
dita13_archspec_examples

Contents

URI-based (direct) addressing...3
Chunking...6
Chunking examples..7
Defining controlled values for attributes..10
Binding controlled values to an attribute...12
Processing controlled attribute values...14
Scaling a list of controlled values to define a taxonomy..15
Example: How hierarchies defined in a subject scheme map affect filtering.........17
Example: Extending a subject scheme...20
Example: Extending a subject scheme upwards...22
Example: Defining values for deliveryTarget...23
Cascading of metadata attributes in a DITA map..26
Reconciling topic and map metadata elements...29
Cascading of attributes from map to map..32
Cascading of metadata elements from map to map..34
Cascading of roles from map to map..36
Key scopes..38
Using keys for addressing...39
Cross-deliverable addressing and linking..40
Processing xrefs and conrefs within a conref...42
domains attribute rules and syntax..45
Example: Setting conditional processing values and groups..................................51
Example: Single ditavalref on a branch..52
Example: Multiple ditavalref elements on a branch...53
Example: Single ditavalref as a child of map...56
Example: Single ditavalref in a reference to a map...57
Example: Multiple ditavalref elements as children of map in a root map................59
Example: Multiple ditavalref elements in a reference to a map................................61
Example: ditavalref within a branch that already uses ditavalref.............................62
Example: ditavalref error conditions...64
class attribute rules and syntax..66
Specializing to include non-DITA content..68
Sharing elements across specializations...69
Conref compatibility with constraints..70
DTD: Coding requirements for element domain modules..73
Example: Redefine the content model for the topic element...................................74
Example: Constrain attributes for the section element...76
Example: Constrain a domain module..78
Example: Replace a base element with the domain extensions..............................80
Example: Apply multiple constraints to a single document-type shell...................82
Example: Correct the constraint for the machinery task..83

dita13_archspec_examplesii

URI-based (direct) addressing
Content reference and link relationships can be established from DITA elements by using URI references. DITA
uses URI references in href, conref, and other attributes for all direct addressing of resources.

URI references address resources and (in some cases) subcomponents of those resources. In this context, a
resource is a DITA document (map, topic, or DITA base document) or a non-DITA resource (for example, an
image, a Web page, or a PDF document).

URI references that are URLs must conform to the rules for URLs and URIs. Windows paths that contain a
backslash (\) are not valid URLs.

URIs and fragment identifiers

For DITA resources, fragment identifiers can be used with the URI to address individual elements. The fragment
identifier is the part of the URI that starts with a number sign (#), for example, #topicid/elementid. URI
references also can include a query component that is introduced with a question mark (?). DITA processors
MAY ignore queries on URI references to DITA resources. URI references that address components in the same
document MAY consist of just the fragment identifier.

For addressing DITA elements within maps and topics or individual topics within documents containing multiple
topics, URI references must include the appropriate DITA-defined fragment identifier. URI references can be
relative or absolute. A relative URI reference can consist of just a fragment identifier. Such a reference is a
reference to the document that contains the reference.

Addressing non-DITA targets using a URI

DITA can use URI references to directly address non-DITA resources. Any fragment identifier used must conform
to the fragment identifier requirements that are defined for the target media type or provided by processors.

Addressing elements within maps using a URI

When addressing elements within maps, URI references can include a fragment identifier that includes the ID
of the map element, for example, filename.ditamap#mapId or #mapId. The same-topic, URI-reference
fragment identifier of a period (.) can not be used in URI references to elements within maps.

Addressing topics using a URI

When addressing a DITA topic element, URI references can include a fragment identifier that includes the ID
of the topic element (filename.dita#topicId or #topicId). When addressing the DITA topic element
that contains the URI reference, the URI reference might include the same topic fragment identifier of "." (#.).

Topics always can be addressed by a URI reference whose fragment identifier consists of the topic ID. For the
purposes of linking, a reference to a topic-containing document addresses the first topic within that document
in document order. For the purposes of rendering, a reference to a topic-containing document addresses the root
element of the document.

Consider the following examples:

• Given a document whose root element is a topic, a URI reference (with no fragment identifier) that addresses
that document implicitly references the topic element.

• Given a dita document that contains multiple topics, for the purposes of linking, a URI reference that addresses
the dita document implicitly references the first child topic.

3

• Given a dita document that contains multiple topics, for the purposes of rendering, a URI reference that addresses
the dita document implicitly references all the topics that are contained by the dita element. This means that
all the topics that are contained by thedita element are rendered in the result.

Addressing non-topic elements using a URI

When addressing a non-topic element within a DITA topic, a URI reference must use a fragment identifier that
contains the ID of the ancestor topic element of the non-topic element being referenced, a slash ("/"), and the
ID of the non-topic element (filename.dita#topicId/elementId or #topicId/elementId).
When addressing a non-topic element within the topic that contains the URI reference, the URI reference can
use an abbreviated fragment-identifier syntax that replaces the topic ID with "." (#./elementId).

This addressing model makes it possible to reliably address elements that have values for the id attribute that
are unique within a single DITA topic, but which might not be unique within a larger XML document that
contains multiple DITA topics.

Examples: URI reference syntax

The following table shows the URI syntax for common use cases.

Sample syntaxUse case

"http://example.com/file.dita#topicID/tableID"Reference a table in a

topic at a network

location

"directory/file.dita#topicID/sectionID"Reference a section in a

topic on a local file

system

"#topicID/figureID"Reference a figure

contained in the same

XML document

"#./figureID"Reference a figure

contained in the same

topic of an XML

document

"http://example.com/map.ditamap#elementID" (and

a value of "ditamap" for the format attribute)

Reference an element

within a map

"#elementID" (and a value of "ditamap" for the format attribute)Reference a map element

within the same map

document

"http://www.example.com",

"http://www.example.com#somefragment" or any other

valid URI

Reference an external

Web site

"filename.ditamap#elementid" (and a value of "ditamap" for

the format attribute)

Reference an element

within a local map

"filename.ditamap" (and a value of "ditamap" for the format attribute)Reference a local map

Reference a local topic "filename.dita" or

"path/filename.dita"

Reference a local topic

dita13_archspec_examples4

Sample syntaxUse case

"filename.dita#topicid" or

"path/filename.dita#topicid"

Reference a specific

topic in a local document

"#topicid"Reference a specific

topic in the same file

"#."Reference the same topic

in the same XML

document

"../book-b/book-b.ditamap" (and a value of "ditamap" for the

format attribute, a value of "peer" for the scope attribute, and a value for the keyscope

attribute)

Reference a peer map for

cross-deliverable linking

5

Chunking
Content can be chunked (divided or merged into new output documents) in different ways for the purposes of
delivering content and navigation. For example, content best authored as a set of separate topics might need to
be delivered as a single Web page. A map author can use the chunk attribute to split up multi-topic documents
into component topics or to combine multiple topics into a single document as part of output processing.

The chunk attribute is commonly used for the following use cases.

A content provider creates a set of topics as a single document.
Another user wants to incorporate only one of the nested topics from

Reuse of a nested
topic

the document. The new user can reference the nested topic from a
DITA map, using the chunk attribute to specify that the topic should
be produced in its own document.

A curriculum developer wants to compose a lesson for a SCORM
LMS (Learning Management System) from a set of topics without

Identification of a
set of topics as a
unit constraining reuse of those topics. The LMS can save and restore the

learner's progress through the lesson if the lesson is identified as a
referenceable unit. The curriculum developer defines the collection
of topics with a DITA map, using the chunk attribute to identify the
learning module as a unit before generating the SCORM manifest.

dita13_archspec_examples6

Chunking examples
The following examples cover many common chunking scenarios, such as splitting one document into many
rendered objects or merging many documents into one rendered object.

In the examples below, an extension of ".xxxx" is used in place of the actual extensions
that will vary by output format. For example, when the output format is HTML, the extension
might actually be ".html", but this is not required.

The examples below assume the existence of the following files:

• parent1.dita, parent2.dita, etc., each containing a single topic with id P1, P2,
etc.

• child1.dita, child2.dita, etc., each containing a single topic with id C1, C2, etc.
• grandchild1.dita, grandchild2.dita, etc., each containing a single topic with

id GC1, GC2, etc.
• nested1.dita, nested2.dita, etc., each containing two topics: parent topics with

id N1, N2, etc., and child topics with ids N1a, N2a, etc.
• ditabase.dita, with the following contents:

<dita xml:lang="en-us">
 <topic id="X">
 <title>Topic X</title><body><p>content</p></body>
 </topic>
 <topic id="Y">
 <title>Topic Y</title><body><p>content</p></body>
 <topic id="Y1">
 <title>Topic Y1</title><body><p>content</p></body>
 <topic id="Y1a">
 <title>Topic Y1a</title><body><p>content</p></body>
 </topic>
 </topic>
 <topic id="Y2">
 <title>Topic Y2</title><body><p>content</p></body>
 </topic>
 </topic>
 <topic id="Z">
 <title>Topic Z</title><body><p>content</p></body>
 <topic id="Z1">
 <title>Topic Z1</title><body><p>content</p></body>
 </topic>
 </topic>
</dita>

1. The following map causes the entire map to generate a single output chunk.

<map chunk="to-content">
 <topicref href="parent1.dita">
 <topicref href="child1.dita"/>
 <topicref href="child2.dita"/>
 </topicref>
</map>

7

2. The following map will generate a separate chunk for every topic in every document
referenced by the map. In this case, it will result in the topics P1.xxxx, N1.xxxx,
and N1a.xxxx.

<map chunk="by-topic">
 <topicref href="parent1.dita">
 <topicref href="nested1.dita"/>
 </topicref>
</map>

3. The following map will generate two chunks: parent1.xxxx will contain only topic
P1, while child1.xxxx will contain topic C1, with topics GC1 and GC2 nested within
C1.

<map>
 <topicref href="parent1.dita">
 <topicref href="child1.dita" chunk="to-content">
 <topicref href="grandchild1.dita"/>
 <topicref href="grandchild2.dita"/>
 </topicref>
 </topicref>
</map>

4. The following map breaks down portions of ditabase.dita into three chunks. The
first chunk Y.xxxx will contain only the single topic Y. The second chunk Y1.xxxx
will contain the topic Y1 along with its child Y1a. The final chunk Y2.xxxx will
contain only the topic Y2. For navigation purposes, the chunks for Y1 and Y2 are still
nested within the chunk for Y.

<map>
 <topicref href="ditabase.dita#Y" copy-to="Y.dita"
 chunk="to-content select-topic">
 <topicref href="ditabase.dita#Y1" copy-to="Y1.dita"
 chunk="to-content select-branch"/>
 <topicref href="ditabase.dita#Y2" copy-to="Y2.dita"
 chunk="to-content select-topic"/>
 </topicref>
</map>

5. The following map will produce a single output chunk named parent1.xxxx,
containing topic P1, with topic Y1 nested within P1, but without topic Y1a.

<map chunk="by-document">
 <topicref href="parent1.dita" chunk="to-content">
 <topicref href="ditabase.dita#Y1"
 chunk="select-topic"/>
 </topicref>
</map>

6. The following map will produce a single output chunk, parent1.xxxx, containing
topic P1, topic Y1 nested within P1, and topic Y1a nested within Y1.

<map chunk="by-document">
 <topicref href="parent1.dita" chunk="to-content">
 <topicref href="ditabase.dita#Y1"
 chunk="select-branch"/>
 </topicref>
</map>

dita13_archspec_examples8

7. The following map will produce a single output chunk, P1.xxxx. The topic P1 will
be the root topic, and topics X, Y, and Z (together with their descendents) will be nested
within topic P1.

<map chunk="by-topic">
 <topicref href="parent1.dita" chunk="to-content">
 <topicref href="ditabase.dita#Y1"
 chunk="select-document"/>
 </topicref>
</map>

8. The following map will produce a single output chunk named parentchunk.xxxx
containing topic P1 at the root. Topic N1 will be nested within P1, and N1a will be
nested within N1.

<map chunk="by-document">
 <topicref href="parent1.dita" chunk="to-content"
copy-to="parentchunk.dita">
 <topicref href="nested1.dita" chunk="select-branch"/>

 </topicref>
</map>

9. The following map will produce two output chunks. The first chunk named
parentchunk.xxxx will contain the topics P1, C1, C3, and GC3. The "to-content"
token on the reference to child2.dita causes that branch to begin a new chunk
named child2chunk.xxxx, which will contain topics C2 and GC2.

<map chunk="by-document">
 <topicref href="parent1.dita"
 chunk="to-content" copy-to="parentchunk.dita">
 <topicref href="child1.dita" chunk="select-branch"/>

 <topicref href="child2.dita"
 chunk="to-content select-branch"
 copy-to="child2chunk.dita">
 <topicref href="grandchild2.dita"/>
 </topicref>
 <topicref href="child3.dita">
 <topicref href="grandchild3.dita"
 chunk="select-branch"/>
 </topicref>
 </topicref>
 </map>

10. The following map produces a single chunk named nestedchunk.xxxx, which
contains topic N1 with no topics nested within.

<map>
 <topicref href="nested1.dita#N1"
 copy-to="nestedchunk.dita"
 chunk="to-content select-topic"/>
</map>

9

Defining controlled values for attributes
Subject scheme maps can define controlled values for DITA attributes without having to define specializations
or constraints. The list of available values can be modified quickly to adapt to new situations.

Each controlled value is defined using a subjectdef element, which is a specialization of the topicref element.
The subjectdef element is used to define both a subject category and a list of controlled values. The parent
subjectdef element defines the category, and the children subjectdef elements define the controlled values.

The subject definitions can include additional information within a topicmeta element to clarify the meaning of
a value:

• The navtitle element can provide a more readable value name.
• The shortdesc element can provide a definition.

In addition, the subjectdef element can reference a more detailed definition of the subject, for example, another
DITA topic or an external resource..

The following behavior is expected of processors:

• Authoring tools SHOULD use these lists of controlled values to provide lists from which authors can select
values when they specify attribute values.

• Authoring tools MAY give an organization a list of readable labels, a hierarchy of values to simplify selection,
and a shared definition of the value.

• An editor MAY support accessing and displaying the content of the subject definition resource in order to
provide users with a detailed explanation of the subject.

• Tools MAY produce a help file, PDF, or other readable catalog to help authors better understand the controlled
values.

Example: Controlled values that provide additional information about the
subject

The following code fragment illustrates how a subject definition can provide a richer level
of information about a controlled value:

<subjectdef keys="terminology"
href="https://www.oasis-open.org/policies-guidelines/keyword-guidelines">

 <subjectdef keys="rfc2119" href="rfc-2119.dita">
 <topicmeta>
 <navtitle>RFC-2119 terminology</navtitle>
 <shortdesc>The normative terminology that the DITA TC
uses for the DITA specification</shortdesc>
 </topicmeta>
 </subjectdef>
 <subjectdef keys="iso" href="iso-terminology.dita">
 <topicmeta>
 <navtitle>ISO keywords</navtitle>
 <shortdesc>The normative terminology used by some other
 OASIS technical committees</shortdesc>
 </topicmeta>
 </subjectdef>
</subjectdef>

The content of the navtitle and shortdesc elements provide additional information that a
processor might display to users as they select attribute values or classify content. The
resources referenced by the href attributes provide even more detailed information; a

dita13_archspec_examples10

processor might render clickable links as part of a user interface that implements a
progressive disclosure strategy

11

Binding controlled values to an attribute
The controlled values defined in a subject scheme map can be bound to an attribute or an element and attribute
pair. This affects the expected behavior for processors and authoring tools.

The enumerationdef element binds the set of controlled values to an attribute. Valid attribute values are those
that are defined in the set of controlled values; invalid attribute values are those that are not defined in the set
of controlled values. An enumeration can specify an empty subjectdef element. In that case, no value is valid
for the attribute. An enumeration also can specify an optional default value by using the defaultSubject element.

If an enumeration is bound, processors SHOULD validate attribute values against the controlled values that are
defined in the subject scheme map. For authoring tools, this validation prevents users from entering misspelled
or undefined values. Recovery from validation errors is implementation specific.

The default attribute values that are specified in a subject scheme map apply only if a value is not otherwise
specified in the DITA source or as a default value by the XML grammar.

To determine the effective value for a DITA attribute, processors check for the following in the order outlined:

1. An explicit value in the element instance
2. A default value in the XML grammar
3. Cascaded value within the document
4. Cascaded value from a higher level document to the document
5. A default controlled value, as specified in the defaultSubject element
6. A value set by processing rules

Example: Binding a list of controlled values to the audience attribute

The following example illustrates the use of the subjectdef element to define controlled
values for types of users. It also binds the controlled values to the audience attribute:

<subjectScheme>
 <!-- Define types of users -->
 <subjectdef keys="users">
 <subjectdef keys="therapist"/>
 <subjectdef keys="oncologist"/>
 <subjectdef keys="physicist"/>
 <subjectdef keys="radiologist"/>
 </subjectdef>

 <!-- Bind the "users" subject to the @audience attribute.
 This restricts the @audience attribute to the following

 values: therapist, oncologist, physicist, radiologist
 -->
 <enumerationdef>
 <attributedef name="audience"/>
 <subjectdef keyref="users"/>
 </enumerationdef>
</subjectScheme>

When the above subject scheme map is used, the only valid values for the audience attribute
are "therapist", "oncologist", "physicist", and "radiologist". Note that "users" is not a valid
value for the audience attribute; it merely identifies the parent or container subject.

dita13_archspec_examples12

Example: Binding an attribute to an empty set

The following code fragment declares that there are no valid values for the outputclass
attribute.

<subjectScheme>
 <enumerationdef>
 <attributedef name="outputclass"/>
 <subjectdef/>
 </enumerationdef>
</subjectScheme>

13

Processing controlled attribute values
An enumeration of controlled values can be defined with hierarchical levels by nesting subject definitions. This
affects how processors perform filtering and flagging.

The following algorithm applies when processors apply filtering and flagging rules to attribute values that are
defined as a hierarchy of controlled values and bound to an enumeration:

1. If an attribute specifies a value in the taxonomy, and a DITAVAL or other categorization tool is configured
with that value, the rule matches.

2. Otherwise, if the parent value in the taxonomy has a rule, that matches.
3. Otherwise, continue up the chain in the taxonomy until a matching rule is found.

The following behavior is expected of processors:

• Processors SHOULD be aware of the hierarchies of attribute values that are defined in subject scheme maps
for purposes of filtering, flagging, or other metadata-based categorization.

• Processors SHOULD validate that the values of attributes that are bound to controlled values contain only valid
values from those sets. (The list of controlled values is not validated by basic XML parsers.) If the controlled
values are part of a named key scope, the scope name is ignored for the purpose of validating the controlled
values.

• Processors SHOULD check that all values listed for an attribute in a DITAVAL file are bound to the attribute
by the subject scheme before filtering or flagging. If a processor encounters values that are not included in the
subject scheme, it SHOULD issue a warning.

Example: A hierarchy of controlled values and conditional processing

The following example illustrates a set of controlled values that contains a hierarchy.

<subjectScheme>
 <subjectdef keys="users">
 <subjectdef keys="therapist">
 <subjectdef keys="novice-therapist"/>
 <subjectdef keys="expert-therapist"/>
 </subjectdef>
 <subjectdef keys="oncologist"/>
 <subjectdef keys="physicist"/>
 <subjectdef keys="radiologist"/>
 </subjectdef>
 <enumerationdef>
 <attributedef name="audience"/>
 <subjectdef keyref="users"/>
 </enumerationdef>
</subjectScheme>

Processors that are aware of the hierarchy that is defined in the subject scheme map will
handle filtering and flagging in the following ways:

• If "therapist" is excluded, both "novice-therapist" and "expert-therapist" are by default
excluded (unless they are explicitly set to be included).

• If "therapist" is flagged and "novice-therapist" is not explicitly flagged, processors
automatically should flag "novice-therapist" since it is a type of therapist.

ul>

dita13_archspec_examples14

Scaling a list of controlled values to define
a taxonomy

Optional classification elements make it possible to create a taxonomy from a list of controlled values.

A taxonomy differs from a controlled values list primarily in the degree of precision with which the metadata
values are defined. A controlled values list sometimes is regarded as the simplest form of taxonomy. Regardless
of whether the goal is a simple list of controlled values or a taxonomy:

• The same core elements are used: subjectScheme and subjectdef.
• A category and its subjects can have a binding that enumerates the values of an attribute.

Beyond the core elements and the attribute binding elements, sophisticated taxonomies can take advantage of
some optional elements. These optional elements make it possible to specify more precise relationships among
subjects. The hasNarrower, hasPart, hasKind, hasInstance, and hasRelated elements specify the kind of relationship
in a hierarchy between a container subject and its contained subjects.

While users who have access to sophisticated processing tools benefit from defining taxonomies with this level
of precision, other users can safely ignore this advanced markup and define taxonomies with hierarchies of
subjectdef elements that are not precise about the kind of relationship between the subjects.

Example: A taxonomy defined using subject scheme elements

The following example defines San Francisco as both an instance of a city and a geographic
part of California.

<subjectScheme>
 <hasInstance>
 <subjectdef keys="city">
 <subjectdef keys="la"/>
 <subjectdef keys="nyc"/>
 <subjectdef keys="san-francisco"/>
 </subjectdef>
 <subjectdef keys="state">
 <subjectdef keys="ca"/>
 <subjectdef keys="ny"/>
 </subjectdef>
 </hasInstance>
 <hasPart>
 <subjectdef keys="place">
 <subjectdef keyref="ca">
 <subjectdef keyref="la"/>
 <subjectdef keyref="sf"/>
 </subjectdef>
 <subjectdef keyref="ny">
 <subjectdef keyref="nyc"/>
 </subjectdef>
 </subjectdef>
 </hasPart>
</subjectScheme>

Sophisticated tools can use this subject scheme map to associate content about San Francisco
with related content about other California places or with related content about other cities
(depending on the interests of the current user).

15

The subject scheme map also can define relationships between subjects that are not
hierarchical. For instance, cities sometimes have "sister city" relationships. An information
architect could add a subjectRelTable element to define these associative relationships, with
a row for each sister-city pair and the two cities in different columns in the row.

dita13_archspec_examples16

Example: How hierarchies defined in a
subject scheme map affect filtering

This scenario demonstrates how a processor evaluates attribute values when it performs conditional processing
for an attribute that is bound to a set of controlled values.

A company defines a subject category for "Operating system", with a key set to "os". There
are sub-categories for Linux, Windows, and z/OS, as well as specific Linux variants: Red
Hat Linux and SuSE Linux. The company then binds the values that are enumerated in the
"Operating system" category to the platform attribute.

<subjectScheme>
 <subjectdef keys="os">
 <topicmeta>
 <navtitle>Operating systems</navtitle>
 </topicmeta>
 <subjectdef keys="linux">
 <topicmeta>
 <navtitle>Linux</navtitle>
 </topicmeta>
 <subjectdef keys="redhat">
 <topicmeta>
 <navtitle>RedHat Linux</navtitle>
 </topicmeta>
 </subjectdef>
 <subjectdef keys="suse">
 <topicmeta>
 <navtitle>SuSE Linux</navtitle>
 </topicmeta>
 </subjectdef>
 </subjectdef>
 <subjectdef keys="windows">
 <topicmeta>
 <navtitle>Windows</navtitle>
 </topicmeta>
 </subjectdef>
 <subjectdef keys="zos">
 <topicmeta>
 <navtitle>z/OS</navtitle>
 </topicmeta>
 </subjectdef>
 </subjectdef>
 <enumerationdef>
 <attributedef name="platform"/>
 <subjectdef keyref="os"/>
 </enumerationdef>
</subjectScheme>

The enumeration limits valid values for the platform attribute to the following: "linux",
"redhat", "suse", "windows", and "zos". If any other values are encountered, processors
validating against the scheme should issue a warning.

The following table illustrates how filtering and flagging operate when the above map is
processed by a processor. The first two columns provide the values specified in the

17

DITAVAL file; the third and fourth columns indicate the results of the filtering or flagging
operation

How platform="linux"

is evaluated

How platform="redhat"

is evaluated

att="platform"

val="redhat"

att="platform"

val="linux"

Excluded.Excluded.action="exclude"action="exclude"

Excluded.Excluded. This is an error

condition, because if all

action="include" or

action="flag"

"linux" content is

excluded, "redhat" also is

excluded. Applications can

recover by generating an

error message.

Excluded.Excluded, because "redhat"

is a kind of "linux", and

"linux" is excluded.

Unspecified

Included.Excluded, because all

"redhat" content is

excluded.

action="exclude"action="include"

Included.Included.action="include"

Included.Included and flagged with

the "redhat" flag.

action="flag"

Included.Included, because all

"linux" content is included.

Unspecified

Included and flagged with

the "linux" flag.

Excluded, because all

"redhat" content is

excluded.

action="exclude"action="flag"

Included and flagged with

the "linux" flag.

Included and flagged with

the "linux" flag, because

"linux" is flagged and

action="include"

"redhat" is a type of

"linux".

Included and flagged with

the "linux" flag.

Included and flagged with

the "redhat" flag, because

a flag is available that is

specifically for "redhat".

action="flag"

Included and flagged with

the "linux" flag.

Included and flagged with

the "linux" flag, because

"linux" is flagged and

"redhat" is a type of linux

Unspecified

If the default for platform

values is "include", this is

Excluded, because all

"redhat" content is

excluded

action="exclude"Unspecified

included. If the default for

platform values is

"exclude", this is excluded.

dita13_archspec_examples18

How platform="linux"

is evaluated

How platform="redhat"

is evaluated

att="platform"

val="redhat"

att="platform"

val="linux"

Included, because all

"redhat" content is

Included.action="include"

included, and general

Linux content also applies

to RedHat

Included, because all

"redhat" content is

Included and flagged with

the "redhat" flag.

action="flag"

included, and general

Linux content also applies

to RedHat

If the default for platform

values is "include", this is

If the default for platform

values is "include", this is

Unspecified

included. If the default forincluded. If the default for

platform values isplatform values is

"exclude", this is excluded. "exclude", this is

excluded.

19

Example: Extending a subject scheme
You can extend a subject scheme by creating another subject scheme map and referencing the original map using
a schemeref element. This enables information architects to add new relationships to existing subjects and extend
enumerations of controlled values.

A company uses a common subject scheme map (baseOS.ditamap) to set the values
for the platform attribute.

<subjectScheme>
 <subjectdef keys="os">
 <topicmeta>
 <navtitle>Operating systems</navtitle>
 </topicmeta>
 <subjectdef keys="linux">
 <topicmeta>
 <navtitle>Linux</navtitle>
 </topicmeta>
 <subjectdef keys="redhat">
 <topicmeta>
 <navtitle>RedHat Linux</navtitle>
 </topicmeta>
 </subjectdef>
 <subjectdef keys="suse">
 <topicmeta>
 <navtitle>SuSE Linux</navtitle>
 </topicmeta>
 </subjectdef>
 </subjectdef>
 <subjectdef keys="windows">
 <topicmeta>
 <navtitle>Windows</navtitle>
 </topicmeta>
 </subjectdef>
 <subjectdef keys="zos">
 <topicmeta>
 <navtitle>z/OS</navtitle>
 </topicmeta>
 </subjectdef>
 </subjectdef>
 <enumerationdef>
 <attributedef name="platform"/>
 <subjectdef keyref="os"/>
 </enumerationdef>
</subjectScheme>

The following subject scheme map extends the enumeration defined in baseOS.ditamap.
It adds "macos" as a child of the existing "os" subject; it also adds special versions of
Windows as children of the existing "windows" subject:

<subjectScheme>
 <schemeref href="baseOS.ditamap"/>
 <subjectdef keyref="os">
 <subjectdef keys="macos"/>
 <subjectdef keyref="windows">
 <subjectdef keys="winxp"/>

dita13_archspec_examples20

 <subjectdef keys="winvis"/>
 </subjectdef>
 </subjectdef>
</subjectScheme>

Note that the references to the subjects that are defined in baseOS.ditamap use the
keyref attribute. This avoids duplicate definitions of the keys and ensures that the new
subjects are added to the base enumeration.

The effective result is the same as the following subject scheme map:

<subjectScheme>
 <subjectdef keys="os">
 <subjectdef keys="linux">
 <subjectdef keys="redhat"/>
 <subjectdef keys="suse"/>
 </subjectdef>
 <subjectdef keys="macos">
 <subjectdef keys="windows">
 <subjectdef keys="winxp"/>
 <subjectdef keys="winvis"/>
 </subjectdef>
 <subjectdef keys="zos"/>
 </subjectdef>
 <enumerationdef>
 <attributedef name="platform"/>
 <subjectdef keyref="os"/>
 </enumerationdef>
</subjectScheme>

21

Example: Extending a subject scheme
upwards

You can broaden the scope of a subject category by creating a new subject scheme map that defines the original
subject category as a child of a broader category.

The following subject scheme map creates a "Software" category that includes operating
systems as well as applications. The subject scheme map that defines the operation system
subjects is pulled in by reference, while the application subjects are defined directly in the
subject scheme map below.

<subjectScheme>
 <schemeref href="baseOS.ditamap"/>
 <subjectdef keys="software">
 <subjectdef keyref="os"/>
 <subjectdef keys="applications">
 <subjectdef keys="apache-web-server""/>
 <subjectdef keys="my-sql"/>
 </subjectdef>
 </subjectdef>
</subjectScheme>

If the subject scheme that is defined in baseOS.ditamap binds the "os" subject to the
platform attribute, the app subjects that are defined in the extension subject scheme do not
become part of that enumeration, since they are not part of the "os" subject

To enable the upward extension of an enumeration, information architects can define the
controlled values in one subject scheme map and bind the controlled values to the attribute
in another subject scheme map. This approach will let information architects bind an attribute
to a different set of controlled values with less rework.

An adopter would use the extension subject scheme as the subject scheme that governs the
controlled values. Any subject scheme maps that are referenced by the extension subject
scheme are effectively part of the extension subject scheme.

dita13_archspec_examples22

Example: Defining values for
deliveryTarget

You can use a subject scheme map to define the values for the deliveryTarget attribute. This filtering attribute,
which is new in DITA 1.3, is intended for use with a set of hierarchical, controlled values.

In this scenario, one department produces electronic publications (EPUB, EPUB2, EPUB3,
Kindle, etc.) while another department produces traditional, print-focused output. Each
department needs to exclude a certain category of content when they build documentation
deliverables.

The following subject scheme map provides a set of values for the deliveryTarget attribute
that accommodates the needs of both departments.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE subjectScheme PUBLIC "-//OASIS//DTD DITA Subject
Scheme Map//EN" "subjectScheme.dtd">
<subjectScheme>
 <subjectHead>
 <subjectHeadMeta>
 <navtitle>Example of values for the @deliveryTarget
attribute</navtitle>
 <shortdesc>Provides a set of values for use with the
 @deliveryTarget conditional-processing attribute.
This set of values is
 illustrative only; you can use any values with the
@deliveryTarget
 attribute.</shortdesc>
 </subjectHeadMeta>
 </subjectHead>
 <subjectdef keys="deliveryTargetValues">
 <topicmeta><navtitle>Values for @deliveryTarget
attributes</navtitle></topicmeta>
 <!-- A tree of related values -->
 <subjectdef keys="print">
 <topicmeta><navtitle>Print-primary
deliverables</navtitle></topicmeta>
 <subjectdef keys="pdf">
 <topicmeta><navtitle>PDF</navtitle></topicmeta>
 </subjectdef>
 <subjectdef keys="css-print">
 <topicmeta><navtitle>CSS for
print</navtitle></topicmeta>
 </subjectdef>
 <subjectdef keys="xsl-fo">
 <topicmeta><navtitle>XSL-FO</navtitle></topicmeta>
 </subjectdef>
 <subjectdef keys="afp">
 <topicmeta><navtitle>Advanced Function
Printing</navtitle></topicmeta>
 </subjectdef>
 <subjectdef keys="ms-word">
 <topicmeta><navtitle>Microsoft
Word</navtitle></topicmeta>
 </subjectdef>

23

 <subjectdef keys="indesign">
 <topicmeta><navtitle>Adobe
InDesign</navtitle></topicmeta>
 </subjectdef>
 <subjectdef keys="open-office">
 <topicmeta><navtitle>Open
Office</navtitle></topicmeta>
 </subjectdef>
 </subjectdef>
 <subjectdef keys="online">
 <topicmeta><navtitle>Online
deliverables</navtitle></topicmeta>
 <subjectdef keys="html-based">
 <topicmeta><navtitle>HTML-based
deliverables</navtitle></topicmeta>
 <subjectdef keys="html">
 <topicmeta><navtitle>HTML</navtitle></topicmeta>
 <subjectdef keys="html5">
 <topicmeta><navtitle>HTML5</navtitle></topicmeta>

 </subjectdef>
 </subjectdef>
 <subjectdef keys="help">
 <topicmeta><navtitle>Contextual
help</navtitle></topicmeta>
 <subjectdef keys="htmlhelp">
 <topicmeta><navtitle>HTML
Help</navtitle></topicmeta>
 </subjectdef>
 <subjectdef keys="webhelp">
 <topicmeta><navtitle>Web
help</navtitle></topicmeta>
 </subjectdef>
 <subjectdef keys="javahelp">
 <topicmeta><navtitle>Java
Help</navtitle></topicmeta>
 </subjectdef>
 <subjectdef keys="eclipseinfocenter">
 <topicmeta><navtitle>Eclipse
InfoCenter</navtitle></topicmeta>
 </subjectdef>
 </subjectdef>
 <subjectdef keys="epub">
 <topicmeta><navtitle>EPUB</navtitle></topicmeta>
 <subjectdef keys="epub2">
 <topicmeta><navtitle>EPUB2</navtitle></topicmeta>

 </subjectdef>
 <subjectdef keys="epub3">
 <topicmeta><navtitle>EPUB3</navtitle></topicmeta>

 </subjectdef>
 <subjectdef keys="ibooks">
 <topicmeta><navtitle>iBooks</navtitle></topicmeta>

 </subjectdef>
 <subjectdef keys="nook">
 <topicmeta><navtitle>nook</navtitle></topicmeta>
 </subjectdef>
 </subjectdef>

dita13_archspec_examples24

 <subjectdef keys="kindle">
 <topicmeta><navtitle>Amazon
Kindle</navtitle></topicmeta>
 <subjectdef keys="kindle8">
 <topicmeta><navtitle>Kindle Version
8</navtitle></topicmeta>
 </subjectdef>
 </subjectdef>
 </subjectdef>
 </subjectdef>
 </subjectdef>
 <enumerationdef>
 <attributedef name="deliveryTarget"/>
 <subjectdef keyref="deliveryTargetValues"/>
 </enumerationdef>
</subjectScheme>

25

Cascading of metadata attributes in a DITA
map

Certain map-level attributes cascade throughout a map, which facilitates attribute and metadata management.
When attributes cascade, they apply to the elements that are children of the element where the attributes were
specified. Cascading applies to a containment hierarchy, as opposed to a element-type hierarchy.

The following attributes cascade when set on the map element or when set within a map:

• audience, platform, product, otherprops, rev
• props and any attribute specialized from props
• linking, toc, search
• format, scope, type
• xml:lang, dir, translate
• processing-role
• cascade

Cascading is additive for attributes that accept multiple values, except when the cascade attribute is set to avoid
adding values to attributes. For attributes that take a single value, the closest value defined on a containing
element takes effect. In a relationship table, row-level metadata is considered more specific than column-level
metadata, as shown in the following containment hierarchy:

• map (most general)

• topicref container (more specific)

• topicref (most specific)

• reltable (more specific)

• relcolspec (more specific)

• relrow (more specific)

• topicref (most specific)

Merging of cascading attributes

The cascade attribute can be used to modify the additive nature of attribute cascading (though it does not turn
off cascading altogether). The attribute has two predefined values: "merge" and "nomerge".

The metadata attributes cascade; the values of the metadata attributes are additive. This
is the processing default for the cascade attribute and was the only defined behavior for
DITA 1.2 and earlier.

cascade="merge"

The metadata attributes cascade; however, they are not additive for topicref elements
that specify a different value for a specific metadata attribute. If the cascading value for

cascade="nomerge"

an attribute is already merged based on multiple ancestor elements, that merged value
continues to cascade until a new value is encountered (that is, setting
cascade="nomerge" does not undo merging that took place on ancestors).

Implementers MAY define their own custom, implementation-specific tokens. To avoid name conflicts between
implementations or with future additions to the standard, implementation-specific tokens SHOULD consist of

dita13_archspec_examples26

a prefix that gives the name or an abbreviation for the implementation followed by a colon followed by the token
or method name.

For example, a processor might define the token "appToken:audience" in order to specify cascading and merging
behaviors for only the audience attribute. The following rules apply:

• The predefined values for the cascade attribute MUST precede any implementation-specific tokens, for example,
cascade="merge appToken:audience".

• Tokens can apply to a set of attributes, specified as part of the cascade value. In that case, the syntax for
specifying those values consists of the implementation-specific token, followed by a parenthetical group that
uses the same syntax as groups within the audience, platform, product, and otherprops attributes. For example,
a token that applies to only platform and product could be specified as
cascade="appname:token(platform product)".

Examples of the cascade attribute in use

Consider the following code examples:

<map audience="a b" cascade="merge">
 <topicref href="topic.dita" audience="c"/>
</map>

Figure 1: Map A

<map audience="a b" cascade="nomerge">
 <topicref href="topic.dita" audience="c"/>
</map>

Figure 2: Map B

For map A, the values for the attribute are merged, and the effective value of the audience
attribute for topic.dita is "a b c". For map B, the values for the attribute are not additive,
and the effective value of the audience attribute for topic.dita is "c".

In the following example, merging is active at the map level but turned off below:

<map platform="a" product="x" cascade="merge">
 <topicref href="one.dita" platform="b" product="y">
 <topicref href="two.dita" cascade="nomerge" product="z"/>

 </topicref>
</map>

Figure 3: Map C

In map C, the reference to one.dita has effective merged values of "a b" for platform
and "x y" for product.

The reference to two.dita turns off merging, so the explicit product value of "z" is used
(it does not merge with ancestor values). The platform attribute is not present, so the
already-merged value of "a b" continues to cascade and is the effective value of platform
on this reference.

Order for processing cascading attributes in a map

When determining the value of an attribute, processors MUST evaluate each attribute on each individual element
in a specific order; this order is specified in the following list. Applications MUST continue through the list until
a value is established or until the end of the list is reached (at which point no value is established for the attribute).
In essence, the list provides instructions on how processors can construct a map where all attribute values are
set and all cascading is complete.

27

For example, in the case of <topicref toc="yes">, applications MUST stop at item List item. on page
28 in the list; a value is specified for toc in the document instance, so toc values from containing elements will
not cascade to that specific topicref element. The toc="yes" setting on that topicref element will cascade to
contained elements, provided those elements reach item List item. on page 28 below when evaluating the toc
attribute.

For attributes within a map, the following processing order MUST occur:

1. The conref and keyref attributes are evaluated.
2. The explicit values specified in the document instance are evaluated. For example, a topicref element with

the toc attribute set to "no" will use that value.
3. The default or fixed attribute values are evaluated. For example, the toc attribute on the reltable element has

a default value of "no".
4. The default values that are supplied by a controlled values file are evaluated.
5. The attributes cascade.
6. The processing-supplied default values are applied.
7. After the attributes are resolved within the map, they cascade to referenced maps.

Note: The processing-supplied default values do not cascade to other maps. For example, most
processors will supply a default value of toc="yes" when no toc attribute is specified. However, a
processor-supplied default of toc="yes" MUST not override a value of toc="no" that is set on a
referenced map. If the toc="yes" value is explicitly specified, is given as a default through a DTD,
XSD, RNG, or controlled values file, or cascades from a containing element in the map, it MUST
override a toc="no" setting on the referenced map. See Map-to-map cascading behaviorsWhen a
DITA map (or branch of a DITA map) is referenced by another DITA map, by default, certain rules
apply. These rules pertain to the cascading behaviors of attributes, metadata elements, and roles
assigned to content (for example, the role of "Chapter" assigned by a chapter element). Attributes and
elements that cascade within a map generally follow the same rules when cascading from one map to
another map, but there are some exceptions and additional rules that apply. for more details.

8. Repeat steps List item. on page 28 to List item. on page 28 for each referenced map.
9. The attributes cascade within each referenced map.
10. The processing-supplied default values are applied within each referenced map.
11. Repeat the process for maps referenced within the referenced maps.

dita13_archspec_examples28

Reconciling topic and map metadata
elements

The topicmeta element in maps contains numerous elements that can be used to declare metadata. These metadata
elements have an effect on the parent topicref element, any child topicref elements, and – if a direct child of the
map element – on the map as a whole.

For each element that can be contained in the topicmeta element, the following table addresses the following
questions:

This column describes how the metadata specified within the topicmeta element
interacts with the metadata specified in the topic. In most cases, the properties

How does it apply to the
topic?

are additive. For example, when the audience element is set to "user" at the
map level, the value "user" is added during processing to any audience metadata
that is specified within the topic.

This column indicates whether the specified metadata value cascades to nested
topicref elements. For example, when an audience element is set to "user" at

Does it cascade to other
topics in the map?

the map level, all child topicref elements implicitly have an audience element
set to "user" also. Elements that can apply only to the specific topicref element,
such as linktext, do not cascade.

The map element allows metadata to be specified for the entire map. This
column describes what effect, if any, an element has when specified at this
level.

What is the purpose when
specified on the map
element?

Table 1:Topicmeta elements and their properties

What is the purpose when
set on the map element?

Does it cascade to child
topicref elements?

How does it apply to the
topic?Element

Specify an audience for the entire
map

YesAdd to the topicaudience

Specify an author for the entire
map

YesAdd to the topicauthor

Specify a category for the entire
map

YesAdd to the topiccategory

Specify a copyright for the entire
map

YesAdd to the topiccopyright

Specify critical dates for the
entire map

YesAdd to the topiccritdates

No stated purpose, until the
element is specialized

No, unless specialized for a
purpose that cascades

Add to the topicdata

No stated purpose, until the
element is specified

No, unless specialized for a
purpose that cascades

Add the property to the specified
target

data-about

No stated purpose, until the
element is specified

No, unless specialized for a
purpose that cascades

Add to the topicforeign

No stated purposeNoAdd to the topickeywords

No stated purposeNoNot added to the topic; applies
only to links created based on this
occurrence in the map

linktext

29

What is the purpose when
set on the map element?

Does it cascade to child
topicref elements?

How does it apply to the
topic?Element

Specify metadata for the entire
map

YesAdd to the topicmetadata

No stated purposeNoNot added to the topic; applies
only to navigation that is created

navtitle

based on this occurrence in the
map. The navigation title will be
used whenever the locktitle
attribute on the containing
topicref element is set to "yes".

Define metadata for the entire
map

NoAdd to the topicothermeta

Specify permissions for the entire
map

YesAdd to the topicpermissions

Specify product info for the entire
map

YesAdd to the topicprodinfo

Specify a publisher for the mapYesAdd to the topicpublisher

Specify a resource ID for the mapNoAdd to the topicresourceid

No stated purposeNoReplace the one in the topic. If
multiple searchtitle elements are

searchtitle

specified for a single target,
processors can choose to issue a
warning.

Provide a description of the mapNoOnly added to the topic when the
topicref element specifies a

shortdesc

copy-to attribute. Otherwise, it
applies only to links created
based on this occurrence in the
map.

Note: Processors MAY
or MAY NOT implement
this behavior.

Specify a source for the mapNoAdd to the topicsource

No stated purpose, until the
element is specified

No, unless specialized for a
purpose that cascades

Add to the topicunknown

Definitions are global, so setting
at map level is equivalent to
setting anywhere else.

NoNot added to the topicux-window

Example of metadata elements cascading in a DITA map

The following code sample illustrates how an information architect can apply certain
metadata to all the DITA topics in a map:

<map title="DITA maps" xml:lang="en-us">
 <topicmeta>
 <author>Kristen James Eberlein</author>
 <copyright>
 <copyryear year="2009"/>
 <copyrholder>OASIS</copyrholder>
 </copyright>
 </topicmeta>
 <topicref href="dita_maps.dita">

dita13_archspec_examples30

 <topicref href="definition_ditamaps.dita"/>
 <topicref href="purpose_ditamaps.dita"/>
 <!-- ... -->
 </topicref>
</map>

The author and copyright information cascades to each of the DITA topics referenced in
the DITA map. When the DITA map is processed to XHTML, for example, each XHTML
file contains the metadata information.

31

Cascading of attributes from map to map
Certain elements cascade from map to map, although some of the attributes that cascade within a map do not
cascade from map to map.

The following attributes cascade from map to map:

• audience, platform, product, otherprops, rev
• props and any attribute specialized from props
• linking, toc, print, search
• type
• translate
• processing-role
• cascade

Note that the above list excludes the following attributes:

The format attribute must be set to "ditamap" in order to reference a map or a branch of a
map, so it cannot cascade through to the referenced map.

format

Cascading behavior for xml:lang is defined in The xml:lang attribute The xml:lang attribute
specifies the language and (optional) locale of the element content. The xml:lang attribute

xml:lang and dir

applies to all attributes and content of the element where it is specified, unless it is overridden
with xml:lang on another element within that content.. The dir attribute work the same way.

The value of the scope attribute describes the map itself, rather than the content. When the
scope attribute is set to "external", it indicates that the referenced map itself is external and
unavailable, so the value cannot cascade into that referenced map.

scope

The class attribute is used to determine the processing roles that cascade from map to map. See Cascading of
roles from map to map on page 36 for more information.

As with values that cascade within a map, the cascading is additive if the attribute permits multiple values (such
as audience). When the attribute only permits one value, the cascading value overrides the top-level element.

Example of attributes cascading between maps

For example, assume the following references in test.ditamap:

<map>
 <topicref href="a.ditamap" format="ditamap" toc="no"/>
 <mapref href="b.ditamap" audience="developer"/>
 <mapref href="c.ditamap#branch2" platform="myPlatform"/>
</map>

• The map a.ditamap is treated as if toc="no" is specified on the root map element.
This means that the topics that are referenced by a.ditamap do not appear in the
navigation generated by test.ditamap (except for branches within the map that
explicitly set toc="yes").

• The map b.ditamap is treated as if audience="developer" is set on the root map
element. If the audience attribute is already set on the root map element within
b.ditamap, the value "developer" is added to any existing values.

• The element with id="branch2" within the map c.ditamap is treated as if
platform="myPlatform" is specified on that element. If the platform attribute is

dita13_archspec_examples32

already specified on the element with id="branch", the value "myPlatform" is added
to existing values.

33

Cascading of metadata elements from map
to map

Elements that are contained within topicmeta or metadata elements follow the same rules for cascading from
map to map as the rules that apply within a single DITA map.

For a complete list of which elements cascade within a map, see the column "Does it cascade to child topicref
elements?" in the topic Reconciling topic and map metadata elements on page 29.

Note: It is possible that a specialization might define metadata that should replace rather than add to
metadata in the referenced map, but DITA (by default) does not currently support this behavior.

For example, consider the following code examples:

<map>
 <topicref href="a.ditamap" format="ditamap">
 <topicmeta>
 <shortdesc>This map contains information about
Acme defects.</shortdesc>
 </topicmeta>
 </topicref>
 <topicref href="b.ditamap" format="ditamap">
 <topicmeta>
 <audience type="programmer"/>
 </topicmeta>
 </topicref>
 <mapref href="c.ditamap" format="ditamap"/>
 <mapref href="d.ditamap" format="ditamap"/>
 </map>

Figure 4: test-2.ditamap

<map>
 <topicmeta>
 <audience type="writer"/>
 </topicmeta>
 <topicref href="b-1.dita"/>
 <topicref href="b-2.dita"/>
</map>

Figure 5: b.ditamap

When test-2.ditamap is processed, the following behavior occurs:

• Because the shortdesc element does not cascade, it does not apply to the DITA topics that
are referenced in a.ditamap.

• Because the audience element cascades, the audience element in the reference to
b.ditamap combines with the audience element that is specified at the top level of
b.ditamap. The result is that the b-1.dita topic and b-2.dita topic are processed
as though hey each contained the following child topicmeta element:

<topicmeta>
 <audience type="programmer"/>

dita13_archspec_examples34

 <audience type="writer"/>
</topicmeta>

35

Cascading of roles from map to map
When specialized topicref elements (such as chapter or mapref) reference a map, they typically imply a semantic
role for the referenced content.

The semantic role reflects the class hierarchy of the referencing topicref element; it is equivalent to having the
class attribute from the referencing topicref cascade to the top-level topicref elements in the referenced map.
Although this cascade behavior is not universal, there are general guidelines for when class values should be
replaced.

When a topicref element or a specialization of a topicref element references a DITA resource, it defines a role
for that resource. In some cases this role is straightforward, such as when a topicref element references a DITA
topic (giving it the already known role of "topic"), or when a mapref element references a DITA map (giving it
the role of "DITA map").

Unless otherwise instructed, a specialized topicref element that references a map supplies a role for the referenced
content. This means that, in effect, the class attribute of the referencing element cascades to top-level topicref
elements in the referenced map. In situations where this should not happen - such as all elements from the
mapgroup domain - the non-default behavior should be clearly specified.

For example, when a chapter element from the bookmap specialization references a map, it supplies a role of
"chapter" for each top-level topicref element in the referenced map. When the chapter element references a
branch in another map, it supplies a role of "chapter" for that branch. The class attribute for chapter ("- map/topicref
bookmap/chapter ") cascades to the top-level topicref element in the nested map, although it does not cascade
any further.

Alternatively, the mapref element in the mapgroup domain is a convenience element; the top-level topicref
elements in the map referenced by a mapref element MUST NOT be processed as if they are mapref elements.
The class attribute from the mapref element ("+ map/topicref mapgroup-d/mapref ") does not cascade to the
referenced map.

In some cases, preserving the role of the referencing element might result in out-of-context content. For example,
a chapter element that references a bookmap might pull in part elements that contain nested chapter elements.
Treating the part element as a chapter will result in a chapter that nests other chapters, which is not valid in
bookmap and might not be understandable by processors. The result is implementation specific; processors MAY
choose to treat this as an error, issue a warning, or simply assign new roles to the problematic elements.

Example of cascading roles between maps

Consider the scenario of a chapter element that references a DITA map. This scenario could
take several forms:

The entire branch functions as if it were included
in the bookmap; the top-level topicref element is
processed as if it were the chapter element.

Referenced map contains a single
top-level topicref element

Each top-level topicref element is processed as if
it were a chapter element (the referencing
element).

Referenced map contains multiple
top-level topicref elements

The appendix element is processed as it were a
chapter element.

Referenced map contains a single
appendix element

dita13_archspec_examples36

The part element is processed as it were a chapter
element. Nested chapter elements might not be

Referenced map contains a single
part element, with nested chapter
elements. understandable by processors; applications MAY

recover as described above.

The referenced topicref element is processed as if
it were a chapter element.

chapter element references a single
topicref element rather than a map

37

Key scopes
Key scopes enable map authors to specify different sets of key definitions for different map branches.

A key scope is defined by a map or topicref element that specifies the keyscope attribute. The keyscope attribute
specifies the names of the scope, separated by spaces. The legal characters for a key scope name are the same
as those for keys.

A key scope includes the following components:

• The scope-defining element
• The elements that are contained by the scope-defining element, minus the elements that are contained by child

key scopes
• The elements that are referenced by the scope-defining element or its descendants, minus the elements that are

contained by child key scopes

If the keyscope attribute is specified on both a reference to a DITA map and the root element of the referenced
map, only one scope is created; the submap does not create another level of scope hierarchy. The single key
scope that results from this scenario has multiple names; its names are the union of the values of the keyscope
attribute on the map reference and the root element of the submap. This means that processors can resolve
references to both the key scopes specified on the map reference and the key scopes specified on the root element
of the submap.

The root element of a root map always defines a key scope, regardless of whether a keyscope attribute is present.
All key definitions and key references exist within a key scope, even if it is an unnamed, implicit key scope that
is defined by the root element in the root map.

Each key scope has its own key space that is used to resolve the key references that occur within the scope. The
key space that is associated with a key scope includes all of the key definitions within the key scope. This means
that different key scopes can have different effective key definitions:

• A given key can be defined in one scope, but not another.
• A given key also can be defined differently in different key scopes.

Key references in each key scope are resolved using the effective key definition that is specified within its own
key scope.

Example: Key scopes specified on both the map reference and the root
element of the submap

Consider the following scenario:

<map>
 <mapref keyscope="A" href="installation.ditamap"/>
 <!-- ... -->
</map>

Figure 6: Root map

<map keyscope="B">
 <!-- ... -->
</map>

Figure 7: installation.ditamap

Only one key scope is created; it has key scope names of "A" and "B".

dita13_archspec_examples38

Using keys for addressing
For topic references, image references, and other link relationships, resources can be indirectly addressed by
using the keyref attribute. For content reference relationships, resources can be indirectly addressed by using
the conkeyref attribute.

Syntax

For references to topics, maps, and non-DITA resources, the value of the keyref attribute is simply a key name
(for example, keyref="topic-key").

For references to non-topic elements within topics, the value of the keyref attribute is a key name, a slash ("/"),
and the ID of the target element (for example, keyref="topic-key/some-element-id".)

Example

For example, consider this topic in the document file.dita:

<topic id="topicid">
 <title>Example referenced topic</title>
 <body>
 <section id="section-01">Some content.</section>
 </body>
</topic>

and this key definition:

<map>
 <topicref keys="myexample"
 href="file.dita"
 />
</map>

A cross reference of the form keyref="myexample/section-01" resolves to the
section element in the topic. The key reference is equivalent to the URI reference
xref="file.dita#topicid/section-01".

39

Cross-deliverable addressing and linking
A map can use scoped keys to reference keys that are defined in a different root map. This cross-deliverable
addressing can support the production of deliverables that contain working links to other deliverables.

When maps are referenced and the value of the scope attribute is set to "peer", the implications are that the two
maps are managed in tandem, and that the author of the referencing map might have access to the referenced
map. Adding a key scope to the reference indicates that the peer map should be treated as a separate deliverable
for the purposes of linking.

The keys that are defined by the peer map belong to any key scopes that are declared on the topicref element
that references that map. Such keys can be referenced from content in the referencing map by using scope-qualified
key names. However, processors handle references to keys that are defined in peer maps differently from how
they handle references to keys that are defined in submaps.

DITA processors are not required to resolve key references to peer maps. However, if all resources are available
in the same processing or management context, processors have the potential to resolve key references to peer
maps. There might be performance, scale, and user interface challenges in implementing such systems, but the
ability to resolve any given reference is ensured when the source files are physically accessible.

Note the inverse implication; if the peer map is not available, then it is impossible to resolve the key reference.
Processors that resolve key references to peer maps should provide appropriate messages when a reference to a
peer map cannot be resolved. Depending on how DITA resources are authored, managed, and processed, references
to peer maps might not be resolvable at certain points in the content life cycle.

The peer map might specify keyscope on its root element. In that case, the keyscope on the peer map is ignored
for the purpose of resolving scoped key references from the referencing map. This avoids the need for processors
to have access to the peer map in order to determine whether a given key definition comes from the peer map.

Example: A root map that declares a peer map

Consider the DITA maps map-a.ditamap and map-b.ditamap. Map A designates
Map B as a peer map by using the following markup:

<map>
 <title>Map A</title>
 <topicref
 scope="peer"
 format="ditamap"
 keyscope="map-b"
 href="../map-b/map-b.ditamap"
 processing-role="resource-only"
 />
 <!-- ... -->
</map>

In this example, map-b.ditamap is not a submap of Map A; it is a peer map.

Example: Key resolution in a peer map that contains a keyscope attribute on
the root element

Consider the map reference in map Map A:

<mapref
 keyscope="scope-b"
 scope="peer"

dita13_archspec_examples40

 href="map-b.ditamap"
/>

where map-b.ditamap contains the following markup:

<map keyscope="product-x">
 <!-- ... -->
</map>

From the context of Map A, key references of the form "scope-b.somekey" are resolved to
keys that are defined in the global scope of map B, but key references of the form
"product-x.somekey" are not. The presence of a keyscope attribute on the map element in
Map B has no effect. A key reference to the scope "scope-b.somekey" is equivalent to the
unscoped reference "somekey" when processed in the context of Map B as the root map.
In both cases, the presence of keyscope on the root element of Map B has no effect; in the
first case it is explicitly ignored, and in the second case the key reference is within the scope
"product-x" and so does not need to be scope qualified.

41

Processing xrefs and conrefs within a
conref

When referenced content contains a content reference or cross reference, the effective target of the reference
depends on the form of address that is used in the referenced content. It also might depend on the map context,
especially when key scopes are present.

When the address is a direct URI reference of any form other than a
same-topic fragment identifier, processors MUST resolve it relative to the
source document that contains the original URI reference.

Direct URI reference (but not a
same-topic fragment identifier)

When the address is a same-topic fragment identifier, processors MUST
resolve it relative to the location of the content reference (referencing
context).

Same-topic fragment identifier

When the address is a key reference, processors MUST resolve it relative
to the location of the content reference (referencing context).

Key reference

When resolving key references or same-topic fragment identifiers, the phrase location of the content reference
means the final resolved context. For example, in a case where content references are chained (topic A pulls
from topic B, which in turn pulls a reference from topic C), the reference is resolved relative to the topic that is
rendered. When topic B is rendered, the reference is resolved relative to the content reference in topic B; when
topic A is rendered, the reference is resolved relative to topic A. If content is pushed from topic A to topic B to
topic C, then the same-topic fragment identifier is resolved in the context of topic C.

The implication is that a content reference or cross reference can resolve to different targets in different use
contexts. This is because a URI reference that contains a same-topic fragment identifier is resolved in the context
of the topic that contains the content reference, and a key reference is resolved in the context of the key scope
that is in effect for each use of the topic that contains the content reference.

Note: In the case of same-topic fragment identifiers, it is the responsibility of the author of the content
reference to ensure that any element IDs that are specified in same-topic fragment identifiers in the
referenced content will also be available in the referencing topic at resolution time.

Example: Resolving conrefs to elements that contain cross references

Consider the following paragraphs in paras-01.dita that are intended to be used by
reference from other topics:

<topic id="paras-01"><title>Reusable paragraphs</title>
 <body>
 <p id="p1">See <xref href="#paras-01/p5"/>.</p>
 <p id="p2">See <xref
href="topic-02.dita#topic02/fig-01"/>.</p>
 <p id="p3">See <xref href="#./p5"/>.</p>
 <p id="p4">See <xref keyref="task-remove-cover"/>.</p>

 <p id="p5">Paragraph 5 in paras-01.</p>
 </body>
</topic>

dita13_archspec_examples42

The paragraphs are used by content reference from other topics, including the
using-topic-01.dita topic:

<topic id="using-topic-01"><title>Using topic one</title>
 <body>
 <p id="A" conref="paras-01.dita#paras-01/p1"/>
 <p id="B" conref="paras-01.dita#paras-01/p2"/>
 <p id="C" conref="paras-01.dita#paras-01/p3"/>
 <p id="D" conref="paras-01.dita#paras-01/p4"/>
 <p id="p5">Paragraph 5 in using-topic-01</p>
 </body>
</topic>

Following resolution of the content references and processing of the xref elements in the
referenced paragraphs, the rendered cross references in using-topic-01.dita are
shown in the following table.

Resolutionxref within conrefed

paragraph

Value of id

attribute on

conrefed

paragraph

Paragraph

The cross reference in paragraph p1 is a direct

URI reference that does not contain a

<xref
href="#paras-01/p5"/>

p1A

same-topic fragment identifier. It can be

resolved only to paragraph p5 in

paras-01.dita, which contains the

content "Paragraph 5 in paras-01".

The cross reference in paragraph p2 is a direct

URI reference. It can be resolved only to the

<xref
href="topic-02.dita#topic02/fig-01"/>

p2B

element with id="fig-01" in

topic-02.dita.

The cross reference in paragraph p3 is a direct

URI reference that contains a same-topic

<xref
href="#./p5"/>

p3C

fragment identifier. Because the URI reference

contains a same-topic fragment identifier, the

reference is resolved in the context of the

referencing topic

(using-topic-01.dita).

If using-topic-01.dita did not

contain an element with id="p5", then the

conref to paragraph p3 would result in a link

resolution failure.

The cross reference in paragraph p4 is a key

reference. It is resolved to whatever resource

<xref
keyref="task-remove-cover"/>

p4D

is bound to the key name "task-remove-cover"

in the applicable map context.

43

Example: Resolving conrefs to elements that contain key-based cross
references

Consider the following map, which uses the topics from the previous example:

<map>
 <topicgroup keyscope="product-1">
 <topicref keys="task-remove-cover"
href="prod-1-task-remove-cover.dita"/>
 <topicref href="using-topic-01.dita"/>
 </topicgroup>
 <topicgroup keyscope="product-2">
 <topicref keys="task-remove-cover"
href="prod-2-task-remove-cover.dita"/>
 <topicref href="using-topic-01.dita"/>
 </topicgroup>
</map>

The map establishes two key scopes: "product-1" and "product-2". Within the map branches,
the key name "task-remove-cover" is bound to a different topic. The topic
using-topic-01.dita, which includes a conref to a paragraph that includes a cross
reference to the key name "task-remove-cover", is also referenced in each branch. When
each branch is rendered, the target of the cross reference is different.

In the first branch with the key scope set to "product-1", the cross reference from paragraph
p4 is resolved to prod-1-task-remove-cover.dita. In the second branch with the
key scope set to "product-2", the cross reference from paragraph p4 is resolved to
prod-2-task-remove-cover.dita.

dita13_archspec_examples44

domains attribute rules and syntax
The domains attribute enables processors to determine whether two elements or two documents use compatible
domains. The attribute is declared on the root element for each topic or map type. Each structural, domain, and
constraint module defines its ancestry as a parenthesized sequence of space-separated module names; the effective
value of the domains attribute is composed of these parenthesized sequences.

Document type shells collect the values that are provided by each module to construct the effective value of the
domains attribute. Processors can examine the collected values when content from one document is used in
another, in order to determine whether the content is compatible.

For example, when an author pastes content from one topic into another topic within an XML editor, the application
can use the domains attribute to determine if the two topics use compatible domains. If not, copied content from
the first topic might need to be generalized before it can be placed in the other topic.

The domains attribute serves the same function when an element uses the conref attribute to reference a more
specialized version of the element. For example, a note element in a concept topic conrefs a hazardstatement
element in a reference document. If the hazard statement domain is not available in the concept topic, the
hazardstatement element is generalized to a note element when the content reference is resolved.

Syntax and rules

Each domain and constraint module MUST provide a value for use by the domains attribute. Each structural
vocabulary module SHOULD provide a value for use by the domains attribute, and it MUST do so when it has
a dependency on elements from any module that is not part of its specialization ancestry.

Values provided for the domains attribute values are specified from root module (map or topic) to the provided
module.

The value of the domains attribute includes each module in the specialization ancestry:

 '(', topic-or-map, (' ', module)+, ')'

structural
modules

For example, consider the glossentry specialization, in which the topic type is specialized to
the concept type, and the concept type is specialized to glossentry. The structural module
contribution to the value of the domains attribute for the glossentry structural module is (topic
concept glossentry).

Structural modules can directly reference or specialize elements from modules that are outside
of their specialization ancestry. They also can define specialized elements that reference

structural
modules with
dependencies

specialized attributes. In these cases the structural module has a dependency on the non-ancestor
module, and the structural module contribution to the value of the domains attribute MUST
include the names of each dependent, non-ancestor module.

Dependencies are included in the value of the domains attribute following the name of the
structural module with the dependency on the non-ancestor module. Domain or attribute
modules are appended to the name of the structural module with the dependency on the
non-ancestor module, or to previous dependencies, separated by "+". Dependencies on structural
specialization modules are appended to the name of the structural module with the dependency
on the non-ancestor module, or to previous dependencies, separated by "++". The syntax is
the same as for other structural modules, except that added modules can include these
dependencies:

 '(', topic-or-map, (' ',
module-plus-optional-dependency-list)+, ')'

45

When the structural module is included in a document-type shell, all dependency modules also
are included along with their own domains values.

For example, the cppAPIRef structural module is specialized from reference, which is
specialized from topic. The cppAPIRef module has a dependency on the cpp-d element domain
and on the compilerTypeAtt-d attribute domain. The dependencies are listed after the name
of cppApiref:

(topic reference cppApiRef+cpp-d+compilerTypeAtt-d)

Similarly, a codeChecklist structural module is specialized from reference, which is specialized
from topic. The codeChecklist module has a dependency on the pr-d domain and on the task
structural specialization. Again, the dependencies are listed after the name of
codeChecklist. The pr-d domain and the task module each contribute their own values,
so taken together these modules contribute the following values:

(topic reference codeChecklist+pr-d++task) (topic pr-d) (topic
 task)

The value includes the structural type ancestry and, if applicable, the domain module ancestry
from which the domain is specialized:

 '(', topic-or-map, (' ', domain-module)+, ')'

element
domains

For example, the highlighting domain (specialized from topic) supplies the following value:
(topic hi-d). A CPP domain that is specialized from the programming domain, which
in turn is specialized from topic, supplies the following value: (topic pr-d cpp-d).

The value includes the structural type ancestry followed by the name of the constraint domain:

 '(', inheritance-hierarchy qualifierTagname-c, ')'

structural
constraint
modules

where:

• inheritance-hierarchy is the specialization hierarchy, for example, topic task.
• qualifier is a string that is specific to the constraints module and characterizes it, for example,

"strict" or "requiredTitle" or "myCompany-".
• Tagname is the element type name with an initial capital, for example, "Taskbody" or "Topic".
• The literal "-c" indicates that the name is the name of a constraint.

For example, the strictTaskbody constraint applies to the task module, which is specialized
from topic, resulting in the following value: (topic task strictTaskbody-c).

Optionally, a domains contribution can indicate a strong constraint by preceding the domains
contribution with the letter "s". For example, s(topic task strictTaskbody-c)
indicates a strong constraint.

The value includes the specialization ancestry followed by the name of the constraint domain:

 '(', inheritance-hierachy qualifierdomainDomain-c ')'

domain
constraint
modules

where:

• inheritance-hierarchy is the specialization hierarchy, for example, topic hi-d.
• qualifier is a string that is specific to the constraints module and characterizes it, for example,

"noSyntaxDiagram" or "myCompany-".
• domain is the name of the domain to which the constraints apply, for example, "Highlighting"

or "Programming".
• The literal "-c" indicates that the name is the name of a constraint.

dita13_archspec_examples46

For example, a domain constraint module that restricts the highlighting domain includes a
value like the following: (topic hi-d basic-HighlightingDomain-c)

The value uses an "a" before the initial parenthesis to indicate an attribute domain. Within the
parenthesis, the value includes the attribute specialization hierarchy, starting with props or
base:

 'a(', props-or-base, (' ', attname)+, ')'

attribute
domains

For example, the mySelectAttribute specialized from props results in the following value:
a(props mySelectAttribute)

Example:Task with multiple domains

In this example, a document-type shell integrates the task structural module and the following
domain modules:

Domain short nameDomain

ui-dUser interface

sw-dSoftware

pr-dProgramming

The value of the domains attribute includes one value from each module; the effective value
is the following:

domains="(topic task) (topic ui-d) (topic sw-d) (topic pr-d)"

If the document-type shell also used a specialization of the programming domain that
describes C++ programming (with a short name of "cpp-d"), the new C++ programming
domain would add an additional value to the domains attribute:

domains="(topic task) (topic ui-d) (topic sw-d) (topic pr-d)
(topic pr-d cpp-d)"

Note that the value for the domains attribute is not authored; Instead, the value is defaulted
based on the modules that are included in the document type shell.

47

domains attribute rules and syntax
The domains attribute enables processors to determine whether two elements or two documents use compatible
domains. The attribute is declared on the root element for each topic or map type. Each structural, domain, and
constraint module defines its ancestry as a parenthesized sequence of space-separated module names; the effective
value of the domains attribute is composed of these parenthesized sequences.

Document type shells collect the values that are provided by each module to construct the effective value of the
domains attribute. Processors can examine the collected values when content from one document is used in
another, in order to determine whether the content is compatible.

For example, when an author pastes content from one topic into another topic within an XML editor, the application
can use the domains attribute to determine if the two topics use compatible domains. If not, copied content from
the first topic might need to be generalized before it can be placed in the other topic.

The domains attribute serves the same function when an element uses the conref attribute to reference a more
specialized version of the element. For example, a note element in a concept topic conrefs a hazardstatement
element in a reference document. If the hazard statement domain is not available in the concept topic, the
hazardstatement element is generalized to a note element when the content reference is resolved.

Syntax and rules

Each domain and constraint module MUST provide a value for use by the domains attribute. Each structural
vocabulary module SHOULD provide a value for use by the domains attribute, and it MUST do so when it has
a dependency on elements from any module that is not part of its specialization ancestry.

Values provided for the domains attribute values are specified from root module (map or topic) to the provided
module.

The value of the domains attribute includes each module in the specialization ancestry:

 '(', topic-or-map, (' ', module)+, ')'

structural
modules

For example, consider the glossentry specialization, in which the topic type is specialized to
the concept type, and the concept type is specialized to glossentry. The structural module
contribution to the value of the domains attribute for the glossentry structural module is (topic
concept glossentry).

Structural modules can directly reference or specialize elements from modules that are outside
of their specialization ancestry. They also can define specialized elements that reference

structural
modules with
dependencies

specialized attributes. In these cases the structural module has a dependency on the non-ancestor
module, and the structural module contribution to the value of the domains attribute MUST
include the names of each dependent, non-ancestor module.

Dependencies are included in the value of the domains attribute following the name of the
structural module with the dependency on the non-ancestor module. Domain or attribute
modules are appended to the name of the structural module with the dependency on the
non-ancestor module, or to previous dependencies, separated by "+". Dependencies on structural
specialization modules are appended to the name of the structural module with the dependency
on the non-ancestor module, or to previous dependencies, separated by "++". The syntax is
the same as for other structural modules, except that added modules can include these
dependencies:

 '(', topic-or-map, (' ',
module-plus-optional-dependency-list)+, ')'

dita13_archspec_examples48

When the structural module is included in a document-type shell, all dependency modules also
are included along with their own domains values.

For example, the cppAPIRef structural module is specialized from reference, which is
specialized from topic. The cppAPIRef module has a dependency on the cpp-d element domain
and on the compilerTypeAtt-d attribute domain. The dependencies are listed after the name
of cppApiref:

(topic reference cppApiRef+cpp-d+compilerTypeAtt-d)

Similarly, a codeChecklist structural module is specialized from reference, which is specialized
from topic. The codeChecklist module has a dependency on the pr-d domain and on the task
structural specialization. Again, the dependencies are listed after the name of
codeChecklist. The pr-d domain and the task module each contribute their own values,
so taken together these modules contribute the following values:

(topic reference codeChecklist+pr-d++task) (topic pr-d) (topic
 task)

The value includes the structural type ancestry and, if applicable, the domain module ancestry
from which the domain is specialized:

 '(', topic-or-map, (' ', domain-module)+, ')'

element
domains

For example, the highlighting domain (specialized from topic) supplies the following value:
(topic hi-d). A CPP domain that is specialized from the programming domain, which
in turn is specialized from topic, supplies the following value: (topic pr-d cpp-d).

The value includes the structural type ancestry followed by the name of the constraint domain:

 '(', inheritance-hierarchy qualifierTagname-c, ')'

structural
constraint
modules

where:

• inheritance-hierarchy is the specialization hierarchy, for example, topic task.
• qualifier is a string that is specific to the constraints module and characterizes it, for example,

"strict" or "requiredTitle" or "myCompany-".
• Tagname is the element type name with an initial capital, for example, "Taskbody" or "Topic".
• The literal "-c" indicates that the name is the name of a constraint.

For example, the strictTaskbody constraint applies to the task module, which is specialized
from topic, resulting in the following value: (topic task strictTaskbody-c).

Optionally, a domains contribution can indicate a strong constraint by preceding the domains
contribution with the letter "s". For example, s(topic task strictTaskbody-c)
indicates a strong constraint.

The value includes the specialization ancestry followed by the name of the constraint domain:

 '(', inheritance-hierachy qualifierdomainDomain-c ')'

domain
constraint
modules

where:

• inheritance-hierarchy is the specialization hierarchy, for example, topic hi-d.
• qualifier is a string that is specific to the constraints module and characterizes it, for example,

"noSyntaxDiagram" or "myCompany-".
• domain is the name of the domain to which the constraints apply, for example, "Highlighting"

or "Programming".
• The literal "-c" indicates that the name is the name of a constraint.

49

For example, a domain constraint module that restricts the highlighting domain includes a
value like the following: (topic hi-d basic-HighlightingDomain-c)

The value uses an "a" before the initial parenthesis to indicate an attribute domain. Within the
parenthesis, the value includes the attribute specialization hierarchy, starting with props or
base:

 'a(', props-or-base, (' ', attname)+, ')'

attribute
domains

For example, the mySelectAttribute specialized from props results in the following value:
a(props mySelectAttribute)

Example:Task with multiple domains

In this example, a document-type shell integrates the task structural module and the following
domain modules:

Domain short nameDomain

ui-dUser interface

sw-dSoftware

pr-dProgramming

The value of the domains attribute includes one value from each module; the effective value
is the following:

domains="(topic task) (topic ui-d) (topic sw-d) (topic pr-d)"

If the document-type shell also used a specialization of the programming domain that
describes C++ programming (with a short name of "cpp-d"), the new C++ programming
domain would add an additional value to the domains attribute:

domains="(topic task) (topic ui-d) (topic sw-d) (topic pr-d)
(topic pr-d cpp-d)"

Note that the value for the domains attribute is not authored; Instead, the value is defaulted
based on the modules that are included in the document type shell.

dita13_archspec_examples50

Example: Setting conditional processing
values and groups

Conditional processing attributes can be used to classify content using either individual values or using groups.

Example: Simple product values

In the following example, the first configuration option applies only to the "extendedprod"
product, while the second option applies to both "extendedprod" and to "baseprod". The
entire p element containing the list applies to an audience of "administrator".

<p audience="administrator">Set the configuration options:

 <li product="extendedprod">Set foo to bar
 <li product="basicprod extendedprod">Set your blink
rate
 Do some other stuff
 Do a special thing for Linux

</p>

Example: Grouped values on an attribute

The following example indicates that a step applies to one application server and two
databases. Specifically, this step only applies when it is taken on the server "mySERVER";
likewise, it only applies when used with the databases "ABC" or "dbOtherName".

<steps>
 <step><cmd>Common step</cmd></step>
 <step product="appserver(mySERVER) database(ABC
dbOtherName)">
 <cmd>Do something special for databases ABC or OtherName
 when installing on mySERVER</cmd>
 </step>
 <!-- additional steps -->
</steps>

51

Example: Single ditavalref on a branch
A single ditavalref element can be used to supply filtering conditions for a branch.

Consider the following DITA map and the DITAVAL file that is referenced from the
ditavalref element:

<map>
 <topicref href="intro.dita"/>
 <topicref href="install.dita">
 <ditavalref href="novice.ditaval"/>
 <topicref href="do-stuff.dita"/>
 <topicref href="advanced-stuff.dita" audience="admin"/>
 <!-- more topics -->
 </topicref>
 <!-- Several chapters worth of other material -->
</map>

Figure 8: input.ditamap:

<val>
 <prop att="audience" val="novice" action="include"/>
 <prop att="audience" val="admin" action="exclude"/>
</val>

Figure 9: Contents of novice.ditaval

When this content is published, the following processing occurs:

• The first topic (intro.dita) does not use any of the conditions that are specified in
novice.ditaval. It is published normally, potentially using other DITAVAL conditions
that are specified externally.

• The second topic (install.dita) is filtered using any external conditions as well as
the conditions that are specified in novice.ditaval.

• The third topic (do-stuff.dita) is filtered using any external conditions as well as
the conditions that are specified in novice.ditaval.

• The fourth topic (advanced-stuff.dita) is removed from the map entirely, because
it is filtered out with the conditions that are specified for the branch.

In this example, no resources are renamed based on the ditavalref processing.

Note: In cases where the original resource names map directly to names or anchors
in a deliverable, the absence of renaming ensures that external links to those topics
are stable regardless of whether a DITAVAL document is used.

dita13_archspec_examples52

Example: Multiple ditavalref elements on
a branch

Multiple ditavalref elements can be used on a single map branch to create multiple distinct copies of the branch.

Consider the following DITA map that contains a branch with three peer ditavalref elements.
Because topics in the branch are filtered in three different ways, processors are effectively
required to handle three copies of the entire branch. Sub-elements within the ditavalref
elements are used to control how new resource names are constructed for two copies of the
branch; one copy (based on the conditions in win.ditaval) is left with the original file
names.

<map>
 <topicref href="intro.dita"/>
<!-- Begining of installing branch -->

 <topicref href="install.dita">
 <ditavalref href="win.ditaval"/>
 <ditavalref href="mac.ditaval">
 <ditavalmeta>
 <dvrResourceSuffix>-apple</dvrResourceSuffix>
 </ditavalmeta>
 </ditavalref>
 <ditavalref href="linux.ditaval">
 <ditavalmeta>
 <dvrResourceSuffix>-linux</dvrResourceSuffix>
 </ditavalmeta>
 </ditavalref>
 <topicref href="do-stuff.dita">

<!-- more topics and nested branches -->
 <topicref href="mac-specific-stuff.dita"
platform="mac"/>
 </topicref>

<!-- End of installing branch -->
 <topicref href="cleanup.dita"/>
 </topicref>
</map>

Figure 10: input.ditamap

<val>
 <prop att="platform" val="win" action="include"/>
 <prop att="platform" action="exclude"/>
</val>

Figure 11: Contents of win.ditaval

<val>
 <prop att="platform" val="mac" action="include"/>
 <prop att="platform" action="exclude"/>
</val>

Figure 12: Contents of mac.ditaval

<val>
 <prop att="platform" val="linux" action="include"/>

53

 <prop att="platform" action="exclude"/>
</val>

Figure 13: Contents of linux.ditaval

When a processor evaluates this markup, it results in three copies of the installing branch.
The following processing takes place:

• The first topic (intro.dita) is published normally, potentially using any other
DITAVAL conditions that are specified externally.

• The installing branch appears three times, once for each DITAVAL document. The branches
are created as follows:

• The first branch uses the first DITAVAL document (win.ditaval). Resources use
their original names as specified in the map. The mac-specific-stuff.dita topic
is removed. The resulting branch, with indenting to show the hierarchy, matches the
original without the mac topic:

install.dita
 do-stuff.dita
 ...more topics and nested branches...
 cleanup.dita

• The second branch uses the second DITAVAL document (mac.ditaval). Resources
are renamed based on the dvrResourceSuffix element. The
mac-specific-stuff.dita topic is included. The resulting branch, with indenting
to show the hierarchy, is as follows:

install-apple.dita
 do-stuff-apple.dita
 mac-specific-stuff-apple.dita
 ...more topics and nested branches...
 cleanup-apple.dita

• The third branch uses the last DITAVAL document (linux.ditaval). Resources
are renamed based on the dvrResourceSuffix element. The
mac-specific-stuff.dita topic is removed. The resulting branch, with indenting
to show the hierarchy, is as follows:

install-linux.dita
 do-stuff-linux.dita
 ...more topics and nested branches...
 cleanup-linux.dita

The example used three DITAVAL documents to avoid triple maintenance of the installing
branch in a map; the following map is functionally equivalent, but it requires parallel
maintenance of each branch.

<map>
 <topicref href="intro.dita"/>
<!-- Windows installing branch -->

 <topicref href="install.dita">
 <ditavalref href="win.ditaval"/>
 <topicref href="do-stuff.dita">
 <!-- more topics and nested branches -->
 </topicref>
 <topicref href="cleanup.dita"/>
 </topicref>
<!-- Mac installing branch -->

 <topicref href="install.dita">

dita13_archspec_examples54

 <ditavalref href="mac.ditaval">

<ditavalmeta><dvrResourceSuffix>-apple</dvrResourceSuffix></ditavalmeta>

 </ditavalref>
 <topicref href="do-stuff.dita">
 <topicref href="mac-specific-stuff.dita"
platform="mac"/>
 <!-- more topics and nested branches -->
 </topicref>
 <topicref href="cleanup.dita"/>
 </topicref>
<!-- Linux installing branch -->

 <topicref href="install.dita">
 <ditavalref href="linux.ditaval">

<ditavalmeta><dvrResourceSuffix>-linux</dvrResourceSuffix></ditavalmeta>

 </ditavalref>
 <topicref href="do-stuff.dita">
 <!-- more topics and nested branches -->
 </topicref>
 <topicref href="cleanup.dita"/>
 </topicref>
 <!-- Several chapters worth of other material -->
</map>

Figure 14: input.ditamap

55

Example: Single ditavalref as a child of
map

Using a ditavalref element as a direct child of the map element is equivalent to setting global filtering conditions
for the map.

The following map is equivalent to processing all the contents of the map with the conditions
in the novice.ditaval document. If additional conditions are provided externally (for
example, as a parameter to the publishing process), those conditions take precedence.

<map>
 <title>Sample map</title>
 <ditavalref href="novice.ditaval"/>
 <!-- lots of content -->
</map>

dita13_archspec_examples56

Example: Single ditavalref in a reference
to a map

Using a ditavalref element in a reference to a map is equivalent to setting filtering conditions for the referenced
map.

In the following example, other.ditamap is referenced by a root map. The ditavalref
element indicates that all of the content in other.ditamap should be filtered using the
conditions specified in the some.ditaval document.

<topicref href="parent.dita">
 <topicref href="other.ditamap" format="ditamap">
 <ditavalref href="some.ditaval"/>
 </topicref>
</topicref>

Figure 15: Map fragment

<map>
 <topicref href="nestedTopic1.dita">
 <topicref href="nestedTopic2.dita"/>
 </topicref>
 <topicref href="nestedTopic3.dita"/>
</map>

Figure 16: Contents of other.ditamap

This markup is functionally equivalent to applying the conditions in some.ditaval to
the topics that are referenced in the nested map. For the purposes of filtering, it could be
rewritten in the following way. The extra topicgroup container is used here to ensure filtering
is not applied to parent.dita, as it would not be in the original example:

<topicref href="parent.dita">
<topicgroup>

 <ditavalref href="some.ditaval"/>
 <topicref href="nestedTopic1.dita">
 <topicref href="nestedTopic2.dita"/>
 </topicref>
 <topicref href="nestedTopic3.dita"/>
</topicgroup>

</topicref>

For the purposes of filtering, this map also could be rewritten as follows.

<topicref href="parent.dita">
 <topicref href="nestedTopic1.dita">

<ditavalref href="some.ditaval"/>
 <topicref href="nestedTopic2.dita"/>
 </topicref>
 <topicref href="nestedTopic3.dita">

<ditavalref href="some.ditaval"/>
 </topicref>
</topicref>

Filtering based on the ditavalref element applies to the containing element and its children,
so in each case, the files nestedTopic1.dita, nestedTopic2.dita, and

57

nestedTopic3.dita are filtered against the conditions specified in some.ditaval.
In each version, parent.dita is not a parent for the ditavalref, so it is not filtered.

dita13_archspec_examples58

Example: Multiple ditavalref elements as
children of map in a root map

Using multiple instances of the ditavalref element as direct children of the map element in a root map is equivalent
to setting multiple sets of global filtering conditions for the root map.

Note: Unlike most other examples of branch filtering, this example cannot be
rewritten using a single valid map with alternate markup that avoids having multiple
ditavalref elements as children of the same grouping element.

Processing the following root map is equivalent to processing all the contents of the map
with the conditions in the mac.ditaval file and again with the linux.ditaval file.
If additional conditions are provided externally (for example, as a parameter to the publishing
process), those global conditions take precedence.

<map>
 <title>Setting up my product
on <keyword platform="mac">Mac</keyword><keyword
platform="linux">Linux</keyword></title>
 <topicmeta>
 <othermeta platform="mac" name="ProductID"
content="1234M"/>
 <othermeta platform="linux" name="ProductID"
content="1234L"/>
 </topicmeta>
 <ditavalref href="mac.ditaval"/>
 <ditavalref href="linux.ditaval"/>
 <!-- lots of content, including relationship tables -->
</map>

Figure 17: input.ditamap

<val>
 <prop att="platform" val="mac" action="include"/>
 <prop att="platform" val="linux" action="exclude"/>
</val>

Figure 18: Contents of mac.ditaval

<val>
 <prop att="platform" val="mac" action="exclude"/>
 <prop att="platform" val="linux" action="include"/>
</val>

Figure 19: Contents of linux.ditaval

Because the title and metadata each contain filterable content, processing using the conditions
that are referenced by the ditavalref element results in two variants of the title and common
metadata. While this cannot be expressed using valid DITA markup, it is conceptually
similar to something like the following.

<!-- The following wrapperElement is not a real DITA element.

 It is used here purely as an example to illustrate one

59

possible
 way of picturing the conditions. -->
<wrapperElement>
 <map>
 <title>Setting up my product on <keyword
platform="mac">Mac</keyword></title>
 <topicmeta>
 <othermeta platform="mac" name="ProductID"
content="1234M"/>
 </topicmeta>
 <ditavalref href="mac.ditaval"/>
 <!-- lots of content, including relationship tables -->
 </map>
 <map>
 <title>Setting up my product on <keyword
platform="linux">Linux</keyword></title>
 <topicmeta>
 <othermeta platform="linux" name="ProductID"
content="1234L"/>
 </topicmeta>
 <ditavalref href="linux.ditaval"/>
 <!-- lots of content, including relationship tables -->
 </map>
</wrapperElement>

How this map is rendered is implementation dependent. If this root map is rendered as a
PDF, possible renditions might include the following:

• Two PDFs, with one using the conditions from mac.ditaval and another using the
conditions from linux.ditaval

• One PDF, with a title page that includes each filtered variant of the title and product ID,
followed by Mac-specific and Linux-specific renderings of the content as chapters in the
PDF

• One PDF, with the first set of filter conditions used to set book level titles and metadata,
followed by content filtered with those conditions, followed by content filtered with
conditions from the remaining ditavalref element.

dita13_archspec_examples60

Example: Multiple ditavalref elements in
a reference to a map

Using multiple instances of the ditavalref element in a reference to a map is equivalent to referencing that map
multiple times, with each reference nesting one of the ditavalref elements.

In the following example, other.ditamap is referenced by a root map. The ditavalref
elements provide conflicting sets of filter conditions.

<topicref href="parent.dita">
 <topicref href="other.ditamap" format="ditamap">
 <ditavalref href="audienceA.ditaval"/>
 <ditavalref href="audienceB.ditaval"/>
 <ditavalref href="audienceC.ditaval"/>
 </topicref>
</topicref>

Figure 20: Map fragment

This markup is functionally equivalent to referencing other.ditamap three times, with
each reference including a single ditavalref elements. The fragment could be rewritten as:

<topicref href="parent.dita">
 <topicref href="other.ditamap" format="ditamap">
 <ditavalref href="audienceA.ditaval"/>
 </topicref>
 <topicref href="other.ditamap" format="ditamap">
 <ditavalref href="audienceB.ditaval"/>
 </topicref>
 <topicref href="other.ditamap" format="ditamap">
 <ditavalref href="audienceC.ditaval"/>
 </topicref>
</topicref>

Figure 21: Map fragment

61

Example: ditavalref within a branch that
already uses ditavalref

When a branch is filtered because a ditavalref element is present, another ditavalref deeper within that branch
can supply additional conditions for a subset of the branch.

In the following map fragment, a set of operating system conditions applies to installation
instructions. Within that common branch, a subset of content applies to different audiences.

<topicref href="install.dita">
 <ditavalref href="linux.ditaval"/>
 <ditavalref href="mac.ditaval">
 <ditavalmeta>
 <dvrResourceSuffix>-mac</dvrResourceSuffix>
 </ditavalmeta>
 </ditavalref>
 <ditavalref href="win.ditaval">
 <ditavalmeta>
 <dvrResourceSuffix>-win</dvrResourceSuffix>
 </ditavalmeta>
 </ditavalref>
 <topicref href="perform-install.dita">
 <!-- other topics-->
 </topicref>
<!-- Begin configuration sub-branch -->

 <topicref href="configure.dita">
 <ditavalref href="novice.ditaval">
 <ditavalmeta>
 <dvrResourceSuffix>-novice</dvrResourceSuffix>
 </ditavalmeta>
 </ditavalref>
 <ditavalref href="advanced.ditaval">
 <ditavalmeta>
 <dvrResourceSuffix>-admin</dvrResourceSuffix>
 </ditavalmeta>
 </ditavalref>
 <!-- Other config topics -->
 </topicref>
<!-- End configuration sub-branch -->

</topicref>

In this case, the effective map contains three copies of the complete branch. The branches
are filtered by operating system. Because topics in the branch are filtered in different ways,
processors are effectively required to handle three copies of the entire branch. The map
author uses the dvrResourceSuffix elements to control naming for each copy. The Linux
branch does not specify a dvrResourceSuffix element, because it is the default copy of the
branch; this allows documents such as install.dita to retain their original names.

Within each operating system instance, the configuration sub-branch is repeated; it is filtered
once for novice users and then again for advanced users. As a result, there are actually six
instances of the configuration sub-branch. Additional dvrResourceSuffix elements are used
to control naming for each instance.

dita13_archspec_examples62

1. The first instance is filtered using the conditions in linux.ditaval and
novice.ditaval. For this instance, the resource configure.dita is treated as
the resource configure-novice.dita. There is no renaming based on
linux.ditaval, and the ditavalref the references novice.ditaval adds the
suffix -novice.

2. The second instance is filtered using the conditions in linux.ditaval and
advanced.ditaval. For this instance, the resource configure.dita is treated
as the resource configure-admin.dita. There is no renaming based on
linux.ditaval, and the ditavalref that references advanced.ditaval adds the
suffix -admin.

3. The third instance is filtered using the conditions in mac.ditaval and
novice.ditaval. For this instance, the resource configure.dita is treated as
the resource configure-novice-mac.dita. The ditavalref that references
novice.ditaval adds the suffix -novice, resulting in
configure-novice.dita, and then the ditavalref that references mac.ditaval
adds the additional suffix -mac.

4. The fourth instance is filtered using the conditions in mac.ditaval and
advanced.ditaval. For this instance, the resource configure.dita is treated
as the resource configure-admin-mac.dita. The ditavalref that references
admin.ditaval adds the suffix -admin, resulting in configure-admin.dita,
and then the ditavalref that references mac.ditaval adds the additional suffix -mac.

5. The fifth instance is filtered using the conditions in win.ditaval and
novice.ditaval. For this instance, the resource configure.dita is treated as
the resource configure-novice-win.dita. The ditavalref that references
novice.ditaval adds the suffix -novice, resulting in
configure-novice.dita, and then the ditavalref that references win.ditaval
adds the additional suffix -win.

6. The sixth instance is filtered using the conditions in win.ditaval and
advanced.ditaval. For this instance, the resource configure.dita is treated
as the resource configure-admin-win.dita. The ditavalref that references
admin.ditaval adds the suffix -admin, resulting in configure-admin.dita,
and then the ditavalref that references win.ditaval adds the additional suffix -win.

63

Example: ditavalref error conditions
It is an error condition when multiple, non-equivalent copies of the same file are created with the same resource
name.

The following map fragment contains several error conditions that result in name clashes:

<topicref href="a.dita" keys="a">
 <ditavalref href="one.ditaval"/>
 <ditavalref href="two.ditaval"/>
 <topicref href="b.dita" keys="b"/>
</topicref>
<topicref href="a.dita"/>
<topicref href="c.dita" keys="c">
 <ditavalref href="one.ditaval">
 <ditavalmeta>
 <dvrResourceSuffix>-token</dvrResourceSuffix>
 </ditavalmeta>
 </ditavalref>
 <ditavalref href="two.ditaval">
 <ditavalmeta>
 <dvrResourceSuffix>-token</dvrResourceSuffix>
 </ditavalmeta>
 </ditavalref>
</topicref>

In this sample, the effective map that results from evaluating the filter conditions has several
clashes. In some cases the same document must be processed with conflicting conditions,
using the same URI. In addition, because no key scope is added or modified, keys in the
branch are duplicated in such a way that only one version is available for use. When the
branches are evaluated to create distinct copies, the filtered branches result in the following
equivalent map:

<topicref href="a.dita" keys="a"> <!-- a.dita to be filtered
 by one.ditaval -->
 <topicref href="b.dita" keys="b"/> <!-- b.dita to be
filtered by one.ditaval -->
</topicref>
<topicref href="a.dita" keys="a"> <!-- a.dita to be filtered
 by two.ditaval; key "a" ignored -->
 <topicref href="b.dita" keys="b"/> <!-- b.dita to be
filtered by two.ditaval; key "b" ignored -->
</topicref>
<topicref href="a.dita"/>
<topicref href="c-token.dita" keys="c">
 <!-- c-token.ditaval to be filtered by one.ditaval -->
</topicref>
<topicref href="c-token.dita" keys="c">
 <!-- c-token.ditaval to be filtered by two.ditaval, key "c"
 ignored -->
</topicref>

The equivalent map highlights several problems with the original source:

• The key names "a" and "b" are present in a branch that will be duplicated. No key scope
is introduced for either version of the branch, meaning that the keys will be duplicated.

dita13_archspec_examples64

Because there can only be one effective key definition for "a" or "b", it only is possible
to reference one version of the topic using keys.

• The key name "c" is present on another branch that will be duplicated, resulting in the
same problem.

• The file c.dita is filtered with two sets of conditions, each of which explicitly maps
the filtered resource to c-token.dita. This is an error condition that should be reported
by processors.

• In situations where resource names map directly to output file names, such as an HTML5
rendering that creates files based on the original resource name, the following name
conflicts also occur. In this case a processor would need to report an error, use an alternate
naming scheme, or both:

1. a.dita generates a.html using three alternate set of conditions. One version uses
one.ditaval, one version uses two.ditaval, and the third version uses no
filtering.

2. b.dita generates b.html using two alternate set of conditions. One version uses
one.ditaval, and the other version uses two.ditaval.

65

class attribute rules and syntax
The specialization hierarchy of each DITA element is declared as the value of the class attribute. The class
attribute provides a mapping from the current name of the element to its more general equivalents, but it also
can provide a mapping from the current name to more specialized equivalents. All specialization-aware processing
can be defined in terms of class attribute values.

The class attribute tells a processor what general classes of elements the current element belongs to. DITA scopes
elements by module type (for example topic type, domain type, or map type) instead of document type, which
lets document type developers combine multiple module types in a single document without complicating
transformation logic.

The sequence of values in the class attribute is important because it tells processors which value is the most
general and which is most specific. This sequence is what enables both specialization aware processing and
generalization.

Syntax

Values for the class attribute have the following syntax requirements:

• An initial "-" or "+" character followed by one or more spaces. Use "-" for element types that are defined in
structural vocabulary modules, and use "+" for element types that are defined in domain modules.

• A sequence of one or more tokens of the form "modulename/typename", with each token separated by
one or more spaces, where modulename is the short name of the vocabulary module and typename is the element
type name. Tokens are ordered left to right from most general to most specialized.

These tokens provide a mapping for every structural type or domain in the ancestry of the specialized element.
The specialization hierarchy for a given element type must reflect any intermediate modules between the base
type and the specialization type, even those in which no element renaming occurs.

• At least one trailing space character (" "). The trailing space ensures that string matches on the tokens can
always include a leading and trailing space in order to reliably match full tokens.

Rules

When the class attribute is declared in an XML grammar, it MUST be declared with a default value. In order to
support generalization round-tripping (generalizing specialized content into a generic form and then returning
it to the specialized form) the default value MUST NOT be fixed. This allows a generalization process to overwrite
the default values that are defined by a general document type with specialized values taken from the document
being generalized.

A vocabulary module MUST NOT change the class attribute for elements that it does not specialize, but simply
reuses by reference from more generic levels. For example, if task, bctask, and guitask use the p element without
specializing it, they MUST NOT declare mappings for it.

Authors SHOULD NOT modify the class attribute.

Example: DTD declaration for class attribute for the step element

The following code sample lists the DTD declaration for the class attribute for the step
element:

<!ATTLIST step class CDATA "- topic/li task/step ">

This indicates that the step element is specialized from the li element in a generic topic. It
also indicates explicitly that the step element is available in a task topic; this enables

dita13_archspec_examples66

round-trip migration between upper level and lower level types without the loss of
information.

Example: Element with class attribute made explicit

The following code sample shows the value of the class attribute for the wintitle element:

<wintitle class="+ topic/keyword ui-d/wintitle ">A specialized
 keyword</wintitle>

The class attribute and its value is generally not surfaced in authored DITA topics, although
it might be made explicit as part of a processing operation.

Example: class attribute with intermediate value

The following code sample shows the value of a class attribute for an element in the guitask
module, which is specialized from task. The element is specialized from keyword in the
base topic vocabulary, rather than from an element in the task module:

<windowname class="- topic/keyword task/keyword
guitask/windowname ">...</windowname>

The intermediate values are necessary so that generalizing and specializing transformations
can map the values simply and accurately. For example, if task/keyword was missing
as a value, and a user decided to generalize this guitask up to a task topic, then the
transformation would have to guess whether to map to keyword (appropriate if task is more
general than guitask, which it is) or leave it as windowname (appropriate if task were more
specialized, which it isn't). By always providing mappings for more general values,
processors can then apply the simple rule that missing mappings must by default be to more
specialized values than the one we are generalizing to, which means the last value in the
list is appropriate. For example, when generalizing guitask to task, if a p element has no
target value for task, we can safely assume that p does not specialize from task and should
not be generalized.

67

Specializing to include non-DITA content
You can extend DITA to incorporate standard vocabularies for non-textual content, such as MathML and SVG,
as markup within DITA documents. This is done by specializing the foreign or unknown elements.

There are three methods of incorporating foreign content into DITA.

• A domain specialization of the foreign or unknown element. This is the usual implementation.
• A structural specialization using the foreign or unknown element. This affords more control over the content.
• Directly embedding the non-DITA content within foreign or unknown elements. If the non-DITA content has

interoperability or vocabulary naming issues such as those that are addressed by specialization in DITA, they
must be addressed by means that are appropriate to the non-DITA content.

The foreign or unknown elements should not be used to include textual content or metadata in DITA documents,
except where such content acts as an example or display, rather than as the primary content of a topic.

Example: Creating an element domain specialization for SVG

The following code sample, which is from the svgDomain.ent file, shows the domain
declaration for the SVG domain.

<!--
===
 -->
<!-- SVG DOMAIN ENTITIES
 -->
<!--
===
 -->

<!-- SVG elements must be prefixed, otherwise they conflict
with
 existing DITA elements (e.g., <desc> and <title>.
 -->
<!ENTITY % NS.prefixed "INCLUDE" >
<!ENTITY % SVG.prefix "svg" >

<!ENTITY % svg-d-foreign
 "svg-container
 "
>

<!ENTITY svg-d-att
 "(topic svg-d)"
>

Note that the SVG-specific SVG.prefix parameter entity is declared. This establishes the
default namespace prefix to be used for the SVG content embedded with this domain. The
namespace can be overridden in a document-type shell by declaring the parameter entity
before the reference to the svgDomain.ent file. Other foreign domains might need
similar entities when required by the new vocabulary.

For more information, see the svgDomain.mod file that is shipped with the OASIS DITA
distributions. For an example of including the SVG domain in a document type shell, see
task.dtd.

dita13_archspec_examples68

Sharing elements across specializations
Specialization enables easy reuse of elements from ancestor specializations. However, it is also possible to reuse
elements from non-ancestor specializations, as long as the dependency is properly declared in order to prevent
invalid generalization or conref processing.

A structural specialization can incorporate elements from unrelated domains or other structural specializations
by referencing them in the content model of a specialized element. The elements included in this manner must
be specialized from ancestor content that is valid in the new context. If the reusing and reused specializations
share common ancestry, the reused elements must be valid in the reusing context at every level they share in
common.

Although a well-designed structural specialization hierarchy with controlled use of domains is still the primary
means of sharing and reusing elements in DITA, the ability to also share elements declared elsewhere in the
hierarchy allows for situations where relevant markup comes from multiple sources and would otherwise be
developed redundantly.

Example: A specialization of concept reuses an element from the task module

A specialized concept topic could declare a specialized process section that contains the
steps element that is defined in the task module. This is possible because of the following
factors:

• The steps element is specialized from ol.
• The process element is specialized from section, and the content model of section includes

ol.

The steps element in process always can be generalized back to ol in section.

Example: A specialization of reference reuses an element from the
programming domain

A specialized reference topic could declare a specialized list (apilist) in which each apilistitem
contains an apiname element that is borrowed from the programming domain.

69

Conref compatibility with constraints
To determine compatibility between two document instances, a conref processor checks the domains attribute
to confirm whether the referencing document has a superset of the vocabulary modules in the referenced document.
If one or both of the document instances are constrained, the conref processor checks to confirm the compatibility
of the constraints.

Conref processors take into account whether constraints are specified as strong. For strong constraints, the
following rules apply:

For each vocabulary module used by both document types, the module in the document type
that contains the referencing element must be less (or equally) constrained than the same

Conref pull

module in the document type that contains the referenced element. For example, if each
document type uses the highlighting domain module, that module must be less (or equally)
constrained in the document type that contains the referencing element.

For each vocabulary module used by both document types, the module in the document type
that contains the referencing element must be more (or equally) constrained than the same

Conref push

module in the document type that contains the referenced element. For example, if each
document type uses the highlighting domain module, that module must be more (or equally)
constrained in the document type that contains the referencing element.

Example: Conref pull and constraint compatibility

The following table contains scenarios where conref pull occurs between constrained and
unconstrained document instances. It assumes that the processor is not configured to treat
all constraints as strong constraints.

CommentsResolutionValues of domains attribute in

document type that contains

the referenced element

Values of domains attribute in

document type that contains

the referencing element

The content model of

the referenced topic is

Allowed(topic
shortdescReq-c)

(topic)

more constrained than

the referencing topic.

The constraint is

specified as a strong

Prevented(topic)s(topic
shortdescReq-c)

constraint, and the

content model of the

referenced topic is less

constrained than the

referencing topic.

Although the content

model of referenced

Allowed(topic)(topic
shortdescReq-c)

topic is less constrained

than the referencing

topic, this is a weak

constraint and so

permitted.

dita13_archspec_examples70

CommentsResolutionValues of domains attribute in

document type that contains

the referenced element

Values of domains attribute in

document type that contains

the referencing element

The referenced topic

has a subset of the

Allowed(topic
simpleSection-c)

(topic task) (topic
hi-d) (topic hi-d
basicHighlightingDomain-c) vocabulary modules

that are integrated into
(topic task) (topic
task simpleStep-c)

the document-type

shell for the referencing

topic. Both document

types integrate

constraints, but for

modules used in both

document types, the

referencing topic is less

constrained than the

referenced topic.

The referencing

document has

Prevented(topic
simpleSection-c)

(topic hi-d) (topic
simpleSection-c)
s(topic simpleP-c) constraints that are not

present in the
(topic task) (topic
hi-d) (topic hi-d
basicHighlightingDomain-c) referenced document,

including a strong

constraint applied to

the p element.

Example: Conref push and constraint compatibility

The following table contains scenarios where conref push occurs between constrained and
unconstrained document instances. It assumes that the processor has not been configured
to treat all constraints as strong constraints.

CommentsResolutionValues of domains attribute in

document type that contains

the referenced element

Values of domains attribute in

document type that contains

the referencing element

Although the content

model of the referenced

Allowed(topic
shortdescReq-c)

(topic)

topic is more

constrained than the

referencing topic, this

is a weak constraint

and so permitted.

The constraint is

specified as a strong

Preventeds(topic
shortdescReq-c)

(topic)

constraint, and the

content model of the

referenced topic is

more constrained than

the referencing topic.

71

CommentsResolutionValues of domains attribute in

document type that contains

the referenced element

Values of domains attribute in

document type that contains

the referencing element

The content model of

the referencing topic is

Allowed(topic)(topic
shortdescReq-c)

more constrained than

the referenced topic.

The referenced topic

has a subset of the

Allowed(topic
simpleSection-c)

(topic task) (topic
hi-d) (topic hi-d
basicHighlightingDomain-c) vocabulary modules

that are integrated into
(topic task) (topic
task simpleStep-c)

the document-type

shell for the referencing

topic. For modules

used in both document

types, the referenced

topic is more

constrained than the

referencing topic, but

this is a weak

constraint and so

permitted.

For the common topic

module, the referenced

Prevented(topic hi-d) (topic
simpleSection-c)
s(topic simpleP-c)

(topic
simpleSection-c)
(topic task) (topic
hi-d) (topic hi-d
basicHighlightingDomain-c)

document has more

constraints than the

referencing document,

including a strong

constraint applied to

the p element.

dita13_archspec_examples72

DTD: Coding requirements for element
domain modules

The vocabulary modules that define element domains have an additional coding requirement. The entity declaration
file must include a parameter entity for each element that the domain extends.

The name of the parameter entity is the abbreviation for the domain, followed
by a hyphen ("-"), and the name of the element that is extended.

Parameter entity name

The value of the parameter entity is a list of the specialized elements that can
occur in the same locations as the extended element. Each element must be
separated by the vertical line (|) symbol.

Parameter entity value

Example

Because the highlighting domain extends the ph element, the entity declaration file for that
domain must include a parameter entity corresponding to the ph element. The name of the
entity uses the short name of the domain (hi-d) followed by the name of the base element.
The value includes each specialization of ph in the domain.

<!ENTITY % hi-d-ph "b | u | i | line-through | overline | tt
 | sup | sub">

73

Example: Redefine the content model for
the topic element

In this scenario, an information architect for Acme, Incorporated wants to redefine the content model for the
topic document type. She wants to omit the abstract element and make the shortdesc element required; she also
wants to omit the related-links element and disallow topic nesting.

1. She creates a .mod file using the following naming conventions:
qualiferTagnameConstraint.mod, where qualifer is a string the describes the
constraint, and Tagname is the element type name with an initial capital. Her contraint
module is named acme-TopicConstraint.mod.

2. She adds the following content to acme-TopicConstraint.mod:

<!--
===
 -->
<!-- CONSTRAINED TOPIC ENTITIES
 -->
<!--
===
 -->

<!-- Declares the entity for the constraint module and
defines -->
<!-- its contribution to the @domains attribute.
 -->

<!ENTITY topic-constraints
 "(topic basic-Topic-c)"
>

<!-- Declares the entities referenced in the constrained
content -->
<!-- model.
 -->

<!ENTITY % title "title">
<!ENTITY % titlealts "titlealts">
<!ENTITY % shortdesc "shortdesc">
<!ENTITY % prolog "prolog">
<!ENTITY % body "body">

<!-- Defines the constrained content model for <topic>.
 -->

<!ENTITY % topic.content
 "((%title;),
 (%titlealts;)?,
 (%shortdesc;),
 (%prolog;)?,
 (%body;)?)"
>

dita13_archspec_examples74

3. She then integrates the constraint module into her document-type shell for topic by
adding the following section above the "TOPIC ELEMENT INTEGRATION" comment:

<!--
===
 -->
<!-- CONTENT CONSTRAINT INTEGRATION
 -->
<!--
===
 -->

<!ENTITY % topic-constraints-c-def
 PUBLIC "-//ACME//ELEMENTS DITA Topic Constraint//EN"
 "acme-TopicConstraint.mod">
%topic-constraints-c-def;

4. She then adds the constraint to the list of domains and constraints that need to be included
in the value of the domains attribute for topic:

<!--
===
 -->
<!-- DOMAINS ATTRIBUTE OVERRIDE
 -->
<!--
===
 -->

<!ENTITY included-domains
 "&hi-d-att;
 &ut-d-att;
 &indexing-d-att;

&topic-constraints;
 "
>

5. After updating the catalog.xml file to include the new constraints file, her work is
done.

75

Example: Constrain attributes for the
section element

In this scenario, an information architect wants to redefine the attributes for the section element. He wants to
make the id attribute required and omit the spectitle attribute.

1. He creates a .mod file named idRequiredSectionContraint.mod, where
"idRequired" is a string that characterizes the constraint.

2. He adds the following content to idRequiredSectionContraint.mod:

<!--
===
 -->
<!-- CONSTRAINED TOPIC ENTITIES
 -->
<!--
===
 -->

<!ENTITY section-constraints
 "(topic idRequired-section-c)"
>

<!-- Declares the entities referenced in the constrained
content -->
<!-- model.
 -->
<!ENTITY % conref-atts
 'conref CDATA #IMPLIED
 conrefend CDATA #IMPLIED
 conaction
(mark|pushafter|pushbefore|pushreplace|-dita-use-conref-target)
 #IMPLIED
 conkeyref CDATA #IMPLIED' >
<!ENTITY % filter-atts
 'props CDATA #IMPLIED
 platform CDATA #IMPLIED
 product CDATA #IMPLIED
 audience CDATA #IMPLIED
 otherprops CDATA #IMPLIED
 %props-attribute-extensions;' >
<!ENTITY % select-atts
 '%filter-atts;
 base CDATA #IMPLIED
 %base-attribute-extensions;
 importance
(default|deprecated|high|low|normal|obsolete|optional|

recommended|required|urgent|-dita-use-conref-target)
#IMPLIED
 rev CDATA #IMPLIED
 status
(changed|deleted|unchanged|-dita-use-conref-target)
#IMPLIED' >

dita13_archspec_examples76

<!ENTITY % localization-atts
 'translate (no|yes|-dita-use-conref-target)
#IMPLIED
 xml:lang CDATA #IMPLIED
 dir
(lro|ltr|rlo|rtl|-dita-use-conref-target) #IMPLIED' >

<!-- Declares the constrained content model. Original
definition -->
<!-- included %univ-atts; and spectitle; now includes-->
<!-- individual pieces of univ-atts, to make ID required.
 -->

<!ENTITY % section.attributes
 "id CDATA #REQUIRED
 %conref-atts;
 %select-atts;
 %localization-atts;
 outputclass CDATA #IMPLIED">

Note: The information architect had to declare all the parameter entities that are
referenced in the redefined attributes for section. If he did not do so, none of the
attributes that are declared in the conref-atts, select-atts, or localization-atts
parameter entities would be available on the section element. Furthermore, since
the select-atts parameter entity references the filter-atts parameter entity, the
filter-atts must be declared and it must precede the declaration for the select-atts
parameter entity. The props-attribute-extensions and base-attribute-extensions
parameter entities do not need to be declared in the constraint module, because
they are declared in the document-type shells before the inclusion of the constraint
module.

3. He then integrates the constraint module into the applicable document-type shells and
adds it to his catalog.xml file.

77

Example: Constrain a domain module
In this scenario, an information architect wants to use only a subset of the elements defined in the highlighting
domain. She wants to use b and i, but not line-through, overline, sup, sup, tt, or u. She wants to integrate this
constraint into the document-type shell for task.

1. She creates reducedHighlightingDomainConstraint.mod, where "reduced"
is a string that characterizes the constraint.

2. She adds the following content to
reducedHighlightingDomainConstraint.mod:

<!--
===
 -->
<!-- CONSTRAINED HIGHLIGHTING DOMAIN ENTITIES
 -->
<!--
===
 -->

<!ENTITY HighlightingDomain-constraints
 "(topic hi-d basic-HighlightingDomain-c)"
>

<!ENTITY % HighlightingDomain-c-ph "b | i"
 >

3. She then integrates the constraint module into her company-specific, document-type
shell for the task topic by adding the following section directly before the "DOMAIN
ENTITY DECLARATIONS" comment:

<!--
===
 -->
<!-- DOMAIN CONSTRAINT INTEGRATION
 -->
<!--
===
 -->

<!ENTITY % HighlightingDomain-c-dec
 PUBLIC "-//ACME//ENTITIES DITA Highlighting Domain
Constraint//EN"
 "acme-HighlightingDomainConstraint.mod"
>%basic-HighlightingDomain-c-dec;

4. In the "DOMAIN EXTENSIONS" section, she replaces the parameter entity for the
highlighting domain with the parameter entity for the constrained highlighting domain:

<!ENTITY % ph "ph |
%HighlightingDomain-c-ph; |

 %sw-d-ph; |
 %ui-d-ph;
 ">

dita13_archspec_examples78

5. She then adds the constraint to the list of domains and constraints that need to be included
in the value of the domains attribute for task:

<!--
===
 -->
<!-- DOMAINS ATTRIBUTE OVERRIDE
 -->
<!--
===
 -->

<!ENTITY included-domains
 "&task-att;
 &hi-d-att;
 &indexing-d-att;
 &pr-d-att;
 &sw-d-att;
 &ui-d-att;
 &taskbody-constraints;

&HighlightingDomain-constraints;

 "
>

6. After updating the catalog.xml file to include the new constraints file, her work is
done.

79

Example: Replace a base element with the
domain extensions

In this scenario, an information architect wants to remove the ph element but allow the extensions of ph that
exist in the highlighting, programming, software, and user interface domains.

1. The information architect creates an entities file named noPhConstraint.ent,
where "no" is a qualifier string that characterizes the constraint.

2. The information architect adds the following content to noPhConstraint.ent:

<!--
===
 -->
<!-- CONSTRAINED HIGHLIGHTING DOMAIN ENTITIES
 -->
<!--
===
 -->

<!ENTITY ph-constraints
 "(topic noPh-ph-c)"
>

Note: Because the highlighting and programming domains cannot be generalized
without the ph element, this entity must be defined so that there is a separate
parenthetical expression that can be included in the domains attribute for the topic.

3. The information architect then integrates the constraint module into a document-type
shell for concept by adding the following section above the "TOPIC ELEMENT
INTEGRATION" comment:

<!--
===
 -->
<!-- CONTENT CONSTRAINT INTEGRATION
 -->
<!--
===
 -->

<!ENTITY % noPh-ph-c-def
 PUBLIC "-//ACME//ELEMENTS DITA Ph Constraint//EN"
 "acme-PhConstraint-constraints" "noPhConstraint.ent">
%noPh-ph-c-def;

4. In the "DOMAIN EXTENSIONS" section, the information architect removes the
reference to the ph element:

<!-- Removed "ph | " so as to make <ph> not available, only
 the domain extensions. -->
<!ENTITY % ph "%pr-d-ph; |
 %sw-d-ph; |
 %ui-d-ph;
 ">

dita13_archspec_examples80

5. She then adds the constraint to the list of domains and constraints that need to be included
in the value of the domains attribute:

<!--
===
 -->
<!-- DOMAINS ATTRIBUTE OVERRIDE
 -->
<!--
===
 -->

<!ENTITY included-domains
 "&concept-att;
 &hi-d-att;
 &indexing-d-att;
 &pr-d-att;
 &sw-d-att;
 &ui-d-att;

&ph-constraint;
 "
>

6. After updating the catalog.xml file to include the new constraints file, the information
architect's work is done.

81

Example: Apply multiple constraints to a
single document-type shell

You can apply multiple constraints to a single document-type shell. However, there can be only one constraint
for a given element or domain.

Here is a list of constraint modules and what they do:

Contribution to the

domains attribute

DetailsWhat it constrainsFile name

(topic
basic-Topic-c)

topicexample-TopicConstraint.mod • Removes abstract

• Makes shortdesc required

• Removes related-links

• Disallows topic nesting

(topic
idRequired-section-c)

sectionexample-SectionConstraint.mod • Makes id required

• Removes spectitle

attribute

(topic hi-d
basic-HighlightingDomain-c)

Reduces the highlighting

domain elements to b and

i

Highlighting domainexample-HighlightingDomainConstraint.mod

(topic noPh-ph-c)Removes the ph elementphexample-PhConstraint.ent

All of these constraints can be integrated into a single document-type shell for topic, since
they constrain distinct element types and domains. The constraint for the highlighting domain
must be integrated before the "DOMAIN ENTITIES" section, but the order in which the
other three constraints are listed does not matter.

Each constraint module provides a unique contribution to the domains attribute. When
integrated into the document-type shell for topic, the effective value of the domains attribute
will include the following values, as well as values for any other modules that are integrated
into the document-type shell:

(topic basic-Topic-c) (topic idRequired-section-c) (topic
hi-d basic-HighlightingDomain-c) (topic noPh-ph-c)

dita13_archspec_examples82

Example: Correct the constraint for the
machinery task

For DITA 1.3, the OASIS DITA TC failed to update the constraint for the machinery task. In this scenario, an
information architect corrects that oversight; she makes the (new for DITA 1.3) tasktroubleshooting element
available in the body of the machinery task.

Note: This example assumes that the information architect has already implemented
her own document-type shell for the machinery task information type.

1. She makes a copy of the machineryTaskbodyConstraint.mod file and renames
it correctedMachineryTaskbodyConstraint.mod.

2. She modifies the correctedMachineryTaskbodyConstraint.mod file to
declare the entity for the tasktroubleshooting element and make it available at the correct
place within the task body. (Her modifications are highlighted in bold below.)

<!ENTITY taskbody-constraints
 "(topic task+taskreq-d machineryTaskbody-c)"
>
<!ENTITY % prelreqs
 "prelreqs">
<!ENTITY % context
 "context">
<!ENTITY % section
 "section">
<!ENTITY % steps
 "steps">
<!ENTITY % steps-unordered
 "steps-unordered">
<!ENTITY % steps-informal
 "steps-informal">
<!ENTITY % result
 "result">
<!ENTITY % tasktroubleshooting
 "tasktroubleshooting">
<!ENTITY % example
 "example">
<!ENTITY % closereqs
 "closereqs">

<!ENTITY % taskbody.content
 "((%prelreqs; |
 %context; |
 %section;)*,
 (%steps; |
 %steps-unordered; |
 %steps-informal;)?,
 (%result;)?,

(%tasktroubleshooting;)?,
 (%example;)*,
 (%closereqs;)?)"

83

3. She updates her company-specific document-type shell to integrate the updated constraint.
4. After updating the catalog.xml file to include the new constraints file, her work is

done.

dita13_archspec_examples84

Index

A

addressing mechanisms
effect on conref resolution 42
same-topic fragment identifier

authoring responsibility 42
effect on conref resolution 42

B

binding controlled values 12

C

cascading
map-to-map

attributes 32
exceptions 36
metadata elements 34

cascading, definition 26
conref

constraint modules and compatibility 70
xrefs and conref within a conref 42

constraints
conref compatibility 70
examples

applying multiple constraints 82
redefining the content model 74
replacing base element with domain extensions 80
restricting attributes for an element 76
restricting content model for a domain 78

controlled values
binding to attributes 12
defining a taxonomy 15
overview 10
precedence rules 12
validation of 12, 14

cross references
resolving within conrefs 42

D

defining values for 12
definitions

cascading 26
DITAVAL

processing expectations 14

E

examples
attribute

constraint contribution to 82
constraint modules and conref compatibility 70
constraints

applying multiple constraints 82
redefining the content model 74
replacing base element with domain extensions 80
restricting attributes for an element 76
restricting content model for a domain 78

processing
filtering or flagging a hierarchy 14, 17
xrefs and conref within a conref 42

subjectScheme
binding controlled values 12
defining a taxonomy 15
defining values for 23
extending a subject scheme 20, 22
filtering or flagging a hierarchy 14, 17
providing a subject-definition resource 10

F

filtering and flagging
processing expectations 14

K

key reference
conref resolution, effect on 42

key scopes
conref resolution, effect on 42

M

map-to-map cascading
attributes 32
exceptons 36
metadata elements 34

P

precedence rules
controlled values 12

processing
controlled values 14
examples

filtering or flagging a hierarchy 14, 17
xrefs and conref within a conref 42

xrefs and conref within a conref 42

processing expectations
attribute values, hierarchies of 14
controlled values 10
DITAVAL 14
filtering and flagging 14
subject-definition resources 10
validating controlled values 12
xrefs and conref within a conref 42

S

same-topic fragment identifier
authoring responsibility 42
effect on conref resolution 42

subject-definition resources 10
subjectScheme

binding controlled values 12
defining a taxonomy 15

subjectScheme (continued)
defining controlled values 10
examples

binding controlled values 12
defining a taxonomy 15
defining values for 23
extending a subject scheme 20, 22
filtering or flagging a hierarchy 14, 17
providing a subject-definition resource 10

T

taxonomy
defining 15

V

validating controlled values 12, 14

dita13_archspec_examples86

Index

	Contents
	URI-based (direct) addressing
	Chunking
	Chunking examples
	Defining controlled values for attributes
	Binding controlled values to an attribute
	Processing controlled attribute values
	Scaling a list of controlled values to define a taxonomy
	Example: How hierarchies defined in a subject scheme map affect filtering
	Example: Extending a subject scheme
	Example: Extending a subject scheme upwards
	Example: Defining values for deliveryTarget
	Cascading of metadata attributes in a DITA map
	Reconciling topic and map metadata elements
	Cascading of attributes from map to map
	Cascading of metadata elements from map to map
	Cascading of roles from map to map
	Key scopes
	Using keys for addressing
	Cross-deliverable addressing and linking
	Processing xrefs and conrefs within a conref
	domains attribute rules and syntax
	Example: Setting conditional processing values and groups
	Example: Single ditavalref on a branch
	Example: Multiple ditavalref elements on a branch
	Example: Single ditavalref as a child of map
	Example: Single ditavalref in a reference to a map
	Example: Multiple ditavalref elements as children of map in a root map
	Example: Multiple ditavalref elements in a reference to a map
	Example: ditavalref within a branch that already uses ditavalref
	Example: ditavalref error conditions
	class attribute rules and syntax
	Specializing to include non-DITA content
	Sharing elements across specializations
	Conref compatibility with constraints
	DTD: Coding requirements for element domain modules
	Example: Redefine the content model for the topic element
	Example: Constrain attributes for the section element
	Example: Constrain a domain module
	Example: Replace a base element with the domain extensions
	Example: Apply multiple constraints to a single document-type shell
	Example: Correct the constraint for the machinery task
	Index

