igon

 contanr o dafn the
Dt of Buth dersl oF 4
person

1 CountriesOfResidence

Y —
Tdances
[Pamanenthemporany) of
peron.

Favourites.

A containr For 2t of
Fuvounnes o s person

A continr For i of
habi o 3 pason

A contanr For i of
obbies o 4 person

+-4, Languages B
A contanr ot of
languages spoken by 3
peron

[image: image18.png]- pMationalities

A contanr ot of
Ratonsie o 4 parn

4, Occupations

A contanr ot of
ccupsions of 3 przan

 contanr o physicl
Charscites of 3 preen

A contanr o of
prferencas of person (2.0
Lea posiion n lht,
T

4 Ouaiifications.

A contanr o 1t of
QiReatns o 4 peson

A contaner o dafn the
VISAs held by a peson
e vistor, trporary
peranent rsidane, wrk,
o

6.3 Organisation Specific Elements/Attributes
A number of Organisation specific elements/attributes are available in xPIL in addition to the common elements/attributes for person and organisation and they are shown in the figure below:

[image: image19.png]B atiributes

o ctorbataduality

Dataguality

Thissnrbure st what

Tevelof st e b given 1o

the parent e, Omit

hi it ohe ts

Quaiy i nknown. I he

it qualy s known, he
fid, ol

Validrrom ¢

[
il fom

P the dits usly i
wid

% group o cormerly used
s o el e

Typa o ctegory the
ongaizaton blongs o sch
5 b, ssoation,
Company, vander, et

e e

Contanrfor o o, bnon,
rneaon st datsls | Fordate of the s Such
e vered iy | o o, s,
Chama ot | o, v v’ Sement
Spny

Type o orgarisation. Free
et descrpton o3
Company, Tust,Bark,
Sociaty, b, et

ature

Hatre of the orgnistion.
.. Pulc lmited,
Cormerca, charky,

H o commerdal, et

[image: image20.png]IndustryType

rgaisation Ity type
such 35 IT, Manfacting

IndustryCode

Industry code or
desincaon

lumberOfEmployees.

Free ret dascpin of
orgniston sz n tomns of
b o aloyess

6.4 Reuse of xNL and xAL Structure for Person or Organisation Name and Address
 “Name” of xPIL schema reuses PartyNameType construct from xNL namespace and “Address” of the xPIL schema reuses AddressType construct from xAL namespace as illustrated in the following diagram:

 [image: image21.png]Free tox descpion o the
pary 35l 1, ne 2, Ine .

| PartytiameType. |

S B-H=—m |

L= __1

—

wAddressType |

A contanr ol .
ez

containr o e the
Secouts sl o h party
Such 35wty aczoun,
sy s

The design paradigm for this xPIL schema is similar to those of Name and Address entities. Likewise, it is possible to combine information at different detail and semantic levels.

6.5 Party Structures - Examples

The following examples illustrate use of a selection of party constructs.
6.5.1 Example – Qualification Details
<p:Qualifications>

<p:Qualification>

<p:QualificationElement p:Type="QualificationName">BComp.Sc.</p:QualificationElement>

<p:QualificationElement p:Type="MajorSubject">Mathematics</p:QualificationElement>

<p:QualificationElement p:Type="MinorSubject">Statistics</p:QualificationElement>

<p:QualificationElement p:Type="Award">Honours</p:QualificationElement>

<p:InstitutionName>

<n:NameLine>University of Technology Sydney</n:NameLine>

</p:InstitutionName>

</p:Qualification>

</p:Qualifications>

6.5.2 Example – Birth Details

<p:BirthInfo p:BirthDateTime="1977-01-22T00:00:00"/>

6.5.3 Example – Driver License

<p:Document p:ValidTo="2004-04-22T00:00:00">

<p:IssuePlace>

<a:Country>

<a:Name>Australia</a:Name>

</a:Country>

<a:AdministrativeArea>

<a:Name>NSW</a:Name>

</a:AdministrativeArea>

</p:IssuePlace>

<p:DocumentElement p:Type="DocumentID">74183768C</p:DocumentElement>

<p:DocumentElement p:Type="DocumentType">Driver License</p:DocumentElement>

<p:DocumentElement p:Type="Priviledge">Silver</p:DocumentElement>

<p:DocumentElement p:Type="Restriction">Car</p:DocumentElement>

</p:Document>

6.5.4 Example – Contact Phone Number

<p:ContactNumber p:MediaType="Telephone" p:ContactNature="Business Line" p:ContactHours="9:00AM - 5:00PM">

<p:ContactNumberElement p:Type="CountryCode">61</p:ContactNumberElement>

<p:ContactNumberElement p:Type="AreaCode">2</p:ContactNumberElement>

<p:ContactNumberElement p:Type="LocalNumber">94338765</p:ContactNumberElement>

</p:ContactNumber>

6.5.5 Example – Electronic Address Identifiers

<p:ElectronicAddressIdentifiers>

 <p:ElectronicAddressIdentifier p:Type="SKYPE" p:Usage="Personal">rkumar
 </p:ElectronicAddressIdentifiers>
 <p:ElectronicAddressIdentifier p:Type="EMAIL" p:Usage="Business">ram.kumar@email.com
 </p:ElectronicAddressIdentifiers>

 <p:ElectronicAddressIdentifier p:Type="URL" p:Usage="Personal">http://www.ramkumar.com
 </p:ElectronicAddressIdentifiers>

6.6 Dealing with Joint Party Names

xPIL schema represents details of a Party. The Party has a name as specified in n:PartyName element. A “Party” can be a unique name (e.g. A person or an Organisation) or a joint name (e.g. Mrs. Sarah Johnson and Mr. James Johnson (or) Mrs. & Mr. Johnson). In this case, all the other details of the party defined using xPIL apply to the party as a whole (i.e. to both the persons in the above example) and not to one of the Parties (e.g. say only to Mrs. Sarah Johnson or Mr. James Johnson in the example). Also, all the addresses specified in Addresses element relate to the Party as a whole (i.e. applies to both Mrs. and Mr. Johnson in this example).

6.7 Representing Relationships with other Parties
xPIL provides the ability to also define the relationships between a party (person or an organisation) and the other parties (person or organisation). This is shown in the following diagram:
[image: image22.png]" contamr o relstionhips
withathr paries prsnsor
orgnistons, and th natre
GFrelatonshi). Can 3o use
Thi o dan 30 avanicnon
Hrarchy garant and
subsiday crgnisatons or
branchesfarotps of
orgnisaion)

On t ane lstionip ith s
pary. g, Frend, Wi,
afersa. Cnly ne pary s
efned ndsr s

- GioupRetationship | PartyDetaits (edension |

(X3
Relatonship categoried 2 3

this grouping i listed under 1.0 —
i iy Cuiert e dust o

SR e, it e

e T S D,

kel i ghi ki

eted ndr Grop

Two categories of relationships with a party (Person or Organisation) can be defined. They are “Individual Relationship” and “Group Relationship”. Individual Relationship is a one on one relationship with another party. Examples include, Friend, Spouse, Referee, Contact, etc for a person, and Client, customer, branch, head office, etc for an organisation.
Group relationship is categorisation of a group of parties together. For example, friends, contacts, referees, relatives, children, etc. for a person, and clients, customers, branches, subsidiaries, partners, etc for an Organisation.
Details of each party can be defined namely, Person Name, Organisation Name, Contact Numbers and Electronic Address Identifiers.

6.7.1 Individual Relationship

Details of individual relationship are shown in the figure below:
[image: image23.png]] indvidiaeionsiy - (=)
o |]

On t ane lstionip ith s
B atiributes

pary. g, Frend, Wi,
afersa. Cnly ne pary s
efned ndsr s

[—

Type o party invalved in
he eltonshi, . parson
ororganisaton

RelationshipWithPer son

TFtha pary sperson, then the
g o ralstionchi ith the
peron

RelationshipWithor ganisation

I tha pary iscrganiaton, the th type
oFeatnship wih the oranizaton

RelationshipValidFrom

17 ctgratadualiy

% goup o cormerly used
s o el e

The attribute Status defines the status of relationship; attribute RelationshipWithPerson defines the type of relationship with the person (e.g. friend, spouse) if the party is a person; attribute RelationshipWithOrganisation defines the type of relationship with the organisation (e.g. client, branch, subsidiary) if the party is an organisation; attributes RelationshipValidFrom and RelationshipValidTo defines the dates of the relationship with the party.
6.7.2 Group Relationship

Details of group relationship are shown in the figure below:

[image: image24.png]Type o party invalved in
he eltonshi, . parson
ororganiaton

RelationshipWithPer sonGroun

T tha pary ispeso, then the type of
veltonship wih the pason

RelationshipWithOr ganisationGr

T thaparty iscrganizaton,thn th type of
eltoship with th argniston

17 ctgratadualiy

% goup o cormerly used
s o el e

{ GroupRelationship C}

Relatonship categoried 2 3
o e evary paty 1
b rouping i e under
hs, Erampl: Frends,
Clstomers, referees,
branches of 3n orgrisaton,
e A group ha mers than
ans paty i nd 50, mare
than ona paty 2 dfne
it

EI 2 R —— 1

Continer to dafin datl of
Cah pary i 3 g, For
cuampl, defn aach peson
who's chtegored under
Group Relststip Type
Riande o sl o ssch
brnch o 3 crgariston
eted ndr Grop
Relsistip Type
“erinchest

B atiributes

RelationshipWithPer son

o o elstondi, .. Son,
Datghuer, wie

RelationshipValidFrom

RelationshipValidTo |

The attribute Status defines the status of relationship; attribute RelationshipWithPersonGroup defines the type of relationship where a group of persons are categorised (e.g. friends, relatives) if the party is a person; attribute RelationshipWithOrganisationGroup defines the type of relationship where a group of organisations are categorised (e.g. clients, branches, subsidiaries) if the party is an organisation. Under the PartyDetails element, each party associated with the group is defined. If the party is a person and let us say, the RelationshipWithPersonGroup value is children. Then, the attribute RelationshipWithPerson under PartyDetails element can be used to define the type of child such as daughter, brother, etc. The attributes RelationshipValidFrom and RelationshipValidTo defines the dates of the relationship with the party.

6.7.3 Example – Person Relationship with other Persons of type “Friends”
<p:Relationships>

<p:GroupRelationship p:RelationshipWithPersonGroup=”Friends”>

 <p:PartyDetails>

<p:PersonName>

 <p:NameElement=”FullName”>Andy Chen</NameElement>

</p:PersonName>

 </p:PartyDetails>

 <p:PartyDetails>

<p:PersonName>

 <p:NameElement=”FullName”>John Freedman</NameElement>

</p:PersonName>

 </p:PartyDetails>

 <p:PartyDetails>

<p:PersonName>

 <p:NameElement=”FullName”>Peter Jackson</NameElement>

</p:PersonName>

 </p:PartyDetails>
 </p:GroupRelationship>

</p:Relationships>

6.7.4 Example – Organisation Relationship with other Organisations of type “Worldwide Branches”
<p:Relationships>

<p:GroupRelationship p:RelationshipWithOrganisationGroup=”Worldwide Branches”>

 <p:PartyDetails>

 <p:NameLine>XYZ Pty. Ltd</p:NameLine>

 <p:Address>

 <p:FreeTextAddress>

 <p:AddressLine>23 Archer Street, Chastwood, NSW 2067,

 Australia

 </p:AddressLine>

 </p:FreeTextAddress>

 </p:Address>

 <p:PartyDetails>

 <p:NameLine>XYZ Pte. Ltd</p:NameLine>

 <p:Address>

 <p:FreeTextAddress>

 <p:AddressLine>15, Meena Rd, K.K.Nagar, Chennai 600078

 India

 </p:AddressLine>

 </p:FreeTextAddress>

 </p:Address>

 </p:PartyDetails>

 </p:GroupRelationship>

</p:Relationships>
6.7.5 Example – Person Relationship with another Person

<p:Relationships>

<p:IndividualRelationship p:RelationsipWithPersonGroup=”Son”>

 <p:PersonName>

 <p:NameElement=”FullName”>Andy Chen</NameElement>

 </p:PersonName>

 </p:IndividualRelationship>

</p:Relationships>

6.8 Data Types

All elements and attributes in xPIL schema have strong data types.

All free-text values of elements (text nodes) and attributes are constraint by simple type “String” defined in CommonTypes.xsd. This type has a limit on the number of characters it may contain.

Other XML Schema defined data types are also used throughout the schema.
6.9 Code Lists (Enumerations)
Use of code lists/enumerations is identical to use of code lists for entity “Name”. Refer to section 3.3 for more information.

Code lists/enumerations used in xPIL for code list option 1 reside in an “include” xPIL-types.xsd. Code lists/enumerations used in xPIL for code list option 2 reside as .gc genericode files.
NOTE: The code list/enumeration values for different code lists/enumeration lists that is provided as part of the specifications are not complete. They only provides some sample values and it is up to the end users to customise them to meet their data exchange requirements if the default values are incomplete, not appropriate or an over kill
6.10 Order of Elements and Presentation

Order of elements without qualifier (@...type attribute) should be preserved for correct presentation as described in section 3.6.
6.11 Data Mapping

Mapping data between xPIL schema and a database is similar to that of entity “Name” as described in section 3.7.
6.12 Data Quality

xPIL schema allows for data quality information to be provided as part of the entity using attribute DataQuality as for entity “Name”. Refer to section 3.10 for more information.
6.13 Extensibility

All elements in Party namespaces are extensible as described in section 3.12.
6.14 Linking and Referencing

All linking and referencing rules described in section 3.11 apply to entity “Party”.

The following example illustrates PartyName elements that reference other PartyName element that resides elsewhere, in this case outside of the document.

<a:Contacts xmlns:a="urn:acme.org:corporate:contacts">

<xnl:PartyName xlink:href="http://example.org/party?id=123445"/>

<xnl:PartyName xlink:href="http://example.org/party?id=83453485"/>

</a:Contacts>

This example presumes that the recipient of this XML fragment has access to resource “http://example.org/party” (possibly over HTTP/GET) and that the resource returns as PartyName element as an XML fragment of text/xml MIME type.
Use of attribute ID is described in section 3.13.
6.15 Schema Customization Guidelines
Schema customisation rules and concepts described in section 3.14 are fully applicable to entity “Party”.
6.15.1 Customizing the Code Lists/Enumerations of Party
If there is no intent to use the code list/enumeration list for the xPIL schema elements, the code list/enumeration list can be ignored. There is no absolute must rule that the default values for the enumeration lists provided by the specification must exist. The list can be empty also. As long as the code list/enumeration list values are agreed between the parties involved in data exchange (whether data exchange between internal business system or with external systems), interoperability is not an issue.

In Option 1 of representing code lists, the values clarifying the meaning of party element types (e.g. DocumentType,ElectronicAddressIdentifierType) in xPIL.xsd were intentionally taken out of the main schema file into an “include” file (xPIL-types.xsd) to make customisation easier. In Option 2 of Code List representation, these code lists are represented as separate .gc file in genericode format.
The values of the code lists/enumerations can be changed or new ones added as required.

NOTE: The code lists values for different code list/enumeration lists that is provided as part of the specification are not complete. They only provides some sample values and it is up to the end users to customise them to meet their data exchange requirements if the default values are incomplete, not appropriate or an over kill
6.15.1.1 End User Customised Code List - An Example
In the example below, we use Identifier element of xPIL.xsd. The default values provided by CIQ Specification for Identifier types enumeration are given below. The user might want to restrict these values. So, the user can customise the code list for Identifier types by making the PartyIdentifierTypeEnumeration with the required values as shown in the table below.

	Original xPIL values for PartyIdentifierType Enumeration
	Possible end user customised values

	TaxID
	TaxID

	CompanyID
	

	NationalID
	

	RegistrationID
	

This level of flexibility allows some customization of the schema through changing the code list/enumerations only, without changing the basic structure of the schema. It is important to ensure that all schema users involved in data exchange use the same cod list/enumerations for interoperability to be successful. This has to be negotiated between the data exchange parties and a proper governance process should be in place to manage this process.

6.15.1.2 Implications of changing Party Entity Schema
Any changes to the Party Entity schema (xPIL.xsd) are likely to break the compatibility one way or another.

It may be possible that an XML fragment created for the original schema is invalid for the altered schema or vice versa. This issue needs to be considered before making any changes to the schema that could break the compatibility.
6.15.2 Using the Code list Methodology (UMCLVV) to customize Party Schema to meet application specific requirements

The other approach to customize the CIQ party schema (xPIL.xsd) without touching it is by using the UMCLVV. In this approach, one can use Schematron patterns to define assertion rules to customize party schema without touching or modifying it. For example, it is possible to customize party schema to restrict the use of party entities (elements and attributes) that are not required for a specific application. These entities can be restricted using Schematron based assertion rules.

NOTE: The business rules used to constraint CIQ party schema should be agreed by all the parties that are involved in data exchange of CIQ based party data to ensure interoperability and the rules should be governed.
7 Differences in two types of Entity Schemas for CIQ Specifications
CIQ Specifications comes with two types of entity schemas (xNL.xsd, xAL.xsd, xPIL.xsd, and xNAL.xsd) based on the type of code lists/enumerations used. The types of code lists/enumerations options used are:

Option1 (Default): All code lists for an entity represented using XML schema (in one file) and “included” in the appropriate entity schema (xNL-types.xsd, xAL-types.xsd, and xPIL-types.xsd)

Option 2: Code Lists represented using Genericode structure of OASIS Codelist TC as individual .gc files for each code list of an entity
7.1 Files for Option 1 (The Default)
Following are the XML schema files provided as default in CIQ Specifications package for Option 1:

· xNL.xsd

· xNL-types.xsd (Default Code Lists (5) defined for xNL)
· xAL.xsd

· xAL-types.xsd (Default Code Lists (16) defined for xAL)
· xPIL.xsd

· xPIL-types.xsd (Default Code Lists (22) defined for xPIL)
· xNAL.xsd

· CommonTypes.xsd (Default Code List (1) defined for Common Type for all entities)
· xlink-2003-12-21.xsd
The relationship between the different XML Schemas for Option 1 is shown in the following diagram:

[image: image25.png]

7.2 Files for Option 2

Following are the files provided as default in CIQ Specifications package for Option 2:

7.2.1 XML Schema Files

· xNL.xsd

· xNL-types.xsd

· xAL.xsd

· xAL-types.xsd

· xPIL.xsd

· xPIL-types.xsd

· xNAL.xsd

· CommonTypes.xsd

· xlink-2003-12-21.xsd
The relationship between the different schemas for Option 2 is shown in the following figure. As you can see, the enumeration list XML schemas do not exist.
[image: image26.png]

7.2.2 Genericode Based Code List Files

7.2.2.1 For Name (xNL)

	OrganisationNameTypeEnumeration.gc
	OrganisationNameElementEnumeration.gc
	PersonNameElementEnumeration.gc

	PersonNameTypeEnumeration.gc
	SubDivisionTypeEnumeration.gc
	

7.2.2.2 For Address (xAL)

	AdddressTypeEnumeration.gc
	AddressUsageEnumeration.gc
	AdministrativeAreaElementTypeEnumeration.gc

	AdministrativeAreaTypeEnumeration.gc
	CountryElementTypeTypeEnumeration.gc
	IdentifierElementTypeEnumeration.gc

	LocalityElementTypeEnumeration.gc
	LocalityTypeEnumeration.gc
	PostalDeliveryPointTypeEnumeration.gc

	PremisesElementTypeEnumeration.gc
	PremisesTypeEnumeration.gc
	SubPremisesTypeEnumeration.gc

	SubAdministrativeAreaTypeEnumeration.gc
	SubLocalityTypeEnumeration.gc
	ThoroughfareTypeEnumeration.gc

	ThoroughfareElementTypeEnumeration.gc
	
	

7.2.2.3 For Party (xPIL)
	AccountElementEnumeration.gc
	BirthInfoElementEnumeration.gc
	ContactNumberElementEnumeration.gc

	DocumentElementEnumeration.gc
	DocumentTypeEnumeration.gc
	ElectronicAddressIdentifierTypeEnumeration.gc

	FeatureElementEnumeration.gc
	MembershipElementEnumeration.gc
	MembershiptTypeEnumeration.gc

	OccupationElementEnumeration.gc
	OrganisationCategoryTypeEnumeration.gc
	OrganisationRelationshipTypeEnumeration.gc

	PartyIdentifierElementEnumeration.gc
	PartyIdentifierTypeEnumeration.gc
	PartyTypeEnumeration.gc

	PersonCategoryTypeEnumeration.gc
	PersonRelationshipTypeEnumeration.gc
	QualificationElementTypeEnumeration.gc

	VehicleInfoElementEnumeration.gc
	VehicleTypeEnumeration.gc
	VisaElementEnumeration.gc

	NumberTypeElement.gc
	CommunicationMediaTypeEnumeration.gc
	

7.2.2.4 For Common Types
	DataQualityEnumeration.gc
	
	

	
	
	

7.3 Namespace Assignment

Both the types of entity schemas (for option 1 and option 2) use the same namespaces.

7.4 The Difference in Entity Schemas
The key difference between the two types of entity schemas are the additional metadata information for information item values in XML instances for Option 2. This metadata information is defined as optional attributes. It is not mandatory to have instance level metadata, but having it allows an instance to disambiguate a code value that might be the same value from two different lists. An application interpreting a given information item that has different values from different lists may need the user to specify some or all of the list metadata from which the value is found, especially if the value is ambiguous.
Four types metadata attributes are used in Option 2 entity schema attributes that reference code lists and they are:

· Ref – corresponds to genericode <ShortName> reference

· Ver – corresponds to genericode <Version> version of the file

· URI – corresponds to genericode <CanonicalUri> abstract identifier for all versions of the code list

· VerURI – corresponds to genericode <CanonicalVersionUri> abstract identifier for this version of the code list

For detailed explanation of metadata information, read the Code List Value Validation methodology document (http://www.oasis-open.org/committees/document.php?document_id=21324)

The figure below shows “PersonName” element in Option 1 (using xNL-types.xsd for all Name entity associated code lists) of xNL.xsd:

[image: image27.png]rPen rsonllameType:

B atiributes

A unique denther of 3
peron

{ DataduaiityType.

Thisstabure ndcate what

Tevelof st e b given 1o

the parent e, Omit

hi it ohe ts

Quaiy i nknown. I he

it qualy s known, he
aid o

[
il fom

P the dits usly i
i

Enumarsed i of cornmon
ypes ofaases o nama
pes,

{ llameValidrom

Th narne valdy fom,
date . rading name
hange

Hame Valdty t. 2.3
raking name dhing

Refarane to smaber

NameDetais dement it
Persontame B} | oo te

ifarcemant. The

Perzon Nare refeencad demant may be
o . ot and the

Gt = 2 vl

The figure below shows “PersonName” element in Option 2 (using genericode for Name entity associated code lists) of xNL.xsd with metadata information for genericode based code lists:

[image: image28.png]rPersnmlzmeTyl)e

B atiributes

identfier

A unique denther of 3
peron

DataualityType

Thisstabure ndcate what
Tevelof st e b given 1o
the parent e, Omit
hi it ohe ts
Quaiy i nknown. I he
it qualy s known, he
il s i, e

e

ValidFrom

[
il fom

P the dits usly i
i

{ Dataduaiity TypeRet

Comspandng o
qensicode Shoname meta
i

DatadualityTypever ¢

Comespandng to

qensricode Varsion mets
i

DataGuality TypeURi

Comespondng to
gensicode Canonica
s s

DataGualityTypeVerURI

Comespondng to
qensicode CanonicaVersionl i
s s

Type

Enumarsed i of cornmon
ypes ofaases o nama
pes,

Comspandng o
qensicode Shoname meta
i

Comespandng to
qensricode Varsion mets
i

Comespondng to
gensicode Canonica
s s

{Typeverval

Comespondngto

geneicode
Einanicabvariontn mats
s

Perzon Nare

{ llameValidrom

Th narne valdy fom,
date . rading name
hange

Hame Valdty t. 2.3
raking name dhing

Refarane to smaber
NameDetais dement it
o forsign key
ifarcemant. The
afrancad demant sy be
o . ot and the
Gt = 2 vl

8 Miscellaneous

8.1 Documentation

Although, all schema files are fully documented using XML Schema annotations it is not always convenient to browse the schema itself. This specification is accompanied by a set of HTML files auto generated by XML Spy. Note that not all information captured in the schema annotation tags is in the HTML documentation.
8.2 Examples

Several examples of instance XML documents for name, address and party schemas are provided as XML files. The examples are informative and demonstrate the application of this Technical Specification.

The example files and their content are being constantly improved and updated on no particular schedule.

8.3 Contributions from Public

OASIS CIQ TC is open in the way it conducts its business. We welcome contributions from public in any form. Please, use “Send A Comment” feature on CIQ TC home page (http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ciq) to tell us about:
· errors, omissions, misspellings in this specification, schemas or examples

· your opinion in the form of criticisms, suggestions, comments, etc

· willingness to contribute to the work of CIQ TC by becoming a member of the TC

· willingness to contribute indirectly to the work of CIQ TC

· provision of sample data that can be used to test the specifications

· implementation experience

· etc.

A. Acknowledgements

The following individuals have participated in the creation of this specification and are gratefully acknowledged:

Participants: MACROBUTTON
	John Glaubitz
	Vertex, Inc
	Member, CIQ TC

	Max Voskob
	Individual
	Former Member, CIQ TC

	Hidajet Hasimbegovic
	Individual
	Member, CIQ TC

	Robert James
	Individual
	Member, CIQ TC

	Joe Lubenow
	Individual
	Member, CIQ TC

	Mark Meadows
	Microsoft Corporation
	Former Member, CIQ TC

	John Putman
	Individual
	Former Member, CIQ TC

	Michael Roytman
	Vertex, Inc
	Member, CIQ TC

	Colin Wallis
	New Zealand Government
	Member, CIQ TC

	David Webber
	Individual
	Member, CIQ TC

	Graham Lobsey
	Individual
	Member, CIQ TC

	George Farkas
	XBI Software, Inc
	Member, CIQ TC

OASIS CIQ Technical Committee (TC) also wishes to acknowledge contributions from former members of the TC since its inception in 2000. Also, the TC would like to express its sincere thanks to the public in general (this includes other standard groups) for their feedback and comments that helped the TC to improve the specifications.
Special thanks to Mr.Ken Holeman, Chair of OASIS Code List TC for his assistance to the TC as and when required to release the OASIS Code List version of CIQ V3.0 XML Schemas.
Last but not least, the TC thanks all users of the CIQ TC specifications in real world and for their continuous feedback and support.
B. Intellectual Property Rights, Patents, Licenses and Royalties

CIQ TC Specifications (includes documents, schemas and examples1 and 2) are free of any Intellectual Property Rights, Patents, Licenses or Royalties. Public is free to download and implement the specifications free of charge.

1xAL-Australia.XML
Address examples come from AS/NZ 4819:2003 standard of Standards Australia and are subject to copyright

2xAL-International.xml

Address examples come from a variety of sources including Universal Postal Union (UPU) website and the UPU address examples are subject to copyright.

xLink-2003-12-31.xsd

This schema was provided by the xBRL group in December 2006.

C. Revision History

	Revision
	Date
	Editor
	Changes Made

	V3.0 PRD 01
	13 April 2006
	Ram Kumar and Max Voskob
	Prepared 60 days public review draft from Committee Draft 01

	V3.0 PRD 02
	01 June 2007
	Ram Kumar
	Prepared second round of 60 days public review draft from Committee Draft 02 by including all public review comments from PRD 01. Also included is implementation of OASIS Code list specification

Metadata Information for “DataQualityType” attribute that refers to genericode “DataQualityEnumeration.gc” file

Metadata Information for “Type” attribute that refers to genericode “PersonNameEnumeration.gc” file

 MACROBUTTON NoMacro [document identifier]

 MACROBUTTON NoMacro [specification date]
Copyright © OASIS Open 2004.All Rights Reserved.

Page 1 of 60
OASIS CIQ V3.0 Name, Address and Party Specs PRD 02

01 June 2007

Copyright © OASIS® 1993–2007. All Rights Reserved. OASIS trademark, IPR and other policies apply.
Page 6 of 65

_1241522279

