
 Stage three: #217 Remove @domains attribute

Remove the domains attribute, and the tokens used for the domains attribute; for specialized attributes, replace the
existing parenthetical syntax with a simpler token syntax..

Champion

Provide information about the champion. If the proposal is submitted by a subcommittee, include the name of the
point person. He or she should have prepared this proposal and thoroughly understand all of the content. The point
person must be present at the TC calls when this proposal is discussed.

Tracking information

Event Date Links

Stage 1 proposal accepted 14 May 2019 https://lists.oasis-open.org/archives/
dita/201905/msg00043.html

Stage 2 proposal submitted 14 June 2019 PDF, DITA

Stage 2 proposal discussed 18 June 2019 https://lists.oasis-open.org/archives/
dita/201906/msg00068.html

Stage 2 proposal approved 2 July 2019 https://lists.oasis-open.org/archives/
dita/201907/msg00013.html

Stage 3 proposal submitted to reviewers 2 December 2019 Carsten Brennecke, Eliot Kimber

Stage 3 proposal (this document)
submitted to TC

9 December 2019

Approved technical requirements

1. Remove the grammar file definition of @domains
2. Remove definitions for tokens currently used in @domains
3. Define a new attribute @specializations on those elements that previously allowed @domains
4. Define a new syntax for the attribute; currently it is defined only for attribute domains, using the syntax

@props/thing1 where "thing1" is an attribute specialization of @props, @props/thing1/thing2
where "thing2" is a further specialization of @thing1, and so on.

5. The attribute syntax will be used for all specializations of @props and @base.

Dependencies or interrelated proposals

N/A.

Modified grammar files

basemap.rng (before) basemap.rng (after)

<a:documentation>DOMAINS ATTRIBUTE</
a:documentation>
 <define name="domains-att">
 <optional>
 <attribute name="domains"

<a:documentation>SPECIALIZATIONS ATTRIBUTE</
a:documentation>
 <define name="specializations-att">
 <optional>

DITA TC work product Page 1 of 10

https://lists.oasis-open.org/archives/dita/201905/msg00043.html
https://lists.oasis-open.org/archives/dita/201905/msg00043.html
https://lists.oasis-open.org/archives/dita/201906/msg00057.html
https://tools.oasis-open.org/version-control/browse/wsvn/dita/trunk/DITA-2.0/stage-2/Issue217-RemoveDomains.dita
https://lists.oasis-open.org/archives/dita/201906/msg00068.html
https://lists.oasis-open.org/archives/dita/201906/msg00068.html
https://lists.oasis-open.org/archives/dita/201907/msg00013.html
https://lists.oasis-open.org/archives/dita/201907/msg00013.html

basemap.rng (before) basemap.rng (after)

 a:defaultValue="
 (map ditavalref-d)
 (topic hazard-d)
 (topic hi-d)
 (topic indexing-d)
 (map mapgroup-d)
 (topic ut-d)
 a(props audience)
 a(props
 deliveryTarget)
 a(props platform)
 a(props product)
 a(props
 otherprops)"/>
 </optional>
 </define>

 <attribute
 name="specializations"
 a:defaultValue="
 @props/audience
 @props/
deliveryTarget
 @props/platform
 @props/product
 @props/otherprops"/
>
 </optional>
 </define>

basetopic.rng (before) basetopic.rng (after)

<a:documentation>DOMAINS ATTRIBUTE</
a:documentation>
 <define name="domains-att">
 <optional>
 <attribute name="domains"
 a:defaultValue="(topic hazard-d)
 (topic hi-d)
 (topic indexing-d)
 (topic ut-d)
 a(props audience)
 a(props
 deliveryTarget)
 a(props platform)
 a(props product)
 a(props
 otherprops)"
 />
 </optional>
 </define>

<a:documentation>SPECIALIZATIONS ATTRIBUTE</
a:documentation>
 <define name="specializations-att">
 <optional>
 <attribute
 name="specializations"
 a:defaultValue="
 @props/audience
 @props/
deliveryTarget
 @props/platform
 @props/product
 @props/otherprops"/
>
 </optional>
 </define>

Audience, deliveryTarget, platform, product, and
otherprops RNG modules (before)

Audience, deliveryTarget, platform, product, and
otherprops RNG modules (after)

Using this pattern:

<domainsContribution>a(props audience)</
domainsContribution>

Keep the XML syntax the same because this is for external
tools (not part of the grammar), but change the token for the
new syntax:

<domainsContribution>@props/audience</
domainsContribution>

Note Question raised by Eliot during the stage 3 review - I think this probably makes sense but wanted to
bring to the TC:

[Should] the RNG <domainsContribution> element should be renamed to
<specializationsContribution>--anything that processes the current <domainsContribution>
(i.e., the XQuery George and I wrote to generate the @domains value in RNG shells) would

DITA TC work product Page 2 of 10

need to be updated in any case, so why not correct the tag name as well? I think this is a
code change that would only affect me at this point (and maybe Syncro Soft).

topicMod.rng and mapMod.rng (before) topicMod.rng and mapMod.rng (after)

<ref name="domains-att"/> <ref name="specializations-att"/>

Each base element domain module (before) Each base element domain module (after)

Find this pattern:

<domainsContribution>(topic hazard-d)</
domainsContribution>

Remove the <domainsContribution>

Modified terminology

N/A

Modified specification documentation

Remove topics Weak and strong constraints and Conref compatibility with constraints (without domain
contributions, there is no longer a distinction and no need for processors to process differently).

Remove the topic Processing documents with different values of the domains attribute which no longer applies.

For example topics Specializing to include non-DITA content, Example: Redefine the content model for the topic
element, Example: Constrain a domain module, Example: Replace a base element with the domain extensions,
and Example: Apply multiple constraints to a single document-type shell, remove the example sections that define
@domains.

From domains attribute rules and syntax:

Before After: replace with the following

The @domains attribute enables processors to determine
whether two elements or two documents use compatible
domains. The attribute is declared on the root element for each
topic or map type. Each structural, domain, and constraint
module defines its ancestry as a parenthesized sequence of
space-separated module names; the effective value of the
@domains attribute is composed of these parenthesized
sequences.

Document type shells collect the values that are provided
by each module to construct the effective value of the
@domains attribute. Processors can examine the collected
values when content from one document is used in another, in
order to determine whether the content is compatible.

For example, when an author pastes content from one topic
into another topic within an XML editor, the application can
use the @domains attribute to determine if the two topics
use compatible domains. If not, copied content from the first
topic might need to be generalized before it can be placed in
the other topic.

The @domains attribute serves the same function when
an element uses the @conref attribute to reference a more

The @specializations attribute enables processors
to determine what attribute extensions are available in a
document. The attribute is declared on the root element
for each topic or map type. Each attribute domain defines
a token to declare the extension; the effective value of the
@specializations attribute is composed of these tokens.

DITA TC work product Page 3 of 10

http://docs.oasis-open.org/dita/dita/v1.3/errata02/os/complete/part1-base/archSpec/base/constraints-strong-and-weak.html#concept_ofy_pmz_vq
http://docs.oasis-open.org/dita/dita/v1.3/errata02/os/complete/part1-base/archSpec/base/constraints-conref-compatibility.html#conref-compatibility-constraints
http://docs.oasis-open.org/dita/dita/v1.3/errata02/os/complete/part1-base/archSpec/base/module-compatibility.html
http://docs.oasis-open.org/dita/dita/v1.3/errata02/os/complete/part1-base/archSpec/base/specialization-including-non-dita-content.html
http://docs.oasis-open.org/dita/dita/v1.3/errata02/os/complete/part1-base/archSpec/base/example-contraints-redefine-content-model.html#reference_cfb_ck4_5p
http://docs.oasis-open.org/dita/dita/v1.3/errata02/os/complete/part1-base/archSpec/base/example-contraints-redefine-content-model.html#reference_cfb_ck4_5p
http://docs.oasis-open.org/dita/dita/v1.3/errata02/os/complete/part1-base/archSpec/base/example-contraints-subset-domain.html#reference_cfb_ck4_5p
http://docs.oasis-open.org/dita/dita/v1.3/errata02/os/complete/part1-base/archSpec/base/example-contraints-replace-base-element-w-domain-extensions.html#reference_cfb_ck4_5p
http://docs.oasis-open.org/dita/dita/v1.3/errata02/os/complete/part1-base/archSpec/base/example-contraints-apply-multiple-constraints.html#reference_cfb_ck4_5p
http://docs.oasis-open.org/dita/dita/v1.3/errata02/os/complete/part1-base/archSpec/base/specialization-domains-attribute.html

Before After: replace with the following

specialized version of the element. For example, a <note>
element in a concept topic conrefs a <hazardstatement>
element in a reference document. If the hazard statement
domain is not available in the concept topic, the
<hazardstatement> element is generalized to a <note>
element when the content reference is resolved.

Example of task with element domains

Syntax and rules

Each domain and constraint module MUST provide a
value for use by the @domains attribute. Each structural
vocabulary module SHOULD provide a value for use by
the @domains attribute, and it MUST do so when it has a
dependency on elements from any module that is not part of
its specialization ancestry.

Values provided for the @domains attribute values are
specified from root module (map or topic) to the provided
module.

Syntax and rules

The @props and @base attributes are the only two core
attributes available for specialization. Each specialization of
one of these attributes MUST provide a token for use by the
@specializations attribute.

structural modules
[rules for this section]

structural modules with dependencies
[rules for this section]

element domains
[rules for this section]

structural constraint modules
[rules for this section]

domain constraint modules
[rules for this section]

Delete all of these sections from 2.0

attribute domains

The value uses an "a" before the initial parenthesis to
indicate an attribute domain. Within the parenthesis,
the value includes the attribute specialization hierarchy,
starting with @props or @base:

 'a(', props-or-base, (' ', attname)+,
 ')'

For example, the @mySelectAttribute specialized
from @props results in the following value: a(props
mySelectAttribute)

The @specializations token for an attribute
specialization begins with either @props or @base followed
by a slash, followed by the name of the new attribute:

 '@', props-or-base, ('/', attname)+

For example:

• If @props is specialized to create @myNewProp,
this results in the following token: @props/
myNewProp

• If @base is specialized to create @myFirstBase,
this results in the following token: @base/
myFirstBase

• If that specialized attribute @myFirstBase is
further specialized to create @mySecondBase,
this results in the following token: @base/
myFirstBase/mySecondBase

From Element generalization, remove the section on "Generalization and conref", which no longer applies.

From Processor expectations when generalizing elements, remove the middle table which involves checking
@domains.

DITA TC work product Page 4 of 10

http://docs.oasis-open.org/dita/dita/v1.3/errata02/os/complete/part1-base/archSpec/base/generalization-elements.html
http://docs.oasis-open.org/dita/dita/v1.3/errata02/os/complete/part1-base/archSpec/base/generalization-processor-expectations.html

From DTD: Coding requirements for attribute domain modules:

Before After

The vocabulary modules that define attribute domains have
additional coding requirements. The module must include a
parameter entity for the new attribute, which can be referenced
in document-type shells, as well as a text entity that specifies
the contribution to the @domains attribute for the attribute
domain.

The vocabulary modules that define attribute domains have
additional coding requirements. The module must include a
parameter entity for the new attribute, which can be referenced
in document-type shells, as well as a text entity that specifies
the contribution to the @specializations attribute for the
attribute domain.

The text entity name is the attribute domain name, followed
by the literal -d-Att. The value of the text entity is the
@domains attribute contribution for the module; see domains
attribute rules and syntax for details on how to construct this
value.

The text entity name is the attribute domain name, followed
by the literal -d-Att. The value of the text entity is the
@specializations attribute contribution for the module;
see @specializations attribute rules and syntax for details on
how to construct this value.

From DTD: Coding requirements for constraint modules:

Before After

Structural constraint modules have the following
requirements:

@domains contribution entity name and value
The constraint module needs to contain a declaration for
a text entity with the name tagname-constraints,
where tagname is the name of the element type to which
the constraints apply. The value of the text entity is the
@domains attribute contribution for the module; see
domains attribute rules and syntax for details on how to
construct this value.

For example, the following text entity provides the
declaration for the strict task constraint that is shipped
with the DITA standard.

<!ENTITY taskbody-constraints
 "(topic task strictTaskbody-c)"
>

[delete full<dlentry> about @domains]

Domain constraint modules have the following requirements:

@domains contribution entity name and value

The constraint module needs to contain a declaration
for a text entity with the name domainDomain-
constraints, where domain is the name of the
domain to which the constraints apply, for example,
"Highlighting" or "Programming". The value of the
text entity is the @domains attribute contribution for
the module; see domains attribute rules and syntax for
details on how to construct this value.

For example, the following text entity provides the
declaration for a constraint module that restricts the
highlighting domain:

<!ENTITY HighlightingDomain-constraints

[delete full<dlentry> about @domains]

DITA TC work product Page 5 of 10

http://docs.oasis-open.org/dita/dita/v1.3/errata02/os/complete/part1-base/archSpec/base/dtd-coding-attribute-domains.html#attdomain
http://docs.oasis-open.org/dita/dita/v1.3/errata02/os/complete/part1-base/archSpec/base/dtd-coding-constraint-modules.html#constraintsDomainDesignPattern-dtd

Before After

 "(topic hi-d basic-HighlightingDomain-
c)"
>

When element domains are used to extend a base element,
those extensions can be used to replace the base element. This
form of constraint is done inside the document-type shell.

Within a document-type shell, domain extensions are
implemented by declaring an entity for a base element. The
value of the entity can omit any base element types from
which the other element types that are listed are specialized.
Omitting a base type constitutes a form of constraint; as with
any other constraint, this form of constraint must contribute a
token to the @domains attribute. That token can be defined
in a module file (which does not define any other entities or
values), or the token can be placed directly into the document-
type shell definition for the included-domains entity.

In the following example, the <pre> base type is removed
from the entity declaration, effectively allowing only
specializations of <pre> but not <pre> itself. This omission
would require the use of a @domains contribution token
within the included-domains entity.

When element domains are used to extend a base element,
those extensions can be used to replace the base element. This
form of constraint is done inside the document-type shell.

Within a document-type shell, domain extensions are
implemented by declaring an entity for a base element. The
value of the entity can omit any base element types from
which the other element types that are listed are specialized.
Omitting a base type constitutes a form of constraint; as with
any other constraint, this form of constraint must contribute a
token to the @domains attribute. That token can be defined
in a module file (which does not define any other entities or
values), or the token can be placed directly into the document-
type shell definition for the included-domains entity.

In the following example, the <pre> base type is removed
from the entity declaration, effectively allowing only
specializations of <pre> but not <pre> itself. This omission
would require the use of a @domains contribution token
within the included-domains entity.

From DTD: Coding requirements for document-type shells:

Before After

Domains attribute override

This section sets the effective value of the @domains
attribute for the top-level document type that is
configured by the document type shell. It redefines the
included-domains entity to include the text entity
for each domain, constraint, and structural specialization
that is either included or reused in the document type
shell.

In the following example, entities are included for
both the troubleshooting specialization and the
task specialization on which the troubleshooting
specialization depends; for the highlighting and utilities
element domains; for the newAtt-d attribute domain,
and for the noBasePre-c constraint module:

<!ENTITY included-domains
 "&troubleshooting-att;
 &task-att;
 &hi-d-att;
 &ut-d-att;
 &newAtt-d-att;
 &noBasePre-c-ph;
 "
>

Note Although parameter entities (entities that
begin with "%") must be defined before
they are referenced, text entities (entities
that begin with "&") can be referenced

Specializations attribute override

This section sets the effective value of the
@specializations attribute for the top-level
document type that is configured by the document type
shell. It redefines the included-domains entity to
include the text entity for each attribute domain for each
domain, constraint, and structural specialization that is
either included or reused in the document type shell.

In the following example, entities are included for
both the troubleshooting specialization and the
task specialization on which the troubleshooting
specialization depends; for the highlighting and
utilities element domains; for the newAtt-d and
deliveryTarget-d attribute domains:

<!ENTITY included-domains
 "&deliveryTarget-d-att;
 &newAtt-d-att;
 "
>

Note Although parameter entities (entities that
begin with "%") must be defined before
they are referenced, text entities (entities
that begin with "&") can be referenced
before they are defined. This allows the
included-domains entity to include
the constraint entity, which is not defined

DITA TC work product Page 6 of 10

http://docs.oasis-open.org/dita/dita/v1.3/errata02/os/complete/part1-base/archSpec/base/dtd-coding-doctype-shell.html#shell-dtd-coding-reqs

Before After

before they are defined. This allows the
included-domains entity to include
the constraint entity, which is not defined
until the constraint module is referenced
later in the document type shell.

until the constraint module is referenced
later in the document type shell.

From DTD: Coding requirements for element type declarations:

Before After

This topic covers general coding requirements for defining
element types in both structural and element-domain
vocabulary modules. In addition, it covers how to create the
@domains attribute contribution for these modules.

This topic covers general coding requirements for defining
element types in both structural and element-domain
vocabulary modules. In addition, it covers how to create the
@domains attribute contribution for these modules.

@domains attribute contribution

A domain declaration entity is used to construct the effective
value of the @domains attribute for a map or topic type.

Text entity name

The name of the text entity is the structural type name or
the domain abbreviation, followed by a hyphen ("-") and
the literal att.

Text entity values

The value of the text entity is the @domains attribute
contribution for the current module. See domains
attribute rules and syntax for details on how to construct
this value.

For example, the @domains attribute contributions for the
concept structural module and the highlighting domain module
are are constructed as follows.

• <!ENTITY concept-att "(topic
concept)">

• <!ENTITY hi-d-att "(topic hi-d)">.

[remove section]

From DTD: Coding requirements for structural modules

Before After

The topic or map element type must set the
@DITAArchVersion attribute to the version of DITA in
use, typically by referencing the arch-atts parameter
entity. It must also set the @domains attribute to the
included-domains entity. These attributes give
processors a reliable way to check the architecture version and
look up the list of domains available in the document type.

The following example shows how these attributes are defined
for the <concept> element in DITA 1.3:

<!ATTLIST concept
 %concept.attributes;
 %arch-atts;

The topic or map element type must set the
@DITAArchVersion attribute to the version of DITA in
use, typically by referencing the arch-atts parameter
entity. It must also set the @specializations attribute
to the included-domains entity. These attributes give
processors a reliable way to check the architecture version
and look up the list of specialized attributes available in the
document type.

The following example shows how these attributes are defined
for the <concept> element in DITA 2.0:

<!ATTLIST concept
 %concept.attributes;
 %arch-atts;

DITA TC work product Page 7 of 10

http://docs.oasis-open.org/dita/dita/v1.3/errata02/os/complete/part1-base/archSpec/base/dtd-coding-element-types.html#general-coding-requirements
http://docs.oasis-open.org/dita/dita/v1.3/errata02/os/complete/part1-base/archSpec/base/dtd-coding-structural-modules.html#dtdStructuralCoding

Before After

 domains CDATA "&included-domains;"> specializations CDATA "&included-
domains;">

From RELAX NG: Coding requirements for attribute domain modules:

Before After

All vocabulary and constraint modules must document
their @domains attribute contribution. The value of the
contribution is constructed according to the rules found in
domains attribute rules and syntax.

All vocabulary and constraint modules must document their
@specializations attribute contribution. The value of
the contribution is constructed according to the rules found in
@specializations attribute rules and syntax.

Domains attribute contribution

The @domains contribution must be documented in the
module. The value is constructed according to the rules
found in domains attribute rules and syntax.

Specializations attribute contribution

The @specializations contribution must be
documented in the module. The value is constructed
according to the rules found in @specializations
attribute rules and syntax.

From RELAX NG: Coding requirements for document-type shells: change equivalent to matching DTD topic above.

From DTD: Coding requirements for element type declarations: change equiavlent to matching DTD topic above.

From RELAX NG: Coding requirements for structural modules: change equivalent to matching DTD topic above.

From RELAX NG: Coding requirements for element domain modules: change equivalent to matching DTD topic
above.

From RELAX NG: Coding requirements for constraint modules: change equivalent to matching DTD topic above.

From architectural attributes:

Before After

@domains
This attribute identifies the domain modules (and
optionally the structural modules) that are used in a
map or topic. Each module also declares its module
dependencies.

@specializations
This attribute identifies the specialized attributes that are
used in a map or topic.

From Processing conrefs:

Before After

When pulling content with the conref mechanism, if the
referenced element is the same type as the referencing
element, and the set of domains declared on the @domains
attribute in the referenced topic or map instance is the same
as or a subset of the domains declared in the referencing
document, the element set allowed in the referenced element
is guaranteed to be the same as, or a subset of, the element set
allowed in the referencing element.

When pushing content with the conref mechanism, the
domain checking algorithm is reversed. In this case, if the
set of domains declared on the @domains attribute in the
referencing topic or map instance is the same as or a subset of
the domains declared in the referenced document, the element

When pulling content with the conref mechanism, if the
referenced element is the same type as the referencing
element, and the set of domains declared on the @domains
attribute in the referenced topic or map instance is the same
as or a subset of the domains declared in the referencing
document, the element set allowed in the referenced element
is guaranteed to be the same as, or a subset of, the element set
allowed in the referencing element.

When pushing content with the conref mechanism, the
domain checking algorithm is reversed. In this case, if the
set of domains declared on the @domains attribute in the
referencing topic or map instance is the same as or a subset of
the domains declared in the referenced document, the element

DITA TC work product Page 8 of 10

http://docs.oasis-open.org/dita/dita/v1.3/errata02/os/complete/part1-base/archSpec/base/relax-ng-coding-attribute-domains.html#relax-ng-attribute-domain-module-coding-requirements
http://docs.oasis-open.org/dita/dita/v1.3/errata02/os/complete/part1-base/archSpec/base/relax-ng-coding-doctype-shell.html#concept_rrq_p45_dn
http://docs.oasis-open.org/dita/dita/v1.3/errata02/os/complete/part1-base/archSpec/base/dtd-coding-element-types.html#general-coding-requirements
http://docs.oasis-open.org/dita/dita/v1.3/errata02/os/complete/part1-base/archSpec/base/relax-ng-coding-structural-modules.html#relax-ng-structural-module-coding-requirements
http://docs.oasis-open.org/dita/dita/v1.3/errata02/os/complete/part1-base/archSpec/base/relax-ng-coding-element-domains.html#relax-ng-element-domain-module-coding-requirements
http://docs.oasis-open.org/dita/dita/v1.3/errata02/os/complete/part1-base/archSpec/base/relax-ng-coding-constraint-modules.html#relax-ng-constraint-module-coding-requirements
http://docs.oasis-open.org/dita/dita/v1.3/errata02/os/complete/part1-base/archSpec/base/architectural-attributes.html#architectural-attributes
http://docs.oasis-open.org/dita/dita/v1.3/errata02/os/complete/part1-base/archSpec/base/conref-processing.html#concept_wf2_3sb_lq

Before After

set allowed in the pushed content is guaranteed to be the same
as, or a subset of, the element set allowed in the new location.

When both pulling or pushing content with the conref
mechanism, processors resolving conrefs SHOULD tolerate
specializations of valid elements and generalize elements
in the pushed or pulled content fragment as needed for the
resolving context.

Except where allowed by weak constraints, a conref processor
MUST NOT permit resolution of a reuse relationship that
could be rendered invalid under the rules of either the reused
or reusing content.

set allowed in the pushed content is guaranteed to be the same
as, or a subset of, the element set allowed in the new location.

When content is reused between two documents with different
domains or constraints, it is possible for the reused content
to include domain extensions that are not defined for the new
context, or to include elements that would be constrained out
of the new context. When both pulling or pushing content with
the conref mechanism, processors resolving conrefs SHOULD
tolerate specializations of valid elements. Processors MAY
generalize elements in the pushed or pulled content fragment
as needed for the resolving context.

Except where allowed by weak constraints, aA conref
processor MUST NOT permit resolution of a reuse
relationship that could be rendered is known to be invalid
under the rules of either the reused or reusing content.

From constraint rules:

Before After

Contribution to the @domains attribute

Each constraint that is integrated into a DITA document
type MUST be declared in the @domains attribute for
each structural type that is integrated into the document
type.

For DTDs, the contribution for the @domains attribute
is specified in the constraint module file; for XSD
and RELAX NG, the contribution to the @domains
attribute is specified directly in the document type shell.

Contribution to the @domains attribute

Each constraint that is integrated into a DITA document
type MUST be declared in the @domains attribute for
each structural type that is integrated into the document
type.

For DTDs, the contribution for the @domains attribute
is specified in the constraint module file; for XSD
and RELAX NG, the contribution to the @domains
attribute is specified directly in the document type shell.

Remove the topic Conref compatibility with constraints, which explains how to resolve conref with weak vs strong
constraints; this process is obsolete with the removal of the domain tokens.

Remove the topic Weak and strong constraints, which explains weak vs strong constraints; this distinction is
obsolete with the removal of the domain tokens.

From Equivalence of document-type shells:

Before After

A DITA document type is defined by the following:

• The set of modules that are declared in the
@domains attribute on the root element of the
document

• The values of the @class attributes of all the
elements in the document

• Rules for topic nesting

A DITA document type is defined by the following:

• The set of vocabulary and constraint modules that
are integrated by the document type shell

• The values of the @class attributes of all the
elements in the document

• Rules for topic nesting

From Overview of document type shells:

DITA TC work product Page 9 of 10

http://docs.oasis-open.org/dita/dita/v1.3/errata02/os/complete/part1-base/archSpec/base/constraint-rules.html#concept_ycp_3jm_vp
http://docs.oasis-open.org/dita/dita/v1.3/errata02/os/complete/part1-base/archSpec/base/constraints-conref-compatibility.html
http://docs.oasis-open.org/dita/dita/v1.3/errata02/os/complete/part1-base/archSpec/base/constraints-strong-and-weak.html
http://docs.oasis-open.org/dita/dita/v1.3/errata02/os/complete/part1-base/archSpec/base/document-type-shells-equivalence.html#document-type-shells-equivalence
http://docs.oasis-open.org/dita/dita/v1.3/errata02/os/complete/part1-base/archSpec/base/document-type-shells.html#createCustomDocType

Before After

A DITA document must either have an associated document-
type definition or all required attributes must be made explicit
in the document instances. Most DITA documents have
an associated document-type shell. DITA documents that
reference a document-type shell can be validated using
standard XML processors. Such validation enables processors
to read the XML grammar files and determine default values
for the @domains and @class attributes.

A DITA document must either have an associated document-
type definition or all required attributes must be made explicit
in the document instances. Most DITA documents have
an associated document-type shell. DITA documents that
reference a document-type shell can be validated using
standard XML processors. Such validation enables processors
to read the XML grammar files and determine default values
for the @domains@specializations and @class
attributes.

From Vocabulary modules:

Before After

The name (or short name) of an element domain module
is used to identify the module in @class and @domains
attribute values.

The name (or short name) of an element domain module
is used to identify the module in @class and @domains
attribute values.

Migration plans for backwards incompatibilities

Processors will need to be updated to understand the new attribute name and syntax.

The specification already recommends against specifying @domains in source files (it can instead be read from
the grammar files). However, it is legal to include it in source. If included, a search/replace expression that finds the
@domains attribute in source files can be used to rename it to @specializations.

Remaining modifications affect grammar files rather than source, which cannot easily be automated. The following
items in grammar files will need to be migrated manually:

• Specialized topics and maps must change the declaration of @domains on the topic or map element to be
named @specializations

• Attribute domains will need to be updated to use the new @domains token syntax.
• Configured document type shells will remove all domain tokens (apart from attribute domains) from the

included-domains entity.
• Configured document type shells will remove references to ENT files that do nothing but declare an entity

for structural domain contributions to @domains
• All modules (except attribute domain modules) will remove declarations of existing tokens.

DITA TC work product Page 10 of 10

http://docs.oasis-open.org/dita/dita/v1.3/errata02/os/complete/part1-base/archSpec/base/specialization-vocabulary-modules.html

	Stage three: #217 Remove @domains attribute

