
The DITA Iceberg

Leigh White, DITA Specialist
DITA Europe, November 2016



Forget big data…we have big DITA!

So where has that brought us?



Added in DITA 1.1

• bookmap
• glossentry
• abstract
• foreign, unknown
• data
• indexing improvements: see, see-also, page 

ranges, and sort order
• Specialization support for new global attributes
• Conditional processing profiles



Added in DITA 1.2

• keys
• constraint modules (more on this later)

• new glossary elements
• conref push/range
• general task vs. strict task
• miscellaneous new elements
 text, mapref, sectiondiv, etc.

• Learning and Training specialization
• subjectScheme
• machineryTask topic



Added in DITA 1.3

• scoped keys
• branch filtering
• troubleshooting
• XML Mention domain
• context-sensitive help
• release management
• Relax NG
• SVG integration
• MathML integration



What follows is my perception, not entirely
without a factual and experiential basis…



90/10?

• Are we doing 90% of development work for 10% of 
user base?
 Definitely not that much, but…
 DITA usage almost equally split between companies 

<1000 and >1000 employees (based on survey of 631 
companies).



Company size → IA/toolsmith availability?

• >55% of doc team members in companies >1000 
employees do not have the traditional "tech writer" 
roles (i.e. might be IA's or toolsmiths instead)*

• ~30% of doc team members in companies <1000 
employees do not have the traditional "tech writer" 
roles*

• Can we assume that
 Large teams more likely to have an IA/toolsmith
 Small teams more likely not to have an IA/toolsmith
 This is not news!

* Again, thanks to Keith Schengili-Roberts for the number-crunching



DITA 1.3 feature implementation

• That leaves roughly half of DITA teams likely not to 
have a dedicated IA/toolsmith

• What DITA 1.3 features are these teams likely to 
implement? 
 Not likely:
 Release Management (requires plugin dev resources & budget)
 Context-sensitive help (ditto)
 XML Mention domain (unless their product is XML-based)

Maybe:
 Scoped keys (if they have a resource who can manage it)
 Branch filtering (ditto)

More likely:
 Troubleshooting



DITA 1.3 feature implementation [2]

• So a lot of proposal evaluation, approval, spec 
development, OT development and DITA 
documentation was done for features below the 
waterline

• And this complexity is present for everyone, not
just the power users
 If you don’t want it, you can’t “hide” it easily



Acknowledgement of complexity

• Specification available in three editions:
 Base
 technicalContent
 All-inclusive
 (But this implies ability to easily use just Base elements, 

which is not really the case)
• Series of OASIS Adoption Committee articles to 

explain features
• Lightweight DITA (LwDITA) (more in a minute)

• Tools to simplify the authoring experience



LwDITA

• Not necessarily meant as a simplified authoring 
environment

• Designed to be “entry point” (or maybe pivot point) 
for HTML5, Markdown

• Adequate for content creation otherwise?
 For beginning DITA authors
 For casual contributors
 For groups with basic structured content needs
What if you need more than LwDITA but less than the 

full tagset?



Constraints

• Are not the answer!
• Introduced in DITA 1.2
• Acknowledgement that, “Hey, we have a $%#&-ton 

of elements here and many (most?) people aren’t 
going to need them all.”

• In real life, how often do you take the same 
approach?



Constraints are not the answer

• I’ll buy a pickup truck:

• But I don’t need a truck bed, so I’ll cut that off:

• And I don’t need a high profile, so I’ll lower it:



Constraints are not the answer

• I don’t need that big V8 engine either, so let me 
swap it out for a V4:

• And, now at last, I have the perfect car for my city 
driving and parking!

• Why not just buy 
to begin with?



A fork in the road?

• Standard DITA
More robust than LwDITA but still pre-constrained list of 

most commonly used & accessible elements
 No “special interest” elements

• Advanced DITA
 The whole ball o’ wax

• Not achieved via downsizing using constraints!
 Au contraire, start with Standard and upsize to Advanced
 With easier mechanisms than are currently available…plugins?

 Interchange? Still doable!
 Authoring environment: Standard
 Production/validation environment: Advanced



The good news

• DITA 2.0 is moving in this direction!
 Freed from requirements of backwards-compatibility
 Elimination of redundant elements
 Elimination of some “special interest” domains

• What else can/should we do?
 Have I misspoken or misrepresented?
What else is in the works for 2.0?
 How can we make DITA accessible out of the box to 

even the smallest, non-technical doc teams?



Questions/Comments?


