
	 Volume 63, Number 1, February 2016 l Technical Communication	 23

Applied Research

..

Structured Authoring without XML:
Evaluating Lightweight DITA for
Technical Documentation
By Carlos Evia, Virginia Tech and Michael Priestley, IBM

Practitioner’s
take-away:

•	 HDITA is an experimental version of
Lightweight DITA that uses HTML5
tags instead of XML for structuring
technical content.

•	 Students in the Technical Writing
course, perceived as novice tech-
nical authors, created sample pro-
cedural projects using HDITA for
Web deliverables.

Purpose: We present a proposal for HDITA, an HTML5-based version of the Darwin
Information Typing Architecture (DITA). We report on an exploratory study about
the feasibility of using HDITA as an authoring platform for technical content. We
asked how novice technical writers describe and evaluate the complexity and difficulty
of the different stages of the HDITA authoring process and if novice technical writers
can author effective topic-based technical content in HTML5 (HDITA) without full
knowledge of XML (DITA).
Method: To evaluate the feasibility of authoring and publishing with HDITA, we
modified the Instructions assignment of an introductory college course called Technical
Writing. Students wrote blog posts during the authoring process and completed a
survey on the perceived difficulty of HDITA. We evaluated the quality of HDITA Web
deliverables with college students from diverse technical and academic backgrounds.
Results: Most author students were somewhat confident authoring technical content
with HDITA, and most said they were very likely to somewhat likely to use HDITA
in the future for technical writing projects. Students reported that the most difficult
part of using HDITA involved Web templates and not HDITA itself. Twenty-seven
students evaluated HDITA deliverables and gave them positive scores using a rubric
for assessing quality technical information.
Conclusion: Acknowledging the small number of student authors involved in this feasibility
study, we can still conclude that novice technical writers did not perceive creating technical
documentation with HDITA as difficult or highly complex. Most student evaluators were
able to complete the assigned tasks following the instructions created in HDITA.
Keywords: DITA, structured authoring, XML, HTML5, feasibility study

Abstract

•	 Novice technical writers did not
find the HDITA authoring process
particularly difficult, and their deliver-
ables received positive comments and
feedback from evaluators.

•	 HDITA can simplify the technical
authoring process while producing
effective deliverables. Authors with-
out XML experience (such as Web
developers, programmers, etc.) can use
DITA for projects.

24	 Technical Communication l Volume 63, Number 1, February 2016

Applied Research

Structured Authoring without XML

Introduction

Publications from technical communication research
and practice frequently discuss the pros and cons of
structured authoring, single sourcing, topic-based
architecture, and component content management
systems. Extensible Markup Language (XML) is often
mentioned as a key enabler of that kind of authoring
and publication work. Not without problems and
criticism, XML has been in a mainly stable relationship
with the field of technical communication for over
a decade. Some have even said that a “thorough
understanding” of XML is essential for students of
technical writing (McDaniel, 2009, p. 6). However,
XML has also been labeled “cumbersome and complex”
(Johnson, 2015, para. 24) and even had to be defended
(O’Keefe, 2010) when it was blamed for the death of
creativity in technical writing.

The Darwin Information Typing Architecture
(DITA) is an XML-based, “end-to-end architecture for
creating and delivering modular technical information”
(Priestley et al., 2001, p. 354). Originally developed
by IBM, DITA is now an open standard maintained
by the non-profit Organization for the Advancement
of Structured Information Standards (OASIS). As
one of the main XML grammars used for technical
communication purposes, DITA is also the recipient of
mixed comments from practitioners.

For creators of technical content, DITA offers
the following benefits: it streamlines the content
creation process, it increases the quality of content
by standardizing it, and it allows authors to leverage
content in many different ways, which include reusing
it, publishing it in different formats, and translating
it (Samuels, 2014). From a managerial perspective,
Hackos presents a list of DITA’s business advantages,
which suggest that DITA will “[promote] the reuse
of information quickly and easily across multiple
deliverables,” “reduce the cost of maintaining and
updating information,” “enable continuous publishing,”
“share information across the global enterprise,” “reduce
the cost of localization,” and “reduce the technical debt
caused by inadequate, incorrect, and unusable legacy
information,” among others (2011, p. 10). Despite
DITA’s benefits for the technical communication
workflow, and its many industry evangelizers and users,
recent articles from the technical communication
blogosphere have characterized DITA as “overly

complex” (Kaplan, 2014, para. 13) and “far more
complex than it needs to be in almost every dimension”
(Baker, 2014a, Responses, para. 7).

Identifying (and reducing) DITA’s complexity is
more difficult than it might appear: each of DITA’s
features has its adopters and defenders, and DITA’s
detractors rarely agree on which features are too complex
for technical authors. But within the OASIS DITA
Technical Committee, there is general agreement on the
value of a lightweight entry point to DITA that preserves
some key features, including DITA differentiators such
as specialization and robust reuse mechanisms, while
providing an easy upgrade path to a more complete
feature set. Co-author Priestley formed the Lightweight
DITA subcommittee at OASIS to focus on trimming
the element and feature list of DITA to the minimum
necessary to enable core reuse capabilities in areas such
as education, marketing, and manufacturing. Another
focus of the subcommittee is to free the lightweight
specification from a dependency on XML, which allows
DITA as a standard to exist across formats, including
HTML5 and Markdown.

Lightweight DITA is still in development and not
ready for mass dissemination. However, many of the
ideas it represents are already mature enough to be tested.

In this paper, we present a proposal for an
HTML5-based version of Lightweight DITA, named
HDITA, and report on an exploratory study about the
feasibility of using HDITA as an authoring platform
for technical content. Our study took place during an
online introductory technical writing course, taught
by co-author Evia, at a major research university in
the United States. Our main objective in sharing
this proposal and preliminary results with readers of
Technical Communication in industry and academia is
to discuss the feasibility of creating technical content in
HDITA and obtain feedback on the potential impact
of Lightweight DITA for their work processes and
environments. The Lightweight DITA subcommittee
will also use that feedback for further evaluation of
simplified DITA concepts with larger groups and
industry settings.

We designed and conducted this research project
primarily as an authoring study. Although we evaluated
the quality and effectiveness of technical content
produced in the HDITA workflow, our main objective
was to focus on the author experience as non-expert
technical writers encountered structured authoring

	 Volume 63, Number 1, February 2016 l Technical Communication	 25

Carlos Evia and Michael Priestley

Applied Research

for the first time. We elaborate on the strengths and
limitations of DITA in the practice and outcomes of
technical communication.

Technical Communication and DITA XML

The relationship between technical communication and
XML (and its predecessor SGML) covers almost two
decades. A historical perspective of XML’s contributions
to the field of technical communication is beyond the
scope of this feasibility study. However, some major
milestones worth noting in this relationship include the
explicit role that XML took in Information Development:
Managing Your Documentation Projects, Portfolio, and
People (2007), the revised version of JoAnn Hackos’s
seminal book Managing your Documentation Projects
(1994). Whereas the 1994 book talked about electronic
publishing in general terms, the 2007 book includes
explicit connections to XML and DITA, not just as
tools for writing but also as part of a documentation
management methodology. Rockley (2003; 2012),
Pringle & O’Keefe (2003; 2009), Self (2011), Vazquez
(2009), Kimber (2012), White (2013), Bellamy et
al. (2012), Hackos (2011) and others have published
and revised books for practitioners emphasizing and
expanding coverage on the importance of XML (and
DITA) in technical documentation and content
management work environments.

DITA “is a technical documentation authoring and
publishing architecture that is based on principles of
modular reuse and extensibility” (Priestley et al., 2001,
p. 352). DITA’s modular structure is based on a generic
topic type that could describe almost any content, from
which are derived three main information or topic
types: concept, task, and reference, which “represent
the vast majority of content produced to support users
of technical information” (Hackos, 2011, p. 7). In a
DITA authoring environment, writers create “technical
content by assembling topic-oriented information types
or blocks of information that serve particular functions
in a document. A step in a set of instructions and an
ingredient in a recipe are examples of information
types” (Swarts, 2010, p. 133). As part of technical
genre development, a DITA-based authoring system
ensures that all the parts are present and that parallel
information can be recognized.

Bellamy et al. summarize the main benefits of
writing in a topic-based environment with DITA for

users and authors as follows: DITA allows users to
“find the information they need faster, accomplish their
goals more efficiently, [and] read only the information
they need to read.” DITA enables technical writers to
“maintain and reuse topics more effectively, organize
or reorganize topics more quickly, [and] share and
distribute the work on topic files more easily, which
increases writer productivity” (2011, p. 17).

There are no official figures about the usage
and adoption of DITA as a platform for authoring
technical documentation. Keith Schengili-Roberts, an
information architect known online as DITAWriter,
maintains an “informal list of firms that are using DITA
XML in some form in their documentation efforts”
(2015a, para. 1). As of July 2015, the list included 532
companies. Schengili-Roberts analyzed LinkedIn profiles
of thousands of technical writers, and his findings imply
“that potentially there are 1,400–3,000 firms worldwide
currently using DITA” (2015b, para. 3).

The next section presents critical perspectives
against XML and DITA. Some of the counterarguments
presented in the following section inspired the simplified
structured authoring approach evaluated in this study.

The case against XML and DITA
As members of the OASIS DITA Technical Committee,
we work on advancing the DITA standard and teaching
novice technical writers about its many benefits for
authors, managers, and users. However, we cannot
ignore feedback and counterarguments. Despite XML
and DITA’s strong presence in technical communication,
some practitioners argue, among other things, about
the complexity of DITA’s many XML tags, the need for
specialized tools to produce end-user deliverables, and
the high learning curve for specializing DITA beyond
the core concept, task, and reference topic types.

In 2007, technical and fiction writer Larry Kollar
hit a nerve in the field of technical communication
with a series of blog posts titled “XML Heresies.”
The Yahoo! blogging platform hosting the posts has
gone offline since. Nevertheless, their author agreed
to share the original “heresies” via email (L. Kollar,
personal communication, February 22, 2015). Kollar
questioned the need for XML in documentation
projects and pondered if the fixed structured imposed
by XML was actually beneficial to the profession: “Do
(XML-based publishing systems) free us to write better
documentation, or do they stifle the creativity that’s

26	 Technical Communication l Volume 63, Number 1, February 2016

Applied Research

Structured Authoring without XML

essential for human-to-human knowledge transfer?”
(Kollar).

Consultants and structured authoring advocates
reacted to Kollar’s comments, and some said he
displayed “a very myopic view of technical writing,”
as reported by Abel (2007, para. 5). A few years
later, Sarah O’Keefe wrote a column for Intercom
defending XML from critics who called it “the death
of creativity in technical writing.” In XML-based
authoring environments, O’Keefe argued, technical
communicators “have the most opportunity for
creativity in crafting sentences, paragraphs, topics, and
groups of topics that explain complex concepts to their
readers” (O’Keefe, 2010, p. 37).

More recently, practitioners lament that, whereas
programming and scripting languages move toward
simplified syntax and tagging systems, technical
communication continues to rely on XML and complex,
nested tag structures.

What are we seeing? Simplification. Ease of use.
A learning curve that gets less steep every time.
Languages that drop features that aren’t used, or
aren’t used often. And what has techcomm poured
resources into? DITA. An arcane, overly complex
language with a massive learning curve that requires
specialized tools. (Kaplan, 2014, para. 13)

Popular technical communication bloggers Mark
Baker and Tom Johnson have articulated arguments
about the perceived complexity of XML and,
particularly, DITA. According to Baker, “XML is not the
answer. Structured writing may be the answer. XML is
one way to implement structured writing” (2014b, para.
1). After experimenting with DITA as an authoring
platform, Johnson authored a blog post titled “10
reasons for moving away from DITA.” Although some
of Johnson’s claims come from his confounding DITA
the XML standard with DITA-aware tools, Johnson’s
message is loud and clear: “Writing in XML is more
cumbersome and complex” (2015, para. 24).

No single technical writer, especially not a novice
one, is expected to learn all available DITA tags in order
to use DITA as an authoring and publishing platform.
While a generic DITA topic only requires the XML
identifier and a title, the main complaints against the
standard focus on the increasing page count for its spec,
which was in part due to adding a smaller “starter”

document type to the package. Therefore, the challenge
for the DITA Technical Committee was how to decrease
complexity for new users of DITA when efforts to
provide easier entry points were just perceived as added
complexity.

The answer was to target Lightweight DITA not
as another set of document types within the DITA
specification but as a separate specification that would
be judged on its own merits. The following section
introduces the proposal for HDITA, which is an
HTML5-based version of Lightweight DITA.

HDITA: A Proposal

The idea of a simplified version of DITA to reduce
the documentation standard’s learning curve has
been around for a few years. Back in 2011, the DITA
Technical Committee was talking about a “limited DITA
profile,” which was still XML-based, but depended
heavily on HTML tags (such as <p> and) to
simplify many semantic structures of full DITA. As the
concept of Lightweight DITA developed further, at one
point it became an XML sub-set of DITA that included,
for example, 27 possible elements inside a topic, whereas
full DITA includes a possible combination of 90+
elements. Originally, Lightweight DITA was planned as
a component of the DITA 1.3 specification, but interest
from members of the DITA Technical Committee,
vendors, and researchers pushed it out of the main
specification and into its own parallel and compatible
standard. The purpose of Lightweight DITA is not to
replace full DITA XML. If anything, Lightweight DITA
provides basic DITA access to authors who do not need
all the standard’s features but whose deliverables should
be compatible with full DITA XML, if needed.

In 2014, co-author Priestley introduced a proposal
to align a lightweight DITA profile in XML with an
equivalent markup specification based on HTML5.
While XML-based publishing chains remain the industry
standard for many content-centric industries (such as
publishing, pharmaceutical, and aerospace), this proposal
responded to concerns about their complexity, especially
as a barrier to new adopters or contributing authors.

The challenges with the HTML5-based approach
were based on a lack of standardization: each new
extension of HTML5 introduces its own additional
semantics and constraints, locking the content into
a particular tool or vendor pipeline. The additional

	 Volume 63, Number 1, February 2016 l Technical Communication	 27

Carlos Evia and Michael Priestley

Applied Research

semantics and constraints may also require a custom
authoring environment, resulting in another barrier
to content portability, without the advantages of
authoring-time validation that an XML-based approach
provides. Finally, even though the approach may
eliminate processing steps for the case of simple content,
more complex content scenarios—such as content
reuse and filtering, or indexing and link redirection—
require additional processing steps that reintroduce the
complexity of an XML-based approach, without the
advantage of existing standards-based solutions.

This proposal suggests a third way: defining both
a lightweight XML model based on DITA that can be
used for validated authoring and complex publishing
chains and a lightweight HTML5 model that can be
used for either authoring or display.

The two schemes—provisionally named XDITA and
HDITA—are designed for full compatibility with each
other as well as conformance with the OASIS DITA and
W3C HTML5 standards. They give HTML5 users a
set of standardized mechanisms to access the power and
flexibility of DITA’s reuse and specialization capabilities
and give DITA users a way to integrate and interact
with HTML5-based content systems without complex
mapping or cleanup steps.

XDITA, still in an experimental stage, is outside
the scope of this paper and will be implemented and
evaluated in the future. The feasibility study reported in
this manuscript applies exclusively to HDITA, because

HTML5 and DITA are now close enough to achieve a
reasonable and semantic mapping with the application
of a few simple constraints. Figure 1 compares a basic
topic in DITA XML to a simplified topic in HDITA.

Taking advantage of HTML5’s custom data
attributes, HDITA allows topic specialization without
XML tags or advanced metadata. The resulting topics
are easier to author and read by writers with basic
HTML knowledge and can be parsed through a browser
immediately in simple Web versions. We hypothesize
that a structured-authoring language based on HTML5
can make DITA more accessible and easier to adopt by
technical writers and Web professionals who work in
HTML but are not familiar with XML. Figure 2 shows
the specialized DITA task topic and the same simplified
task topic in HDITA.

Summarizing, HDITA is not presented as a
potential replacement for DITA XML. HDITA’s main
characteristics and advantages are as follows:

•	 Simplified authoring by using a small set of
semantic tags and attributes in HTML5.

•	 Instant presentation layer for basic deliverables
without the need of a transformation process.

•	 Compatibility with XDITA or full DITA XML for
advanced processing and filtering.

•	 Possibility of using a wide variety of commercial
and open source editors for HTML5 instead of
specialized tools.

Figure 1: DITA topic compared to HDITA simplified topic

DITA Topic HDITA Topic
<topic>
 <title>The point of it all</title>
 <shortdesc>I can sum it up here</shortdesc>
 <body>
 <p>I can say some more stuff</p>
 <section>
 <title>Stuff</title>
 <p>And so on</p>

 This
 Is
 A List

 </section>
 </body>
</topic>

<article>
<h1>The point of it all</h1>
<p>I can sum it up here</p>
<p>I can say some more stuff</p>
<section>
<h2>Stuff</h2>
<p>And so on</p>

This
Is
A List

</section>
</article>

28	 Technical Communication l Volume 63, Number 1, February 2016

Applied Research

Structured Authoring without XML

•	 Potential for involving professional communities
of Web developers and programmers, who do not
necessarily work with XML but most likely are
proficient in HTML.

The next section focuses on the benefits of HDITA
for technical authors, and it presents the conceptual
model for content creation we evaluated in this study.

The HDITA Author Experience

To minimize the potential complexity of authoring
and displaying technical content, HDITA aims to
simplify the learning curve of DITA XML while
preserving its key benefits of modularity and reuse.
In the introduction to their edited collection Content
Management: Bridging the Gap between Theory and
Practice, George Pullman and Baotong Gu talk about
new demands for technical communicators. When
discussing the effects of content management systems
on the balance of creation and delivery of information,
Pullman and Gu address the “decontextualization at the
input stage and the recontextualization at the output
stage” of content delivered through a CMS (2009,
p. 8). In an authoring workflow with DITA XML,
for example, a team of writers could create separate

topics with related steps that, when transformed into
deliverables, can appear together in one single task as
a PDF or a concept as an HTML file. With HDITA,
authors can still create content in such an assembly-like
environment. However, they can also display content
directly in the language (HTML5) in which it was
originally written.

That unpacking and repacking of content is
at the core of Rick Yagodich’s Author Experience:
Bridging the Gap between People and Technology in
Content Management. Yagodich introduces a content
communication process that flows from communicator
to audience (and vice versa). Yagodich’s model includes
three parts: input, storage, and output. In the example
DITA authoring system from the previous paragraph,
output1 could be a PDF filtering information for a
specific type of audience, and output2 could be a website
with information for all audiences. An author in such
a process could be disconnected from the final output
of her content, and her input work could be limited to
what the storage tags and constraints expect from her.
Yagodich suggests the creation of a translation layer
between the storage and the various output channels and
yet another “layer of translation so that the input logic
and paradigms make sense to the authors, rather than
simply mirroring the storage model” (2014, p. 4).

Figure 2: DITA task compared to HDITA task

DITA Topic HDITA Topic
<task>
 <title>How to do something</title>
 <shortdesc>Introduction to this specific task</shortdesc>
 <taskbody>
 <context>Use only when ready</context>
 <steps>
 <step>
 <cmd>Plan something</cmd>
 </step>
 <step>
 <cmd>Do something</cmd>
 </step>
 <step>
 <cmd>Evaluate something</cmd>
 </step>
 </steps>
 <example>Like this</example>
 </taskbody>
</task>

<article data-hd-class=”task”>
<h1>How to do something</h1>
 <p>Introduction to this specific task</p>
<section data-hd-class=”task/context”>
<p>Use only when ready</p>
</section>
<section data-hd-class=”task/steps-informal”>

<p>Plan something</p>
<p>Do something</p>
<p>Evaluate something</p>

</section>
<section data-hd-class=”topic/example”>
<p>Like this</p>
</section>
</article>

	 Volume 63, Number 1, February 2016 l Technical Communication	 29

Carlos Evia and Michael Priestley

Applied Research

Yagodich’s model, however, resembles Shannon
and Weaver’s linear process of communication (1949),
which has been criticized for treating communication
as a mechanical exchange without focusing on the
production of meaning (Fiske, 1990) or reducing
meaning to content delivered without “allowance
for the importance of social contexts and codes”
(Chandler, 2002, p. 176). Rebekka Andersen (2014)
presents a more semiotic and humanistic model of a
similar workflow (a content management system and
the content strategy framework that supports it) with
content authors (users can be included in this category)
and a reception stage with deliverables for end-users
that is beyond the transmission’s input and output. The
middle storage point is represented by a more complex
combination of an XML repository, an automated
assembly and publishing server, and a delivery engine.

Combining the work of Yagodich and Andersen,
we created the conceptual model for an authoring
experience with HDITA:

•	 Authoring/input: Content authors will be directly
connected to the repository by using HTML5 for
both processes instead of XML.

•	 Process/storage: Content assembly and delivery
sections will be more transparent when authors
have direct control over simple text maps and
filtering capabilities.

•	 Reception/output: The delivery of end-user
products with customized content, which can be
HTML5 or any transformation provided by DITA
XML tools.

We investigated the feasibility of this model in a
college-level technical instructions assignment, which is
described in the following section.

HDITA feasibility study
In order to evaluate the feasibility of authoring and
publishing technical content with HDITA, we modified
the Instructions assignment of an introductory technical
writing course at a major research university in the
United States. The technical writing service course,
“which helps future engineers, scientists, and managers
succeed in their careers, works with the student’s
disciplinary knowledge to mediate technology, science,
or business for users” (Coppola, 1999, p. 259). The
particular section we modified was conducted online

and was not for students majoring in Professional and
Technical Writing. The students, with subject matter
knowledge in technical and scientific concepts, were
new to technical writing; therefore, we perceived them
as novice technical writers with the potential to become
casual or formal practitioners after graduation.

Our research questions for the feasibility study were
the following:

1.	 How do novice technical writers describe and
evaluate the complexity and difficulty of the
different stages of the HDITA authoring process?

2.	 Can novice technical writers author effective topic-
based technical content in HTML5 (HDITA)
without full knowledge of XML (DITA)?

The Technical Writing course’s learning objectives
and assignments traditionally include a basic HTML
writing activity for online presentation of content. They
also include a technical instructions project, which
focuses on developing procedural information to solve
users’ problems. Our revised project combined those
assignments under the following description:

You need to write Web-based instructions for a real-
life situation. Virginia Tech asked you to develop
documentation showing students how to use
LibreOffice as an alternative to Microsoft Office or
Apple iWork. Your job is to write instructions guiding
a first-year college student on how to do the following:

•	 Download and install LibreOffice
•	 Write a letter in LibreOffice Writer
•	 Create a simple spreadsheet in LibreOffice Calc
•	 Create a presentation in LibreOffice Impress.

You should include examples and pictures, but don’t
make a whole tutorial on all the LibreOffice features.
Instead, focus on specific user tasks.

By combining the introductory HTML project
and the Instructions module already included in the
syllabus, we did not have to make major modifications
to the course. The new content to introduce DITA and
HDITA only added a couple of hours to the existing
lesson plans. Furthermore, the assignment’s purpose
was not solely to teach students about HDITA. The
module containing this project started with discussions

30	 Technical Communication l Volume 63, Number 1, February 2016

Applied Research

Structured Authoring without XML

about rhetorical principles for developing user-oriented
tasks. The students read relevant chapters from their
course’s primary textbook, Markel’s Practical Strategies
for Technical Communication (2013), and from Pringle
and O’Keefe’s Technical Writing 101 (2009). When
advocating for content about XML in technical writing
courses, McShane proposed to combine “the theory
(single sourcing), methodology (modular writing), and
technology (content management) to support, apply,
and guide it” (2009, p. 83). In our project, HDITA
influenced all three aspects of that formula, but the
assignment was not just about writing HTML5 tags.

The online Technical Writing class had eighteen
students (12 male and 6 female; 5 non-native English
speakers) whose ages ranged between 19 and 28 years
old. Academic majors represented in the course were
Mathematics, Computer Science, Electrical Engineering,
General Engineering, Biology, Animal and Poultry
Sciences, Dairy Science, Environmental Science, Theatre
Arts, and Construction Engineering.

All data collection was conducted with approval
from the Virginia Tech Institutional Review Board
under protocol #14-745.

Prior to this assignment, the students had not been
exposed to XML as an authoring tool. Some of them,
majoring in computing-related fields, had interacted
with XML as a layer in database-driven computing
projects. The students had no previous knowledge of
DITA. We informed them of the project’s experimental
nature and the extra lessons they received contained
information about DITA’s topic structure (including
concepts, tasks, and references) and HDITA’s syntax.
However, the course content did not cover DITA XML.
For the layers of automated assembly and delivery,
because HDITA is still not integrated into the DITA
Open Toolkit or other DITA-aware tools, we introduced
the students to Jekyll (http://jekyllrb.com) via GitHub
Pages (http://pages.github.com) to take advantage of a
template for Web deliverables created for a plugin of the
DITA Open Toolkit.

Once the students authored and coded their
HDITA topics, we asked them to create maps in YAML
syntax (http://yaml.org), which then connected to a
Jekyll template we provided for deployment in GitHub
Pages. The Jekyll template generated a responsive,
mobile-ready website following Andersen’s observation
about content management leaders, commenting on
how Web-enabled mobile devices are “revolutionizing

content consumption—and thereby production”
(Andersen, 2014, p. 126).

Figure 3 shows a student’s sample HDITA code for a
task and the transformed version of that topic when seen
as the GitHub Pages output on a mobile device.

Figure 3: Student HDITA code and responsive Web
deliverable

To answer our research questions, we asked the
Technical Writing students to compose reflection
blog posts documenting their progress, problems, and
accomplishments as they worked on the assignment.
Once their projects were submitted, students also
had to take a survey about their experiences working
with the authoring, processing, and output stages
of the assignment. The next section presents results
and findings of the feasibility study as we revisit our
research questions.

Results and Findings

Describing HDITA’s levels of difficulty
Our first measure to evaluate the Technical Writing
students’ perceptions about complexity in HDITA
and the overall difficulty of the Lightweight DITA
authoring experience was an optional survey they took
after completing the Instructions project. We received
twelve usable responses. The following questions asked
students about their level of confidence with specific
stages of the authoring process and gave them Likert
scale-like possible answers (Very confident, Somewhat
confident, Neutral, Not very confident, and Not
confident at all):

	 Volume 63, Number 1, February 2016 l Technical Communication	 31

Carlos Evia and Michael Priestley

Applied Research

“How confident do you feel authoring topics in
HDITA?” Nine students selected “Very confident” (2)
or “Somewhat confident” (7), and only two answered
“Not very confident” (1) or “Not confident at all” (1).

“How confident do you feel writing task-oriented
instructions?” Eight students answered “Very
confident,” two answered “Somewhat confident,” one
answered “Neutral,” and one responded “Not confident
at all.”

“Would you use HDITA if you had to write Web-
based instructions in the future?” Ten students selected
“Very likely” (6) or “Somewhat likely” (4), and two
answered “Not very likely” (1) or “Not likely at all” (1).

“Would you recommend HDITA to colleagues or peers
who have to write instructions?” Ten students selected
“Very likely” (6) or “Somewhat likely” (4), and two
answered “Not very likely” (1) or “Not likely at all” (1).

The last question asked student authors to rank the
following activities, from easiest to most difficult, in the
process of creating the Instructions assignment:

•	 Authoring/input stage:
ǹǹ Analyzing the audience’s needs for your project
ǹǹ Conducting research for your instructions
ǹǹ Writing tasks, concepts, and references
ǹǹ Making maps with topics

•	 Storage/process stage:
ǹǹ Learning and using the HDITA tags
ǹǹ Uploading your topics to GitHub

•	 Reception/output stage
ǹǹ Presenting Web deliverables in GitHub Pages
ǹǹ Editing your deliverables
ǹǹ Evaluating the usability of your deliverables (this

stage was completed, with modifications, by the
first author after the course ended).

“Learning and using the HDITA tags” and
“Uploading your topics to GitHub Pages” were consistently
ranked as difficult with the latter marked as the most
difficult. All other steps were ranked as easy to complete.

We obtained additional, qualitative information
to evaluate students’ perception of complexity in an

HDITA authoring workflow through reflection posts
they had to write while working on the Instructions
assignment. We collected a total of 38 reflection posts
and coded their comments in a stakeholders’ relationship
table. We documented the positive, neutral, and negative
statements made about each stage of our model of
content management communication (Table 1).

Table 1: Stakeholders’ relationship table with students’ qual-
itative feedback

Positive Neutral Negative

Authoring/input 9 1 1

Process/storage 12 3 6

Reception/output 7 2 1

The survey and reflection posts show a mostly
positive student reaction for the authoring/input stage
and more neutral to negative statements for the process/
storage, with comments like the following (all students’
comments are presented as they were written, including
any errors or typos):

Overall, I think HDITA and GitHub are awesome
ways to create files and webpages. I really like the
format and structure of the files that HDITA allows.
Once the initial basics are mastered, I feel like it
allows you to help yourself along in a way that most
programs do not. (Female student majoring in
Mathematics with a minor in Computer Science.)

So far, HDITA seems fairly straightforward to
me, and I like the basic layout of the instructions
assignment. However, I am wondering if that is a bad
thing - for all I know, I might be doing everything
completely wrong. Hopefully not, but if I encounter
trouble, I will post and ask my questions! (Female
student majoring in Theatre Arts.)

 Being a Computer Science major and dealing with
HTML/XML before, getting a grip on HDITA
wasn’t too challenging for me. I think this is a good
paradigm to use for making instructions, because
of the formatting capabilities with HDITA. (Male
Computer Science student.)

I have used HTML in the past for various simple
projects, but this method makes creating clean, well

32	 Technical Communication l Volume 63, Number 1, February 2016

Applied Research

Structured Authoring without XML

formatted pages a lot less of a headache. Getting
everything started has been relatively easy so far.
(Electrical Engineering male student.)

I do not have any experience with html at all, in
fact this is actually my first time doing anything
like this. Once I put everything together, the design
looked really professional and I was pleased with the
outcome. I felt like I was able to create something
nice even as a beginner. It made me feel good that I
made it on my own. It was very useful in this way.
(Female student in Animal and Poultry Sciences.)

A few comments were neutral to negative about the
authoring experience:

This class is the first experience I have had with
HTML, but I have had previous programming
experience in other languages so it hasn’t been very
difficult. However, learning the tags and formatting
has been a minor challenge. Initially I thought
HDITA was more complicated than it actually is,
and I have spent a lot of time doing things 3-4 times
when I really only needed to do it once. (Female
Computer Science student.)

I largely enjoyed this project, however i was
uncomfortable with the reference portion of the
repository. I still am not sure if i did this section
how it was suppose to be done (, , ,)Overall though,
this project was a nice combination of everything
else we have done previously. (Male General
Engineering student.)

Some students actually wanted to dig deeper into
the project and requested an API or a way to customize
the template:

I’ve worked with HTML and CSS before, as well
as a handful of other languages. I only have a single
remark about HDITA : could i get a simple API of
sorts? Something along the lines of ‘this tag does this,
this tag does that, etc.’ would have helped me out
a bunch. Besides that, it was a unique experience.
(Male student majoring in General Engineering.)

 I think an API would be really helpful for
inexperienced HTML users (like myself), because I

have spent extra time looking up commands only to
later find out they don’t even work correctly the way
I’m trying to use them (, , ,) I do really like the end
result that HDITA produces as it is very professional
for amount of time needed for production, and am
still having fun customizing my websites. (Female
student majoring in Mathematics.)

Upon completing the assignment, I can’t say I had
any problems with the syntax or understanding of
HDITA. I’ve also used Github in the past, so picking
that up was not a challenge for me either. In the
future, I’ll probably learn how to change how the
structure of the page looks to make it prettier. I guess a
suggestion would be including how to do this in part
of a lesson as something optional for our assignment if
we have extra time. Other than that I can say that this
assignment was pretty interesting and I had a good
time doing it. (Male Computer Science student.)

Negative comments were, as in the survey results,
grounded in the translation from storage to output/
reception, as students struggled to generate their Jekyll
sites in GitHub Pages.

 I have used HTML in the past, and I feel HDITA
will be a great tool to help programmers create clean,
straight-forward instructional webpages. Once users get
used to HDITA’s tags they will quickly be able to create
websites. So far, the only difficulty I have had was
Github related. (Male General Engineering student.)

Some negative comments, however, evolved
into positive comments or included troubleshooting
recommendations for peers:

No matter how many time I redo the uploading and
setup, github just keeps sending me emails saying
page build failure. It took me a whole day to figure
this out. I checked that file again, and you know
what? There is a space in front of a topic, which it
is not supposed to be there. Well, I think that tells
us when dealing with things you don’t know much
about, be really, really, really careful. (Male Electrical
Engineering student.)

Well, honestly, so far it’s been disastrous. I’ve gotten
a page setup (after about 45 minutes of mocking

	 Volume 63, Number 1, February 2016 l Technical Communication	 33

Carlos Evia and Michael Priestley

Applied Research

about in virtual mud), and now all that’s showing
is the readme.md... How can I fix this? any tips are
welcome. (Male General Engineering student.)

A couple of minutes later, that same student posted
the following comment: “Nevermind, i made a stupid
mistake. all fixed now! ”

I do not really understand how to do any of this
HTML stuff because I have never used it before.
I am not a computer person and I am studying
biology, so I don’t really get how this will help me
in the future. I sort of understand how to do basic
html, the kind we did (in an earlier assignment)
but doing this HDITA is very confusing. (Female
student majoring in Biological Sciences.)

Eight minutes later, the student added the following:
“Writing the code was easier than I thought it would be
but it took me forever to get it to sync with github.”

Creating effective HDITA documentation
In order to evaluate the effectiveness of projects created
in HDITA by novice technical writers, we first graded
them based on a rubric developed using Markel’s
guidelines for creating instructions (2013) and Pringle
& O’Keefe’s recommendations for writing task-oriented
information (2009). The average grade on the project
was 16.4 on a scale of 0 to 20 points. Students’ grades
were not affected by their opinions of HDITA as an
authoring platform, and appropriate use of HDITA tags
was just one item in the grading rubric. Two students
dropped the course before this assignment, so we
collected a total of 16 HDITA submissions. Common
errors included those regularly seen in the first draft of
an instructions assignment in similar courses, but errors
related to HDITA tags were also frequent. Table 2 shows

some frequent and relevant errors found in the different
stages of the HDITA authoring process.

A former graduate teaching assistant in the
Professional and Technical Writing program at Virginia
Tech conducted a second round of grading once the
course ended. The average grade on this round was 17.2
on a scale of 0 to 20 points.

For end-user evaluation of quality, we conducted
sessions with 27 students enrolled in courses in
computer science, statistics, and English. We recruited
students in several introductory summer courses, and
participants received extra credit (one numerical point
on their final term grade) for completing a quality
review of online instructions for installing LibreOffice
written in HDITA. The evaluators were 12 male and 15
female students whose ages ranged from 18 to 34 years
old. These students were not enrolled in the Technical
Writing course at the time of the evaluation, and they
were assigned randomly selected HDITA projects
from Technical Writing students who gave us written
permission to share their work. The student evaluators
were asked to conduct the following activities:

1.	 Answer a questionnaire about their previous
experience with the subject matter of the HDITA
deliverables (installing and using office software).

2.	 Follow the instructions to (a) download and install
LibreOffice, and (b) complete at least one of the
following tasks: write a letter in LibreOffice Writer,
create a simple spreadsheet in LibreOffice Calc,
or create a presentation in LibreOffice Impress
(evaluators self-reported on this step).

3.	 Complete a survey based on the IBM quality
checklist for evaluating technical documentation
(Carey et al., 2014).

4.	 Provide optional information about positive and
negative aspects of the HDITA deliverables.

Table 2: Frequent and relevant errors found in HDITA deliverables

Stage Error Frequency (in 16
student projects)

Authoring/input Some steps are not written in imperative mood or not properly numbered 9
Storage/process Code displays improper use of HDITA tags 5
Authoring/input The deliverable presents serious spelling or grammar problems 4
Authoring/input Content is too technical for the target audience 4
Authoring/input Topics lack images to explain concepts or tasks 2
Reception/output Web deliverable not displaying in GitHub Pages 1

34	 Technical Communication l Volume 63, Number 1, February 2016

Applied Research

Structured Authoring without XML

To determine the evaluators’ experiences with the
HDITA deliverables’ subject matter, we asked them if
they had ever interacted with LibreOffice or similar office
suites and how comfortable they were with their skills
installing new software on their computers. No student
evaluator had previous experience with LibreOffice, but
93% of them had worked with Microsoft Office, 81%
with Google Docs, 33% with Apple iWork, and 11% with
IMB Collaboration/Lotus. Fifteen percent of the student
evaluators said they were very good at downloading and
installing software, 37% described themselves as good,
33% as fair, 7% as poor, and 7%, as very poor.

When the quality evaluation sessions concluded,
5 of the 27 student evaluators said they could not
complete the tasks as written. Three of those five
evaluators were using Mac computers and received
randomly assigned instructors for Windows. Another
evaluator said she needed more details about the tasks,
and the fifth said he couldn’t find what he was looking
for on the website’s menu.

Once the student evaluators conducted tasks with
the HDITA deliverables, they completed a survey based
on the IBM quality checklist for evaluating technical
documentation (Carey et al., 2014). On a scale of 1 to
10, where 1 was “among the worst” and 10 was “among
the best, could be used as a model,” student evaluators
had to rank the randomly assigned HDITA projects on
the following characteristics:

•	 Easy to use (task orientation, accuracy, completeness).
•	 Easy to understand (clarity, concreteness, style).
•	 Easy to find (organization, retrievability, visual

effectiveness).

Table 3 aggregates the scores received for the
randomly assigned HDITA deliverables. The scores
emphasize the overall average and minimum value
assigned to the projects.

Table 3: Mean and minimum score received on quality docu-
mentation characteristics

Quality characteristic Mean score Minimum
score received

Easy to use 7.26 4

Easy to understand 7.44 4

Easy to find 7.31 3

When asked to provide additional information on
the elements they found difficult to follow in the online
instructions created with HDITA, the student evaluators
commented on the placement of images, the limitations
of a side menu bar as the only available navigation tool,
and the fact that the instructions they received after the
random selection were written for a different operating
system than the one installed on their laptops. When
asked about elements that they found easy to follow,
student evaluators commented on the detailed “step-by-
step nature” of the instructions, the use of screen captures
with examples, and the overall professional look of the
websites (“It reminded me of something I would see from
a major software company,” said one of the evaluators).

Next, we present the study’s conclusions and
offer recommendations for further research with
Lightweight DITA.

Conclusion and Recommendations

Acknowledging the small number of student authors
involved in this study, we can still conclude that
creating technical documentation with HDITA was
not perceived as difficult or highly complex by novice
technical writers. The deliverables produced in HDITA
were similar in content to those produced in other
introductory technical writing courses with tools like
Microsoft Word. However, the students involved in
this project created responsive Web-based instructions
that they could filter and manipulate using text-based
maps. The students also learned about the benefits of
structured authoring and topic-based writing without
the additional layer of complexity of XML.

Students struggled with the translational component
that assembled their topics into websites via Jekyll and
GitHub Pages. Nevertheless, most of their comments
reflected success after a few attempts. This problem was
unique to the feasibility study, because HDITA is still
not integrated with DITA-aware tools. In future work,
we do not foresee using Jekyll as a translational layer in
Lightweight DITA.

Most student evaluators were able to complete
the assigned tasks following the instructions created in
HDITA. Evaluators reported problems related to the
deliverables’ navigation and image layout, which can be
attributed to the Jekyll template and not to the quality
of content and structure in the HDITA source authored
by novice technical writers.

	 Volume 63, Number 1, February 2016 l Technical Communication	 35

Carlos Evia and Michael Priestley

Applied Research

We recognize that a classroom environment,
compared with the workplace, has great time
constraints, and faculty worry about using class time
to teach new tools or technology at the expense of
course content. Our results show that, combining the
already existing modules in HTML and instructions
from the syllabus, the HDITA elements included in the
course supported the content goals and enhanced the
students’ technical writing experience. We hope these
findings also help practitioners, as HTML is a skill more
frequently desired than XML in technical writing and
content authoring positions. HDITA represents a step
forward in combining the advantages of DITA with the
popularity and easiness of HTML.

Benefits of generating Web documentation
in HDITA instead of plain HTML5, or even a
combination of HTML5 and Jekyll, include access to
the transformations from the DITA Open Toolkit and
community plug-ins. Once the online course ended, we
selected three student projects (with proper permission
from the authors) and converted them to DITA XML
through Jotsom (http://jotsom.com), an experimental
online authoring and transformation environment
developed by Don Day, who is also a member of the
OASIS Lightweight DITA subcommittee.

The HDITA topics created by the Technical Writing
students generated valid DITA XML files in which,
for example, an HDITA <article data-hd-class=˝task̋ >
tag was an actual DITA <task> task, and an HDITA
<section data-hd-class=˝task/steps-informal/ul/li̋ > tag was
an actual DITA <step> tag. This consistency in structure
cannot be achieved by converting plain HTML5 to
XML. Figure 4 shows the DITA XML generated from a
student project and a PDF transformation of that topic
created with the DITA Open Toolkit.

A major limitation of this feasibility study was the
small size of the class. However, this was the first-ever
hands-on evaluation of Lightweight DITA. Exploratory
studies like the one reported in this manuscript are
essential as the Lightweight DITA subcommittee
continues working on approaches to minimize
complexity for authors of a widely used, international,
open documentation standard such as DITA. Another
limitation is that HDITA is not yet included in the
DITA Open Toolkit, and the conceptual model we used
in this study did not allow for advanced DITA features
like conditional processing and advanced content reuse.
However, student projects created in HDITA can be

transformed to DITA XML and can take advantage of
those features.

Although Lightweight DITA does not replace the
functionality of DITA XML, an authoring model similar
to the one presented in this paper could be beneficial
for practitioners currently using DITA or considering
adopting the standard. For current users, HDITA provides
an easy way to invite collaborators who are not proficient
in XML but work in HTML, including Web developers
and authors or programmers and application developers.
The students who were comfortable writing HTML or
who had programming experience quickly embraced
the concept of structured authoring with HDITA. For
potential DITA adopters, HDITA represents an entry to
the standard without specialized tools. Students authored
effective HDITA topics in editors ranging from Windows
Notepad to Sublime Edit, and the HTML5 foundation
allowed instant basic reader view on a Web browser.

Next steps in this work include obtaining and
implementing feedback from practitioners and testing
HDITA with larger groups, most likely in small companies
or non-profits needing documentation. Furthermore,
the subcommittee is working on XDITA, a lightweight
XML model, and MarkDITA, which generates DITA-like
deliverables from content created in Markdown.

Acknowledgements

Carolyn Rude and Russell Willerton provided helpful
feedback on drafts of this article. We also acknowledge
the contributions of our colleagues from the Lightweight

Figure 4: HDITA topic converted to DITA XML via Jotsom (top)
and its PDF transformation (bottom) via the DITA Open Toolkit

36	 Technical Communication l Volume 63, Number 1, February 2016

Applied Research

Structured Authoring without XML

DITA subcommittee at OASIS. The Jekyll template used
for the class experiment was based on a DITA Open
Toolkit plugin created by Jarno Elovirta and modified
by students sponsored by a seed grant from the Virginia
Tech Institute for Society, Culture and Environment.

References

Abel, S. (2007, March 19). Larry Kollar’s XML heresy:
Structure can take care of itself (Can’t it?). Retrieved
from http://thecontentwrangler.com/2007/03/19/
larry_kollars_xml_heresy_structure_can_take_care_
of_itself_cant_it/

Andersen, R. (2014). Rhetorical work in the age of
content management: Implications for the field of
technical communication. Journal of Business and
Technical Communication, 28(2), 115–157.
doi: 10.1177/1050651913513904

Baker, M. (2014a, November 12). What kind of
“easy” authoring are you looking for? Retrieved
from http://everypageispageone.com/2014/11/12/
what-kind-of-easy-authoring-are-you-looking-for/

Baker, M. (2014b, January 27). XML is not the
answer. Retrieved from http://everypageispageone.
com/2014/01/27/xml-is-not-the-answer/

Bellamy, L., Carey, M., & Schlotfeldt, J. (2012). DITA
best practices: A roadmap for writing, editing, and
architecting in DITA. Boston, MA: IBM Press/
Pearson Education.

Carey, M., McFadden Lanyi, M., Longo, D., Radzinski,
E., Rouiller, S., & Wilde, E. (2014). Developing
quality technical information: A handbook for writers
and editors, third edition (3rd ed.). Upper Saddle
River, NJ: IBM Press.

Chandler, D. (2002). Semiotics: The basics. London:
Routledge.

Coppola, N. (1999). Setting the discourse community:
Tasks and assessment for the new technical
communication service course. Technical
Communication Quarterly, 8(3), 249–267.

Fiske, J. (1990). Introduction to communication studies
(2nd ed.). London: Routledge.

Gesteland McShane, B. (2009). Why we should teach
XML: An argument for technical acuity. In G.
Pullman & B. Gu (Eds.), Content management
bridging the gap between theory and practice (pp.
73–85). Amityville, NY: Baywood.

Hackos, J. (1994). Managing your documentation projects.
New York, NY: Wiley.

Hackos, J. (2007). Information development managing
your documentation projects, portfolio, and people.
Indianapolis, IN: Wiley Technology.

Hackos, J. (2011). Introduction to DITA: A user guide to
the Darwin Information Typing Architecture including
DITA 1.2 (2nd ed.). Denver: Comtech Services.

Johnson, T. (2015, January 28). 10 reasons for
moving away from DITA. Retrieved from http://
idratherbewriting.com/2015/01/28/10-reasons-for-
moving-away-from-dita/

Kaplan, N. (2014, May 3). The death of technical
writing, part 1. Retrieved from http://
customersandcontent.com/2014/05/03/the-death-
of-technical-writing-part-1/	

Kimber, E. (2012). DITA for practitioners. Volume 1:
Architecture and technology. Laguna Hills, CA: XML
Press.

Markel, M. (2013). Practical strategies for technical
communication. Boston, MA: Bedford/St. Martin’s.

McDaniel, R. (2009). Experiences with building
a narrative web content management system:
Best practices for developing specialized content
management systems (and lessons learned from the
classroom) In G. Pullman & B. Gu (Eds.), Content
management bridging the gap between theory and
practice (pp. 15–42). Amityville, NY: Baywood.

O’Keefe, S. (2010). XML: The death of creativity in
technical writing? Intercom, 57(2), 36–37.

Priestley, M., Hargis, G., & Carpenter, S. (2001).
DITA: An XML-based technical documentation
authoring and publishing architecture. Technical
Communication, 48(3), 352–367.

Pringle, A., & O’Keefe, S. (2003). Technical writing 101:
A real-world guide to planning and writing technical
documentation (2nd ed.). Research Triangle Park,
NC: Scriptorium Press.

Pringle, A., & O’Keefe, S. (2009). Technical writing 101:
A real-world guide to planning and writing technical
content (3rd ed.). Research Triangle Park, NC:
Scriptorium Press.

Pullman, G., & Gu, B. (2009). Introduction: Mapping
out the key parameters of content management. In
G. Pullman & B. Gu (Eds.), Content management
bridging the gap between theory and practice (pp.
1–12). Amityville, NY: Baywood.

	 Volume 63, Number 1, February 2016 l Technical Communication	 37

Carlos Evia and Michael Priestley

Applied Research

Pullman, G., & Gu, B. (Eds.). (2009). Content
management bridging the gap between theory and
practice. Amityville, NY: Baywood.

Rockley, A. (2003). Managing enterprise content: A
unified content strategy. Indianapolis, IN: New
Riders.

Rockley, A., & Cooper, C. (2012). Managing enterprise
content: A unified content strategy (2nd ed.). Berkeley,
CA: New Riders.

Samuels, J. (2014, February 3). What Is DITA?
Retrieved from http://techwhirl.com/what-is-dita/

Schengili-Roberts, K. (2015a, April 29). Companies
using DITA. Retrieved from http://www.ditawriter.
com/companies-using-dita/

Schengili-Roberts, K. (2015b, February 3). How
widespread is DITA usage? Retrieved from http://
www.ixiasoft.com/en/news-and-events/blog/2015/
how-widespread-dita-usage/

Self, T. (2011). The DITA style guide: Best practices for
authors. Research Triangle Park, NC: Scriptorium
Press.

Shannon, C., & Weaver, W. (1949). The mathematical
theory of communication. Urbana, IL: University of
Illinois Press.

Swarts, J. (2010). Recycled writing: Assembling actor
networks from reusable content. Journal of Business
and Technical Communication, 24(2), 127–163. doi:
10.1177/1050651909353307

Vazquez, J. (2009). Practical DITA (2nd ed.). Durham,
NC: SDI Global Solutions.

White, L. (2013). DITA for print: A DITA open toolkit
workbook. Laguna Hills, CA: XML Press.

Yagodich, R. (2014). Author experience: Bridging the gap
between people and technology in content management.
Laguna Hills, CA: XML Press.

About the Authors

Carlos Evia is an associate professor and director of
Professional and Technical Writing at Virginia Tech. He
conducts research about technology-enabled workplace
communication for the Virginia Tech Centers for
Human-Computer Interaction and Occupational Safety
and Health. He is a member of the DITA Technical
Committee, with emphasis on the Lightweight
DITA subcommittee. He holds a PhD in Technical
Communication and Rhetoric from Texas Tech
University. He is available at carlos.evia@vt.edu.

Michael Priestley is IBM’s Enterprise Content
Technology Strategist. He works with teams across
IBM to coordinate standards and technologies that can
enable findable, usable, and reusable content across
the enterprise content ecosystem. He was the co-editor
of the DITA 1.0 and DITA 1.1 specifications, and is
currently working on the specification for Lightweight
DITA. He is available at mpriestl@ca.ibm.com.

Manuscript received 21 July 2015, revised 24 August 2015;
accepted 10 October 2015.

