
DITA Technical Committee

Darwin Information Typing
Architecture (DITA) Version 2.0

"Working Draft 12"
"29 August 2020"

DITA TC work product Page 1 of 430

Table of contents
1 Introduction.. 7

1.1 About the DITA 2.0 specification..7
1.1.1 XML grammar files.. 7
1.1.2 Written specification.. 7

1.2 Terminology... 7
1.3 IPR policy...7
1.4 Normative references.. 8
1.5 Non-normative references... 8
1.6 Formatting conventions in the HTML5 version of the specification... 10

1.6.1 Link previews...10
1.6.2 Navigation links..11

2 DITA terminology, notation, and conventions...12
2.1 Normative and non-normative information...12
2.2 Notation... 12
2.3 Basic DITA terminology... 12
2.4 Specialization terminology...13
2.5 DITA module terminology.. 14
2.6 Linking and addressing terminology.. 14
2.7 Key terminology...15
2.8 Map terminology.. 15
2.9 File extensions...15

3 Overview of DITA...17
3.1 Basic concepts...17
3.2 Producing different deliverables from a single source... 18
3.3 DITA topics.. 19

3.3.1 The topic as the basic unit of information..19
3.3.2 The benefits of a topic-based architecture.. 20
3.3.3 Disciplined, topic-oriented writing..20
3.3.4 Information typing..21
3.3.5 Generic topics..22
3.3.6 Topic structure... 22
3.3.7 Topic content... 23

3.4 DITA maps...24
3.4.1 Definition of DITA maps...24
3.4.2 Purpose of DITA maps.. 25
3.4.3 DITA map attributes...25
3.4.4 Examples of DITA maps.. 28

3.5 DITA metadata...32
3.5.1 Metadata elements..32
3.5.2 Metadata attributes..32
3.5.3 Metadata in maps and topics...34
3.5.4 Context hooks and window metadata for user assistance.. 35

4 Determining effective attribute values..37
5 DITA map processing...38

5.1 DITA maps and their usage... 38
5.2 Subject scheme maps and their usage..39

5.2.1 Subject scheme maps... 39
5.2.2 Defining controlled values for attributes.. 39

DITA TC work product Page 2 of 430

5.2.3 Binding controlled values to an attribute..40
5.2.4 Processing controlled attribute values...42
5.2.5 Extending subject schemes...42
5.2.6 Scaling a list of controlled values to define a taxonomy..43
5.2.7 Classification maps..44
5.2.8 Examples of subject scheme maps...44

5.3 Map cascading...49
5.3.1 Cascading of metadata attributes in a DITA map.. 49
5.3.2 Reconciling topic and map metadata elements...52
5.3.3 Map-to-map cascading behaviors... 54

5.4 Chunking..57
5.4.1 About the @chunk attribute...57
5.4.2 Processing chunk="combine"..58
5.4.3 Processing chunk="split"... 59
5.4.4 Using the @chunk attribute for other purposes...59
5.4.5 Examples of the @chunk attribute...59

6 DITA addressing.. 73
6.1 ID attribute... 73
6.2 DITA linking..74
6.3 URI-based (direct) addressing...74
6.4 Indirect key-based addressing...77

6.4.1 Core concepts for working with keys...77
6.4.2 Key scopes..79
6.4.3 Using keys for addressing... 80
6.4.4 Addressing keys across scopes.. 80
6.4.5 Cross-deliverable addressing and linking..82
6.4.6 Processing key references.. 84
6.4.7 Processing key references for navigation links and images..85
6.4.8 Processing key references on <topicref> elements...85
6.4.9 Processing key references to generate text or link text...85
6.4.10 Examples of keys.. 87
6.4.11 Examples of scoped keys.. 94

7 DITA processing...102
7.1 Navigation..102

7.1.1 Table of contents... 102
7.2 Indexes.. 102

7.2.1 Index elements.. 103
7.2.2 Location of <indexterm> elements.. 103
7.2.3 Index locators.. 104
7.2.4 Index redirection..104
7.2.5 Index ranges..105
7.2.6 Index sorting..107
7.2.7 Merging index elements.. 108
7.2.8 Examples of indexing.. 109

7.3 Content reference (conref)...112
7.3.1 Conref overview...112
7.3.2 Processing conrefs.. 113
7.3.3 Processing attributes when resolving conrefs... 113
7.3.4 Processing xrefs and conrefs within a conref.. 114

7.4 Conditional processing (profiling)...117
7.4.1 Conditional processing values and groups.. 117
7.4.2 Filtering.. 118

DITA TC work product Page 3 of 430

7.4.3 Flagging...120
7.4.4 Conditional processing to generate multiple deliverable types..120
7.4.5 Examples of conditional processing.. 121

7.5 Branch filtering...122
7.5.1 Overview of branch filtering...123
7.5.2 Branch filtering: Single condition set for a branch... 123
7.5.3 Branch filtering: Multiple condition sets for a branch...123
7.5.4 Branch filtering: Impact on resource and key names.. 124
7.5.5 Branch filtering: Implications of processing order..126
7.5.6 Examples of branch filtering.. 127

7.6 Translation and localization... 136
7.6.1 The @xml:lang attribute.. 136
7.6.2 The @dir attribute..138

7.7 Sorting... 139
8 Configuration, specialization, generalization, constraints, and expansion ..141

8.1 Overview of DITA extension facilities...141
8.2 Document-type configuration...142

8.2.1 Overview of document-type shells...142
8.2.2 Rules for document-type shells... 143
8.2.3 Equivalence of document-type shells..143
8.2.4 Conformance of document-type shells..144

8.3 Specialization...144
8.3.1 Overview of specialization...144
8.3.2 Modularization... 145
8.3.3 Vocabulary modules.. 146
8.3.4 Specialization rules for element types...146
8.3.5 Specialization rules for attributes...147
8.3.6 @class attribute rules and syntax..147
8.3.7 @specializations attribute rules and syntax.. 149
8.3.8 Specializing to include non-DITA content.. 150
8.3.9 Sharing elements across specializations...151

8.4 Generalization..151
8.4.1 Overview of generalization.. 151
8.4.2 Element generalization..152
8.4.3 Processor expectations when generalizing elements..152
8.4.4 Attribute generalization..154
8.4.5 Generalization with cross-specialization dependencies.. 154

8.5 Constraints...155
8.5.1 Overview of constraints... 155
8.5.2 Constraint rules... 156
8.5.3 Constraints, processing, and interoperability...156
8.5.4 Examples: Constraints implemented using DTDs... 157
8.5.5 Examples: Constraints implemented using RNG.. 161

8.6 Expansion modules... 162
8.6.1 Overview of expansion modules..162
8.6.2 Expansion module rules.. 162
8.6.3 Example: Expansion modules... 163

9 Coding practices for DITA grammar files... 170
9.1 Recognized XML-document grammar mechanisms..170
9.2 Normative versions of DITA grammar files.. 170
9.3 DTD coding requirements..171

9.3.1 DTD: Use of entities.. 171

DITA TC work product Page 4 of 430

9.3.2 DTD: Coding requirements for document-type shells..172
9.3.3 DTD: Coding requirements for element-type declarations.. 176
9.3.4 DTD: Coding requirements for structural modules.. 179
9.3.5 DTD: Coding requirements for element-domain modules... 180
9.3.6 DTD: Coding requirements for attribute domain modules... 181
9.3.7 DTD: Coding requirements for constraint modules... 182
9.3.8 DTD: Coding requirements for expansion modules...183

9.4 RELAX NG coding requirements...184
9.4.1 RELAX NG: Overview of coding requirements..184
9.4.2 RELAX NG: Coding requirements for document-type shells...185
9.4.3 RELAX NG: Coding requirements for element-type declarations..187
9.4.4 RELAX NG: Coding requirements for structural modules... 190
9.4.5 RELAX NG: Coding requirements for element-domain modules.. 192
9.4.6 RELAX NG: Coding requirements for attribute-domain modules.. 193
9.4.7 RELAX NG: Coding requirements for constraint modules...194
9.4.8 RNG: Coding requirements for expansion modules..195

10 Element reference..196
10.1 DITA elements, A to Z..196
10.2 DITA attributes, A to Z... 200
10.3 Topic elements...202

10.3.1 Basic topic elements..202
10.3.2 Body elements...213
10.3.3 Multimedia elements..243
10.3.4 Indexing elements... 250
10.3.5 Related links elements.. 253
10.3.6 Table elements.. 257

10.4 Map elements.. 268
10.4.1 Basic map elements.. 268
10.4.2 Subject scheme elements... 280

10.5 Metadata elements.. 296
10.5.1 Prolog (metadata) elements.. 296
10.5.2 Specialization elements...310

10.6 Domain elements...315
10.6.1 Alternative titles domain elements...315
10.6.2 Classification domain elements...320
10.6.3 DITAVAL-reference domain element... 326
10.6.4 Emphasis domain elements.. 332
10.6.5 Hazard-statement domain elements..333
10.6.6 Highlighting domain elements... 339
10.6.7 Mapgroup domain elements..342
10.6.8 Utilities domain elements...349

10.7 Other elements.. 355
10.7.1 Legacy conversion elements...355
10.7.2 DITAVAL elements...356

10.8 Attributes..366
10.8.1 Universal attribute group... 366
10.8.2 Common attributes.. 369
10.8.3 Complex attribute definitions... 377

11 Conformance..394
A Acknowledgments... 396
B Aggregated RFC-2119 statements..397
C Non-normative information..398

DITA TC work product Page 5 of 430

C.1 About the specification source.. 398
C.2 Changes from DITA 1.3 to DITA 2.0..398
C.3 File naming conventions... 398
C.4 Migrating to DITA 2.0.. 401
C.5 Considerations for generalizing <foreign> elements...401
C.6 Element-by-element recommendations for translators... 402
C.7 Formatting expectations..411
C.8 DTD public identifiers..412
C.9 Domains and constraints in the OASIS specification..413

C.9.1 Domains and constraints in the OASIS specification..413
C.9.2 Base domains: Where they are used..413
C.9.3 Base document types: Included domains... 414

C.10 Processing interoperability considerations..414
C.11 Specialization design, customization, and the limits of specialization...416

D Revision history...420

Index...422

DITA TC work product Page 6 of 430

1 Introduction
The Darwin Information Typing Architecture (DITA) specification defines a set of document types for
authoring and aggregating topic-oriented information, as well as a set of mechanisms for combining,
extending, and constraining document types.

1.1 About the DITA 2.0 specification
The DITA specification includes grammar files and the written specification.

1.1.1 XML grammar files
The XML grammar files are available in RELAX NG (RNG), and XML Document-Type Definitions (DTD).

While the files should define the same DITA elements, the RELAX NG grammars are normative if there is
a discrepancy.

1.1.2 Written specification
The specification is written for implementers of the DITA standard, including tool developers and XML
architects who develop specializations.

The specification contains several parts:

• Introduction
• Architectural specification
• Language reference
• Conformance statement
• Appendices

The specification is available in the following formats:

• DITA source
• PDF
• HTML5 (available from the OASIS Web site, authoritative)
• ZIP of HTML5 (optimized for local use)

1.2 Terminology
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT, "RECOMMEND", "MAY", and "OPTIONAL" in this document are to be interpreted as described in
[RFC 2119] and [RFC8174] when, and only when, they appear in all capitals, as shown here.

1.3 IPR policy
This specification is provided under the RF on Limited Terms Mode of the OASIS IPR Policy, the mode
chosen when the Technical Committee was established. For information on whether any patents have
been disclosed that may be essential to implementing this specification, and any offers of patent licensing
terms, please refer to the Intellectual Property Rights section of the TC's web page (https://www.oasis-
open.org/committees/dita/ipr.php).

DITA TC work product Page 7 of 430

https://www.oasis-open.org/policies-guidelines/ipr#RF-on-Limited-Mode
https://www.oasis-open.org/policies-guidelines/ipr
https://www.oasis-open.org/committees/dita/ipr.php
https://www.oasis-open.org/committees/dita/ipr.php

1.4 Normative references
Normative references are references to external documents or resources to which implementers of DITA
MUST comply.

[RFC 2119]
Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI
10.17487/RFC2119, March 1997, <http://www.rfc-editor.org/info/rfc2119>.

[RFC 3986]
Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform Resource Identifier (URI): Generic Syntax",
STD 66, RFC 3986, DOI 10.17487/RFC3986, January 2005, <http://www.rfc-editor.org/info/rfc3986>.

[RFC 5646]
Phillips, A., Ed., and M. Davis, Ed., "Tags for Identifying Languages", BCP 47, RFC 5646, DOI
10.17487/RFC5646, September 2009, <http://www.rfc-editor.org/info/rfc5646>.

[RFC8174]
Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI
10.17487/RFC8174, May 2017, <http://www.rfc-editor.org/info/rfc8174>.

[XML 1.0]
Extensible Markup Language (XML) 1.0 (Fifth Edition), T Bray, J. Paoli, M. E. Maler, F. Yergeau,
Editors, W3C Recommendation, 26 November 2008, http://www.w3.org/TR/2008/REC-
xml-20081126/. Latest version available at http://www.w3.org/TR/xml.

[XML 1.1]
Extensible Markup Language (XML) 1.1 (Second Edition), T. Bray, J. Paoli, M. E. Maler, F. Yergeau,
J. Cowan, Editors, W3C Recommendation, 16 August 2006, http://www.w3.org/TR/2006/REC-
xml11-20060816/. Latest version available at http://www.w3.org/TR/xml11/.

1.5 Non-normative references
Non-normative references are references to external documents or resources that implementers of DITA
might find useful.

Comment by Robert
Need to add a reference for HTML5. Not sure if those will replace, or supplement, the XHTML
references.

[ISO 8601]
ISO/TC 154, Data elements and interchange formats—Information interchange—Representation of
dates and times, 3rd edition, http://www.iso.org/iso/catalogue_detail?csnumber=40874, 12 December
2004.

[ISO/IEC 19757-3]
ISO/IEC JTC 1/SC 34 Document description and processing languages, Information technology—
Document Schema Definition Languages (DSDL)—Part 3: Rule-based validation—Schematron,
http://www.iso.org/iso/catalogue_detail.htm?csnumber=40833, 1 June 2006.

[Namespaces in XML 1.0]
Namespaces in XML 1.0 (Third Edition), T. Bray, D. Hollander, A. Layman, R. Tobin, H. S. Thompson,
Editors, W3C Recommendation, 8 December 2009, http://www.w3.org/TR/2009/REC-xml-
names-20091208/. Latest version available at http://www.w3.org/TR/xml-names.

DITA TC work product Page 8 of 430

http://www.rfc-editor.org/info/rfc2119
http://www.rfc-editor.org/info/rfc3986
http://www.rfc-editor.org/info/rfc5646
http://www.rfc-editor.org/info/rfc8174
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/xml
http://www.w3.org/TR/2006/REC-xml11-20060816/
http://www.w3.org/TR/xml11/
http://www.iso.org/iso/catalogue_detail?csnumber=40874
http://www.iso.org/iso/catalogue_detail.htm?csnumber=40833
http://www.w3.org/TR/2009/REC-xml-names-20091208/
http://www.w3.org/TR/xml-names

[Namespaces in XML 1.1]
Namespaces in XML 1.1 (Second Edition), T. Bray, D. Hollander, A. Layman, R. Tobin, Editors, W3C
Recommendation, 16 August 2006, http://www.w3.org/TR/2006/REC-xml-names11-20060816/.
Latest version available at http://www.w3.org/TR/xml-names11/.

[OASIS Table Model]
XML Exchange Table Model Document Type Definition. Edited by Norman Walsh, 1999. Technical
Memorandum TR 9901:1999. https://www.oasis-open.org/specs/tm9901.htm.

[RELAX NG]
J. Clark and M. Murata, editors, RELAX NG Specification, http://www.oasis-open.org/committees/
relax-ng/spec-20011203.html, OASIS Committee Specification, 3 December 2001.

[RELAX NG Compact Syntax]
J. Clark, editor, RELAX NG Compact Syntax, http://www.oasis-open.org/committees/relax-ng/
compact-20021121.html, OASIS Committee Specification, 21 November 2002.

[RELAX NG DTD Compatibility]
J. Clark and M. Murata, editors, RELAX NG DTD Compatibility, http://www.oasis-open.org/
committees/relax-ng/compatibility-20011203.html, OASIS Committee Specification, 3 December
2001.

[XHTML 1.0]
XHTML™ 1.0 The Extensible HyperText Markup Language (Second Edition), S. Pemberton, Editor,
W3C Recommendation, 1 August 2002, http://www.w3.org/TR/2002/REC-xhtml1-20020801. Latest
version available at http://www.w3.org/TR/xhtml1.

[XHTML 1.1]
XHTML™ 1.1 – Module-based XHTML – Second Edition, S. McCarron, M. Ishikawa, Editors, W3C
Recommendation, 23 November 2010, http://www.w3.org/TR/2010/REC-xhtml11-20101123. Latest
version available at http://www.w3.org/TR/xhtml11/.

[XPointer 1.0]
XML Pointer Language (XPointer), S. J. DeRose, R. Daniel, P. Grosso, E. Maler, J. Marsh, N. Walsh,
Editors, W3C Working Draft (work in progress), 16 August 2002, http://www.w3.org/TR/2002/WD-
xptr-20020816/. Latest version available at http://www.w3.org/TR/xptr/.

[XML Catalogs 1.1]
OASIS Standard, XML Catalogs Version 1.1, 7 October 2005, https://www.oasis-open.org/
committees/download.php/14809/xml-catalogs.html.

[xml:tm 1.0]
A. Zydroń, R. Raya, and B. Bogacki, editors, XML Text Memory (xml:tm) 1.0 Specification, http://
www.gala-global.org/oscarStandards/xml-tm/, The Localization Industry Standards Association
(LISA) xml:tm 1.0, 26 February 2007.

[XSL 1.0]
Extensible Stylesheet Language (XSL) Version 1.0, S. Adler, A. Berglund, J. S. Deach, T. Graham, P.
Grosso, E. Gutentag, A. Milowski, S. Parnell, J. Richman, S. Zilles, Editors, W3C Recommendation,
15 October 2001, http://www.w3.org/TR/2001/REC-xsl-20011015/. Latest version available at http://
www.w3.org/TR/xsl/.

[XSL 1.1]
Extensible Stylesheet Language (XSL) Version 1.1, A. Berglund, Editor, W3C Recommendation, 5
December 2006, http://www.w3.org/TR/2006/REC-xsl11-20061205/. Latest version available at http://
www.w3.org/TR/xsl11/.

DITA TC work product Page 9 of 430

http://www.w3.org/TR/2006/REC-xml-names11-20060816/
http://www.w3.org/TR/xml-names11/
https://www.oasis-open.org/specs/tm9901.htm
http://www.oasis-open.org/committees/relax-ng/spec-20011203.html
http://www.oasis-open.org/committees/relax-ng/spec-20011203.html
http://www.oasis-open.org/committees/relax-ng/compact-20021121.html
http://www.oasis-open.org/committees/relax-ng/compact-20021121.html
http://www.oasis-open.org/committees/relax-ng/compatibility-20011203.html
http://www.oasis-open.org/committees/relax-ng/compatibility-20011203.html
http://www.w3.org/TR/2002/REC-xhtml1-20020801
http://www.w3.org/TR/xhtml1
http://www.w3.org/TR/xhtml1
http://www.w3.org/TR/2010/REC-xhtml11-20101123
http://www.w3.org/TR/xhtml11/
http://www.w3.org/TR/xhtml11/
http://www.w3.org/TR/2002/WD-xptr-20020816/
http://www.w3.org/TR/xptr/
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
http://www.ttt.org/oscarStandards/xml-tm/
http://www.ttt.org/oscarStandards/xml-tm/
http://www.w3.org/TR/2001/REC-xsl-20011015/
http://www.w3.org/TR/xsl/
http://www.w3.org/TR/2006/REC-xsl11-20061205/
http://www.w3.org/TR/xsl11/

[XSLT 2.0]
XSL Transformations (XSLT) Version 2.0, M. Kay, Editor, W3C Recommendation, 23 January 2007,
http://www.w3.org/TR/2007/REC-xslt20-20070123/. Latest version available at http://www.w3.org/TR/
xslt20.

[XTM 1.0]
S. Pepper and G. Moore, editors, XML Topic Maps (XTM) 1.0, http://www.topicmaps.org/xtm/
index.html, TopicMaps.Org XTM 1.0, 2001.

1.6 Formatting conventions in the HTML5 version of the specification
Given the size and complexity of the specification, it is not generated as a single HTML5 file. Instead,
each DITA topic is rendered as a separate HTML5 file.

The HTML5 version of the specification uses certain formatting conventions to aid readers in navigating
through the specification and locating material easily: Link previews and navigation links.

1.6.1 Link previews
The DITA specification uses the content of the DITA <shortdesc> element to provide link previews for
its readers. These link previews are visually highlighted by a border and a colored background.

The link previews serve as enhanced navigation aids, enabling readers to more easily locate content.
This usability enhancement is one of the ways in which the specification illustrates the capabilities of DITA
and exemplifies DITA best practices.

The following screen capture illustrates how link previews are displayed in the HTML5 version of the
specification:

Figure 1: Link previews

DITA TC work product Page 10 of 430

http://www.w3.org/TR/2007/REC-xslt20-20070123/
http://www.w3.org/TR/xslt20
http://www.topicmaps.org/xtm/index.html
http://www.topicmaps.org/xtm/index.html

1.6.2 Navigation links
To ease readers in navigating from one topic to another, each HTML5 file generated by a DITA topic
contains navigation links at the bottom.

Parent topic
Takes readers to the parent topic, which is the topic referenced by the closest topic in the
containment hierarchy

Previous topic
Takes readers to the previous topic in the reading sequence

Next topic
Takes readers to the next topic in the reading sequence

Return to main page
Takes readers to the place in the table of contents for the current topic in the reading sequence

The following screen capture illustrates how navigation links are displayed in the HTML5 version of the
specification:

Figure 2: Navigation links

When readers hover over the navigation links, the short description of the DITA topic also is displayed.

DITA TC work product Page 11 of 430

2 DITA terminology, notation, and conventions
The DITA specification uses specific notation and terms to define the components of the DITA standard.

2.1 Normative and non-normative information
The DITA specification contains normative and non-normative information.

Normative information
Normative information is the formal portion of the specification that describes the rules and
requirements that make up the DITA standard and which must be followed.

Non-normative information
Non-normative information includes descriptions that provide background, examples, notes, and
other useful information that are not formal requirements or rules that must be followed.

All information in the specification is normative unless it is an example, a note, an appendix, or is explicitly
labeled as non-normative.

The DITA specification contains examples to help clarify or illustrate specific aspects of the specification.
Because examples are specific rather than general, they might not illustrate all aspects or be the only way
to accomplish or implement an aspect of the specification. Therefore all examples are non-normative.

2.2 Notation
Certain conventions are used throughout the specification to identify attributes and elements.

attribute types
Attribute names are preceded by @ to distinguish them from elements or surrounding text, for
example, the @props or the @class attribute.

element types
Element names are delimited with angle brackets (< and >) to distinguish them from surrounding text,
for example, the <keyword> or the <prolog> element.

In general, the unqualified use of the term map or topic can be interpreted to mean "a <map> element and
any specialization of a <map> element " or "a <topic> element or any specialization of a <topic>
element." Similarly, the unqualified use of an element type name (for example, <p>) can be interpreted to
mean the element type or any specialization of the element type.

2.3 Basic DITA terminology
Certain terminology is used for basic DITA components.

DITA document

An XML document that conforms to the requirements of this specification.

A DITA document MUST have as its root element one of the following elements:

• <map> or a specialization of the <map> element
• <topic> or a specialization of the <topic> element
• <dita>, which cannot be specialized, but which allows documents with multiple sibling

topics

DITA TC work product Page 12 of 430

DITA document type
A unique set of structural modules, domain modules, and constraint modules that taken together
provide the XML element and attribute declarations that define the structure of DITA documents.

DITA document-type shell
A set of DTD or RELAX NG declarations that implement a DITA document type by using the rules
and design patterns that are included in the DITA specification. A DITA document-type shell includes
and configures one or more structural modules, zero or more domain modules, and zero or more
constraint modules. With the exception of the optional declarations for the <dita> element and its
attributes, DITA document-type shells do not declare any element or attribute types directly.

DITA element
An XML element instance whose type is a DITA element type. DITA elements must exhibit a @class
attribute that has a value that conforms to the rules for specialization hierarchy specifications.

DITA element type
An element type that is either one of the base element types that are defined by the DITA
specification, or a specialization of one of the base element types.

map instance
An occurrence of a map type in a DITA document.

map type
A map or a specialization of map that defines a set of relationships among topic instances.

structural type instance
An occurrence of a topic type or a map type in a DITA document.

topic instance
An occurrence of a topic type in a DITA document.

topic type
A topic or a specialization of topic that defines a complete unit of content.

2.4 Specialization terminology
Certain terminology is used to discuss DITA specialization.

base type
An element or attribute type that is not a specialization. All base types are defined by the DITA
specification.

extension element
Within a vocabulary module, an element type that can be extended, replaced, or constrained for use
in a DITA document type.

generalization
The process by which a specialized element is transformed into a less-specialized ancestor element
or a specialized attribute is transformed into a less-specialized ancestor attribute. The original
specialization-hierarchy information can be preserved in the generalized instance; this allows the
original specialized type to be recreated from the generalized instance.

specialization
(1) The act of defining new element or attribute types as a semantic refinement of existing element or
attribute types
(2) An element or attribute type that is a specialization of a base type
(3) A process by which a generalized element is transformed into one of its more specialized element
types or a generalized attribute is transformed into a more specialized attribute.

DITA TC work product Page 13 of 430

specialization hierarchy
The sequence of element or attribute types, from the most general to most specialized, from which a
given element or attribute type is specialized. The specialization hierarchy for a DITA element is
formally declared through its @class attribute.

structural type
A topic type or map type.

2.5 DITA module terminology
Certain terminology is used to discuss DITA modules.

attribute domain module
A domain module that defines a specialization of either the @base or @props attribute.

constraint module
A set of declarations that imposes additional constraints onto the element or attribute types that are
defined in a specific vocabulary module.

domain module
A vocabulary module that defines a set of element types or an attribute type that supports a specific
subject or functional area.

element domain module
A domain module that defines one or more element types for use within maps or topics.

structural module
A vocabulary module that defines a top-level map type or topic type.

vocabulary module
A set of element or attribute declarations.

2.6 Linking and addressing terminology
Certain terminology is used for discussing linking and addressing.

referenced element
An element that is referenced by another DITA element. See also referencing element.
Example

Consider the following code sample from a installation-reuse.dita topic. The <step>
element that it contains is a referenced element; other DITA topics reference the <step> element by
using the @conref attribute.

<step id="run-startcmd-script">
 <cmd>Run the startcmd script that is applicable to your operating-system
environment.</cmd>
</step>

referencing element
An element that references another DITA element by specifying an addressing attribute. See also
referenced element and addressing attribute
Example

The following <step> element is a referencing element. It uses the @conref attribute to reference a
<step> element in the installation-reuse.dita topic.

<step conref="installation-reuse.dita#reuse/run-startcmd-script">
 <cmd/>
</step>

DITA TC work product Page 14 of 430

addressing attribute
An attribute, such as @conref, @conkeyref, @keyref, and @href, that specifies an address.

2.7 Key terminology
Certain terminology is used to discuss keys.

resource
For the purposes of keys and key resolution, one of the following:

• An object addressed by URI
• Metadata specified on a resource, such as a @scope or @format attribute
• Text or metadata located within a <topicmeta> element

key
A name for a resource. See 6.4.3 Using keys for addressing (80) for more information.

key definition
A <topicref> element that binds one or more key names to zero or more resources.

key reference
An attribute that references a key, such as @keyref or @conkeyref.

key space
A list of key definitions that are used to resolve key references.

effective key definition
The definition for a key within a key space that is used to resolve references to that key. A key might
have multiple definitions within a key space, but only one of those definitions is effective.

key scope
A map or section of a map that defines its own key space and serves as the resolution context for its
key references.

2.8 Map terminology
Certain terminology is used for DITA maps.

root map
The DITA map that is provided as input for a processor.

submap
A DITA map that is referenced with a @scope attribute that evaluates as "local". The value of the
scope attribute might be explicitly set, be defaulted, or cascade from another element.

peer map
A DITA map that is referenced with a @scope attribute that evaluates as "peer". The value of the
scope attribute might be explicitly set, be defaulted, or cascade from another element.

map branch
A <topicref> element or a specialization of <topicref>, along with any child elements and all
resources that are referenced by the original element or its children.

2.9 File extensions
DITA uses certain file extensions for topics, maps, and conditional processing profiles.

Files that contain DITA content SHOULD use the following file extensions:

DITA topics
*.dita (preferred)

DITA TC work product Page 15 of 430

*.xml
DITA maps

*.ditamap
Conditional processing profiles

*.ditaval

DITA TC work product Page 16 of 430

3 Overview of DITA
The Darwin Information Typing Architecture (DITA) is an XML-based architecture for authoring, producing,
and delivering topic-oriented, information-typed content that can be reused and single-sourced in a
variety of ways. While DITA historically has been driven by the requirements of large-scale technical
documentation authoring, management, and delivery, it is a standard that is applicable to any kind of
publication or information that might be presented to readers, including interactive training and
educational materials, standards, reports, business documents, trade books, travel and nature guides,
and more.

DITA is designed for creating new document types and describing new information domains based on
existing types and domains. The process for creating new types and domains is called specialization.
Specialization enables the creation of specific, targeted XML grammars that can still use tools and design
rules that were developed for more general types and domains; this is similar to how classes in an object-
oriented system can inherit the methods of ancestor classes.

Because DITA topics are conforming XML documents, they can be readily viewed, edited, and validated
using standard XML tools, although realizing the full potential of DITA requires using DITA-aware tools.

Comment by Kristen J Eberlein on 03 June 2019

This section of the spec now contains material about topics, maps, and metadata that was previously
in the "DITA markup" section."

We need to carefully consider what of this content is appropriate. Some of it – information about map
elements and attributes, metadata – is duplicated elsewhere. If we think it is useful to have a high-level
overview here, we should mark it as non-normative – and point users to the normative coverage of the
topic.

In a parallel move, I think we'll need to move coverage of critical DITA attributes into a more prominent
place in the spec.

3.1 Basic concepts
DITA has been designed to satisfy requirements for information typing, semantic markup, modularity,
reuse, interchange, and production of different deliverable forms from a single source. These topics
provide an overview of the key DITA features and facilities that serve to satisfy these requirements.

DITA topics
In DITA, a topic is the basic unit of authoring and reuse. All DITA topics have the same basic
structure: a title and, optionally, a body of content. Topics can be generic or more specialized;
specialized topics represent more specific information types or semantic roles, for example,
<concept>, <task>, or <reference> See DITA topics (19) for more information.

DITA maps
DITA maps are documents that organize topics and other resources into structured collections of
information. DITA maps specify hierarchy and the relationships among the topics; they also provide
the contexts in which keys are defined and resolved. See DITA maps (24) for more information.

Information typing
Information typing is the practice of identifying types of topics, such as concept, reference, and task,
to clearly distinguish between different types of information. Topics that answer different reader
questions (How do I? What is?) can be categorized with different information types. The base
information types provided by DITA specializations (for example, technical content, machine industry,

DITA TC work product Page 17 of 430

and learning and training) provide starter sets of information types that can be adopted immediately
by many technical and business-related organizations. See Information typing (21) for more
information.

DITA addressing
DITA provides two addressing mechanisms. DITA addresses either are direct URI-based addresses,
or they are indirect key-based addresses. Within DITA documents, individual elements are addressed
by unique identifiers specified on the @id attribute. DITA defines two fragment-identifier syntaxes;
one is the full fragment-identifier syntax, and the other is an abbreviated fragment-identifier syntax
that can be used when addressing non-topic elements from within the same topic. See DITA
addressing (73) for more information.

Content reuse
The DITA @conref, @conkeyref, @conrefend, and @conaction attributes provide mechanisms
for reusing content within DITA topics or maps. These mechanisms can be used both to pull and
push content. See Content reuse (112) for more information

Conditional processing
Conditional processing, also known as profiling, is the filtering or flagging of information based on
processing-time criteria. See Conditional processing (117) for more information.

Configuration
A document-type shell is an XML grammar file that specifies the elements and attributes that are
allowed in a DITA document. The document-type shell integrates structural modules, domain
modules, and element-configuration modules. In addition, a document-type shell specifies whether
and how topics can nest. See 8.2 Document-type configuration (142) for more information.

Specialization
The specialization feature of DITA allows for the creation of new element types and attributes that are
explicitly and formally derived from existing types. This facilitates interchange of conforming DITA
content and ensures a minimum level of common processing for all DITA content. It also allows
specialization-aware processors to add specialization-specific processing to existing base
processing. See Specialization (144) for more information.

Constraints
Constraint modules define additional constraints for vocabulary modules in order to restrict content
models or attribute lists for specific element types, remove certain extension elements from an
integrated domain module, or replace base element types with domain-provided, extension element
types. See Constraints (155) for more information.

3.2 Producing different deliverables from a single source
DITA is designed to enable the production of multiple deliverable formats from a single set of DITA
content. This means that many rendition details are specified neither in the DITA specification nor in the
DITA content; the rendition details are defined and controlled by the processors.

Like many XML-based applications for human-readable documentation, DITA supports the separation of
content from presentation. This is necessary when content is used in different contexts, since authors
cannot predict how or where the material that they author will be used. The following features and
mechanisms enable users to produce different deliverable formats from a single source:
DITA maps

Different DITA maps can be optimized for different delivery formats. For example, you might have a
book map for printed output and another DITA map to generate online help; each map uses the same
content set.

Specialization
The DITA specialization facility enables users to create XML elements that can provide appropriate
rendition distinctions. Because the use of specializations does not impede interchange or

DITA TC work product Page 18 of 430

interoperability, DITA users can safely create the specializations that are demanded by their local
delivery and rendition requirements, with a minimum of additional impact on the systems and
business processes that depend on or use the content. While general XML practices suggest that
element types should be semantic, specialization can be used to define element types that are purely
presentational in nature. The highlighting domain is an example of such a specialization.

Conditional processing
Conditional processing makes it possible to have a DITA topic or map that contains delivery-specific
content.

Content referencing
The conref mechanism makes it possible to construct delivery-specific maps or topics from a
combination of generic components and delivery-context-specific components.

Key referencing
The keyref mechanism makes it possible to have key words be displayed differently in different
deliverables. It also allows a single link to resolve to different targets in different deliverables.

@outputclass attribute
The @outputclass attribute provides a mechanism whereby authors can indicate specific rendition
intent where necessary. Note that the DITA specification does not define any values for the
@outputclass attribute; the use of the @outputclass attribute is processor specific.

While DITA is independent of any particular delivery format, it is a standard that supports the creation of
human-readable content. As such, it defines some fundamental document components including
paragraphs, lists, and tables. When there is a reasonable expectation that such basic document
components be rendered consistently, the DITA specification defines default or suggested renderings.

3.3 DITA topics
DITA topics are the basic units of DITA content and the basic units of reuse. Each topic contains a single
subject.

3.3.1 The topic as the basic unit of information
In DITA, a topic is the basic unit of authoring and reuse. All DITA topics have the same basic structure: a
title and, optionally, a body of content. Topics can be generic or more specialized; specialized topics
represent more specific information types or semantic roles, for example, <concept>, <task>, or
<reference>
DITA topics consist of content units that can be as generic as sets of paragraphs and unordered lists or
as specific as sets of instructional steps in a procedure or cautions to be considered before a procedure is
performed. Content units in DITA are expressed using XML elements and can be conditionally processed
using metadata attributes.

Classically, a DITA topic is a titled unit of information that can be understood in isolation and used in
multiple contexts. It is short enough to address a single subject or answer a single question but long
enough to make sense on its own and be authored as a self-contained unit. However, DITA topics also
can be less self-contained units of information, such as topics that contain only titles and short
descriptions and serve primarily to organize subtopics or links or topics that are designed to be nested for
the purposes of information management, authoring convenience, or interchange.

DITA topics are used by reference from DITA maps. DITA maps enable topics to be organized in a
hierarchy for publication. Large units of content, such as complex reference documents or book chapters,
are created by nesting topic references in a DITA map. The same set of DITA topics can be used in any
number of maps.

DITA topics also can be used and published individually; for example, one can represent an entire
deliverable as a single DITA document that consists of a root topic and nested topics. This strategy can

DITA TC work product Page 19 of 430

accommodate the migration of legacy content that is not topic-oriented; it also can accommodate
information that is not meaningful outside the context of a parent topic. However, the power of DITA is
most fully realized by storing each DITA topic in a separate XML document and using DITA maps to
organize how topics are combined for delivery. This enables a clear separation between how topics are
authored and stored and how topics are organized for delivery.

3.3.2 The benefits of a topic-based architecture
Topics enable the development of usable and reusable content.

While DITA does not require the use of any particular writing practice, the DITA architecture is designed to
support authoring, managing, and processing of content that is designed to be reused. Although DITA
provides significant value even when reuse is not a primary requirement, the full value of DITA is realized
when content is authored with reuse in mind. To develop topic-based information means creating units of
standalone information that are meaningful with little or no surrounding context.

By organizing content into topics that are written to be reusable, authors can achieve several goals:

• Content is readable when accessed from an index or search, not just when read in sequence as
part of an extended narrative. Since most readers do not read technical and business-related
information from beginning to end, topic-oriented information design ensures that each unit of
information can be read independently.

• Content can be organized differently for online and print delivery. Authors can create task flows
and concept hierarchies for online delivery and create a print-oriented hierarchy to support a
narrative content flow.

• Content can be reused in different collections. Since a topic is written to support random access
(as by search), it should be understandable when included as part of various product deliverables.
Topics permit authors to refactor information as needed, including only the topics that apply to
each unique scenario.

• Content is more manageable in topic form whether managed as individual files in a traditional file
system or as objects in a content management system.

• Content authored in topics can be translated and updated more efficiently and less expensively
than information authored in larger or more sequential units.

• Content authored in topics can be filtered more efficiently, encouraging the assembly and
deployment of information subsets from shared information repositories.

Topics written for reuse should be small enough to provide opportunities for reuse but large enough to be
coherently authored and read. When each topic is written to address a single subject, authors can
organize a set of topics logically and achieve an acceptable narrative content flow.

3.3.3 Disciplined, topic-oriented writing
Topic-oriented writing is a disciplined approach to writing that emphasizes modularity and reuse of
concise units of information: topics. Well-designed DITA topics can be reused in many contexts, as long
as writers are careful to avoid unnecessary transitional text.
Conciseness and appropriateness

Readers who are trying to learn or do something quickly appreciate information that is written in a
structure that is easy to follow and contains only the information needed to complete that task or
grasp a fact. Recipes, encyclopedia entries, car repair procedures; all serve up a uniquely focused
unit of information. The topic contains everything required by the reader.

Locational independence
A well-designed topic is reusable in other contexts to the extent that it is context free, meaning that it
can be inserted into a new document without revision of its content. A context-free topic avoids
transitional text. Phrases like "As we considered earlier" or "Now that you have completed the initial
step" make little sense if a topic is reused in a new context in which the relationships are different or

DITA TC work product Page 20 of 430

no longer exist. A well-designed topic reads appropriately in any new context because the text does
not refer the reader outside the topic.

Navigational independence

Most print publications or web pages are a mixture of content and navigation. Internal links lead a
reader through a sequence of choices as he or she navigates through a website. DITA supports the
separation of navigation from content by assembling independent topics into DITA maps.
Nonetheless, writers might want to provide links within a topic to additional topics or external
resources. DITA does not prohibit such linking within individual topics. The DITA relationship table
enables links between topics and to external content. Since it is defined in the DITA map, it is
managed independently of the topic content.

Links in the content are best used for cross-references within a topic. Links from within a topic to
additional topics or external resources are best avoided because they limit reuse of the topic. To link
from a term or keyword to its definition, use the DITA keyref facility to avoid creating topic-to-topic
dependencies that are difficult to maintain. See Key-based addressing (77)

3.3.4 Information typing
Information typing is the practice of identifying types of topics, such as concept, reference, and task, to
clearly distinguish between different types of information. Topics that answer different reader questions
(How do I? What is?) can be categorized with different information types. The base information types
provided by DITA specializations (for example, technical content, machine industry, and learning and
training) provide starter sets of information types that can be adopted immediately by many technical and
business-related organizations.

Information typing has a long history of use in the technical documentation field to improve information
quality. It is based on extensive research and experience, including Robert Horn's Information Mapping
and Hughes Aircraft's STOP (Sequential Thematic Organization of Proposals) technique. Note that many
DITA topic types are not necessarily closely connected with traditional Information Mapping.

Information typing is a practice designed to keep documentation focused and modular, thus making it
clearer to readers, easier to search and navigate, and more suitable for reuse. Classifying information by
type helps authors perform the following tasks:

• Develop new information more consistently
• Ensure that the correct structure is used for closely related kinds of information (retrieval-oriented

structures like tables for reference information and simple sequences of steps for task
information)

• Avoid mixing content types, thereby losing reader focus
• Separate supporting concept and reference information from tasks, so that users can read the

supporting information if needed and ignore if it is not needed
• Eliminate unimportant or redundant detail
• Identify common and reusable subject matter

DITA currently defines a small set of well-established information types that reflects common practices in
certain business domains, for example, technical communication and instruction and assessment.
However, the set of possible information types is unbounded. Through the mechanism of specialization,
new information types can be defined as specializations of the base topic type (<topic>) or as
refinements of existing topics types, for example, <concept>, <task>, <reference>, or
<learningContent>.

You need not use any of the currently-defined information types. However, where a currently-defined
information type matches the information type of your content, use the currently-defined information type,
either directly, or as a base for specialization. For example, for information that is procedural in nature,

DITA TC work product Page 21 of 430

use the task information type or a specialization of task. Consistent use of established information types
helps ensure smooth interchange and interoperability of DITA content.

3.3.5 Generic topics
The element type <topic> is the base topic type from which all other topic types are specialized. All
topics have the same basic structure.

For authors, typed content is preferred to support consistency in writing and presentation to readers. The
generic topic type is best used only if authors are not trained in information typing or when a specialized
topic type is inappropriate. The OASIS DITA standard provides several specialized topic types, including
concept, task, and reference that are critical for technical content development.

For those pursuing specialization, specialize new topic types from appropriate ancestors to meet
authoring and output requirements.

3.3.6 Topic structure
All topics have the same basic structure, regardless of topic type: title, description or abstract, prolog,
body, related links, and nested topics.

All DITA topics must have an XML identifier (the @id attribute) and a title. The basic topic structure
consists of the following parts, some of which are optional:

Topic element
The topic element holds the required @id attribute and contains all other elements.

Title
The title contains the subject of the topic.

Alternate titles
Titles specifically for use in navigation or search. When not provided, the base title is used for all
contexts.

Short description or abstract
A short description of the topic or a longer abstract with an embedded short description. The short
description might be used both in topic content (as the first paragraph), in generated summaries that
include the topic, and in links to the topic. Alternatively, the abstract lets you create more complex
introductory content and uses an embedded short description element to define the part of the
abstract that is suitable for summaries and link previews.
While short descriptions are not required, they can make a dramatic difference to the usability of an
information set and should generally be provided for all topics.

Prolog
The prolog is the container for topic metadata, such as change history, audience, product, and so on.

Body
The topic body contains the topic content: paragraphs, lists, sections, and other content that the
information type permits.

Related links
Related links connect to other topics. When an author creates a link as part of a topic, the topic
becomes dependent on the other topic being available. To reduce dependencies between topics and
thereby increase the ability to reuse each topic, authors can use DITA maps to define and manage
links between topics, instead of embedding links directly in each related topic.

Nested topics
Topics can be defined inside other topics. However, nesting requires special care because it can
result in complex documents that are less usable and less reusable. Nesting might be appropriate for

DITA TC work product Page 22 of 430

information that is first converted from desktop publishing or word processing files or for topics that
are unusable independent from their parent or sibling topics.
The rules for topic nesting can be configured in a document-type shells. For example, the standard
DITA configuration for concept topics only allows nested concept topics. However, local configuration
of the concept topic type could allow other topic types to nest or disallow topic nesting entirely. In
addition, the @chunk attribute enables topics to be equally re-usable regardless of whether they are
separate or nested. The standard DITA configuration for ditabase document-type documents allows
unrestricted topic nesting and can be used for holding sets of otherwise unrelated topics that hold re-
usable content. It can also be used to convert DITA topics from non-DITA legacy source without first
determining how individual topics should be organized into separate XML documents.

3.3.7 Topic content
The content of all topics, regardless of topic type, is built on the same common structures.

Topic body
The topic body contains all content except for that contained in the title or the short description/
abstract. The topic body can be constrained to remove specific elements from the content model; it
also can be specialized to add additional specialized elements to the content model. The topic body
can be generic while the topic title and prolog are specialized.

Sections and examples
The body of a topic might contain divisions, such as sections and examples. They might contain
block-level elements like titles and paragraphs and phrase-level elements like API names or text. It is
recommend that sections have titles, whether they are entered directly into the <title> element or
rendered using a fixed or default title.
Either body divisions or untitled sections or examples can be used to delimit arbitrary structures
within a topic body. However, body divisions can nest, but sections and examples cannot contain
sections.

<sectiondiv>
The <sectiondiv> element enables the arbitrary grouping of content within a section for the
purpose of content reuse. The <sectiondiv> element does not include a title. For content that
requires a title, use <section> or <example>.

<bodydiv>
The <bodydiv> element enables the arbitrary grouping of content within the body of a topic for the
purpose of content reuse. The <bodydiv> element does not include a title. For content that requires
a title, use <section> or <example>.

<div>
The <div> element enables the arbitrary grouping of content within a topic. The <div> element
does not include a title. For content that requires a title, use <section> or <example> or, possibly,
<fig>.

Block-level elements
Paragraphs, lists, figures, and tables are types of "block" elements. As a class of content, they can
contain other blocks, phrases, or text, though the rules vary for each structure.

Phrases and keywords
Phrase level elements can contain markup to label parts of a paragraph or parts of a sentence as
having special semantic meaning or presentation characteristics, such as <uicontrol> or .
Phrases can usually contain other phrases and keywords as well as text. Keywords can only contain
text.

DITA TC work product Page 23 of 430

Images
Images can be inserted to display photographs, illustrations, screen captures, diagrams, and more.
At the phrase level, they can display trademark characters, icons, toolbar buttons, and so forth.

Multimedia
The <object> element enables authors to include multimedia, such as diagrams that can be rotated
and expanded. The <foreign> element enables authors to include media within topic content, for
example, SVG graphics, MathML equations, and so on.

3.4 DITA maps
This topic collection contains information about DITA maps and the purposes that they serve. It also
includes high-level information about DITA map elements, attributes, and metadata.

3.4.1 Definition of DITA maps
DITA maps are documents that organize topics and other resources into structured collections of
information. DITA maps specify hierarchy and the relationships among the topics; they also provide the
contexts in which keys are defined and resolved.

Maps draw on a rich set of existing best practices and standards for defining information models, such as
hierarchical task analysis. They also support the definition of non-hierarchical relationships, such as
matrices and groups, which provide a set of capabilities that has similarities to Resource Description
Framework (RDF) and ISO topic maps.

DITA maps use <topicref> elements to reference DITA topics, DITA maps, and non-DITA resources,
for example, HTML and TXT files. The <topicref> elements can be nested or grouped to create
relationships among the referenced topics, maps, and non-DITA files; the <topicref> elements can be
organized into hierarchies in order to represent a specific order of navigation or presentation.

DITA maps impose an architecture on a set of topics. Information architects can use DITA maps to specify
what DITA topics are needed to support a given set of user goals and requirements; the sequential order
of the topics; and the relationships that exist among those topics. Because DITA maps provide this
context for topics, the topics themselves can be relatively context-free; they can be used and reused in
multiple different contexts.

DITA maps often represent a single deliverable, for example, a specific Web site, a printed publication, or
the online help for a product. DITA maps also can be subcomponents for a single deliverable, for
example, a DITA map might contain the content for a chapter in a printed publication or the
troubleshooting information for an online help system. The DITA specification provides specialized map
types; book maps represent printed publications, subject scheme maps represent taxonomic or
ontological classifications, and learning maps represent formal units of instruction and assessment.
However, these map types are only a starter set of map types reflecting well-defined requirements.

DITA maps establish relationships through the nesting of <topicref> elements and the application of
the @collection-type attribute. Relationship tables also can be used to associate topics with each
other based on membership in the same row; for example, task topics can be associated with supporting
concept and reference topics by placing each group in cells of the same row. During processing, these
relationships can be rendered in different ways, although they typically result in lists of "Related topics" or
"For more information" links. Like many aspects of DITA, the details about how such linking relationships
are presented is determined by the DITA processor.

DITA maps also define keys and organize the contexts (key scopes) in which key references are
resolved.

DITA TC work product Page 24 of 430

3.4.2 Purpose of DITA maps
DITA maps enable the scalable reuse of content across multiple contexts. They can be used by
information architects, writers, and publishers to plan, develop, and deliver content.

DITA maps support the following uses:

Defining an information architecture
Maps can be used to define the topics that are required for a particular audience, even before the
topics themselves exist. DITA maps can aggregate multiple topics for a single deliverable.

Defining what topics to build for a particular output
Maps reference topics that are included in output processing. Information architects, authors, and
publishers can use maps to specify a set of topics that are processed at the same time, instead of
processing each topic individually. In this way, a DITA map can serve as a manifest or bill of
materials.

Defining navigation
Maps can define the online navigation or table of contents for a deliverable.

Defining related links
Maps define relationships among the topics they reference. These relationships are defined by the
nesting of elements in the DITA map, relationship tables, and the use of elements on which the
@collection-type attribute is set. On output, these relationships might be expressed as related
links or the hierarchy of a table of contents (TOC).

Defining an authoring context
The DITA map can define the authoring framework, providing a starting point for authoring new topics
and integrating existing ones.

Defining keys and key scopes
Maps can define keys, which provide an indirect addressing mechanism that enhances portability of
content. The keys are defined by <topicref> elements or specializations of <topicref>
elements, such as <keydef>. The <keydef> element is a convenience element; it is a specialized
type of a <topicref> element with the following attributes:

• A required @keys attribute
• A @processing-role attribute with a default value of "resource-only".

Maps also define the context or contexts for resolving key-based references, such as elements that
specify the @keyref or @conkeyref attribute. Elements within a map structure that specify a
@keyscope attribute create a new context for key reference resolution. Key references within such
elements are resolved against the set of effective key definitions for that scope.

Specialized maps can provide additional semantics beyond those of organization, linking, and indirection.
For example, the subjectScheme map specialization adds the semantics of taxonomy and ontology
definition.

3.4.3 DITA map attributes
DITA maps have unique attributes that are designed to control the way that relationships are interpreted
for different output purposes. In addition, DITA maps share many metadata and linking attributes with
DITA topics.

DITA maps often encode structures that are specific to a particular medium or output, for example, Web
pages or a PDF document. Attributes, such as @deliveryTarget and @toc, are designed to help
processors interpret the DITA map for each kind of output.

DITA TC work product Page 25 of 430

Many of the following attributes are not available in DITA topics; individual topics, once separated from
the high-level structures and dependencies associated with a particular kind of output, should be entirely
reusable regardless of the intended output format.

@collection-type
The @collection-type attribute specifies how the children of a <topicref> element relate to
their parent and to each other. This attribute, which is set on the parent element, typically is used by
processors to determine how to generate navigation links in the rendered topics. For example, a
@collection-type value of "sequence" indicates that children of the specifying <topicref>
element represent an ordered sequence of topics; processors might add numbers to the list of child
topics or generate next/previous links for online presentation. This attribute is available in topics on
the <linklist> and <linkpool> elements, where it has the same behavior. Where the
@collection-type attribute is available on elements that cannot directly contain elements, the
behavior of the attribute is undefined.

@linking

By default, the relationships between the topics that are referenced in a map are reciprocal:

• Child topics link to parent topics and vice versa.
• Next and previous topics in a sequence link to each other.
• Topics in a family link to their sibling topics.
• Topics referenced in the table cells of the same row in a relationship table link to each other.

A topic referenced within a table cell does not (by default) link to other topics referenced in
the same table cell.

This behavior can be modified by using the @linking attribute, which enables an author or
information architect to specify how a topic participates in a relationship. The following values are
valid:

linking="none"
Specifies that the topic does not exist in the map for the purposes of calculating links.

linking="sourceonly"
Specifies that the topic will link to its related topics but not vice versa.

linking="targetonly"
Specifies that the related topics will link to it but not vice versa.

linking="normal"
Default value. It specifies that linking will be reciprocal (the topic will link to related topics, and
they will link back to it).

Authors also can create links directly in a topic by using the <xref> or <link> elements, but in
most cases map-based linking is preferable, because links in topics create dependencies between
topics that can hinder reuse.

Note that while the relationships between the topics that are referenced in a map are reciprocal, the
relationships merely imply reciprocal links in generated output that includes links. The rendered
navigation links are a function of the presentation style that is determined by the processor.

@toc
Specifies whether topics are excluded from navigation output, such as a Web site map or an online
table of contents. By default, <topicref> hierarchies are included in navigation output; relationship
tables are excluded.

@search
Specifies whether the topic is included in search indexes.

DITA TC work product Page 26 of 430

@chunk
Specifies that the processor generates an interim set of DITA topics that are used as the input for the
final processing. This can produce the following output results:

• Multi-topic files are transformed into smaller files, for example, individual HTML files for each
DITA topic.

• Individual DITA topics are combined into a single file.

Specifying a value for the @chunk attribute on a <map> element establishes chunking behavior that
applies to the entire map, unless overridden by @chunk attributes that are set on more specific
elements in the DITA map. For a detailed description of the @chunk attribute and its usage, see 5.4
Chunking (57).

@copy-to

In most situations, specifies whether a duplicate version of the topic is created when it is transformed.
This duplicate version can be either literal or virtual. The value of the @copy-to attribute specifies
the uniform resource identifier (URI) by which the topic can be referenced by a @conref attribute,
<topicref> element, or <xref> element. The duplication is a convenience for output processors
that use the URI of the topic to generate the base address of the output. The @keys and @keyref
attributes provide an alternative mechanism; they enable references to topics in specific-use
contexts.

The @copy-to attribute also can be used to specify the name of a new chunk when topics are being
chunked; it also can be used to determine the name of the stub topic that is generated from a
<topicref> element that contains a title but does not specify a target. In both of those cases, no
duplicate version of the topic is generated.

For information on how the @copy-to attribute can be used with the @chunk attribute, see 5.4
Chunking (57).

@processing-role
Specifies whether the topic or map referenced is processed normally or treated as a resource that is
only included in order to resolve key or content references.

processing-role="normal"
The topic is a readable part of the information set. It is included in navigation and search results.
This is the default value for the <topicref> element.

processing-role="resource-only"
The topic is used only as a resource for processing. It is not included in navigation or search
results, nor is it rendered as a topic. This is the default value for the <keydef> element.

If the @processing-role attribute is not specified locally, the value cascades from the closest
element in the containment hierarchy.

@cascade

Specifies whether the default rules for the cascading of metadata attributes in a DITA map apply. The
following values are specified:

cascade="merge"
The metadata attributes cascade; the values of the metadata attributes are additive. This is the
processing default for the @cascade attribute and was the only defined behavior for DITA 1.2
and earlier.

cascade="nomerge"
The metadata attributes cascade; however, they are not additive for <topicref> elements that
specify a different value for a specific metadata attribute. If the cascading value for an attribute is

DITA TC work product Page 27 of 430

already merged based on multiple ancestor elements, that merged value continues to cascade
until a new value is encountered (that is, setting cascade="nomerge" does not undo merging
that took place on ancestors).

Processors also MAY define additional values for the @cascade attribute.

For more information, see 3.4.4.4 Example: How the cascade attribute functions (31).

@keys
Specifies one or more key names.

@keyscope
Defines a new scope for key definition and resolution, and gives the scope one or more names. For
more information about key scopes, see 6.4 Indirect key-based addressing (77).

Attributes in the list above are used exclusively or primarily in maps, but many important map attributes
are shared with elements in topics. DITA maps also use many of the following attributes that are used
with linking elements in DITA topics, such as <link> and <xref>:

• @format
• @href
• @keyref
• @scope
• @type

The following metadata and reuse attributes are used by both DITA maps and DITA topics:

• @rev, @status, @importance
• @dir, @xml:lang, @translate
• @id, @conref, @conrefend, @conkeyref, @conaction
• @props and any attribute specialized from @props (including those integrated by default in

OASIS shells: @audience, @deliveryTarget, @platform, @product, @otherprops)
• @search

When new attributes are specialized from @props or @base as a domain, they can be incorporated into
both map and topic structural types.

3.4.4 Examples of DITA maps
This section of the specification contains simple examples of DITA maps. The examples illustrate a few of
the ways that DITA maps are used.

3.4.4.1 Example: DITA map that references a subordinate map
This example illustrates how one map can reference a subordinate map using either <mapref> or the
basic <topicref> element.

The following code sample illustrates how a DITA map can use the specialized <mapref> element to
reference another DITA map:

<map>
 <title>DITA work at OASIS</title>
 <topicref href="oasis-dita-technical-committees.dita">
 <topicref href="dita_technical_committee.dita"/>
 <topicref href="dita_adoption_technical_committee.dita"/>
 </topicref>
 <mapref href="oasis-processes.ditamap"/>
 <!-- ... -->
</map>

DITA TC work product Page 28 of 430

The <mapref> element is a specialized <topicref> intended to make it easier to reference another
map; use of <mapref> is not required for this task. This map also could be tagged in the following way:

<map>
 <title>DITA work at OASIS</title>
 <topicref href="oasis-dita-technical-committees.dita">
 <topicref href="dita_technical_committee.dita"/>
 <topicref href="dita_adoption_technical_committee.dita"/>
 </topicref>
<topicref href="oasis-processes.ditamap" format="ditamap"/>
<!-- ... -->
</map>

With either of the above examples, during processing, the map is resolved in the following way:

<map>
 <title>DITA work at OASIS</title>
 <topicref href="oasis-dita-technical-committees.dita">
 <topicref href="dita_technical_committee.dita"/>
 <topicref href="dita_adoption_technical_committee.dita"/>
 </topicref>
 <!-- Contents of the oasis-processes.ditamap file -->
 <topicref href="oasis-processes.dita">
 <!-- ... -->
 </topicref>
 <!-- ... -->
</map>

3.4.4.2 Example: DITA map with a simple relationship table
This example illustrates how to interpret a basic three-column relationship table used to maintain links
between concept, task, and reference material.

The following example contains the markup for a simple relationship table:

<map>
<!-- ... -->
<reltable>
 <relheader>
 <relcolspec type="concept"/>
 <relcolspec type="task"/>
 <relcolspec type="reference"/>
 </relheader>
 <relrow>
 <relcell>
 <topicref href="A.dita"/>
 </relcell>
 <relcell>
 <topicref href="B.dita"/>
 </relcell>
 <relcell>
 <topicref href="C1.dita"/>
 <topicref href="C2.dita"/>
 </relcell>
 </relrow>
</reltable>
</map>

A DITA-aware tool might represent the relationship table graphically:

type="concept" type="task" type="reference"

A B C1
C2

DITA TC work product Page 29 of 430

When the output is generated, the topics contain the following linkage:

A
Links to B, C1, and C2

B
Links to A, C1, and C2

C1, C2
Links to A and B

3.4.4.3 Example: How the @collection-type and @linking attributes determine
links
In this scenario, a simple map establishes basic hierarchical and relationship table links. The
@collection-type and @linking attributes are then added to modify how links are generated.

The following example illustrates how linkage is defined in a DITA map:

Figure 3: Simple linking example

<topicref href="A.dita" collection-type="sequence">
 <topicref href="A1.dita"/>
 <topicref href="A2.dita"/>
</topicref>
<reltable>
 <relrow>
 <relcell><topicref href="A.dita"/></relcell>
 <relcell><topicref href="B.dita"/></relcell>
 </relrow>
</reltable>

When the output is generated, the topics contain the following linkage. Sequential (next/previous) links
between A1 and A2 are present because of the @collection-type attribute on the parent:

A
Links to A1, A2 as children
Links to B as related

A1
Links to A as a parent
Links to A2 as next in the sequence

A2
Links to A as a parent
Links to A1 as previous in the sequence

B
Links to A as related

The following example illustrates how setting the @linking attribute can change the default behavior:

Figure 4: Linking example with the @linking attribute

<topicref href="A.dita" collection-type="sequence">
 <topicref href="B.dita" linking="none"/>
 <topicref href="A1.dita"/>
 <topicref href="A2.dita"/>
</topicref>
<reltable>
 <relrow>
 <relcell><topicref href="A.dita"/></relcell>
 <relcell linking="sourceonly"><topicref href="B.dita"/></relcell>

DITA TC work product Page 30 of 430

 </relrow>
</reltable>

When the output is generated, the topics contain the following linkage:

A
Links to A1, A2 as children
Does not link to B as a child or related topic

A1
Links to A as a parent
Links to A2 as next in the sequence
Does not link to B as previous in the sequence

A2
Links to A as a parent
Links to A1 as previous in the sequence

B
Links to A as a related topic

3.4.4.4 Example: How the @cascade attribute functions
The following example illustrates how the @cascade attribute can be used to fine tune how the values for
the @platform attribute apply to topics referenced in a DITA map.

Here a DITA map contains a collection of topics that apply to Windows, Linux, and Macintosh OS; it also
contains a topic that is only applicable to users running the application on Linux.

<map product="PuffinTracker" platform="win linux mac" cascade="nomerge">
 <title>Puffin Tracking Software</title>
 <topicref href="introduction.dita"/>
 <topicref href="setting-up-the-product.dita"/>
 <topicref href="linux-instructions.dita" platform="linux"/>
</map>

The values of the @platform attribute set at the map level cascade throughout the map and apply to the
introduction.dita and setting-up-the-product.dita topics. However, since the value of the
@cascade attribute is set to "nomerge", the value of the @platform attribute for the linux-
instructions.dita topic does not merge with the values that cascade from above in the DITA map.
The effective value of the @platform attribute for linux-instructions.dita is "linux".

The same results are produced by the following mark-up:

<map product="PuffinTracker" platform="win linux mac">
 <title>Puffin Tracking Software</title>
 <topicref href="introduction.dita"/>
 <topicref href="setting-up-the-product.dita"/>
 <topicref href="linux-instructions.dita" platform="linux" cascade="nomerge"/>
</map>

DITA TC work product Page 31 of 430

3.5 DITA metadata
Metadata can be applied in both DITA topics and DITA maps. Metadata that is assigned in DITA topics
can be supplemented or overridden by metadata that is assigned in a DITA map; this design facilitates the
reuse of DITA topics in different DITA maps and use-specific contexts.

3.5.1 Metadata elements
The metadata elements, many of which map to Dublin core metadata, are available in topics and DITA
maps. This design enables authors and information architects to use identical metadata markup in both
topics and maps.

The <metadata> element is a wrapper element that contains many of the metadata elements. In topics,
the <metadata> element is available in the <prolog> element. In maps, the <metadata> element is
available in the <topicmeta> element.

Note Not all metadata elements are available in the <metadata> element. However, they are
available in either the topic <prolog> element or the map <topicmeta> element.

In DITA maps, the metadata elements also are available directly in the <topicmeta> element.
Collections of metadata can be shared between DITA maps and topics by using the conref or keyref
mechanism.

In general, specifying metadata in a <topicmeta> element is equivalent to specifying it in the <prolog>
element of a referenced topic. The value of specifying the metadata at the map level is that the topic then
can be reused in other maps where different metadata might apply. Many items in the <topicmeta>
element also cascade to nested <topicref> elements within the map.

Related information
Dublin Core Metadata Initiative (DCMI)

3.5.2 Metadata attributes
The metadata attributes specify properties of the content that can be used to determine how the content
is processed. Specialized metadata attributes can be defined to enable specific business-processing
needs, such as semantic processing and data mining.

Metadata attributes typically are used for the following purposes:

• Filtering content based on the attribute values, for example, to suppress or publish profiled
content

• Flagging content based on the attribute values, for example, to highlight specific content on output
• Performing custom processing, for example, to extract business-critical data and store it in a

database

Typically @audience, @platform, @product, @otherprops, @props, @deliveryTarget, and
specializations of the @props attributes are used for filtering; the same attributes plus the @rev attribute
are used for flagging. The @status and @importance attributes, as well as custom attributes
specialized from @base, are used for application-specific behavior, such as identifying metadata to aid in
search and retrieval.

3.5.2.1 Filtering and flagging attributes
Conditional-processing attributes are available on most elements.

@product
The product that is the subject of the discussion.

DITA TC work product Page 32 of 430

http://dublincore.org/

@platform
The platform on which the product is deployed.

@audience
The intended audience of the content.

@deliveryTarget
The intended delivery target of the content, for example, "html", "pdf", or "epub".

The @deliveryTarget attribute is specialized from the @props attribute. It is defined in the
deliveryTargetAttDomain, which is integrated into all OASIS-provided document-type shells. If this
domain is not integrated into a given document-type shell, the @deliveryTarget attribute will not
be available.

@rev
The revision or draft number of the current document. (This is used only for flagging.)

@otherprops
Other properties that do not require semantic identification.

@props
A generic conditional processing attribute that can be specialized to create new semantic conditional-
processing attributes.

Related concepts
Conditional processing (profiling) (117)

Conditional processing, also known as profiling, is the filtering or flagging of information based on
processing-time criteria.

Related reference
DITAVAL elements (356)

A conditional processing profile (DITAVAL file) is used to identify which values are to be used for
conditional processing during a particular output, build, or some other purpose. The profile should have
an extension of .ditaval.

3.5.2.2 Other processing attributes
Other attributes are still considered metadata on an element, but they are not designed for filtering or
flagging.

@importance
The degree of priority of the content. This attribute takes a single value from an enumeration.

@status
The current state of the content. This attribute takes a single value from an enumeration.

@base
A generic attribute that has no specific purpose, but is intended to act as the basis for specialized
attributes that have a simple value syntax like the conditional processing attributes (one or more
alphanumeric values separated by whitespace or parenthesized groups of values).

@outputclass
Provides a label on one or more element instances, typically to specify a role or other semantic
distinction. As the @outputclass attribute does not provide a formal type declaration or the
structural consistency of specialization, use it sparingly, usually only as a temporary measure while a

DITA TC work product Page 33 of 430

specialization is developed. For example, <uicontrol> elements that define button labels could be
distinguished by adding an @outputclass attribute:

<uicontrol outputclass="button">Cancel</uicontrol>

The value of the @outputclass attribute can be used to trigger XSLT or CSS rules, while providing
a mapping to be used for future migration to a more specialized set of user interface elements.

3.5.2.3 Translation and localization attributes
DITA elements have several attributes that support localization and translation.

@xml:lang
Identifies the language of the content, using the standard language and country codes. For instance,
French Canadian is identified by the value fr-CA. The @xml:lang attribute asserts that all content
and attribute values within the element bearing the attribute are in the specified language, except for
contained elements that declare a different language.

@translate
Determines whether the element requires translation. A default value can often be inferred from the
element type. For example, <apiname> might be untranslated by default, whereas <p> might be
translated by default.

@dir
Determines the direction in which the content is rendered.

3.5.2.4 Architectural attributes
The architectural attributes specify the version of DITA that the content supports; they also identify the
DITA domains, structural types, and specializations that are in use by the content.

The architectural attributes should not be marked up in the source DITA map and topics. Instead, the
values of the architectural attributes are handled by the processor when the content is processed,
preferably through defaults set in the XML grammar. This practice ensures that the DITA content
instances do not specify invalid values for the architectural attributes.

The architectural attributes are as follows:

@class
This attribute identifies the specialization hierarchy for the element type.

@specializations
This attribute identifies the specialized attributes that are used in a map or topic.

@DITAArchVersion
This attribute identifies the version of the DITA architecture that is used by the XML grammar. The
attribute is declared in a DITA namespace to allow namespace-sensitive tools to detect DITA markup.

To make the document instance usable in the absence of an XML grammar, a normalization process can
set the architectural attributes in the document instance.

3.5.3 Metadata in maps and topics
Information about topics can be specified as metadata on the map, as attributes on the <topicref>
element, or as metadata attributes or elements in the topic itself. By default, metadata in the map
supplements or overrides metadata that is specified at the topic level.

DITA map: Metadata elements

At the map level, properties can be set by using metadata elements. They can be set for an
individual topic, for a set of topics, or globally for the entire document. The metadata elements are

DITA TC work product Page 34 of 430

authored within a <topicmeta> element, which associates metadata with the parent element and its
children. Because the topics in a branch of the hierarchy typically have some common subjects or
properties, this is a convenient mechanism to define properties for a set of topics. For example, the
<topicmeta> element in a <relcolspec> can associate metadata with all the topics that are
referenced in the <reltable> column.

A map can override or supplement everything about a topic except its primary title and body content.
All the metadata elements that are available in a topic also are available in a map. In addition, a map
can use @copy-to provide alternate titles and a short description. The alternate titles can override
their equivalent titles in the topic.

DITA map: Attributes of the <topicref> element
At the map level, properties can be set as attributes of the <topicref> element.

DITA topic
Within a topic, authors can either set metadata attributes on the root element or add metadata
elements in the <prolog> element.

When the same metadata element or attribute is specified in both a map and a topic, by default the value
in the map takes precedence; the assumption here is that the author of the map has more knowledge of
the reusing context than the author of the topic.

3.5.4 Context hooks and window metadata for user assistance
Context hook information specified in the <resourceid> element in the DITA map or in a DITA topic
enables processors to generate the header, map, alias and other types of support files that are required
to integrate the user assistance with the application. Some user assistance topics might need to be
displayed in a specific window or viewport, and this windowing metadata can be defined in the DITA map
within the <ux-window> element.

Context hook and windowing information is ignored if the processor does not support this metadata.

User interfaces for software application often are linked to user assistance (such as help systems and tool
tips) through context hooks. Context hooks are identifiers that associate a part of the user interface with
the location of a help topic. Context hooks can be direct links to URIs, but more often they are indirect
links (numeric context identifiers and context strings) that can processed into external resource files.
These external resource and mapping files are then used directly by context-sensitive help systems and
other downstream applications.

Context hooks can define either one-to-one or one-to-many relationships between user interface controls
and target help content.

The metadata that is available in <resourceid> and <ux-window> provides flexibility for content
developers:

• You can overload maps and topics with all the metadata needed to support multiple target help
systems. This supports single-sourcing of help content and help metadata.

• You can choose whether to add <resourceid> metadata to <topicref> elements, <prolog>
elements, or both. Context-dependent metadata might be best be kept with maps, while
persistent, context-independent metadata might best stay with topics in <prolog> elements

Context hook information is defined within DITA topics and DITA maps through attributes of the
<resourceid> element.

In some help systems, a topic might need to be displayed in a specifically sized or featured window. For
example, a help topic might need to be displayed immediately adjacent to the user interface control that it
supports in a window of a specific size that always remains on top, regardless of the focus within the

DITA TC work product Page 35 of 430

operating system. Windowing metadata can be defined in the DITA map within the <ux-window>
element.

The <ux-window> element provides the @top, @left, @height, @width, @on-top, @features,
@relative, and @full-screen attributes.

Related reference
resourceid (306)

A resource ID provides an identifier for applications that must use their own identifier scheme, such as
context-sensitive help systems and databases.

ux-window

DITA TC work product Page 36 of 430

4 Determining effective attribute values
Topic to be moved to more appropriate location: how to determine effective attribute values.

Need to reconcile the two different existing lists, in 5.3.1.2 Processing cascading attributes in a map
(51) and 5.2.3 Binding controlled values to an attribute (40).

From "processing cascading attributes"
For attributes within a map, the following processing order MUST occur:

1. The @conref and @keyref attributes are evaluated.
2. The explicit values specified in the document instance are evaluated. For example, a

<topicref> element with the @toc attribute set to "no" will use that value.
3. The default or fixed attribute values are evaluated. For example, the @toc attribute on the

<reltable> element has a default value of "no".
4. The default values that are supplied by a controlled values file are evaluated.
5. The attributes cascade.
6. The processing-supplied default values are applied.
7. After the attributes are resolved within the map, they cascade to referenced maps.

Note The processing-supplied default values do not cascade to other maps. For example,
most processors will supply a default value of toc="yes" when no @toc attribute is
specified. However, a processor-supplied default of toc="yes" MUST not override a
value of toc="no" that is set on a referenced map. If the toc="yes" value is
explicitly specified, is given as a default through a DTD, XSD, RNG, or controlled
values file, or cascades from a containing element in the map, it MUST override a
toc="no" setting on the referenced map. See 5.3.3 Map-to-map cascading
behaviors (54) for more details.

8. Repeat steps 1 (37) to 4 (37) for each referenced map.
9. The attributes cascade within each referenced map.
10.The processing-supplied default values are applied within each referenced map.
11.Repeat the process for maps referenced within the referenced maps.

From "binding controlled values"
To determine the effective value for a DITA attribute, processors check for the following in the order
outlined:

1. An explicit value in the element instance
2. A default value in the XML grammar
3. Cascaded value within the document
4. Cascaded value from a higher level document to the document
5. A default controlled value, as specified in the <defaultSubject> element
6. A value set by processing rules

DITA TC work product Page 37 of 430

5 DITA map processing
Introduction to this chapter to be written later, when content is more stable.

5.1 DITA maps and their usage
New topic cluster to hold normative architectural content about DITA maps. Currently holds notes about
material that we intend to cover in the new topic cluster.

Topical areas
• How <topicref> elements establish hierarchies including parent/child relationships and next/

previous relationships.
• Map-group elements

– Role as convenience elements—in most (all?) cases, the same function can be
accomplished with base elements. For example, <topichead> is effectively no different
than <topicref> with nothing but a title.

– Special role of <topicgroup>, which does not contribute to hierarchy
• How relationship tables establish linking relationships between topic references
• Meaning of titles (and navigation titles) on maps, submaps, mapgroup elements, and relationship

tables
• Link relationships created by attributes and nesting in DITA maps

Current topics with applicable content
Topic Applicable content

3.4.5.1 Example: DITA map that
references a subordinate map

Resolution of a submap.

3.4.5.2 Example: DITA map with a
simple relationship table

How links are generated from a relationship table; how processors might
represent a relationship table.

3.4.5.3 Example: How the
@collection-type and
@linking determine links

Effect of @collection-type and @linking attributes on generated links.

6.1 Navigation Container topic; incorporate into new "DITA maps and their usage" cluster.

6.1.1 Table of contents All content is applicable and needs to be incorporated into the new "DITA
maps and their usage" cluster – Closest thing we currently have to a topic
about how maps create hierarchies.

9.3.1.1 <map> Relationships between topics created by map hierarchy or @collection-
type attribute; role of titles, especially in submaps.

9.3.1.2 <topicref> Role of <topicref> nesting in creating containment hierarchies and
parent-child relationships.

9.3.1.6 <reltable> Relationship table titles – Processing expectations for relationship tables
(not rendered, used to generate links) – “Within a map tree, the effective
relationship table is the union of all relationship tables in the map.” – How a
DITA-aware tool might represent the <reltable> element graphically.

DITA TC work product Page 38 of 430

Topic Applicable content

9.3.1.10 <relcolspec> How labels for related links from a relationship table are generated.

9.3.2.3 <mapref> “The hierarchy of the referenced map is merged into the container map at
the position of the reference, and the relationship tables of the child map are
added to the parent map.”

9.3.2.4 <topicgroup> How processors handle navigation titles within <topicgroup> elements.

9.8.13.10 The @format attribute How processors determine the value of the @format attribute when it is not
explicitly set.

Possible new topics
• DITA maps
• Relationship tables
• Creating navigational hierarchies
• Defining links between resources

5.2 Subject scheme maps and their usage
Subject scheme maps can be used to define controlled values and subject definitions. The controlled
values can be bound to attributes, as well as element and attribute pairs. The subject definitions can
contain metadata and provide links to more detailed information; they can be used to classify content and
provide semantics that can be used in taxonomies and ontologies.

A DITA map can reference a subject scheme map by using a <mapref> element. Processors also MAY
provide parameters by which subject scheme maps are referenced.

5.2.1 Subject scheme maps
Subject scheme maps use key definitions to define collections of controlled values and subject definitions.

Controlled values are keywords that can be used as values for attributes. For example, the @audience
attribute can take a value that identifies the users that are associated with a particular product. Typical
values for a medical-equipment product line might include "therapist", "oncologist", "physicist", and
"radiologist". In a subject scheme map, an information architect can define a list of these values for the
@audience attribute. Controlled values can be used to classify content for filtering and flagging at build
time.

Subject definitions are classifications and sub-classifications that compose a tree. Subject definitions
provide semantics that can be used in conjunction with taxonomies and ontologies. In conjunction with
the classification domain, subject definitions can be used for retrieval and traversal of the content at run
time when used with information viewing applications that provide such functionality.

Key references to controlled values are resolved to a key definition using the same precedence rules as
apply to any other key. However, once a key is resolved to a controlled value, that key reference does not
typically result in links or generated text.

5.2.2 Defining controlled values for attributes
Subject scheme maps can define controlled values for DITA attributes without having to define
specializations or constraints. The list of available values can be modified quickly to adapt to new
situations.

Each controlled value is defined using a <subjectdef> element, which is a specialization of the
<topicref> element. The <subjectdef> element is used to define both a subject category and a list

DITA TC work product Page 39 of 430

of controlled values. The parent <subjectdef> element defines the category, and the children
<subjectdef> elements define the controlled values.

The subject definitions can include additional information within a <topicmeta> element to clarify the
meaning of a value:

• A <titlealt> element with a @title-role of navigation (e.g. the <navtitle> element)
can provide a more readable value name.

• The <shortdesc> element can provide a definition.

In addition, the <subjectdef> element can reference a more detailed definition of the subject, for
example, another DITA topic or an external resource.

The following behavior is expected of processors in regard to subject scheme maps:

• Authoring tools SHOULD use these lists of controlled values to provide lists from which authors
can select values when they specify attribute values.

• Authoring tools MAY give an organization a list of readable labels, a hierarchy of values to simplify
selection, and a shared definition of the value.

• Authoring tools MAY support accessing and displaying the content of the subject definition
resource in order to provide users with a detailed explanation of the subject.

• Authoring tools MAY produce a help file, PDF, or other readable catalog to help authors better
understand the controlled values.

Example: Controlled values that provide additional information about the subject
The following code fragment illustrates how a subject definition can provide a richer level of information
about a controlled value:

<subjectdef keys="terminology" href="https://www.oasis-open.org/policies-guidelines/keyword-
guidelines">
 <subjectdef keys="rfc2119" href="rfc-2119.dita">
 <topicmeta>
 <navtitle>RFC-2119 terminology</navtitle>
 <shortdesc>The normative terminology that the DITA TC uses for the DITA specification</
shortdesc>
 </topicmeta>
 </subjectdef>
 <subjectdef keys="iso" href="iso-terminology.dita">
 <topicmeta>
 <navtitle>ISO keywords</navtitle>
 <shortdesc>The normative terminology used by some other OASIS technical committees</
shortdesc>
 </topicmeta>
 </subjectdef>
</subjectdef>

The content of the <navtitle> and <shortdesc> elements provide additional information that a
processor might display to users as they select attribute values or classify content. The resources
referenced by the @href attributes provide even more detailed information; a processor might render
expandable links as part of a user interface that implements a progressive disclosure strategy.

5.2.3 Binding controlled values to an attribute
The controlled values defined in a subject scheme map can be bound to an attribute or an element and
attribute pair. This affects the expected behavior for processors and authoring tools.

The <enumerationdef> element binds the set of controlled values to an attribute. Valid attribute values
are those that are defined in the set of controlled values; invalid attribute values are those that are not
defined in the set of controlled values. An enumeration can specify an empty <subjectdef> element. In

DITA TC work product Page 40 of 430

that case, no value is valid for the attribute. An enumeration also can specify an optional default value by
using the <defaultSubject> element.

If an enumeration is bound, processors SHOULD validate attribute values against the controlled values
that are defined in the subject scheme map. For authoring tools, this validation prevents users from
entering misspelled or undefined values. Recovery from validation errors is implementation specific.

The default attribute values that are specified in a subject scheme map apply only if a value is not
otherwise specified in the DITA source or as a default value by the XML grammar.

To determine the effective value for a DITA attribute, processors check for the following in the order
outlined:

1. An explicit value in the element instance
2. A default value in the XML grammar
3. Cascaded value within the document
4. Cascaded value from a higher level document to the document
5. A default controlled value, as specified in the <defaultSubject> element
6. A value set by processing rules

Example: Binding a list of controlled values to the @audience attribute
The following example illustrates the use of the <subjectdef> element to define controlled values for
types of users. It also binds the controlled values to the @audience attribute:

<subjectScheme>
 <!-- Define types of users -->
 <subjectdef keys="users">
 <subjectdef keys="therapist"/>
 <subjectdef keys="oncologist"/>
 <subjectdef keys="physicist"/>
 <subjectdef keys="radiologist"/>
 </subjectdef>

 <!-- Bind the "users" subject to the @audience attribute.
 This restricts the @audience attribute to the following
 values: therapist, oncologist, physicist, radiologist -->
 <enumerationdef>
 <attributedef name="audience"/>
 <subjectdef keyref="users"/>
 </enumerationdef>
</subjectScheme>

When the above subject scheme map is used, the only valid values for the @audience attribute are
"therapist", "oncologist", "physicist", and "radiologist". Note that "users" is not a valid value for the
@audience attribute; it merely identifies the parent or container subject.

Example: Binding an attribute to an empty set
The following code fragment declares that there are no valid values for the @outputclass attribute.

<subjectScheme>
 <enumerationdef>
 <attributedef name="outputclass"/>
 <subjectdef/>
 </enumerationdef>
</subjectScheme>

DITA TC work product Page 41 of 430

5.2.4 Processing controlled attribute values
An enumeration of controlled values can be defined with hierarchical levels by nesting subject definitions.
This affects how processors perform filtering and flagging.

The following behavior is expected of processors in regard to subject scheme maps:

• Processors SHOULD be aware of the hierarchies of attribute values that are defined in subject
scheme maps for purposes of filtering, flagging, or other metadata-based categorization.

• Processors SHOULD validate that the values of attributes that are bound to controlled values
contain only valid values from those sets. (The list of controlled values is not validated by basic
XML parsers.) If the controlled values are part of a named key scope, the scope name is ignored
for the purpose of validating the controlled values.

• Processors SHOULD check that all values listed for an attribute in a DITAVAL file are bound to the
attribute by the subject scheme before filtering or flagging. If a processor encounters values that
are not included in the subject scheme, it SHOULD issue a warning.

Processors SHOULD apply the following algorithm when they apply filtering and flagging rules to attribute
values that are defined as a hierarchy of controlled values and bound to an enumeration:

1. If an attribute specifies a value in the taxonomy, and a DITAVAL or other categorization tool is
configured with that value, the rule matches.

2. Otherwise, if the parent value in the taxonomy has a rule, that matches.
3. Otherwise, continue up the chain in the taxonomy until a matching rule is found.

Example: A hierarchy of controlled values and conditional processing
The following code sample shows a set of controlled values that contains a hierarchy.

<subjectScheme>
 <subjectdef keys="users">
 <subjectdef keys="therapist">
 <subjectdef keys="novice-therapist"/>
 <subjectdef keys="expert-therapist"/>
 </subjectdef>
 <subjectdef keys="oncologist"/>
 <subjectdef keys="physicist"/>
 <subjectdef keys="radiologist"/>
 </subjectdef>
 <enumerationdef>
 <attributedef name="audience"/>
 <subjectdef keyref="users"/>
 </enumerationdef>
</subjectScheme>

Processors that are aware of the hierarchy that is defined in the subject scheme map will handle filtering
and flagging in the following ways:

• If "therapist" is excluded, both "novice-therapist" and "expert-therapist" are by default excluded
(unless they are explicitly set to be included).

• If "therapist" is flagged and "novice-therapist" is not explicitly flagged, processors automatically
flag "novice-therapist" since it is a type of therapist.

5.2.5 Extending subject schemes
The <schemeref> element provides a mechanism for extending a subject scheme. This makes it
possible to add new relationships to existing subjects and extend enumerations of controlled values.

The <schemeref> element provides a reference to another subject scheme map. Typically, the
referenced subject-scheme map defines a base set of controlled values that are extended by the current
subject-scheme map. The values in the referenced subject-scheme map are merged with the values in

DITA TC work product Page 42 of 430

the current subject-scheme map; the result is equivalent to specifying all of the values in a single subject
scheme map.

5.2.6 Scaling a list of controlled values to define a taxonomy
Optional classification elements make it possible to create a taxonomy from a list of controlled values.

A taxonomy differs from a controlled values list primarily in the degree of precision with which the
metadata values are defined. A controlled values list sometimes is regarded as the simplest form of
taxonomy. Regardless of whether the goal is a simple list of controlled values or a taxonomy:

• The same core elements are used: <subjectScheme> and <subjectdef>.
• A category and its subjects can have a binding that enumerates the values of an attribute.

Beyond the core elements and the attribute binding elements, sophisticated taxonomies can take
advantage of some optional elements. These optional elements make it possible to specify more precise
relationships among subjects. The <hasNarrower>, <hasPart>, <hasKind>, <hasInstance>, and
<hasRelated> elements specify the kind of relationship in a hierarchy between a container subject and
its contained subjects.

While users who have access to sophisticated processing tools benefit from defining taxonomies with this
level of precision, other users can safely ignore this advanced markup and define taxonomies with
hierarchies of <subjectdef> elements that are not precise about the kind of relationship between the
subjects.

Example: A taxonomy defined using subject scheme elements
The following example defines San Francisco as both an instance of a city and a geographic part of
California.

<subjectScheme>
 <hasInstance>
 <subjectdef keys="city">
 <subjectdef keys="la"/>
 <subjectdef keys="nyc"/>
 <subjectdef keys="san-francisco"/>
 </subjectdef>
 <subjectdef keys="state">
 <subjectdef keys="ca"/>
 <subjectdef keys="ny"/>
 </subjectdef>
 </hasInstance>
 <hasPart>
 <subjectdef keys="place">
 <subjectdef keyref="ca">
 <subjectdef keyref="la"/>
 <subjectdef keyref="sf"/>
 </subjectdef>
 <subjectdef keyref="ny">
 <subjectdef keyref="nyc"/>
 </subjectdef>
 </subjectdef>
 </hasPart>
</subjectScheme>

Sophisticated tools can use this subject scheme map to associate content about San Francisco with
related content about other California places or with related content about other cities (depending on the
interests of the current user).

The subject scheme map also can define relationships between subjects that are not hierarchical. For
instance, cities sometimes have "sister city" relationships. An information architect could add a
<subjectRelTable> element to define these associative relationships, with a row for each sister-city
pair and the two cities in different columns in the row.

DITA TC work product Page 43 of 430

5.2.7 Classification maps
A classification map is a DITA map in which the classification domain has been made available.

The classification domain provides elements that enable map authors to indicate information about the
subject matter of DITA topics. The subjects are defined in subjectScheme maps, and the map authors
reference the subjects using the @keyref attribute.

5.2.8 Examples of subject scheme maps
This section contains examples and scenarios that illustrate the use of subject scheme maps.

5.2.8.1 Example: How hierarchies defined in a subject scheme map affect filtering
This scenario demonstrates how a processor evaluates attribute values when it performs conditional
processing for an attribute that is bound to a set of controlled values.

A company defines a subject category for "Operating system", with a key set to "os". There are sub-
categories for Linux, Windows, and z/OS, as well as specific Linux variants: Red Hat Linux and SuSE
Linux. The company then binds the values that are enumerated in the "Operating system" category to the
@platform attribute.

<subjectScheme>
 <subjectdef keys="os">
 <topicmeta>
 <navtitle>Operating systems</navtitle>
 </topicmeta>
 <subjectdef keys="linux">
 <topicmeta>
 <navtitle>Linux</navtitle>
 </topicmeta>
 <subjectdef keys="redhat">
 <topicmeta>
 <navtitle>RedHat Linux</navtitle>
 </topicmeta>
 </subjectdef>
 <subjectdef keys="suse">
 <topicmeta>
 <navtitle>SuSE Linux</navtitle>
 </topicmeta>
 </subjectdef>
 </subjectdef>
 <subjectdef keys="windows">
 <topicmeta>
 <navtitle>Windows</navtitle>
 </topicmeta>
 </subjectdef>
 <subjectdef keys="zos">
 <topicmeta>
 <navtitle>z/OS</navtitle>
 </topicmeta>
 </subjectdef>
 </subjectdef>
 <enumerationdef>
 <attributedef name="platform"/>
 <subjectdef keyref="os"/>
 </enumerationdef>
</subjectScheme>

The enumeration limits valid values for the @platform attribute to the following: "linux", "redhat", "suse",
"windows", and "zos". If any other values are encountered, processors validating against the scheme will
issue a warning.

The following table illustrates how filtering and flagging operate when the above map is processed by a
processor. The first two columns provide the values specified in the DITAVAL file; the third and fourth
columns indicate the results of the filtering or flagging operation.

DITA TC work product Page 44 of 430

att="platform"
val="linux"

att="platform"
val="redhat"

How
platform="redhat" is
evaluated

How platform="linux"
is evaluated

action="exclude" action="exclude" Excluded. Excluded.

action="include" or
action="flag"

Excluded. This is an error
condition, because if all
"linux" content is excluded,
"redhat" also is excluded.
Applications can recover by
generating an error
message.

Excluded.

Unspecified Excluded, because "redhat"
is a kind of "linux", and
"linux" is excluded.

Excluded.

action="include" action="exclude" Excluded, because all
"redhat" content is
excluded.

Included.

action="include" Included. Included.

action="flag" Included and flagged with
the "redhat" flag.

Included.

Unspecified Included, because all
"linux" content is included.

Included.

action="flag" action="exclude" Excluded, because
all"redhat" content is
excluded.

Included and flagged with
the "linux" flag.

action="include" Included and flagged with
the "linux" flag, because
"linux" is flagged and
"redhat" is a type of "linux".

Included and flagged with
the "linux" flag.

action="flag" Included and flagged with
the "redhat" flag, because a
flag is available that is
specifically for "redhat".

Included and flagged with
the "linux" flag.

Unspecified Included and flagged with
the "linux" flag, because
"linux" is flagged and
"redhat" is a type of "linux"

Included and flagged with
the "linux" flag.

DITA TC work product Page 45 of 430

att="platform"
val="linux"

att="platform"
val="redhat"

How
platform="redhat" is
evaluated

How platform="linux"
is evaluated

Unspecified action="exclude" Excluded, because all
"redhat" content is
excluded

If the default for
@platform values is
"include", this is included.
If the default for
@platform values is
"exclude", this is excluded.

action="include" Included. Included, because all
"redhat" content is
included, and general
Linux content also applies
to RedHat

action="flag" Included and flagged with
the "redhat" flag.

Included, because all
"redhat" content is
included, and general
Linux content also applies
to RedHat

Unspecified If the default for
@platform values is
"include", this is included. If
the default for @platform
values is "exclude", this is
excluded.

If the default for
@platform values is
"include", this is included.
If the default for
@platform values is
"exclude", this is excluded.

5.2.8.2 Example: Extending a subject scheme
You can extend a subject scheme by creating another subject scheme map and referencing the original
map using a <schemeref> element. This enables information architects to add new relationships to
existing subjects and extend enumerations of controlled values.

A company uses a common subject scheme map (baseOS.ditamap) to set the values for the
@platform attribute.

<subjectScheme>
 <subjectdef keys="os">
 <topicmeta>
 <navtitle>Operating systems</navtitle>
 </topicmeta>
 <subjectdef keys="linux">
 <topicmeta>
 <navtitle>Linux</navtitle>
 </topicmeta>
 <subjectdef keys="redhat">
 <topicmeta>
 <navtitle>RedHat Linux</navtitle>
 </topicmeta>
 </subjectdef>
 <subjectdef keys="suse">
 <topicmeta>
 <navtitle>SuSE Linux</navtitle>
 </topicmeta>
 </subjectdef>
 </subjectdef>
 <subjectdef keys="windows">
 <topicmeta>
 <navtitle>Windows</navtitle>
 </topicmeta>
 </subjectdef>

DITA TC work product Page 46 of 430

 <subjectdef keys="zos">
 <topicmeta>
 <navtitle>z/OS</navtitle>
 </topicmeta>
 </subjectdef>
 </subjectdef>
 <enumerationdef>
 <attributedef name="platform"/>
 <subjectdef keyref="os"/>
 </enumerationdef>
</subjectScheme>

The following subject scheme map extends the enumeration defined in baseOS.ditamap. It adds
"macos" as a child of the existing "os" subject; it also adds special versions of Windows as children of the
existing "windows" subject:

<subjectScheme>
 <schemeref href="baseOS.ditamap"/>
 <subjectdef keyref="os">
 <subjectdef keys="macos"/>
 <subjectdef keyref="windows">
 <subjectdef keys="winxp"/>
 <subjectdef keys="winvis"/>
 </subjectdef>
 </subjectdef>
</subjectScheme>

Note that the references to the subjects that are defined in baseOS.ditamap use the @keyref attribute.
This avoids duplicate definitions of the keys and ensures that the new subjects are added to the base
enumeration.

The effective result is the same as the following subject scheme map:

<subjectScheme>
 <subjectdef keys="os">
 <subjectdef keys="linux">
 <subjectdef keys="redhat"/>
 <subjectdef keys="suse"/>
 </subjectdef>
 <subjectdef keys="macos">
 <subjectdef keys="windows">
 <subjectdef keys="winxp"/>
 <subjectdef keys="winvis"/>
 </subjectdef>
 <subjectdef keys="zos"/>
 </subjectdef>
 <enumerationdef>
 <attributedef name="platform"/>
 <subjectdef keyref="os"/>
 </enumerationdef>
</subjectScheme>

5.2.8.3 Example: Extending a subject scheme upwards
You can broaden the scope of a subject category by creating a new subject scheme map that defines the
original subject category as a child of a broader category.

The following subject scheme map creates a "Software" category that includes operating systems as well
as applications. The subject scheme map that defines the operation system subjects is pulled in by
reference, while the application subjects are defined directly in the subject scheme map below.

<subjectScheme>
 <schemeref href="baseOS.ditamap"/>
 <subjectdef keys="software">
 <subjectdef keyref="os"/>
 <subjectdef keys="applications">
 <subjectdef keys="apache-web-server""/>
 <subjectdef keys="my-sql"/>

DITA TC work product Page 47 of 430

 </subjectdef>
 </subjectdef>
</subjectScheme>

If the subject scheme that is defined in baseOS.ditamap binds the "os" subject to the @platform
attribute, the app subjects that are defined in the extension subject scheme do not become part of that
enumeration, since they are not part of the "os" subject

To enable the upward extension of an enumeration, information architects can define the controlled
values in one subject scheme map and bind the controlled values to the attribute in another subject
scheme map. This approach will let information architects bind an attribute to a different set of controlled
values with less rework.

An adopter would use the extension subject scheme as the subject scheme that governs the controlled
values. Any subject scheme maps that are referenced by the extension subject scheme are effectively
part of the extension subject scheme.

5.2.8.4 Example: Defining values for @deliveryTarget
You can use a subject scheme map to define the values for the @deliveryTarget attribute. This
filtering attribute, which is new in DITA 1.3, is intended for use with a set of hierarchical, controlled values.

In this scenario, one department produces electronic publications (EPUB, EPUB2, EPUB3, Kindle, etc.)
while another department produces traditional, print-focused output. Each department needs to exclude a
certain category of content when they build documentation deliverables.

The following subject scheme map provides a set of values for the @deliveryTarget attribute that
accommodates the needs of both departments.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE subjectScheme PUBLIC "-//OASIS//DTD DITA Subject Scheme Map//EN"
"subjectScheme.dtd">
<subjectScheme>
 <subjectHead>
 <subjectHeadMeta>
 <navtitle>Example of values for the @deliveryTarget attribute</navtitle>
 <shortdesc>Provides a set of values for use with the
 @deliveryTarget conditional-processing attribute. This set of values is
 illustrative only; you can use any values with the @deliveryTarget
 attribute.</shortdesc>
 </subjectHeadMeta>
 </subjectHead>
 <subjectdef keys="deliveryTargetValues">
 <topicmeta><navtitle>Values for @deliveryTarget attributes</navtitle></topicmeta>
 <!-- A tree of related values -->
 <subjectdef keys="print">
 <topicmeta><navtitle>Print-primary deliverables</navtitle></topicmeta>
 <subjectdef keys="pdf">
 <topicmeta><navtitle>PDF</navtitle></topicmeta>
 </subjectdef>
 <subjectdef keys="css-print">
 <topicmeta><navtitle>CSS for print</navtitle></topicmeta>
 </subjectdef>
 <subjectdef keys="xsl-fo">
 <topicmeta><navtitle>XSL-FO</navtitle></topicmeta>
 </subjectdef>
 <subjectdef keys="afp">
 <topicmeta><navtitle>Advanced Function Printing</navtitle></topicmeta>
 </subjectdef>
 <subjectdef keys="ms-word">
 <topicmeta><navtitle>Microsoft Word</navtitle></topicmeta>
 </subjectdef>
 <subjectdef keys="indesign">
 <topicmeta><navtitle>Adobe InDesign</navtitle></topicmeta>
 </subjectdef>
 <subjectdef keys="open-office">
 <topicmeta><navtitle>Open Office</navtitle></topicmeta>
 </subjectdef>
 </subjectdef>

DITA TC work product Page 48 of 430

 <subjectdef keys="online">
 <topicmeta><navtitle>Online deliverables</navtitle></topicmeta>
 <subjectdef keys="html-based">
 <topicmeta><navtitle>HTML-based deliverables</navtitle></topicmeta>
 <subjectdef keys="html">
 <topicmeta><navtitle>HTML</navtitle></topicmeta>
 <subjectdef keys="html5">
 <topicmeta><navtitle>HTML5</navtitle></topicmeta>
 </subjectdef>
 </subjectdef>
 <subjectdef keys="help">
 <topicmeta><navtitle>Contextual help</navtitle></topicmeta>
 <subjectdef keys="htmlhelp">
 <topicmeta><navtitle>HTML Help</navtitle></topicmeta>
 </subjectdef>
 <subjectdef keys="webhelp">
 <topicmeta><navtitle>Web help</navtitle></topicmeta>
 </subjectdef>
 <subjectdef keys="javahelp">
 <topicmeta><navtitle>Java Help</navtitle></topicmeta>
 </subjectdef>
 <subjectdef keys="eclipseinfocenter">
 <topicmeta><navtitle>Eclipse InfoCenter</navtitle></topicmeta>
 </subjectdef>
 </subjectdef>
 <subjectdef keys="epub">
 <topicmeta><navtitle>EPUB</navtitle></topicmeta>
 <subjectdef keys="epub2">
 <topicmeta><navtitle>EPUB2</navtitle></topicmeta>
 </subjectdef>
 <subjectdef keys="epub3">
 <topicmeta><navtitle>EPUB3</navtitle></topicmeta>
 </subjectdef>
 <subjectdef keys="ibooks">
 <topicmeta><navtitle>iBooks</navtitle></topicmeta>
 </subjectdef>
 <subjectdef keys="nook">
 <topicmeta><navtitle>nook</navtitle></topicmeta>
 </subjectdef>
 </subjectdef>
 <subjectdef keys="kindle">
 <topicmeta><navtitle>Amazon Kindle</navtitle></topicmeta>
 <subjectdef keys="kindle8">
 <topicmeta><navtitle>Kindle Version 8</navtitle></topicmeta>
 </subjectdef>
 </subjectdef>
 </subjectdef>
 </subjectdef>
 </subjectdef>
 <enumerationdef>
 <attributedef name="deliveryTarget"/>
 <subjectdef keyref="deliveryTargetValues"/>
 </enumerationdef>
</subjectScheme>

5.3 Map cascading

5.3.1 Cascading of metadata attributes in a DITA map
Certain map-level attributes cascade throughout a map, which facilitates attribute and metadata
management. When attributes cascade, they apply to the elements that are children of the element where
the attributes were specified. Cascading applies to a containment hierarchy, as opposed to a element-
type hierarchy.

The following attributes cascade when set on the <map> element or when set within a map:

• @rev
• @props and any attribute specialized from @props (including those integrated by default in

OASIS shells: @audience, @deliveryTarget, @platform, @product, @otherprops)

DITA TC work product Page 49 of 430

• @linking, @toc, @search
• @format, @scope, @type
• @xml:lang, @dir, @translate
• @processing-role
• @cascade

Cascading is additive for attributes that accept multiple values, except when the @cascade attribute is set
to avoid adding values to attributes. For attributes that take a single value, the closest value defined on a
containing element takes effect. In a relationship table, row-level metadata is considered more specific
than column-level metadata, as shown in the following containment hierarchy:

• <map> (most general)

– <topicref> container (more specific)

• <topicref> (most specific)
– <reltable> (more specific)

• <relcolspec> (more specific)

• <relrow> (more specific)

• <topicref> (most specific)

Related reference
topicmeta (270)

Topic metadata is metadata that applies to a topic based on its context in a map.

5.3.1.1 Merging of cascading attributes
The @cascade attribute can be used to modify the additive nature of attribute cascading (though it does
not turn off cascading altogether). The attribute has two predefined values: "merge" and "nomerge".

cascade="merge"
The metadata attributes cascade; the values of the metadata attributes are additive. This is the
processing default for the @cascade attribute and was the only defined behavior for DITA 1.2 and
earlier.

cascade="nomerge"
The metadata attributes cascade; however, they are not additive for <topicref> elements that
specify a different value for a specific metadata attribute. If the cascading value for an attribute is
already merged based on multiple ancestor elements, that merged value continues to cascade until a
new value is encountered (that is, setting cascade="nomerge" does not undo merging that took
place on ancestors).

Implementers MAY define their own custom, implementation-specific tokens for the @merge attribute. To
avoid name conflicts between implementations or with future additions to the standard, implementation-
specific tokens SHOULD consist of a prefix that gives the name or an abbreviation for the implementation
followed by a colon followed by the token or method name.

For example, a processor might define the token "appToken:audience" in order to specify cascading and
merging behaviors for only the @audience attribute.

Tokens can apply to a set of attributes, specified as part of the @cascade value. In that case, the syntax
for specifying those values consists of the implementation-specific token, followed by a parenthetical
group that uses the same syntax as groups within the @audience, @platform, @product, and

DITA TC work product Page 50 of 430

@otherprops attributes. For example, a token that applies to only @platform and @product could be
specified as cascade="appname:token(platform product)".

The predefined values for the @cascade attribute MUST precede any implementation-specific tokens, for
example, cascade="merge appToken:audience".

Example: The @cascade attribute in use
Consider the following code examples:

Figure 5: Map A

<map audience="a b" cascade="merge">
 <topicref href="topic.dita" audience="c"/>
</map>

Figure 6: Map B

<map audience="a b" cascade="nomerge">
 <topicref href="topic.dita" audience="c"/>
</map>

For map A, the values for the attribute are merged, and the effective value of the @audience attribute for
topic.dita is "a b c". For map B, the values for the attribute are not additive, and the effective value of
the @audience attribute for topic.dita is "c".

In the following example, merging is active at the map level but turned off below:

Figure 7: Map C

<map platform="a" product="x" cascade="merge">
 <topicref href="one.dita" platform="b" product="y">
 <topicref href="two.dita" cascade="nomerge" product="z"/>
 </topicref>
</map>

In map C, the reference to one.dita has effective merged values of "a b" for @platform and "x y" for
@product.

The reference to two.dita turns off merging, so the explicit @product value of "z" is used (it does not
merge with ancestor values). The @platform attribute is not present, so the already-merged value of "a
b" continues to cascade and is the effective value of @platform on this reference.

5.3.1.2 Processing cascading attributes in a map
Certain rules apply to processors when they process cascading attributes in a map.

When determining the value of an attribute, processors MUST evaluate each attribute on each individual
element in a specific order; this order is specified in the following list. Applications MUST continue
through the list until a value is established or until the end of the list is reached (at which point no value is
established for the attribute). In essence, the list provides instructions on how processors can construct a
map where all attribute values are set and all cascading is complete.

For attributes within a map, the following processing order MUST occur:

1. The @conref and @keyref attributes are evaluated.
2. The explicit values specified in the document instance are evaluated. For example, a

<topicref> element with the @toc attribute set to "no" will use that value.
3. The default or fixed attribute values are evaluated. For example, the @toc attribute on the

<reltable> element has a default value of "no".

DITA TC work product Page 51 of 430

4. The default values that are supplied by a controlled values file are evaluated.
5. The attributes cascade.
6. The processing-supplied default values are applied.
7. After the attributes are resolved within the map, they cascade to referenced maps.

Note The processing-supplied default values do not cascade to other maps. For example,
most processors will supply a default value of toc="yes" when no @toc attribute is
specified. However, a processor-supplied default of toc="yes" MUST not override a
value of toc="no" that is set on a referenced map. If the toc="yes" value is
explicitly specified, is given as a default through a DTD, XSD, RNG, or controlled
values file, or cascades from a containing element in the map, it MUST override a
toc="no" setting on the referenced map. See 5.3.3 Map-to-map cascading
behaviors (54) for more details.

8. Repeat steps 1 (51) to 4 (52) for each referenced map.
9. The attributes cascade within each referenced map.
10.The processing-supplied default values are applied within each referenced map.
11.Repeat the process for maps referenced within the referenced maps.

For example, in the case of <topicref toc="yes">, applications must stop at item 2 (51) in the list; a
value is specified for @toc in the document instance, so @toc values from containing elements will not
cascade to that specific <topicref> element. The toc="yes" setting on that <topicref> element
will cascade to contained elements, provided those elements reach item 5 (52) below when evaluating
the @toc attribute.

5.3.2 Reconciling topic and map metadata elements
The <topicmeta> element in maps contains numerous elements that can be used to declare metadata.
These metadata elements have an effect on the parent <topicref> element, any child <topicref>
elements, and – if a direct child of the <map> element – on the map as a whole.

For each element that can be contained in the <topicmeta> element, the following table addresses the
following questions:

How does it apply to the topic?
This column describes how the metadata specified within the <topicmeta> element interacts with
the metadata specified in the topic. In most cases, the properties are additive. For example, when the
<audience> element is set to "user" at the map level, the value "user" is added during processing to
any audience metadata that is specified within the topic.

Does it cascade to other topics in the map?
This column indicates whether the specified metadata value cascades to nested <topicref>
elements. For example, when an <audience> element is set to "user" at the map level, all child
<topicref> elements implicitly have an <audience> element set to "user" also. Elements that can
apply only to the specific <topicref> element, such as <titlealt> or <keytext>, do not
cascade.

What is the purpose when specified on the <map> element?
The map element allows metadata to be specified for the entire map. This column describes what
effect, if any, an element has when specified at this level.

DITA TC work product Page 52 of 430

Table 1: <topicmeta> elements and their properties

Element
How does it apply to the
topic?

Does it cascade to child
<topicref> elements?

What is the purpose
when set on the <map>
element?

<audience> Add to the topic Yes Specify an audience for the
entire map

<author> Add to the topic Yes Specify an author for the
entire map

<category> Add to the topic Yes Specify a category for the
entire map

<copyright> Add to the topic Yes Specify a copyright for the
entire map

<critdates> Add to the topic Yes Specify critical dates for
the entire map

<data> Add to the topic No, unless specialized for
a purpose that cascades

No stated purpose, until
the element is specialized

<foreign> Add to the topic No, unless specialized for
a purpose that cascades

No stated purpose, until
the element is specified

<keytext> Not added to the topic No No stated purpose

<keywords> Add to the topic No No stated purpose

<metadata> Add to the topic Yes Specify metadata for the
entire map

<othermeta> Add to the topic No Define metadata for the
entire map

<permissions> Add to the topic Yes Specify permissions for the
entire map

<prodinfo> Add to the topic Yes Specify product info for the
entire map

<publisher> Add to the topic Yes Specify a publisher for the
map

<resourceid> Add to the topic No Specify a resource ID for
the map

<shortdesc> Only added to the topic
when the <topicref>
element specifies a
@copy-to attribute.
Otherwise, it applies only
to links created based on
this occurrence in the map.

No Provide a description of the
map

<source> Add to the topic No Specify a source for the
map

<titlealt> Add to the topic before its
<titlealt> elements

No Specify an alternative title
for the map

DITA TC work product Page 53 of 430

Element
How does it apply to the
topic?

Does it cascade to child
<topicref> elements?

What is the purpose
when set on the <map>
element?

<unknown> Add to the topic No, unless specialized for
a purpose that cascades

No stated purpose, until
the element is specified

<ux-window> Not added to the topic No Definitions are global, so
setting at map level is
equivalent to setting
anywhere else.

Example of metadata elements cascading in a DITA map
The following code sample illustrates how an information architect can apply certain metadata to all the
DITA topics in a map:

<map title="DITA maps" xml:lang="en-us">
 <topicmeta>
 <author>Kristen James Eberlein</author>
 <copyright>
 <copyryear year="2020"/>
 <copyrholder>OASIS</copyrholder>
 </copyright>
 </topicmeta>
 <topicref href="dita_maps.dita">
 <topicref href="definition_ditamaps.dita"/>
 <topicref href="purpose_ditamaps.dita"/>
 <!-- ... -->
 </topicref>
</map>

The author and copyright information cascades to each of the DITA topics referenced in the DITA map.
When the DITA map is processed to HTML5, for example, each HTML5 file contains the metadata
information.

Related reference
topicmeta (270)

Topic metadata is metadata that applies to a topic based on its context in a map.

5.3.3 Map-to-map cascading behaviors
When a DITA map (or branch of a DITA map) is referenced by another DITA map, by default, certain rules
apply. These rules pertain to the cascading behaviors of attributes, metadata elements, and roles
assigned to content (for example, the role of "Chapter" assigned by a <chapter> element). Attributes
and elements that cascade within a map generally follow the same rules when cascading from one map
to another map, but there are some exceptions and additional rules that apply.

5.3.3.1 Cascading of attributes from map to map
Certain elements cascade from map to map, although some of the attributes that cascade within a map
do not cascade from map to map.

The following attributes cascade from map to map:

• @rev
• @props and any attribute specialized from @props (including those integrated by default in

OASIS shells: @audience, @deliveryTarget, @platform, @product, @otherprops)
• @linking, @toc, @print, @search

DITA TC work product Page 54 of 430

• @type
• @translate
• @processing-role
• @cascade

Note that the above list excludes the following attributes:

@format
The @format attribute must be set to "ditamap" in order to reference a map or a branch of a map, so
it cannot cascade through to the referenced map.

@xml:lang and @dir
Cascading behavior for @xml:lang is defined in 7.6.1 The xml:lang attribute (136). The @dir
attribute work the same way.

@scope
The value of the @scope attribute describes the map itself, rather than the content. When the
@scope attribute is set to "external", it indicates that the referenced map itself is external and
unavailable, so the value cannot cascade into that referenced map.

The @class attribute is used to determine the processing roles that cascade from map to map. See
5.3.3.3 Cascading of roles from map to map (56) for more information.

As with values that cascade within a map, the cascading is additive if the attribute permits multiple values
(such as @audience). When the attribute only permits one value, the cascading value overrides the top-
level element.

Example of attributes cascading between maps
For example, assume the following references in test.ditamap:

<map>
 <topicref href="a.ditamap" format="ditamap" toc="no"/>
 <mapref href="b.ditamap" audience="developer"/>
 <mapref href="c.ditamap#branch2" platform="myPlatform"/>
</map>

• The map a.ditamap is treated as if toc="no" is specified on the root <map> element. This
means that the topics that are referenced by a.ditamap do not appear in the navigation
generated by test.ditamap (except for branches within the map that explicitly set toc="yes").

• The map b.ditamap is treated as if audience="developer" is set on the root <map>
element. If the @audience attribute is already set on the root <map> element within b.ditamap,
the value "developer" is added to any existing values.

• The element with id="branch2" within the map c.ditamap is treated as if
platform="myPlatform" is specified on that element. If the @platform attribute is already
specified on the element with id="branch", the value" myPlatform" is added to existing values.

5.3.3.2 Cascading of metadata elements from map to map
Elements that are contained within <topicmeta> or <metadata> elements follow the same rules for
cascading from map to map as the rules that apply within a single DITA map.

For a complete list of which elements cascade within a map, see the column "Does it cascade to child
<topicref> elements?" in the topic 5.3.2 Reconciling topic and map metadata elements (52).

Note It is possible that a specialization might define metadata that is intended to replace rather than
add to metadata in the referenced map, but DITA (by default) does not currently support this
behavior.

DITA TC work product Page 55 of 430

For example, consider the following code examples:

Figure 8: test-2.ditamap

<map>
 <topicref href="a.ditamap" format="ditamap">
 <topicmeta>
 <shortdesc>This map contains information about Acme defects.</shortdesc>
 </topicmeta>
 </topicref>
 <topicref href="b.ditamap" format="ditamap">
 <topicmeta>
 <audience type="programmer"/>
 </topicmeta>
 </topicref>
 <mapref href="c.ditamap" format="ditamap"/>
 <mapref href="d.ditamap" format="ditamap"/>
 </map>

Figure 9: b.ditamap

<map>
 <topicmeta>
 <audience type="writer"/>
 </topicmeta>
 <topicref href="b-1.dita"/>
 <topicref href="b-2.dita"/>
</map>

When test-2.ditamap is processed, the following behavior occurs:

• Because the <shortdesc> element does not cascade, it does not apply to the DITA topics that
are referenced in a.ditamap.

• Because the <audience> element cascades, the <audience> element in the reference to
b.ditamap combines with the <audience> element that is specified at the top level of
b.ditamap. The result is that the b-1.dita topic and b-2.dita topic are processed as though
hey each contained the following child <topicmeta> element:

<topicmeta>
 <audience type="programmer"/>
 <audience type="writer"/>
</topicmeta>

5.3.3.3 Cascading of roles from map to map
When specialized <topicref> elements (such as <chapter> or <mapref>) reference a map, they
typically imply a semantic role for the referenced content.

The semantic role reflects the @class hierarchy of the referencing <topicref> element; it is equivalent
to having the @class attribute from the referencing <topicref> cascade to the top-level <topicref>
elements in the referenced map. Although this cascade behavior is not universal, there are general
guidelines for when @class values should be replaced.

When a <topicref> element or a specialization of a <topicref> element references a DITA resource,
it defines a role for that resource. In some cases this role is straightforward, such as when a <topicref>
element references a DITA topic (giving it the already known role of "topic"), or when a <mapref>
element references a DITA map (giving it the role of "DITA map").

Unless otherwise instructed, a specialized <topicref> element that references a map supplies a role
for the referenced content. This means that, in effect, the @class attribute of the referencing element
cascades to top-level topicref elements in the referenced map. In situations where this should not happen
—such as all elements from the mapgroup domain—the non-default behavior should be clearly specified.

DITA TC work product Page 56 of 430

For example, when a <chapter> element from the bookmap specialization references a map, it supplies
a role of "chapter" for each top-level <topicref> element in the referenced map. When the <chapter>
element references a branch in another map, it supplies a role of "chapter" for that branch. The @class
attribute for <chapter> ("- map/topicref bookmap/chapter ") cascades to the top-level <topicref>
element in the nested map, although it does not cascade any further.

Because the <mapref> element is a convenience element, the top-level <topicref> elements in the
map referenced by a <mapref> element MUST NOT be processed as if they are <mapref> elements.
The @class attribute from the <mapref> element ("+ map/topicref mapgroup-d/mapref ") does not
cascade to the referenced map.

In some cases, preserving the role of the referencing element might result in out-of-context content. For
example, a <chapter> element that references a bookmap might pull in <part> elements that contain
nested <chapter> elements. Treating the <part> element as a <chapter> will result in a chapter that
nests other chapters, which is not valid in bookmap and might not be understandable by processors. The
result is implementation specific; processors MAY choose to treat this as an error, issue a warning, or
simply assign new roles to the problematic elements.

Example of cascading roles between maps
Consider the scenario of a <chapter> element that references a DITA map. This scenario could take
several forms:

Referenced map contains a single top-level <topicref> element
The entire branch functions as if it were included in the bookmap; the top-level <topicref> element
is processed as if it were the <chapter> element.

Referenced map contains multiple top-level <topicref> elements
Each top-level <topicref> element is processed as if it were a <chapter> element (the
referencing element).

Referenced map contains a single <appendix> element
The <appendix> element is processed as it were a <chapter> element.

Referenced map contains a single <part> element, with nested <chapter> elements.
The <part> element is processed as it were a chapter element. Nested <chapter> elements might
not be understandable by processors; applications can recover as described above.

<chapter> element references a single <topicref> element rather than a map
The referenced <topicref> element is processed as if it were a <chapter> element.

5.4 Chunking
Content often needs to be delivered in a different granularity than it is authored. The @chunk attribute
enables map authors to specify that multiple source documents are combined into a single document for
delivery, or that a single source document is split into multiple documents for delivery.

5.4.1 About the @chunk attribute
The @chunk attribute is designed to handle cases where the best organization for authoring DITA topics
is not equivalent to the best organization for publishing those topics.

The @chunk attribute is composed of a single token without any white space. DITA defines two tokens for
the @chunk attribute: combine and split. Other tokens can be defined by applications, but support for
those tokens will vary.

chunk="combine"
The "combine" token in @chunk is intended for cases where a publishing process normally results in
a single output artifact for each source XML document. When some or all of those source XML

DITA TC work product Page 57 of 430

documents are better presented as a single output artifact, setting chunk="combine" instructs a
processor to combine the referenced source documents for rendering purposes.

chunk="split"
The "split" token in @chunk is intended for cases where a publishing process normally results in a
single output artifact for each single source XML document, regardless of how many DITA topics
exist within each source document. When a source XML document containing many topics is better
rendered as multiple output artifacts, setting chunk="split" instructs a processor to split each
topic from the referenced source document into its own document for rendering purposes.

The @chunk attribute describes how a processor can split or combine source DITA documents into
alternate organizational schemes for rendering purposes. This means that the @chunk attribute is only
relevant when the organization of source DITA documents has an effect on organization of published
documents.

The @chunk attribute does not cascade.

The following rules apply to all values of the @chunk attribute:

• When the source document organization has no effect on published output, such as when
producing a single PDF or EPUB, processors MAY ignore the @chunk attribute.

• When the @chunk attribute results in more or fewer documents based on the combine or split
tokens, the hierarchy of topics within the resulting map and topic organization SHOULD match the
hierarchy in the original topics and maps.

• When the @chunk attribute results in more or fewer documents, processors MAY create their own
naming schemes for those reorganized documents.

• @chunk attribute values apply to DITA topic documents referenced from a map. Processors MAY
apply equivalent processing to non-DITA documents.

5.4.2 Processing chunk="combine"
Setting chunk="combine" instructs a processor to combine the reference source documents for
rendering purposes. A single result document is generated.

Comment by Kristen J Eberlein on 25 May 2019

Don't these need to be normative statements?

The following rules apply:

• When specified on the root element of a map, all source DITA documents referenced by the map
are treated as one DITA document.

• When specified on a branch of a map, all source DITA documents referenced within that branch
are treated as one DITA document.

Note This is true regardless of whether the element that specifies @chunk refers to a topic
or specifies a heading. In cases such as <topicgroup> where a grouping element
specifies chunk="combine", the equivalent DITA document would be a single DITA
document with a root element grouping peer topics.

• When specified on a reference to a map, all source DITA documents within the scope of the
referenced map are treated as one DITA document.

• Once chunk="combine" is specified on a map, branch, or map reference, all source DITA
documents grouped by that reference are treated as a single resource. Any additional @chunk
attributes on elements within the hierarchy are ignored.

DITA TC work product Page 58 of 430

5.4.3 Processing chunk="split"
Setting chunk="split" instructs a processor to split each topic from the referenced source document
into its own document for rendering purposes. Multiple result documents are generated.

Comment by Kristen J Eberlein on 25 May 2019

Don't these need to be normative statements?

The following rules apply:

• When specified on a <topicref> element that refers to a source DITA document, it indicates
that all topics within the referenced document should be rendered as individual documents.

• When specified on an element such as <topicgroup> that does not refer to a topic or result in a
published topic, the attribute has no meaning.

• When specified on the root element of a map, chunk="split" sets a default operation for all
source DITA documents in the map (outside the context of relationship tables). The default split
value is used except where a combine value is encountered, in which case combine takes over
for that entire branch.

5.4.4 Using the @chunk attribute for other purposes
Applications can define additional tokens for use in the @chunk attribute. These tokens are necessarily
implementation dependent and might not be supported by other applications.

5.4.5 Examples of the @chunk attribute
These examples illustrate the processing expectations for various scenarios that involve the @chunk
attribute. The processing examples use either before and after sample markup or expanded syntax that
shows the equivalent markup without the @chunk attribute.

Note Examples use sample files with modified file names to help illustrate equivalent before and
after resolution of @chunk attributes. However, there is no requirement for implementations
processing @chunk to generate files, as long as the rendered result is split or combined as
described. If generating files, actual file names are implementation dependent.

5.4.5.1 Example: Using @chunk to combine all documents into one
Where a publishing system typically would render each topic document as an independent result
document, the @chunk attribute can be used to render all content as a single document.

Consider the following source documents, with root map input.ditamap:

Figure 10: Input map without chunking

input.ditamap:
<map>
 <title>Lesson plan</title>
 <topicref href="background.dita">
 <!-- more background topics -->
 </topicref>
 <topicref href="goals.dita">
 <!-- more goal topics -->
 </topicref>
 <!-- more topics -->
</map>

background.dita:
<topic id="background">
 <title>Prerequisite concepts</title>

DITA TC work product Page 59 of 430

 <shortdesc>This information is necessary before starting</shortdesc>
 <body><!-- ...background content... --></body>
</topic>

goals.dita:
<topic id="goals">
 <title>Lesson gals</title>
 <shortdesc>After you complete the lesson, ...</shortdesc>
 <body><!-- ...goal content... --></body>
</topic>

For many systems or output formats, each document in the map is rendered as an independent
document. For example, rendering this map as HTML5 might result in background.html and
goals.html (along with other HTML5 files). In such cases, if output requirements demand only a single
result document, adding chunk="combine" to the root map element instructs a processor to render one
document that combines all topics.

Figure 11: Root map with chunking specified

input.ditamap:
<map chunk="combine">
 <title>Lesson plan</title>
 <topicref href="background.dita">
 <!-- more background topics -->
 </topicref>
 <topicref href="goals.dita">
 <!-- more goal topics -->
 </topicref>
 <!-- more topics -->
</map>

The result of evaluating this @chunk attribute is equivalent to the following map and topic document;
content from all topics within the map is combined into a single result, with a topic order and topic nesting
structure that match the original map hierarchy.

Figure 12: Equivalent source content

input.ditamap:
<map>
 <title>Lesson plan</title>
 <topicref href="input.dita"/>
</map>

input.dita:
<dita>
 <!-- original content of background.dita -->
 <topic id="background">
 <title>Prerequisite concepts</title>
 <shortdesc>This information is necessary before starting</shortdesc>
 <body><!-- ...background content... --></body>
 <!-- more background topics -->
 </topic>
 <!-- original content of goals.dita -->
 <topic id="goals">
 <title>Lesson gals</title>
 <shortdesc>After you complete the lesson, ...</shortdesc>
 <body><!-- ...goal content... --></body>
 <!-- more goal topics -->
 </topic>
 <!-- more topics -->
</dita>

DITA TC work product Page 60 of 430

5.4.5.2 Example: Using @chunk to render a single document from one branch
Where a publishing system typically would render each topic document as an independent result
document, the @chunk attribute can be used to render individual branches of a map as single documents.

Consider the following source documents, with root map input.ditamap:

Figure 13: Input map without chunking

input.ditamap:
<map>
 <title>Lesson plan</title>
 <topicref href="goals.dita">
 <!-- more goal topics -->
 </topicref>
 <topicref href="firstLesson.dita">
 <!-- more tasks in the first lesson -->
 </topicref>
 <topicref href="nextLesson.dita">
 <!-- more tasks in the next lesson -->
 </topicref>
 <!-- More branches -->
</map>

firstLesson.dita:
<task id="firstLesson">
 <title>Starting to work with scissors</title>
 <shortdesc>This lesson will teach ...</shortdesc>
 <taskbody><!-- ... --></taskbody>
</task>

nextLesson.dita:
<task id="nextLesson">
 <title>Advanced cutting</title>
 <shortdesc>This lesson will introduce complicated shapes...</shortdesc>
 <taskbody><!-- ... --></taskbody>
</task>

For many systems or output formats, each document in the map is rendered as an independent
document. For example, rendering this map as HTML5 might result in goals.html,
firstLesson.html, and nextLesson.html, while child documents within each branch would each
result in their own HTML files.

When output requirements demand that portions of the map be combined into a single document, adding
chunk="combine" to a branch of the map instructs a processor to render one document that combines
all topics in that branch. This is particularly useful when the topics need to be rendered independently for
other contexts, or when the way topics are contributed makes creating a single source document
impossible.

In the following sample, the original map is updated with @chunk attributes to indicate that each lesson
branch is rendered as a single result document; topics in the first branch with goals.dita are not
affected as a result of the @chunk attribute.

Figure 14: Map with chunking specified for one branch

input.ditamap:
<map>
 <title>Lesson plan</title>
 <topicref href="goals.dita">
 <!-- more goal topics -->
 </topicref>
 <topicref href="firstLesson.dita" chunk="combine">
 <!-- more tasks in the first lesson -->
 </topicref>
 <topicref href="nextLesson.dita" chunk="combine">
 <!-- more tasks in the next lesson -->

DITA TC work product Page 61 of 430

 </topicref>
 <!-- More branches -->
</map>

The result of evaluating this @chunk attribute is equivalent to the following map and topic documents.
Content from each branch where @chunk attribute is set is combined into a single result document, with
an order and topic nesting structure that matches the original map hierarchy. Content from outside of
those branches remains unchanged.

Figure 15: Equivalent source content

input.ditamap:
<map>
 <title>Lesson plan</title>
 <topicref href="goals.dita">
 <!-- more goal topics -->
 </topicref>
 <topicref href="firstLesson.dita"/>
 <topicref href="nextLesson.dita"/>
 <!-- More branches -->
</map>

firstLesson.dita:
<task id="firstLesson">
 <title>Starting to work with scissors</title>
 <shortdesc>This lesson will teach ...</shortdesc>
 <taskbody><!-- ... --></taskbody>
 <!-- more tasks in the first lesson -->
</task>

nextLesson.dita:
<task id="nextLesson">
 <title>Advanced cutting</title>
 <shortdesc>This lesson will introduce complicated shapes...</shortdesc>
 <taskbody><!-- ... --></taskbody>
 <!-- more tasks in the next lesson -->
</task>

5.4.5.3 Example: Using @chunk to combine a group of topics
The @chunk attribute can be used on grouping elements to combine multiple source documents into one
result document.

Assume the following map input.ditamap, where @chunk is used on both <topicgroup> and
<topichead>.

Figure 16: Input map

<map>
 <title>Groups are combined</title>
 <topicgroup chunk="combine">
 <topicref href="ingroup1.dita"/>
 <topicref href="ingroup2.dita"/>
 </topicgroup>
 <topichead chunk="combine">
 <topicmeta>
 <navtitle>Heading for a branch</navtitle>
 </topicmeta>
 <topicref href="inhead1.dita"/>
 <topicref href="inhead2.dita"/>
 </topichead>
</map>

The result of evaluating the @chunk attribute on <topicgroup> is equivalent to a single DITA document
with the content of both ingroup1.dita and ingroup2.dita.

DITA TC work product Page 62 of 430

The @chunk attribute on <topichead> also results in a single DITA document. In many applications, a
<topichead> is equivalent to a single title-only topic; in that case, the chunked result is equivalent to a
root topic with the title "Heading for a branch", containing as child topics the content of both
inhead1.dita and inhead2.dita. If <topichead> is ignorable in the current processing context, the
chunked result would be equivalent to processing <topicgroup> (a single DITA document with the
content of both inhead1.dita and inhead2.dita).

Figure 17: Equivalent source content

<map>
 <title>Groups are combined</title>
 <topicref href="chunkgroup-1.dita"/>
 <topicref href="chunkgroup-2.dita"/>
</map>

chunkgroup-1.dita
<dita>
 <!-- content of ingroup1.dita -->
 <!-- content of ingroup2.dita -->
</dita>

chunkgroup-2.dita
<dita>
 <topic id="head">
 <title>Heading for a branch</title>
 <!-- content of inhead1.dita -->
 <!-- content of inhead2.dita -->
 </topic>
</dita>

5.4.5.4 Example: Using @chunk to combine nested documents
Special attention is necessary when combining a nested map hierarchy that includes documents with
their own nested topics.

Consider the following source map input.ditamap:

Figure 18: Input map without chunking

input.ditamap:
<map chunk="combine">
 <title>Generation example</title>
 <topicref href="ancestor.dita">
 <topicref href="middle.dita">
 <topicref href="child.dita"/>
 </topicref>
 </topicref>
</map>

In this case, the @chunk attribute instructs a processor to treat the three topics as a single combined
DITA document, while preserving the original map hierarchy. Now consider the following three topic
documents, each of which includes nested or peer topics:

Figure 19: Source documents with nested structures

ancestor.dita:
<dita>
 <topic id="ancestor-first">
 <title>First major topic in ancestor composite doc</title>
 <!-- ...topic content... -->
 </topic>
 <!-- more topics in ancestor composite doc -->
 <topic id="ancestor-last">
 <title>Last major topic in ancestor composite doc</title>
 <!-- ...topic content... -->

DITA TC work product Page 63 of 430

 <topic id="ancestor-last-child">
 <title>Child of last major topic in ancestor composite doc</title>
 <!-- ...topic content... -->
 </topic>
 </topic>
</dita>

middle.dita:
<topic id="middle-root">
 <title>Root topic in middle doc</title>
 <body><!-- ... --></body>
 <topic id="middle-child">
 <title>Child of root topic in middle doc</title>
 <!-- body content, maybe more children of middle topic's root -->
 </topic>
</topic>

child.dita:
<topic id="child">
 <title>Small child topic</title>
 <!-- small child topic content -->
</topic>

When chunk="combine" is evaluated, the three source documents are combined into one. Both the
ancestor and middle documents have child topics that need to be taken into account.

• ancestor.dita has a root <dita> element, so content from each nested topic reference is
located after any nested topics within the final child of the <dita> element.

• middle.dita does not have <dita> but does have a nested topic, so content from any nested
topic references is located after that nested topic.

Figure 20: Equivalent source content

input.ditamap:
<map>
 <title>Generation example</title>
 <topicref href="input.dita"/>
</map>

input.dita:
<dita>
 <topic id="ancestor-first">
 <title>First major topic in ancestor composite doc</title>
 <!-- ...topic content... -->
 </topic>
 <!-- more topics in ancestor composite doc -->
 <topic id="ancestor-last">
 <title>Last major topic in ancestor composite doc</title>
 <!-- ...topic content... -->
 <topic id="ancestor-last-child">
 <title>Child of last major topic in ancestor composite doc</title>
 <!-- ...topic content... -->
 </topic>
 <!-- content of middle.dita combined here -->
 <topic id="middle-root">
 <title>Root topic in middle doc</title>
 <body><!-- ... --></body>
 <topic id="middle-child">
 <title>Child of root topic in middle doc</title>
 <!-- body content, maybe more children of middle topic's root -->
 </topic>
 <!-- content of child.dita combined here -->
 <topic id="child">
 <title>Small child topic</title>
 <!-- small child topic content -->
 </topic>
 </topic>
 </topic>
</dita>

DITA TC work product Page 64 of 430

5.4.5.5 Example: Using @chunk to split documents
When topics are most easily created or generated in a single DITA document, chunk="split" will
instruct processors to render them individually when possible.

Splitting a single document in the map
Consider the following example, where a map includes generated topics used to document message
numbers from an application:

Figure 21: Source map and topics

<map>
 <title>Message guide for WidgetAnalyzer</title>
 <topicref href="about.dita">
 <topicref href="messages-install.dita"/>
 <topicref href="messages-run.dita"/>
 <topicref href="messages-other.dita"/>
 </topicref>
</map>

about.dita:
<topic id="about">
 <title>About this guide</title>
 <shortdesc>Warnings or errors will appear if...<shortdesc>
</topic>

messages-install.dita:
<dita>
 <topic id="INS001">
 <title>INS001: Installation failure</title>
 <!-- explanation and recovery... -->
 </topic>
 <!-- more install messages... -->
</dita>

messages-run.dita:
<dita>
 <topic id="RUN001">
 <title>RUN001: Failed to initialize</title>
 <!-- explanation and recovery... -->
 </topic>
 <!-- hundreds of messages... -->
 <topic id="RUN999">
 <title>RUN999: Out of memory</title>
 <!-- explanation and recovery... -->
 </topic>
</dita>

messages-other.dita:
<topic id="othermsg">
 <title>Other messages</title>
 <shortdesc>You could also encounter ...</shortdesc>
 <topic id="OTHER001">
 <title>OTHER001: Analyzer is tired</title>
 <!-- explanation and recovery... -->
 </topic>
 <topic id="OTHER002">
 <title>OTHER002: Analyzer needs to be updated</title>
 <!-- explanation and recovery... -->
 </topic>
</topic>

In a normal build to HTML5, this map might result in four result documents about.html, messages-
install.html, messages-run.html, and messages-other.html. With hundreds of messages in

DITA TC work product Page 65 of 430

messages-run.dita, it might be better in some situations to render one result document for each
message topic in the document. This can be done by setting chunk="split" on the topic reference.

Figure 22: Splitting all topics in one document

<map>
 <title>Message guide for WidgetAnalyzer</title>
 <topicref href="about.dita">
 <topicref href="messages-install.dita"/>
 <topicref href="messages-run.dita" chunk="split"/>
 <topicref href="messages-other.dita"/>
 </topicref>
</map>

The result of evaluating @chunk in this case is equivalent to the following map and topics. While
messages-run.dita now is split into hundreds of topics, other topics in the map are unaffected.

Figure 23: Equivalent source content

<map>
 <title>Message guide for WidgetAnalyzer</title>
 <topicref href="about.dita">
 <topicref href="messages-install.dita"/>
 <topicref href="RUN001.dita"/>
 <!-- hundreds of messages... -->
 <topicref href="RUN999.dita"/>
 <topicref href="messages-other.dita"/>
 </topicref>
</map>

RUN001.dita:
<topic id="RUN001">
 <title>RUN001: Failed to initialize</title>
 <!-- explanation and recovery... -->
</topic>

RUN999.dita:
<topic id="RUN999">
 <title>RUN999: Out of memory</title>
 <!-- explanation and recovery... -->
</topic>

Note Because the @chunk attribute does not cascade, even if the reference to messages-
install.dita had child topic references, they would be unaffected by the
chunk="split" value in this example.

Splitting every document in the map
Similarly, because setting chunk="split" on the map element sets a default for the entire map, the
following change to the original map would result in every referenced DITA document being split into one
document per topic. The only source document not affected by this split is about.dita, because it only
contained a single topic to begin with.

Figure 24: Splitting every topic in the map

<map chunk="split">
 <title>Message guide for WidgetAnalyzer</title>
 <topicref href="about.dita">
 <topicref href="messages-install.dita"/>
 <topicref href="messages-run.dita"/>
 <topicref href="messages-other.dita"/>
 </topicref>
</map>

Using chunk="split" on the map is equivalent to the following structure:

DITA TC work product Page 66 of 430

• about.dita is unchanged.
• messages-install.dita is split into one document per message (as in the previous example

that split messages-run.dita).
• messages-run.dita is split exactly as in the previous example.
• messages-other.dita contains a root topic and two child topics, so it results in three

documents. The hierarchy of those documents is preserved in the map.

Figure 25: Equivalent source content

<map>
 <title>Message guide for WidgetAnalyzer</title>
 <topicref href="about.dita">
 <topicref href="INS001.dita"/>
 <!-- more install messages... -->
 <topicref href="RUN001.dita"/>
 <!-- hundreds of messages... -->
 <topicref href="RUN999.dita"/>
 <topicref href="othermsg.dita">
 <topicref href="OTHER001.dita"/>
 <topicref href="OTHER002.dita"/>
 </topicref>
 </topicref>
</map>

INS001.dita:
<topic id="INS001">
 <title>INS001: Installation failure</title>
 <!-- explanation and recovery... -->
</topic>

RUN001.dita:
<topic id="RUN001">
 <title>RUN001: Failed to initialize</title>
 <!-- explanation and recovery... -->
</topic>

RUN999.dita:
<topic id="RUN999">
 <title>RUN999: Out of memory</title>
 <!-- explanation and recovery... -->
</topic>

othermsg.dita:
<topic id="othermsg">
 <title>Other messages</title>
 <shortdesc>You could also encounter ...</shortdesc>
</topic>

OTHER001.dita:
<topic id="OTHER001">
 <title>OTHER001: Analyzer is tired</title>
 <!-- explanation and recovery... -->
</topic>

OTHER002.dita:
<topic id="OTHER002">
 <title>OTHER002: Analyzer needs to be updated</title>
 <!-- explanation and recovery... -->
</topic>

DITA TC work product Page 67 of 430

5.4.5.6 Example: Using @chunk to split nested documents
Special attention is necessary when evaluating the map hierarchy that results from splitting a documents
with their own nested topics.

Consider the following source map input.ditamap:

Figure 26: Input map without chunking

input.ditamap:
<map chunk="split">
 <title>Generation example</title>
 <topicref href="ancestor.dita">
 <topicref href="middle.dita">
 <topicref href="child.dita"/>
 </topicref>
 </topicref>
</map>

In this case, the @chunk attribute instructs a processor to render every topic in each of the three
documents as its own document, while preserving any hierarchy from those documents. Now consider
the following three topic documents, each of which includes nested or peer topics:

Figure 27: Source documents with nested structures

ancestor.dita:
<dita>
 <topic id="ancestor-first">
 <title>First major topic in ancestor composite doc</title>
 <!-- ...topic content... -->
 </topic>
 <!-- more topics in ancestor composite doc -->
 <topic id="ancestor-last">
 <title>Last major topic in ancestor composite doc</title>
 <!-- ...topic content... -->
 <topic id="ancestor-last-child">
 <title>Child of last major topic in ancestor composite doc</title>
 <!-- ...topic content... -->
 </topic>
 </topic>
</dita>

middle.dita:
<topic id="middle-root">
 <title>Root topic in middle doc</title>
 <body><!-- ... --></body>
 <topic id="middle-child">
 <title>Child of root topic in middle doc</title>
 <!-- body content -->
 </topic>
</topic>

child.dita:
<topic id="child">
 <title>Small child topic</title>
 <!-- small child topic content -->
</topic>

When chunk="split" is evaluated, both ancestor.dita and middle.dita are split and treated as
multiple DITA topic documents. child.dita is only a single topic and has nothing to split.

• ancestor.dita has a root <dita> element, so it results in multiple peer topic references (or
branches) in the map. Topic references nested within the original reference to ancestor.dita
are now located within the reference to "ancestor-last" (the last topic child of the <dita>
element).

DITA TC work product Page 68 of 430

• middle.dita has nested topics, so results in its own new hierarchy within the map. Content
from the nested topic reference is now located within the reference to the root topic from
middle.dita, but after any references to child topics.

Figure 28: Equivalent source content

input.ditamap:
<map chunk="split">
 <title>Generation example</title>
 <topicref href="ancestor-first.dita"/>
 <!-- more topics in ancestor composite doc -->
 <topicref href="ancestor-last.dita">
 <topicref href="ancestor-last-child.dita"/>
 <!-- middle.dita now located here, as final child of
 final topic child of <dita> in ancestor.dita -->
 <topicref href="middle-root.dita">
 <topicref href="middle-child.dita"/>
 <!-- child.dita now located here, as final topic
 child root topic in middle.dita ancestor.dita -->
 <topicref href="child.dita"/>
 </topicref>
 </topicref>
</map>

5.4.5.7 Example: When @chunk is ignored
The @chunk attribute is ignored in some cases, such as when chunk="combine" is already in effect or
when chunk="split" is specified on a grouping element.

Ignoring @chunk when already combining topics
In the following example, evaluating @chunk results in one rendered document for each branch of the
map. Any additional @chunk values within that branch are ignored (including @chunk values within any
referenced maps).

Figure 29: Chunk within a combined branch

<map>
 <title>Ignoring chunking when already combined</title>

 <topicref href="branchOne.dita" chunk="combine">
 <!-- @chunk ignored for branchOneChild.dita -->
 <topicref href="branchOneChild.dita" chunk="split"/>
 </topicref>

 <topicref href="branchTwo.dita" chunk="combine">
 <!-- Any @chunk within submap.ditamap is ignored -->
 <topicref href="submap.ditamap" format="ditamap"/>
 </topicref>

Ignoring @chunk on a grouping element
In the following example, chunk="split" is specified on two grouping elements.

Figure 30: Chunk within a combined branch

<map>
 <title>Trying to "split" groups</title>
 <topicgroup chunk="split">
 <topicref href="ingroup1.dita">...</topicref>
 <topicref href="ingroup2.dita">...</topicref>
 </topicgroup>
 <topichead chunk="split">
 <topicmeta><navtitle>Heading for a branch</navtitle></topicmeta>

DITA TC work product Page 69 of 430

 <topicref href="inhead1.dita">...</topicref>
 <topicref href="inhead2.dita">...</topicref>
 </topichead>
</map>

• The @chunk attribute on the <topicgroup> is ignored; it does not cascade, and there is no
referenced topic, so it has no effect.

• In some cases, an implementation might treat the <topichead> element as equivalent to a
single title-only topic, while in other cases it might be ignored. In either case the @chunk value
has no effect. If the <topichead> is treated as a title-only topic, it cannot be split further; if it is
ignored for the current processing context, it is no different than the <topicgroup>.

5.4.5.8 Example: Combining topics within a split context
While @chunk attributes are ignored when a "combine" action is already in effect, it is possible to use
chunk="combine" when split is otherwise in effect.

Assume the following map, where chunk="split" on the root element means that all topic documents
within this map structure are split by default, but a branch within the map sets chunk="combine".

Figure 31: Map with default "split" action, that also uses "combine"

<map chunk="split">
 <title>Split most, but not one branch</title>
 <topicref href="splitme.dita">...</topicref>
 <topicref href="exception.dita" chunk="combine">...</topicref>
 <topicref href="splitmetoo.dita">...</topicref>
</topicref>

Assume as well that no other @chunk attributes are specified in this map. The following points are true
when @chunk is evaluated:

1. The document splitme.dita is treated as multiple split documents when it contains more than
one topic. The same is true for any other document within that branch.

2. The second branch (beginning with exception.dita) is treated as a single DITA document,
combining all topic documents within that branch.

3. The document splitmetoo.dita is treated as multiple split documents when it contains more
than one topic. The same is true for any other document within that branch.

5.4.5.9 Example: Managing links when chunking
Link management with @chunk is often straightforward; in most cases where URI-based linking is
ambiguous, using indirect links and @keyref will give the correct result.

Input topics for following examples
The following map and topics are used for all examples in this topic.

Figure 32: input.ditamap

<map>
 <title>Map with chunks and links</title>

 <keydef href="splitThis.dita" keys="splitThisKey"/>
 <keydef href="splitThis.dita#splitThisChild" keys="splitThisChildKey"/>

 <topicref href="splitThis.dita" chunk="split" keys="explicitSplitKey"/>
 <topicref href="combineThis.dita" keys="combineThisKey">
 <topicref href="combinedChild.dita" keys="combinedChildKey"/>

DITA TC work product Page 70 of 430

 </topicref>
</map>

Figure 33: Topics used by input.ditamap

splitThis.dita:
<topic id="splitThisRoot">
 <title>Root topic in split document</title>
 <!-- ... -->
 <topic id="splitThisChild">
 <title>Child topic in split document</title>
 <!-- ... -->
 </topic>
</topic>

combineThis.dita:
<topic id="combineThisRoot">
 <title>Root topic in combined document</title>
 <!-- ... -->
 <topic id="combineThisChild">
 <title>Child topic in combined document</title>
 <!-- ... -->
 </topic>
</topic>

combinedChild.dita:
<topic id="combinedChildRoot">
 <title>Topic in child document, combined with parent</title>
 <!-- ... -->
</topic>

Topics that are rendered only once when publishing
Assume that the map above is a root map or is used by another map does not otherwise render the three
topic documents. In that case, the following is true:

• splitThis.dita is rendered as two documents. For this example, assume a processor creates
two documents with names taken from the topic ID, so that topic becomes
splitThisRoot.dita and splitThisChild.dita.

• The branch with combineThis.dita is rendered as one document together with the content of
combinedChild.dita. For this example, assume a processor merges the child topic into the
file combineThis.dita.

• All links using href="splitThis.dita", keyref="splitThisKey", or
keyref="explicitSplitKey" will resolve to splitThisRoot.dita (the only rendered
instance of that topic).

• All links using href="splitThis.dita#splitThisChild" or
keyref="splitThisChildKey" will resolve to splitThisChild.dita (the only rendered
instance of that topic).

• All links using href="combinedChild.dita" or keyref="combinedChildKey" will resolve
to that topic within combineThis.dita (the only rendered instance of that topic).

Topics that are rendered twice when publishing
Now assume that the map above is reused in another context that also renders all three topic documents
as originally authored. As a result, each of the three documents in this map (splitThis.dita,
combineThis.dita, and combinedChild.dita) are rendered more than once.

When each of these documents is rendered twice, the following is true:

• The original source document splitThis.dita is rendered twice. Based on the map above,
assume a processor creates two documents with names taken from the topic ID, so that topic

DITA TC work product Page 71 of 430

becomes splitThisRoot.dita and splitThisChild.dita. At the same time,
splitThis.dita is rendered in another context as a single document, with a different name.

• Based on the map above, the branch that starts with the original source document
combineThis.dita is rendered as one document combined with the content of
combinedChild.dita. At the same time, those two documents are rendered in another context
as individual documents. For this example, assume a processor generates the combined
document using the generated name combinThis-2.dita, while the documents
combineThis.dita and combinedChild.dita retain their names in their other context.

• All links in this map using the direct URI references href="splitThis.dita",
href="splitThis.dita#splitThisChild", href="combineThis.dita", or
href="combinedChild.dita" are now ambiguous. They could go to the chunked instance
from this map, or to the individual topics in the other context. Implementations will have to guess
which topic to target: the split or combined instances from this map or versions in the alternate
context from the root map.

• All links using indirect key-based references keyref="splitThisKey" or
keyref="splitThisChildKey" are also ambiguous, because the key definitions are not
associated explicitly with the chunked or not-chunked instance. If key scopes are used,
applications might more reliably guess that the intended target is the split copy in this map, but
this is not guaranteed.

• All links using keyref="explicitSplitKey", keyref="combinedThisKey", or
keyref="combinedChildKey" are unambiguous; they can only resolve to the chunked
instance from this submap, because they are defined directly within the chunk context.

• There is no way to unambiguously link to the child document that will result from splitting
splitThis.dita. This is because it is only possible for the element using @chunk to associate
a key definition with the first or root topic in the document. While other key definition elements can
be used to associate keys with other topics in the same document, that can only be done outside
of the navigation context that uses @chunk; as a result, a processor cannot guarantee whether
the intended link target is the split topic from the @chunk context, or a use of the same topic in the
second context. It is possible for an implementation to define its own way to resolve this
ambiguity; however, if a situation requires both multiple instances of split topics and unambiguous
cross-implementation links to those split topics, alternate reuse mechanisms need to be
considered.

DITA TC work product Page 72 of 430

6 DITA addressing
DITA provides two addressing mechanisms. DITA addresses either are direct URI-based addresses, or
they are indirect key-based addresses. Within DITA documents, individual elements are addressed by
unique identifiers specified on the @id attribute. DITA defines two fragment-identifier syntaxes; one is the
full fragment-identifier syntax, and the other is an abbreviated fragment-identifier syntax that can be used
when addressing non-topic elements from within the same topic.

6.1 ID attribute
The @id attribute assigns an identifier to DITA elements so that the elements can be referenced.

The @id attribute is available for most elements. An element must have a valid value for the @id attribute
before it can be referenced using a fragment identifier. The requirements for the @id attribute differ
depending on whether it is used on a topic element, a map element, or an element within a topic or map.

All values for the @id attribute must be XML name tokens.

The @id attributes for topic and map elements are declared as XML attribute type ID; therefore, they
must be unique with respect to other XML IDs within the XML document that contains the topic or map
element. The @id attribute for most other elements within topics and maps are not declared to be XML
IDs; this means that XML parsers do not require that the values of those attributes be unique. However,
the DITA specification requires that all IDs be unique within the context of a topic. For this reason, tools
might provide an additional layer of validation to flag violations of this rule.

Within documents that contain multiple topics, the values of the @id attribute for all non-topic elements
that have the same nearest-ancestor-topic element need to be unique with respect to each other. The
values of the @id attribute for non-topic elements can be the same as non-topic elements with different
nearest-ancestor-topic elements. Therefore, within a single DITA document that contains more than one
topic, the values of the @id attribute of the non-topic elements need only to be unique within each topic.

Within a map document, the values of the @id attributes for all elements SHOULD be unique. When two
elements within a map have the same value for the @id attribute, processors MUST resolve references to
that ID to the first element with the given ID value in document order.

Figure 34: Summary of requirements for the @id attribute

Element XML attribute type for
@id

Must be unique
within

Required?

<map> ID document No

<topic> ID document Yes

sub-map (elements nested
within a map)

NMTOKEN document Usually no, with some
exceptions

sub-topic (elements nested
within a topic)

NMTOKEN individual topic Usually no, with some
exceptions

Note For all elements other than footnote (<fn>), the presence of a value for the @id attribute has
no impact on processing. For <fn>, the presence or absence of a valid @id attribute affects
how the element is processed. This is important for tools that automatically assign @id
attributes to all elements.

DITA TC work product Page 73 of 430

6.2 DITA linking
DITA supports many different linking elements, but they all use the same set of attributes to describe
relationships between content.

URI-based addressing
URI-based links are described by the following attributes.

@href
The @href attribute specifies the URI of the resource that is being addressed.

@format
The @format attribute identifies the format of the resource being addressed. For example,
references to DITA topics are identified with format="dita", whereas references to DITA maps
use format="ditamap". References to other types of content use other values for this attribute. By
default, references to non-XML content use the extension of the URI in the @href attribute as the
effective format.

@scope
The @scope attribute describes the closeness of the relationship between the current document and
the target resource. Resources in the same information unit are considered "local"; resources in
the same system as the referencing content but not part of the same information unit are considered
"peer"; and resources outside the system, such as Web pages, are considered "external".

@type
The @type attribute is used on cross-references to describe the target of the reference. Most
commonly, the @type attribute names the element type being referenced when format="dita".

These four attributes act as a unit, describing whatever link is established by the element that carries
them.

The @format and @scope attributes are assigned default values based on the URI that is specified in
the @href attribute. Thus they rarely need to be explicitly specified in most cases. However, they can be
useful in many non-traditional linking scenarios or environments.

Indirect key-based addressing
DITA also supports indirect links and cross-references in which a DITA map assigns unique names, or
keys, to the resources being referenced by the publication. This is done using <topicref> elements
that specify the @keys attribute. Using the @keyref attribute, individual links, cross-references, and
images then reference resources by their keys instead of their URIs. Links defined using @keyref thus
allow context-specific linking behavior. That is, the links in a topic or map might resolve to one set of
resources in one context, and a completely different set of resources in another, without the need for any
modifications to the link markup.

When links are defined using @keyref, values for the four linking attributes described above are typically
all specified (or given default values) on the key defining element.

6.3 URI-based (direct) addressing
Content reference and link relationships can be established from DITA elements by using URI references.
DITA uses URI references in @href, @conref, and other attributes for all direct addressing of resources.

URI references address resources and (in some cases) subcomponents of those resources. In this
context, a resource is a DITA document (map, topic, or DITA base document) or a non-DITA resource (for
example, an image, a Web page, or a PDF document).

DITA TC work product Page 74 of 430

URI references that are URLs must conform to the rules for URLs and URIs. Windows paths that contain
a backslash (\) are not valid URLs.

URIs and fragment identifiers
For DITA resources, fragment identifiers can be used with the URI to address individual elements. The
fragment identifier is the part of the URI that starts with a number sign (#), for example, #topicid/
elementid. URI references also can include a query component that is introduced with a question mark
(?).

DITA processors MAY ignore queries on URI references to DITA resources. URI references that address
components in the same document MAY consist of just the fragment identifier.

For addressing DITA elements within maps and topics or individual topics within documents containing
multiple topics, URI references must include the appropriate DITA-defined fragment identifier. URI
references can be relative or absolute. A relative URI reference can consist of just a fragment identifier.
Such a reference is a reference to the document that contains the reference.

Addressing non-DITA targets using a URI
DITA can use URI references to directly address non-DITA resources. Any fragment identifier used must
conform to the fragment identifier requirements that are defined for the target media type or provided by
processors.

Addressing elements within maps using a URI
When addressing elements within maps, URI references can include a fragment identifier that includes
the ID of the map element, for example, filename.ditamap#mapId or #mapId. The same-topic, URI-
reference fragment identifier of a period (.) can not be used in URI references to elements within maps.

Addressing topics using a URI
When addressing a DITA topic element, URI references can include a fragment identifier that includes the
ID of the topic element (filename.dita#topicId or #topicId). When addressing the DITA topic
element that contains the URI reference, the URI reference might include the same topic fragment
identifier of "." (#.).

Topics always can be addressed by a URI reference whose fragment identifier consists of the topic ID.
For the purposes of linking, a reference to a topic-containing document addresses the first topic within
that document in document order. For the purposes of rendering, a reference to a topic-containing
document addresses the root element of the document.

Consider the following examples:

• Given a document whose root element is a topic, a URI reference (with no fragment identifier) that
addresses that document implicitly references the topic element.

• Given a <dita> document that contains multiple topics, for the purposes of linking, a URI
reference that addresses the <dita> document implicitly references the first child topic.

• Given a <dita> document that contains multiple topics, for the purposes of rendering, a URI
reference that addresses the <dita> document implicitly references all the topics that are
contained by the <dita> element. This means that all the topics that are contained by
the<dita> element are rendered in the result.

DITA TC work product Page 75 of 430

Addressing non-topic elements using a URI
When addressing a non-topic element within a DITA topic, a URI reference must use a fragment identifier
that contains the ID of the ancestor topic element of the non-topic element being referenced, a slash ("/"),
and the ID of the non-topic element (filename.dita#topicId/elementId or #topicId/
elementId). When addressing a non-topic element within the topic that contains the URI reference, the
URI reference can use an abbreviated fragment-identifier syntax that replaces the topic ID with "." (#./
elementId).

This addressing model makes it possible to reliably address elements that have values for the @id
attribute that are unique within a single DITA topic, but which might not be unique within a larger XML
document that contains multiple DITA topics.

Examples: URI reference syntax
The following table shows the URI syntax for common use cases.

Use case Sample syntax

Reference a table in a topic at a network
location

"http://example.com/file.dita#topicID/tableID"

Reference a section in a topic on a local
file system

"directory/file.dita#topicID/sectionID"

Reference a figure contained in the
same XML document

"#topicID/figureID"

Reference a figure contained in the
same topic of an XML document

"#./figureID"

Reference an element within a map "http://example.com/map.ditamap#elementID" (and a value of
"ditamap" for the @format attribute)

Reference a map element within the
same map document

"#elementID" (and a value of "ditamap" for the @format attribute)

Reference an external Web site "http://www.example.com", "http://
www.example.com#somefragment" or any other valid URI

Reference an element within a local
map

"filename.ditamap#elementid" (and a value of "ditamap" for the
@format attribute)

Reference a local map "filename.ditamap" (and a value of "ditamap" for the @format
attribute)

Reference a local topic Reference a local topic "filename.dita" or "path/
filename.dita"

Reference a specific topic in a local
document

"filename.dita#topicid" or "path/filename.dita#topicid"

Reference a specific topic in the same
file

"#topicid"

Reference the same topic in the same
XML document

"#."

Reference a peer map for cross-
deliverable linking

"../book-b/book-b.ditamap" (and a value of "ditamap" for the
@format attribute, a value of "peer" for the @scope attribute, and a
value for the @keyscope attribute)

DITA TC work product Page 76 of 430

6.4 Indirect key-based addressing
DITA keys provide an alternative to direct addressing. The key reference mechanism provides a layer of
indirection so that resources (for example, URIs, metadata, or variable text strings) can be defined at the
DITA map level instead of locally in each topic.

For information about using keys to define and reference controlled values, see 5.2 Subject scheme
maps and their usage (39).

Note The material in this section of the DITA specification is exceptionally complex; it is targeted at
implementers who build processors and other rendering applications.

6.4.1 Core concepts for working with keys
The concepts described below are critical for a full understanding of keys and key processing.

The use of the phases "<map> element" or "<topicref> element" should be interpreted as "<map>
element and any specialization of <map> element " or " <topicref> element or any specialization of
<topicref> element."

Definitions related to keys
resource

For the purposes of keys and key resolution, one of the following:

• An object addressed by URI
• Metadata specified on a resource, such as a @scope or @format attribute
• Text or metadata located within a <topicmeta> element

key
A name for a resource. See 6.4.3 Using keys for addressing (80) for more information.

key definition
A <topicref> element that binds one or more key names to zero or more resources.

key reference
An attribute that references a key, such as @keyref or @conkeyref.

key space
A list of key definitions that are used to resolve key references.

effective key definition
The definition for a key within a key space that is used to resolve references to that key. A key might
have multiple definitions within a key space, but only one of those definitions is effective.

key scope
A map or section of a map that defines its own key space and serves as the resolution context for its
key references.

Key definitions
A key definition binds one or more keys to zero or more resources. Resources can be:

• Any URI-addressed resource that is referenced directly by the @href attribute or indirectly by the
@keyref attribute on the key definition. References to the key are considered references to the
URI-addressed resource.

• (If the key definition contains a child <topicmeta> element) The child elements of the
<topicmeta> element. The content of those elements can be used to populate the content of
elements that reference the key.

DITA TC work product Page 77 of 430

If a key definition does not contain a <topicmeta> element and does not refer to a resource by @href
or @keyref, it is nonetheless a valid key definition. References to the key definition are considered
resolvable, but no linking or content transclusion occurs.

Key scopes
All key definitions and key references exist within a key scope. If the @keyscope attribute is never
specified within the map hierarchy, all keys exist within a single, default key scope.

Additional key scopes are created when the @keyscope attribute is used. The @keyscope attribute
specifies a name or names for the scope. Within a map hierarchy, key scopes are bounded by the
following:

• The root map.
• The root element of submaps when the root elements of the submaps specify the @keyscope

attribute
• Any <topicref> elements that specify the @keyscope attribute

Key spaces
The key space associated with a key scope is used to resolve all key references that occur immediately
within that scope. Key references in child scopes are resolved using the key spaces that are associated
with those child scopes.

A key scope is associated with exactly one key space. That key space contains all key definitions that are
located directly within the scope; it might also contain definitions that exist in other scopes. Specifically,
the key space associated with a key scope is comprised of the following key definitions, in order of
precedence:

1. All key definitions from the key space associated with the parent key scope, if any.
2. Key definitions within the scope-defining element, including those defined in directly-addressed,

locally-scoped submaps, but excluding those defined in child scopes. (Keys defined in child
scopes cannot be addressed without qualifiers.)

3. The key definitions from child scopes, with each key prepended by the child scope name followed
by a period. If a child scope has multiple names, the keys in that scope are addressable from the
parent scope using any of the scope names as a prefix.

Note Because of rules 1 and 3, the key space that is associated with a child scope includes the
scope-qualified copies of its own keys that are inherited from the key space of the parent
scope, as well as those from other "sibling" scopes.

Effective key definitions
A key space can contain many definitions for a given key, but only one definition is effective for the
purpose of resolving key references.

When a key has a definition in the key space that is inherited from a parent scope, that definition is
effective. Otherwise, a key definition is effective if it is first in a breadth-first traversal of the locally-scoped
submaps beneath the scope-defining element. Put another way, a key definition is effective if it is the first
definition for that key name in the shallowest map that contains that key definition. This allows higher-
level map authors to override keys defined in referenced submaps.

Note A key definition that specifies more than one key name in its @keys attribute might be the
effective definition for some of its keys but not for others.

DITA TC work product Page 78 of 430

Within a key scope, keys do not have to be defined before they are referenced. The key space is effective
for the entire scope, so the order of key definitions and key references relative to one another is not
significant. This has the following implications for processors:

• All key spaces for a root map must be determined before any key reference processing can be
performed.

• Maps referenced solely by key reference have no bearing on key space contents.

For purposes of key definition precedence, the scope-qualified key definitions from a child scope are
considered to occur at the location of the scope-defining element within the parent scope. See 6.4.11.5
Example: How key scopes affect key precedence (99) for more information.

6.4.2 Key scopes
Key scopes enable map authors to specify different sets of key definitions for different map branches.

A key scope is defined by a <map> or <topicref> element that specifies the @keyscope attribute. The
@keyscope attribute specifies the names of the scope, separated by spaces. The legal characters for a
key scope name are the same as those for keys.

A key scope includes the following components:

• The scope-defining element
• The elements that are contained by the scope-defining element, minus the elements that are

contained by child key scopes
• The elements that are referenced by the scope-defining element or its descendants, minus the

elements that are contained by child key scopes

If the @keyscope attribute is specified on both a reference to a DITA map and the root element of the
referenced map, only one scope is created; the submap does not create another level of scope hierarchy.
The single key scope that results from this scenario has multiple names; its names are the union of the
values of the @keyscope attribute on the map reference and the root element of the submap. This
means that processors can resolve references to both the key scopes specified on the map reference and
the key scopes specified on the root element of the submap.

The root element of a root map always defines a key scope, regardless of whether a @keyscope attribute
is present. All key definitions and key references exist within a key scope, even if it is an unnamed,
implicit key scope that is defined by the root element in the root map.

Each key scope has its own key space that is used to resolve the key references that occur within the
scope. The key space that is associated with a key scope includes all of the key definitions within the key
scope. This means that different key scopes can have different effective key definitions:

• A given key can be defined in one scope, but not another.
• A given key also can be defined differently in different key scopes.

Key references in each key scope are resolved using the effective key definition that is specified within its
own key scope.

Example: Key scopes specified on both the map reference and the root element of
the submap
Consider the following scenario:

Figure 35: Root map

<map>
 <mapref keyscope="A" href="installation.ditamap"/>

DITA TC work product Page 79 of 430

 <!-- ... -->
</map>

Figure 36: installation.ditamap

<map keyscope="B">
 <!-- ... -->
</map>

Only one key scope is created; it has key scope names of "A" and "B".

6.4.3 Using keys for addressing
For topic references, image references, and other link relationships, resources can be indirectly
addressed by using the @keyref attribute. For content reference relationships, resources can be
indirectly addressed by using the @conkeyref attribute.

Syntax
For references to topics, maps, and non-DITA resources, the value of the @keyref attribute is simply a
key name (for example, keyref="topic-key").

For references to non-topic elements within topics, the value of the @keyref attribute is a key name, a
slash ("/"), and the ID of the target element (for example, keyref="topic-key/some-element-id".)

Example
For example, consider this topic in the document file.dita:

<topic id="topicid">
 <title>Example referenced topic</title>
 <body>
 <section id="section-01">Some content.</section>
 </body>
</topic>

and this key definition:

<map>
 <topicref keys="myexample"
 href="file.dita"
 />
</map>

A cross reference of the form keyref="myexample/section-01" resolves to the <section>
element in the topic. The key reference is equivalent to the URI reference
xref="file.dita#topicid/section-01".

6.4.4 Addressing keys across scopes
When referencing key definitions that are defined in a different key scope, key names might need to be
qualified with key scope names.

A root map might contain any number of key scopes; relationships between key scopes are discussed
using the following terms:

child scope
A key scope that occurs directly within another key scope. For example, in the figure below, key
scopes "A-1" and "A-2" are child scopes of key scope "A".

DITA TC work product Page 80 of 430

parent scope
A key scope that occurs one level above another key scope. For example, in the figure below, key
scope "A" is a parent scope of key scopes "A-1" and "A-2".

ancestor scope
A key scope that occurs any level above another key scope. For example, in the figure below, key
scopes "A" and "Root" are both ancestor scopes of key scopes "A-1" and "A-2"

descendant scope
A key scope that occurs any level below another key scope. For example, in the figure below, key
scopes "A", "A-1", and "A-2" are all descendant scopes of the implicit, root key scope

sibling scope
A key scope that shares a common parent with another key scope. For example, in the figure below,
key scopes "A" and "B" are sibling scopes; they both are children of the implicit, root key scope.

key scope hierarchy
A key scope and all of its descendant scopes.

Figure 37: A key scope hierarchy

Keys that are defined in parent key scopes
The key space that is associated with a key scope also includes all key definitions from its parent key
scope. If a key name is defined in both a key scope and its parent scope, the key definition in the parent
scope takes precedence. This means that a key definition in a parent scope overrides all definitions for
the same key name in all descendant scopes. This enables map authors to override the keys that are
defined in submaps, regardless of whether the submaps define key scopes.

In certain complex cases, a scope-qualified key name (such as "scope.key") can override an unqualified
key name from the parent scope. See 6.4.11.5 Example: How key scopes affect key precedence (99).

Keys that are defined in child key scopes
The key space associated with a key scope does not include the unqualified key definitions from the child
scopes. However, it does include scope-qualified keys from the child scopes. This enables sibling key
scopes to have different key definitions for the same key name.

DITA TC work product Page 81 of 430

A scope-qualified key name is a key name, prepended by one or more key scope names and separated
by periods. For example, to reference a key "keyName" defined in a child scope named "keyScope",
specify keyref="keyScope.keyName".

If a key scope has multiple names, its keys can be addressed from its parent scope using any of the
scope names. For example, if a key scope is defined with keyscope="a b c", and it contains a key
name of "product", that key can be referenced from the parent scope by keyref="a.product",
keyref="b.product", or keyref="c.product"
Because a child scope contributes its scope-qualified keys to its parent scope, and that parent scope
contributes its scope-qualified keys to its parent scope, it is possible to address the keys in any
descendant scope by using the scope-qualified key name. For example, consider a key scope named
"ancestorScope" that has a child scope named "parentScope" which in turn has a child scope named
"childScope". The scope "childScope" defines a key named "keyName". To reference the key "keyName"
from scope "ancestorScope", specify the scope-qualified key name:
keyref="parentScope.childScope.keyName".

Keys that are defined in sibling key scopes
Because a parent key scope contains scope-qualified keys from all of its child scopes, and a child scope
inherits all of the key definitions (including scope-qualified keys) from its parent scope, it is possible for a
child scope to reference its own scope-qualified keys, as well as those defined by its sibling scopes.

For example, consider two sibling scopes, "scope1" and "scope2". Each scope defines the key
"productName". References to "productName" in each scope resolve to the local definition. However,
since each scope inherits the scope-qualified keys that are available in their parent scope, either scope
can reference "scope1.productName" and "scope2.productName" to refer to the scope-specific definitions
for that key.

6.4.5 Cross-deliverable addressing and linking
A map can use scoped keys to reference keys that are defined in a different root map. This cross-
deliverable addressing can support the production of deliverables that contain working links to other
deliverables.

When maps are referenced and the value of the @scope attribute is set to "peer", the implications are that
the two maps are managed in tandem, and that the author of the referencing map might have access to
the referenced map. Adding a key scope to the reference indicates that the peer map should be treated
as a separate deliverable for the purposes of linking.

The keys that are defined by the peer map belong to any key scopes that are declared on the
<topicref> element that references that map. Such keys can be referenced from content in the
referencing map by using scope-qualified key names. However, processors handle references to keys
that are defined in peer maps differently from how they handle references to keys that are defined in
submaps.

DITA processors are not required to resolve key references to peer maps. However, if all resources are
available in the same processing or management context, processors have the potential to resolve key
references to peer maps. There might be performance, scale, and user interface challenges in
implementing such systems, but the ability to resolve any given reference is ensured when the source
files are physically accessible.

Comment by Kristen J Eberlein on 04 July 2019

DITA TC work product Page 82 of 430

Should the following statement about what processors do "when a reference to a peer map cannot be
resolved" contain RFC-2119 language?

Note the inverse implication; if the peer map is not available, then it is impossible to resolve the key
reference. Processors that resolve key references to peer maps should provide appropriate messages
when a reference to a peer map cannot be resolved. Depending on how DITA resources are authored,
managed, and processed, references to peer maps might not be resolvable at certain points in the
content life cycle.

The peer map might specify @keyscope on its root element. In that case, the @keyscope on the peer
map is ignored for the purpose of resolving scoped key references from the referencing map. This avoids
the need for processors to have access to the peer map in order to determine whether a given key
definition comes from the peer map.

Example: A root map that declares a peer map
Consider the DITA maps map-a.ditamap and map-b.ditamap. Map A designates Map B as a peer
map by using the following markup:

<map>
 <title>Map A</title>
 <topicref
 scope="peer"
 format="ditamap"
 keyscope="map-b"
 href="../map-b/map-b.ditamap"
 processing-role="resource-only"
 />
 <!-- ... -->
</map>

In this example, map-b.ditamap is not a submap of Map A; it is a peer map.

Example: Key resolution in a peer map that contains a @keyscope attribute on the
root element
Consider the map reference in map Map A:

<mapref
 keyscope="scope-b"
 scope="peer"
 href="map-b.ditamap"
/>

where map-b.ditamap contains the following markup:

<map keyscope="product-x">
 <!-- ... -->
</map>

From the context of Map A, key references of the form "scope-b.somekey" are resolved to keys that are
defined in the global scope of map B, but key references of the form "product-x.somekey" are not. The
presence of a @keyscope attribute on the <map> element in Map B has no effect. A key reference to the
scope "scope-b.somekey" is equivalent to the unscoped reference "somekey" when processed in the
context of Map B as the root map. In both cases, the presence of @keyscope on the root element of Map
B has no effect; in the first case it is explicitly ignored, and in the second case the key reference is within
the scope "product-x" and so does not need to be scope qualified.

DITA TC work product Page 83 of 430

6.4.6 Processing key references
Key references can resolve as links, as text, or as both. Within a map, they also can be used to create or
supplement information on a topic reference. This topic covers information that is common to all key
processing, regardless of how the key is used.

Processing of undefined keys
If both @keyref and @href attributes are specified on an element, the @href value MUST be used as a
fallback address when the key name is undefined. If both @conkeyref and @conref attributes are
specified on an element, the @conref value MUST be used as a fallback address when the key name is
undefined.

Determining effective attributes on the key-referencing element
The attributes that are common to the key-defining element and the key-referencing element, other than
the @keys, @processing-role, and @id attributes, are combined as for content references, including
the special processing for the @xml:lang, @dir, and @translate attributes.

Keys and conditional processing
The effective key definitions for a key space might be affected by conditional processing (filtering).
Processors SHOULD perform conditional processing before determining the effective key definitions.
However, processors might determine effective key definitions before filtering. Consequently, different
processors might produce different effective bindings for the same map when there are key definitions
that might be filtered out based on their filtering attributes.

Note In order to retain backwards compatibility with DITA 1.0 and 1.1, the specification does not
mandate a processing order for different DITA features. This makes it technically possible to
determine an effective key definition, resolve references to that key definition, and then filter
out the definition. However, the preferred approach is to take conditional processing into
account when resolving keys, so that key definitions which are excluded by processing are
not used in resolving key references.

Reusing a topic in multiple key scopes
If a topic that contains key references is reused in multiple key scopes within a given root map such that
its references resolve differently in each use context, processors MUST produce multiple copies of the
source topic in resolved output for each distinct set of effective key definitions that are referenced by the
topic.

In such cases, authors can use the @copy-to attribute to specify different source URIs for each
reference to a topic.

Error conditions
If a referencing element contains a key reference with an undefined key, it is processed as if there were
no key reference, and the value of the @href attribute is used as the reference. If the @href attribute is
not specified, the element is not treated as a navigation link. If it is an error for the element to be empty,
an implementation MAY give an error message; it also MAY recover from this error condition by leaving
the key reference element empty.

DITA TC work product Page 84 of 430

6.4.7 Processing key references for navigation links and images
Keys can be used to create or redirect links and cross references. Keys also can be used to address
resources such as images or videos. This topic explains how to evaluate key references on links and
cross references to determine a link target.

When a key definition is bound to a resource that is addressed by the @href or @keyref attributes, and
does not specify "none" for the @linking attribute, all references to that key definition become links to
the bound resource. When a key definition is not bound to a resource or specifies "none" for the
@linking attribute, references to that key definition do not become links.

When a key definition has no @href value and no @keyref value, references to that key will not result in
a link, even if they do contain an @href attribute of their own. If the key definition also does not contain a
<topicmeta> subelement, empty elements that refer to the key (such as <link keyref="a"/> or
<xref keyref="a" href="fallback.dita"/>) are ignored.

The <object> element has additional key-referencing attributes (@archivekeyrefs,
@classidkeyref, @codebasekeyref, and @datakeyref). Key names in these attributes are
resolved using the same processing that is described for the normal @keyref attribute.

6.4.8 Processing key references on <topicref> elements
While <topicref> elements are used to define keys, they also can reference keys that are defined
elsewhere. This topic explains how to evaluate key references on <topicref> elements and its
specializations.
Determining the effective resource

For topic references that use the @keyref attribute, the effective resource bound to the
<topicref> element is determined by resolving all intermediate key references. Each key reference
is resolved either to a resource addressed directly by URI reference in an @href attribute, or to no
resource. Processors MAY impose reasonable limits on the number of intermediate key references
that they will resolve. Processors SHOULD support at least three levels of key references.

Note This rule applies to all topic references, including those that define keys. The effective
bound resource for a key definition that uses the @keyref attribute cannot be
determined until the key space has been constructed.

Combining metadata

Content from a key-defining element cascades to the key-referencing element following the rules for
combining metadata between maps and other maps and between maps and topics.

The combined attributes and content cascade from one map to another or from a map to a topic, but
this is controlled by existing rules for cascading, which are not affected by the use of key references.

If, in addition to the @keys attribute, a key definition specifies a @keyref attribute that can be resolved
after the key resolution context for the key definition has been determined, the resources bound to the
referenced key definition take precedence.

6.4.9 Processing key references to generate text or link text
Variable text can be specified by key definitions. Processors determine the effective text by retrieving the
content of elements in a specific sequence.
Empty elements

Empty elements that specify a key reference might get their effective content from the referenced key
definitions. For the purpose of determining variable text, empty elements are defined as elements
that meet the following criteria:

DITA TC work product Page 85 of 430

• Have no text content, including white space
• Have no sub-elements
• Have no attributes that would be used as text content

Key definitions with child <topicmeta> elements

When an empty element references a key definition that has a child <topicmeta> element, content
from that <topicmeta> element is used to determine the effective content of the referencing
element. Effective content from the key definition becomes the element content, with the following
exceptions:

• For empty 

DITA TC work product Page 213 of 430

10.3.2.2 <cite>
A citation indicates the title of a bibliographic resource.

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366) and
@keyref (388).

Example
In the following code sample, the <cite> element is used to mark up the title of an article.

<p>The online article <cite>Specialization in the Darwin Information Typing
Architecture</cite> provides a detailed explanation of how to define new
topic types.</p>

10.3.2.3 <dd>
The definition description is the definition for a term in a definition list entry.

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366).

Example
See 10.3.2.7 dl (216).

10.3.2.4 <ddhd>
The <ddhd> element provides an optional heading or title for a column of descriptions or definitions in a
definition list (<dl>).

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366).

Example
See 10.3.2.7 dl (216).

10.3.2.5 <desc>
A description is a statement that describes or contains additional information about an object.

Usage information
The following list outlines common uses of the <desc> element:

<table> and <fig>
Provides more information than can be contained in the title

<xref> and <link>
Provides a description of the target

<object>
Provides alternate content to use when the context does not permit displaying the object

DITA TC work product Page 214 of 430

Rendering expectations
When used in conjunction with <fig> or <table> elements, processors SHOULD consider the content
of <desc> elements to be part of the content flow.

When used in conjunction with <xref> or <link> elements, processors MAY choose to render the
content of <desc> elements as hover help.

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366).

Examples
This section contains examples of how the <desc> element can be used.

Figure 76: Description of a figure

In the following code sample, the <figure> element contains a reference to an image of a famous
painting by Leonardo Da Vinci. The <title> element provides the name of the painting, while the
<desc> element contains information about when the portrait is thought to have been painted.

<fig>
<title>Mona Lisa</title>
<desc>Circa 1503–06, perhaps continuing until 1517</desc>
<image href="mona-lisa.jpg">
 <alt>Photograph of Mona Lisa painting</alt>
</image>
</fig>

Figure 77: Description of a cross reference

In the following code sample, the <link> element contains a <desc> element. Some processors might
render the content of the <desc> element as hover help.

<link keyref="dita-13-02">
 <linktext>DITA 1.3 Errata 02</linktext>
 <desc>Final errata version of DITA 1.3, published 19 June 2018</desc>
</link>

10.3.2.6 <div>
A division is a grouping of sequential content within a topic. There is no additional semantic meaning.

Usage information
The <div> element is useful primarily as a specialization base and for reuse.

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366).

DITA TC work product Page 215 of 430

Example
This section contains examples of how the <div> element can be used.

Figure 78: Using <div> for grouping

In the following example, a <div> element is used to organize several elements together so that they can
be referenced by @conref or @conkeyref:

...
<div id="div-01">
 <p>The first paragraph</p>
 <p>The second paragraph</p>
 <note>This is a note</note>
</div>
...

Without using a <div> element, the content could not be grouped for content referencing since the start
and end elements are of different types.

Figure 79: Using <div> for specialization

In the following example, <div> is used as the basis for specializing a new domain element,
<pullquote>:

<!ENTITY % pullquote.content
 "(%div.cnt;)*"
>
<!ENTITY % pullquote.attributes
 "%univ-atts;"
>
<!ELEMENT pullquote %pullquote.content;>
<!ATTLIST pullquote %pullquote.attributes;>

<!ATTLIST pullquote class CDATA "+ topic/div pubcontent-d/pullquote ">

Instances of <pullquote> could then be used in both <body> and <section> contexts:

<topic id="article-01">
 <title>My Article</title>
 <body>
 <p>Something pithy someone said</p>
 <pullquote><p>Something Pithy</p></pullquote>
 <!-- ... -->
 <section spectitle="Deep Dive">
 <p>This is really really pithy</p>
 <pullquote><p>Really Pithy</p></pullquote>
 <!-- ... -->
 </section>
 </body>
</topic>

10.3.2.7 <dl>
A definition list is a list of terms and corresponding definitions.

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366).

DITA TC work product Page 216 of 430

Examples
The following code sample shows how a definition list can be used to describe the message levels that
are generated by a monitoring application. The @compact attribute instructs processors to tighten the
vertical spacing.

<dl compact="yes">
 <dlentry>
 <dt>Warning</dt>
 <dd>Problems were detected, but the software will continue to monitor activity.</dd>
 </dlentry>
 <dlentry>
 <dt>Error</dt>
 <dd>Problems were detected, and the software is in danger of shutting down.</dd>
 </dlentry>
 <dlentry>
 <dt>Severe</dt>
 <dd>Monitoring activity has ceased.</dd>
 </dlentry>
</dl>

10.3.2.8 <dlentry>
A definition list entry is a group within a definition list. It associates a term with its definition.

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366).

Example
See 10.3.2.7 dl (216).

10.3.2.9 <dlhead>
The <dlhead> element contains optional headings for the term and description columns in a definition
list. The definition list heading might contain a heading for the column of terms (<dthd>) and a heading
for the column of descriptions (<ddhd>).

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366).

Example
The following code sample shows a definition list with a header:

<dl>
 <dlhead>
 <dthd>Image selection</dthd>
 <ddhd>Resulting information</ddhd>
 </dlhead>
 <dlentry>
 <dt>File Type</dt>
 <dd>The file extension of the image</dd>
 </dlentry>
 <dlentry>
 <dt>Image class</dt>
 <dd>Whether the image is raster, vector, or 3D</dd>
 </dlentry>
 <dlentry>
 <dt>Number of pages</dt>
 <dd>Number of pages in the image</dd>
 </dlentry>

DITA TC work product Page 217 of 430

 <dlentry>
 <dt>Fonts</dt>
 <dd>Names of the fonts contained within a vector image</dd>
 </dlentry>
</dl>

Rendering of definition lists will vary by application and by display format. Processors might render the
code sample in the following way:

Image selection Resulting information
File type File extension of the image
Image class Whether the image is raster, vector, or 3D
Number of pages Number of pages in the image
Fonts Names of the fonts contained within a vector image

10.3.2.10 <draft-comment>
A draft comment is content that is intended for review and discussion, such as questions, comments, and
notes to reviewers. This content is not intended to be included in production output.

Rendering expectations
By default, processors SHOULD NOT render <draft-comment> elements. Processors SHOULD
provide a mechanism that causes the content of the <draft-comment> element to be rendered in draft
output only.

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366) (with a
narrowed definition for @translate, given below) and the attributes defined below.

@author
Designates the originator of the draft comment.

@disposition
Specifies the status of the draft comment.

@time
Specifies when the draft comment was created.

@translate
Specifies whether the content of the element is translatable. The default value is "no". Setting
@translate to "yes" overrides the default value. The DITA specification contains a list of each
OASIS DITA element and its common processing default for the translate value; because this
element uses an actual default, it is always treated as translate="no" unless overridden.
Available values are:

no
The content of this element is not translatable.

yes
The content of this element is translatable.

-dita-use-conref-target
See 10.8.3.4.1 Using the -dita-use-conref-target value (385) for more information.

DITA TC work product Page 218 of 430

Example
The following example illustrates how an content developer can use a <draft-comment> element to
pose a question to reviewers.

<draft-comment
 author="EBP"
 time="23 May 2017"
 status="missing-info">
Where's the usage information for this section?
</draft-comment>

Processors might render the information from the highlighted attributes at viewing or publishing time.
Authors might use the value of the @status attribute to track the work that remains to be done on a
content collection.

10.3.2.11 <dt>
A definition term is the term or phrase that is defined in a definition list entry.

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366).

Example
See 10.3.2.7 dl (216).

10.3.2.12 <dthd>
The <dthd> element provides an optional heading for the column of terms in a definition list (<dl>).

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366).

Example
See 10.3.2.7 dl (216).

10.3.2.13 <example>
An example helps to illustrate the subject of the topic or a portion of the topic.

Usage information
Use <example> to contain both sample code (or similar artifacts) and the discussion that illustrates the
sample. For example, a topic about programming code could use the <example> element to contain
both the sample code and the text that describes the code.

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366) and spectitle
(specialization attributes) (376).

DITA TC work product Page 219 of 430

Example
The following code sample shows an <example> element that contains a code block and a textual
explanation of it:

<section id="AddingRecord">
 <title>ADD</title>
 <p>New database records are created using the <cmdname>ADD</cmdname> command.</p>
 <example>
 <p>The following example illustrates the creation of a new record.
All parameter settings are strictly optional.</p>
 <codeblock>01 OPTIONS ABC,ADD,DEF,HIJK,LMNO,AOW=25000,HF=2</codeblock>
 </example>
</section>

10.3.2.14 <fallback>
The <fallback> element provides content to be presented when multimedia objects cannot be
rendered.

Processing expectations
The contents of this element are displayed only when the media that is referenced by the containing
<object> element cannot be displayed.

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366).

Example
See <object> (231).

10.3.2.15 <fig>
A figure is a container for a variety of objects, including artwork, images, code samples, equations, and
tables.

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366), Display
attributes (369), and spectitle (specialization attributes) (376).

Example
The following code sample shows how a <fig> element can associate a title and a description with an
image.

<fig>
<title>The handshake</title>
<desc>This image shows two hands clasped in a formal,
business-like handshake.</desc>
<image href="59j0p66.jpg">
 <alt>A handshake</alt>
</image>
</fig>

10.3.2.16 <figgroup>
A figure group organizes segments within a figure.

DITA TC work product Page 220 of 430

Comment by Kristen J Eberlein on 09 September 2020

Should this topic be located here in "Body elements," or should it be relocated to "Specialization
elements?

Usage information
The <figgroup> element is useful primarily as a base for complex specializations, such as nestable
groups of syntax within a syntax diagram. The <figgroup> element can nest; it also can contain multiple
cross-references, footnotes, and keywords.

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366).

Example
The following code sample shows how the <figgroup> can group content with associated metadata:

<fig>
 <title>Sample complex figure</title>
 <figgroup>
 <data name="MetaItem" value="13"/>
 <data name="MetaThing" value="31"/>
 <ph>These elements are grouped with associated metadata</ph>
 </figgroup>
</fig>

10.3.2.17 <fn>
A footnote is ancillary information that typically is rendered in the footer of a page or at the end of an
online article. Such content is usually inappropriate for inline inclusion.

Usage information
There are two types of footnotes: single-use footnote and use-by-reference footnote.

Single-use footnote
This is produced by a <fn> element that does not specify a value for the @id attribute.

Use-by-reference footnote
This is produced by a <fn> element that specifies a value for the @id attribute. It must be used in
conjunction with an <xref> element with @type set to "fn".

To reference a footnote that is located in another topic, the conref or conkeyref mechanism is used.

Rendering expectations
The two footnote types typically produce different types of output:

Single-use footnote
When rendered, a superscript symbol (numeral or character) is produced at the location of the <fn>
element. The superscript symbol is hyperlinked to the content of the footnote, which is placed at the
bottom of a PDF page or the end of an online article. The superscript symbol can be specified by the
value of the @callout attribute. When no @callout value is specified, footnotes are typically
numbered.

DITA TC work product Page 221 of 430

Use-by-reference footnote
Nothing is rendered at the location of the <fn> element. The content of a use-by-reference footnote
is only rendered when it is referenced by an <xref> with the @type attribute set to "fn". If an
<xref> with the @type attribute set to "fn" is present, a superscript symbol is rendered at the
location of the <xref> element. Unless conref or conkeyref is used, the <fn> and <xref> must be
located in the same topic.

However, the details of footnote processing and formatting are implementation dependent. For example,
a tool that renders DITA as PDF might lack support for the @callout attribute, or footnotes might be
collected as end notes for certain types of publications.

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366) and the
attribute defined below.

@callout
Specifies the character that is used for the footnote link, for example, a number or an alphabetical
character. The attribute also can specify a short string of characters.

Examples
This section contains examples of how the <fn> element can be used.

Figure 80: Example of a single-use footnote

The following code sample shows a single-use footnote. It contains a simple <fn> element, with no @id
or @callout attribute.

The memory storage capacity of the computer is
2 GB<fn>A GB (gigabyte) is equal to
1000 million bytes</fn> with error correcting support.

When rendered, typically a superscript symbol is placed at the location of the <fn> element; this
superscript symbol is hyperlinked to the content of the <fn>, which is typically is placed at the bottom of a
PDF page or the end of an online article. The type of symbol used is implementation specific.

The above code sample might produce output similar to the following:

The memory storage capacity of the computer is 2 GB1 with error correcting support.

......
1 A GB (gigabyte) is equal to 1000 million bytes

----- [bottom of page] ---

Figure 81: Example of a single-use footnote with a @callout attribute

The following code sample shows a single-use footnote that uses a @callout attribute:

The memory storage capacity of the computer is
2 GB<fn callout="#">A GB (gigabyte) is equal to
1000 million bytes</fn> with error correcting support.

DITA TC work product Page 222 of 430

The rendered output is similar to that of the previous example, although processors that support it will
render the footnote symbol as # (hashtag).

Figure 82: Example of a use-by-reference footnote

The following code sample shows use-by-reference footnotes. The <fn> elements have @id attributes,
and inline <xref> elements reference those <fn> elements:

<fn id="dog-name">Fido</fn>
<fn id="cat-name">Puss</fn>
<fn id="llama-name">My llama</fn>
...
<p>I like pets. At my house, I have a dog<xref href="#topic/dog-name" type="fn"/>, a
cat<xref href="#topic/cat-name" type="fn"/>, and a
llama<xref href="#topic/llama-name" type="fn"/>.</p>

The code sample might produce output similar to the following:

......
I like pets. At my house, I have a dog1, a cat2, and a llama3.

......
1Fido
2Puss
3My llama

----- [bottom of page] ---

Figure 83: Example of a single-use footnote that uses conref

The following code sample shows footnotes stored in a shared topic (footnotes.dita):

<!-- Content from footnotes.dita -->
<topic id="footnotes">
...
 <fn id="strunk">Elements of Style</fn>
 <fn id="DQTI">Developing Quality Technical Information, 2nd edition</fn>
...
</topic>

To use those footnotes, authors conref them into the relevant topics:

<p>See the online resource<fn conref="footnotes.dita#footnotes/DQTI"/> for more
 information about how to assess the quality of technical documentation ...</p>

Figure 84: Example of a use-by-reference footnote that uses conref

The following code sample shows a use-by-reference footnote that uses conref:

<topic id="evaluating-quality">
 <title>Evaluating documentation quality</title>
 <body>
 ...
 <fn conref="footnotes.dita#footnotes/DQTI" id="dqti"/>
 ...
 <p>See the online resource<xref="./evaluating-quality/dqti" type="fn"/> for more
 information about how to assess the quality of technical documentation ...</p>
 ...
 </body>
<topic>

DITA TC work product Page 223 of 430

10.3.2.18 

10.3.2.19 <include>
The <include> element specifies that non-DITA content from a resource outside the current document
should be placed at that location. The resource is specified using either a URI or a key reference.
Processing expectations for the referenced data can also be specified.

Comment by Kristen J Eberlein on 09 September 2020

Should this topic be located here in "Body elements," or should it be relocated to "Specialization
elements?

Usage information
The <include> element is intended as a specialization base and for the following use cases:

• The transclusion of non-DITA XML within <foreign> element using parse="xml"
• The transclusion of preformatted textual content within <pre> element using parse="text"
• The transclusion of plain-text prose within DITA elements using parse="text"

It is an error when the <include> element is used to reference DITA content. Authors should use
@conref or @conkeyref to reuse DITA content.

Processing expectations

Comment by Kristen J Eberlein on 29 April 2019

DITA TC work product Page 225 of 430

What of the content in this section (not yet edited) should be normative statements?

The <include> element instructs processors to insert the contents of the referenced resource at the
location of the <include> element. If the content is unavailable to the processor or cannot be processed
using the specified @parse value, the contents of the <fallback> element, if any, are presented
instead.

If the processor cannot process the referenced content using the rules implied by the @parse attribute,
either because the referenced scheme is not supported or because there was a processing error,
processors should issue a warning or error. All processors are expected to support the @parse values
"text" and" xml".

Processors are expected to detect the encoding of the referenced document based on the rules
described for the @encoding (372) attribute.

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366), Inclusion
attributes (369), Link-relationship attributes (369), and 10.8.3.7 The keyref attribute (388).

Examples
For the most part, <include> should be used as a basis for specialization. The following examples use
it directly for purposes of illustration.

This section contains examples of how the <include> element can be used.

Figure 85: Inclusion of XML markup other than SVG or MathML

In the following code sample, the <include> element references a tag library descriptor file:

<fig>
 <title>JSP Tag Library Elements and Attributes</title>
 <foreign outputclass="tld">
 <include href="../src/main/webapp/WEB-INF/jsp-tag-library.tld"
 parse="xml" format="tld"/>
 </foreign>
</fig>

Figure 86: Inclusion of README text into a DITA topic, with fallback

<shortdesc>
 <include href="../src/README.txt" parse="text" encoding="UTF-8">
 <fallback>This topic describes XYZ.</fallback>
 </include>
</shortdesc>

Figure 87: Inclusion of preformatted text

In the following code sample, the <include> element references a JSON file:

<pre>

DITA TC work product Page 226 of 430

 <include href="../src/config.json" format="json" parse="text" encoding="UTF-8"/>
</pre>

Figure 88: Inclusion of README as Markdown converted to DITA using a proprietary @parse
value, with fallback

<section>
 <include href="about.md" encoding="UTF-8"
 parse="http://www.example.com/dita/includeParsers/markdown-to-dita">
 <fallback>This section not available.</fallback>
 </include>
</section>

Figure 89: Proprietary vendor handling for CSV tables

<fig>
 <title>Data Table</title>
 <include href="data.csv" encoding="UTF-8"
 parse="http://www.example.com/dita/includeParsers/csv-to-simpletable"/>
</fig>

10.3.2.20 <keyword>
A keyword is text or a token that has a unique or key-like value, such as a product name or unit of
reusable text.

Processing expectations
When used within the <keywords> element, the content of a <keyword> element is considered to be
metadata and should be processed as appropriate for the given output medium.

Elements that are specialized from the <keyword>element might have extended processing, such as
specific formatting or automatic indexing.

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366) and
@keyref (388).

Example
This section contains examples of how the <keyword> element can be used.

Figure 90: <keyword> element used to store a product name

In the following code sample, the <keyword> element holds a product name.

<keyword id="acme-bird-feeder">ACME Bird Feeder</keyword>

The product name can be referenced using one of the DITA reuse mechanisms: content reference
(conref), content key reference (conkeyref), or key reference (keyref).

Figure 91: <keyword> element as metadata

In the following code sample, "Big data" is specified as metadata that applies to the topic.

<prolog>
 <metadata>
 <keywords>

DITA TC work product Page 227 of 430

 <keyword>Big data</keyword>
 </keywords>
 </metadata>
</prolog>

10.3.2.21
A list item is an item in either an ordered or unordered list.

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366).

Example
See 10.3.2.28 ol (234) or 10.3.2.41 ul (242)

10.3.2.22 <lines>
Lines are lines of text where white space is significant. It can be used to represent dialogs, poetry, or
other text fragments where line breaks are significant.

Rendering expectations
Processors SHOULD preserve or otherwise indicate white space within the <lines> element.

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366), Display
attributes (369), xml:space (377), and spectitle (specialization attributes) (376).

Example
In the following code sample, a <lines> element contains an excerpt from Sonnet 18, one of the best-
known of the 154 sonnets written by the English playwright and poet William Shakespeare:

<lines>
Shall I compare thee to a summer's day?
Thou art more lovely and more temperate:
Rough winds do shake the darling buds of May,
and summer's lease hath all too short a date:
...</lines>

10.3.2.23 <longdescref>
A long description reference is a reference to a textual description of a graphic or object.

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366), Link-
relationship attributes (369), and @keyref (388).

DITA TC work product Page 228 of 430

Example
This section contains examples of how the <longdescref> element can be used.

Figure 92: <longdescref> which references a local DITA description

In the following code sample, the <longdescref> references a detailed image description that is stored
in a DITA topic.

<image href="llama.jpg">
 <alt>Llama picture</alt>
 <longdescref href="my-pet-llama.dita"/>
</image>

Figure 93: <longdescref> which references an external description

In this code sample, the long description is stored remotely, on a external Web site.

<image href="puffin.jpg">
 <alt>Puffin pigure</alt>
 <longdescref href="http://www.example.org/birds/puffin.html"
 scope="external"
 format="html"/>
</image>

10.3.2.24 <longquoteref>
A long quotation reference is a reference to the source of a lengthy quotation.

Processing expectations
Rendering of this element is left up to DITA processors. Depending on the presentation format, it might be
appropriate to ignore the element, present it as a link, use it to turn the entire quotation into a link, or do
something else.

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366), Link-
relationship attributes (369), and @keyref (388).

Example

Comment by Kristen J Eberlein on 05 August 2018
When trying to craft a new example for this element, I realized I don't understand what value it provides
that is not already available in <lq>.

In the following code sample, the <longdescref> element references an online version of As You Like
It.

<p>The following is one of the most frequently used quotations from a Shakespearean play:
 <lq>All the world's a stage, and all the men and women merely players. They have
 their exits and their entrances; And one man in his time plays many parts.’
 <longquoteref href="http://www.example.org/shakespeare/as-you-like-it" scope="external"/>
 </lq>
</p>

DITA TC work product Page 229 of 430

10.3.2.25 <lq>
A long quotation is a quotation that contains one or more paragraphs. The title and source of the
document that is being quoted can be specified.

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366), Link-
relationship attributes (369) (with a narrowed definition for @type, given below), and @keyref (388),
and the attributes defined below.

@reftitle
The title of the document or topic that is quoted.

@type
Indicates the location of the source of the quote. Note that this differs from the @type attribute on
many other DITA elements. See 10.8.3.12 The type attribute (391) for detailed information on the
usual supported values and processing implications.

Example
The following code sample contains a quotation. The @reftitle attribute specifies the title of the
document that is quoted, and the @href attribute indicates a Web site where the full text of the address
can be accessed.

<p>This is the first line of the address that Abraham Lincoln delivered
on November 19, 1863 for the dedication of the cemetery at Gettysburg, Pennsylvania.</p>
<lq reftitle="Gettysburg address"
href="https://en.wikisource.org/wiki/Gettysburg_Address_(Nicolay_draft)" format="html"
scope="external">Four score and seven years ago our fathers brought forth on this continent
a new nation, conceived in liberty, and dedicated to the proposition that all men
are created equal.</lq>

10.3.2.26 <note>
A note contains information that expands on or calls attention to a particular point.

Usage information
Variant types of notes (caution, danger, warning, etc.) can be indicated through values selected for the
@type attribute.

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366), spectitle
(specialization attributes) (376), and the attributes defined below.

@othertype
Specifies an alternate note type. This value is used as the user-provided note title when the @type
attribute value is set to "other".

@type
Specifies the type of a note. Note that this differs from the @type attribute on many other DITA
elements. See 10.8.3.12 The type attribute (391) for detailed information on supported values and
processing implications. Available values are "note", "tip", "fastpath", "restriction", "important",
"remember", "attention", "caution", "notice", "danger", "warning", "trouble", "other", and "-dita-use-
conref-target" (385).

DITA TC work product Page 230 of 430

Example
The following code sample shows a <note> with @type set to "tip":

<note type="tip">Thinking of a seashore, green meadow, or cool
mountain overlook can help you to relax and be more
patient.</note>

10.3.2.27 <object>
The DITA <object> element corresponds to the HTML <object> element, and attribute semantics
derive from their HTML definitions. For example, the @type attribute differs from the @type attribute on
many other DITA elements.

Usage information
The <object> element enables authors to include animated images, applets, plug-ins, ActiveX controls,
video clips, and other multimedia objects in a topic.

Rendering expectations
Processors SHOULD scale the object when values are provided for the @height and @width attributes.
The following expectations apply:

• If a height value is specified and no width value is specified, processors SHOULD scale the width
by the same factor as the height.

• If a width value is specified and no height value is specified, processors SHOULD scale the height
by the same factor as the width.

• If both a height value and width value are specified, implementations MAY ignore one of the two
values when they are unable to scale to each direction using different factors.

When an object cannot be rendered in a meaningful way, processors SHOULD present the contents of
the <fallback> element, if it is present.

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366) and the
attributes defined below.

@archive
Specifies a space-separated list of URIs indicating resources needed by the object. These resources
might include those URIs specified by the @classid and @data attributes. Preloading these
resources usually results in faster load times for objects. The URIs in the list should be relative to the
URI specified in the @codebase attribute.

@archivekeyrefs
Key references to one or more archives, as for @archive. The value is a space-separated list of key
names. Each resolvable key reference is treated as a URI as though it had been specified on the
@archive attribute. When specified, and at least one key name is resolvable, the key-provided
archive list is used. If @archive is specified, it is used as a fallback when no key names can be
resolved to a URI.

@classid
Contains a URI that specifies the location of an object's implementation. It can be used together with
the @data attribute which is specified relative to the value of the @codebase attribute.

DITA TC work product Page 231 of 430

@classidkeyref
Key reference to the URI that specifies the location of an object's implementation, as for @classid.
When specified, and the key is resolvable, the key-provided class ID URI is used. If @classid is
specified, it is used as a fallback when the key cannot be resolved to a URI.

@codebase
Specifies the base URI used for resolving the relative URI values given for @classid, @data, and
@archive attributes. If @codebase is not set, the default is the base URI of the current element.

@codebasekeyref
Key reference to the base URI used for resolving other attributes, as for @codebase. When
specified, and the key is resolvable, the key-provided code base URI is used. If @codebase is
specified, it is used as a fallback if the key cannot be resolved to a URI. If no URI results from
processing @codebasekeyref and @codebase is not specified, the default is the base URL of the
current element.

@data
Contains a reference to the location of an object's data. If this attribute is a relative URL, it is
specified relative to the value of the @codebase attribute. If this attribute is set, the @type attribute
should also be set.

@datakeyref
Provides a key reference to the object. When specified and the key is resolvable, the key-provided
URI is used. A key that has no associated resource, only link text, is considered to be unresolved. If
@data is specified, it is used as a fallback when the key cannot be resolved to a resource.

@declare
When this attribute is set to "declare", the current object definition is a declaration only. The object
must be instantiated by a later nested object definition referring to this declaration. The only
allowable value is "declare".

@type
Indicates the content type (MIME type) for the data specified by the @data or @datakeyref
attribute. This attribute should be set when the @data attribute is set to avoid loading unsupported
content types. Note that this differs from the @type attribute on many other DITA elements (it
specifies a MIME type rather than a content type). If @type is not specified, the effective type value
for the key named by the @datakeyref attribute is used as the this attribute's value.

@standby
Contains a message to be displayed while an object is loading.

@height
Specifies the vertical dimension for the resulting display. The value of this attribute is a real number
(expressed in decimal notation) optionally followed by a unit of measure from the set of pc, pt, px, in,
cm, mm, em (picas, points, pixels, inches, centimeters, millimeters, and ems respectively). The
default unit is px (pixels). Possible values include: "5", "5in", and "10.5cm".

@width
Specifies the horizontal dimension for the resulting display. The value of this attribute is a real
number (expressed in decimal notation) optionally followed by a unit of measure from the set of pc,
pt, px, in, cm, mm, em (picas, points, pixels, inches, centimeters, millimeters, and ems respectively).
The default unit is px (pixels). Possible values include: "5", "5in", and "10.5cm".

@usemap
Indicates that a client-side image map is to be used. An image map specifies active geometric
regions of an included object and assigns a link to each region. When a link is selected, a document
might be retrieved or a program might run on the server.

DITA TC work product Page 232 of 430

@name
Defines a unique name for the object.

@tabindex
Position the object in tabbing order.

Example
Output processors might need to modify data in order to enable compatible function across various
browsers, so these examples are only representative:

<p>Cutting the keys from the system unit:</p>
<object classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"
 codebase="http://download.macromedia.com/pub/shockwave/cabs/
flash/swflash.cab#version=6,0,0,0"
 data="cutkey370.swf"
 type="application/x-shockwave-flash"
 height="280"
 width="370"
 id="cutkey370">
 <desc>A description of the task</desc>
 <fallback>Media not available.</fallback>
 <param name="movie" value="cutkey370.swf"/>
 <param name="quality" value="high"/>
 <param name="bgcolor" value="#FFFFFF"/>
</object>

<p>What's EIM?</p>
<object classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"
 codebase="http://download.macromedia.com/pub/shockwave/cabs/
flash/swflash.cab#version=6,0,0,0"
 data="eim.swf"
 height="400"
 width="500"
 id="eim">
 <desc>Some great, glorious info</desc>
 <fallback><image href="media-not-available.png"/></fallback>
 <param name="movie" value="eim.swf"/>
 <param name="quality" value="high"/>
 <param name="bgcolor" value="#FFFFFF"/>
 <param name="pluginspace"
 value="http://www.macromedia.com/go/getflashplayer"/>
</object>

Figure 94: Object with reference to video using key reference on the <param> elements

<object
 id="E5123_026.mp4"
 width="300"
 height="300">
 <fallback>Media not available.</fallback>
 <param name="poster"
 keyref="E5123_026_poster"
 />
 <param name="source"
 keyref="E5123_026_video"
 />
</object>

Where the keys could be:

<map>
 <!-- ... -->
 <keydef keys="E5123_026_poster"
 href="../images/E5123_026_poster.png"
 type="video/mp4"
 />
 <keydef keys="E5123_026_video"

DITA TC work product Page 233 of 430

 href="../media/E5123_026_poster.mp4"
 type="video/mp4"
 />
 <!-- ... -->
</map>

Figure 95: Object with indirect reference to a flash file and fallback @data value

<object
 classidkeyref="video_classid"
 codebasekeyref="video_codebase"
 datakeyref="cutkey370"
 height="280"
 width="370"
 id="cutkey370">
 <desc>A description of the task</desc>
 <fallback>Media not available.</fallback>
 <param name="movie" keyref="cutkey370"/>
 <param name="quality" value="high"/>
 <param name="bgcolor" value="#FFFFFF"/>
</object>

Where the key could be:

<map>
 <!-- ... -->
 <!-- NOTE: Using @scope="external" because
 the class ID is a URI that is not intended to
 be directly resolved.
 -->
 <keydef keys="video_classid"
 href="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"
 scope="external"
 />
 <!-- NOTE: Using @scope="external" to avoid systems trying to
 download this file when they don't need to.
 -->
 <keydef keys="video_codebase"
 href="http://download.macromedia.com/pub/shockwave/cabs/
flash/swflash.cab#version=6,0,0,0"
 format="shockwave"
 scope="external"
 />
 <!-- Using @scope="external" here because the referenced URL
 is not intended to be resolved in isolation but relative
 to the codebase URI.
 -->
 <keydef keys="cutkey370"
 href="cutkey370.swf"
 type="application/x-shockwave-flash"
 scope="external"
 />
 <!-- ... -->
</map>

10.3.2.28
An ordered list is a list of items that are sorted by sequence or order of importance.

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366), compact
(371), and spectitle (specialization attributes) (376).

DITA TC work product Page 234 of 430

Example
The following code sample shows the use of an ordered list:

<p>Here are Rotten Tomatoes' five best movies of all time:</p>

 The Wizard of Oz (1939)
 Citizen Kane (1941)
 Get Out (2017)
 The Third Man (1949)
 Mad Max: Fury Road (2015)

10.3.2.29 <p>
A paragraph is a single unit of text that contains a main idea.

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366).

Example
The following code sample contains a paragraph:

<p>A paragraph is a group of related sentences that support a central
idea. Paragraphs typically consist of three parts: a topic sentence, body sentences,
and a concluding or bridging sentence.</p>

10.3.2.30 <param>
The <param> (parameter) element specifies a set of values that might be required by an <object> at
runtime.

Usage information
Any number of <param> elements might appear in the content of an <object> in any order, but must be
placed at the start of the content of the enclosing object. This element is comparable to the XHMTL
<param> element, and its attributes' semantics derive from their HTML definitions. For example, the
@type attribute differs from the @type attribute on many other DITA elements.

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366) and the
attributes defined below.

@name (REQUIRED)
The name of the parameter.

@value
Specifies the value of a run-time parameter that is specified by the @name attribute.

@valuetype
Specifies the type of the @value attribute. Allowed values are:

data
A value of data means that the value will be evaluated and passed to the object's
implementation as a string.

DITA TC work product Page 235 of 430

ref
A value of ref indicates that the value of the @value attribute is a URL that designates a
resource where run-time values are stored. This allows support tools to identify URLs that are
given as parameters.

object
A value of object indicates that the value of @valuetype is an identifier that refers to an object
declaration in the document. The identifier must be the value of the ID attribute set for the
declared object element.

-dita-use-conref-target
See 10.8.3.4.1 Using the -dita-use-conref-target value (385) for more information.

@type
This attribute specifies for a user agent the type of values that will be found at the URI designated by
@value. Note that this differs from the @type attribute on many other DITA elements.

1. When @valuetype is set to "ref", this attribute directly specifies the content type of the
resource designated by @value.

2. Otherwise, if @type is specified and @keyref is specified and resolvable, this attribute
specifies the content type of the resource designated by @keyref.

3. Otherwise, if @type is not specified and @keyref is specified and is resolvable, the effective
type value specified for the key that is named by the @keyref attribute is used as the value
of the @type attribute.

@keyref
Key reference to the thing the parameter references. If @valuetype is specified but is not set to
"ref", this attribute is ignored. When @valuetype is not specified and @keyref is specified, it
implies a setting of valuetype="ref". When @keyref is specified and the effective value of
@valuetype is "ref":

1. When the key specified by @keyref is resolvable and has an associated URI, that URI is
used as the value of this element (overriding @value, if that is specified).

2. When the key specified by @keyref is resolvable and has no associated resource (only link
text), the @keyref attribute is considered to be unresolvable for this element. If @value is
specified, it is used as fallback.

3. When the key specified by @keyref is not resolvable, the value of the @value attribute is
used as a fallback target for the <param> element.

Example
See 10.3.2.27 object (231).

10.3.2.31 <ph>
A phrase is a small group of words that stand together as a unit, typically forming a component of a
clause.

Usage information
The <ph> element often is used to enclose a phrase for reuse or conditional processing.

The <ph> element frequently is used as a specialization base, to create phrase-level markup that can
provide additional semantic meaning or trigger specific processing or formatting. For example, all
highlighting domain elements are specializations of <ph>.

DITA TC work product Page 236 of 430

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366) and
@keyref (388).

Example
The following code sample shows <ph> elements that are used for conditional processing:

<p>The Style menu is the <ph product="Software1000"/>third item</ph>
<ph product="Software9000"/>fourth item</ph> from the left on the menu bar.</p>

10.3.2.32 <pre>
Preformatted text is text that contains line breaks and spaces that are intended to be preserved at
publication time.

Rendering expectations
Processors SHOULD preserve line the breaks and spaces that are present in the content of a <pre>
element.

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366), Display
attributes (369), xml:space (377), and spectitle (specialization attributes) (376).

Example
The following code sample shows preformatted text that contains white space and line breaks. When the
following code sample is published, the white space and line breaks are preserved.

<pre>
 MEMO: programming team fun day
Remember to bring a kite, softball glove, or other favorite
outdoor accessory to tomorrow's fun day outing at Zilker Park.
Volunteers needed for the dunking booth.
</pre>

10.3.2.33 <q>
A quotation is a small group of words that is taken from a text or speech and repeated by someone other
than the original author or speaker.

Rendering expectations
Processors add appropriate styling, such as locale-specific quotation marks, around the contents of the
<q> element and render it inline.

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366).

DITA TC work product Page 237 of 430

Example
In the following code sample, the <q> element contains a quotation. Note that no quotation marks are
included; locale-specific quotation marks will be generated during processing.

<p>
George said, <q>Disengage the power supply before servicing the unit.</q>
</p>

10.3.2.34 <section>
A section is an organizational division in a topic. Sections are used to organize subsets of information that
are directly related to the topic; they can have titles.

Usage information
Multiple sections within a single topic do not represent a hierarchy, but rather peer divisions of that topic.
Sections cannot be nested.

Note For maximum flexibility in creating specialization, sections allow plain text as well as phrase
and block level elements. Because of the way XML grammars are defined within a DTD, any
element that allows plain text cannot restrict the order or frequency of other elements. As a
result, the <section> element allows <title> to appear anywhere as a child of
<section>. However, the intent of the specification is that <title> should only be used
once in any <section>, and when used, it should precede any other text or element content.

Rendering expectations
Processors SHOULD treat the presence of more than one <title> element in a <section> element as
an error.

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366) and spectitle
(specialization attributes) (376).

Example
The following code sample shows how element-reference topics in the DITA specification use titled
sections to provide a consistent structure for grouping information:

<reference id="sub" xml:lang="en-us">
 <title>p</title>
 <shortdesc conkeyref="library-short-descriptions/p"/>
 <refbody>
 <section><title>Usage information</title>
 <p>...</p>
 </section>
 <section><title>Rendering expectations</title>
 <p>...</p>
 </section>
 <section><title>Processing expectations</title>
 <p>...</p>
 </section>
 <section><title>Specialization hierarchy</title>
 <p>...</p>
 </section>
 <section><title>Attributes</title>
 <p>...</p>
 </section>
 <example><title>Example</title>

DITA TC work product Page 238 of 430

 <p>...</p>
 </example>
 </refbody>
</reference>

10.3.2.35 <sectiondiv>
A section division is a grouping of sequential content within a section. There is no additional semantic
meaning attached. It is useful primarily as a specialization base and for reuse.

Usage information
The <sectiondiv> element cannot contain a title. If a title is required, use nested topics.

The <sectiondiv> element can nest itself, so it can be used as a specialization base. Another common
use case for the <sectiondiv> element is to group a sequence of related elements for reuse, so that
another topic can reference the entire set with a single @conref or @conkeyref attribute.

The <sectiondiv> element can only be used within <section> elements. Use the <div> element to
group content that might occur in both topic bodies and sections.

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366).

Example
In the example below, the <sectiondiv> element is used to group content that can be reused
elsewhere.

<section>
 <title>Nice pets</title>
 <sectiondiv id="smallpets">
 <p>Cats are nice.</p>
 <p>Dogs are nice.</p>
 <p>Friends of mine really love their hedgehogs.</p>
 </sectiondiv>
 <sectiondiv id="biggerpets">
 <p>Lots of people want ponies when they grow up.</p>
 <p>Llamas are also popular.</p>
 </sectiondiv>
</section>

10.3.2.36 <sl>
A simple list is a list that contains a few items of short, phrase-like content.

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366), compact
(371), and spectitle (specialization attributes) (376).

Example
In a topic that discusses related modules, the following markup could be used:

<section>
 <title>Messages</title>
 <p>Messages from the ags_open module are identical with messages from:</p>
 <sl>
 <sli>ags_read</sli>

DITA TC work product Page 239 of 430

 <sli>ags_write</sli>
 <sli>ags_close</sli>
 </sl>
</section>

10.3.2.37 <sli>
A simple list item is a component of a simple list. A simple list item contains a brief phrase or text content,
adequate for describing package contents, for example.

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366).

Example
See 10.3.2.36 sl (239).

10.3.2.38 <term>
The <term> element identifies words that might have or require extended definitions or explanations.

Usage information
The @keyref attribute can be used to associate a term with a resource, typically a definition of the term.
The @keyref attribute can also be used to supply the text content for <term> using standard @keyref
processing for variable text.

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366) and
@keyref (388).

Example
The following code sample shows how the <term> element can be used:

<p>A <term>reference implementation</term> of DITA implements the standard,
fallback behaviors intended for DITA elements.</p>

10.3.2.39 <text>
The <text> element serves as a container for text. It has no associated semantics.

Usage information
The <text> element is primarily used as a specialization base or to enable reuse. The <text> can
contain only text or nested <text> elements.

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366).

DITA TC work product Page 240 of 430

Example
In the following code sample, the <text> element is used to contain text that is intended to be reused:

<p>This an example of <text id="reuse">Text
 that is reusable</text>, with no extra
 semantics attached to the text.</p>

10.3.2.40 <tm>
The <tm> element identifies a term or phrase that is trademarked. Trademarks include registered
trademarks, service marks, slogans, and logos.

Usage information
The business rules for indicating and displaying trademarks differ from company to company. These
business rules can be enforced by either authoring policy or processing.

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366) and the
attributes defined below.

@tmtype (REQUIRED)
Specifies the trademark type. Allowable values are:

tm
Trademark

reg
Registered trademark

service
Service mark

-dita-use-conref-target
See 10.8.3.4.1 Using the -dita-use-conref-target value (385) for more information.

@trademark
Specifies the trademarked term.

@tmowner
Specifies the trademark owner, for example "OASIS".

@tmclass
Specifies the classification of the trademark. This can be used to differentiate different groupings of
trademarks.

Example
The following code sample shows how IBM uses the <tm> element:

<p>The advantages of using <tm trademark="DB2 Universal Database" tmtype="tm">
<tm trademark="DB2" tmtype="reg" tmclass="ibm">DB2</tm> Universal Database</tm> are
well known.</p>

DITA TC work product Page 241 of 430

10.3.2.41
An unordered list is a list in which the order of items is not significant.

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366), compact
(371), and spectitle (specialization attributes) (376).

Example
The following code sample shows a list in which the order of items is unimportant:

<p>Here are the countries that I have visited:</p>

 Germany
 France
 Japan
 Mexico

10.3.2.42 <xref>
A cross reference is an inline link. A cross reference can link to a different location within the current topic,
another topic, a specific location in another topic, or an external resource such as a PDF or Web page.

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366), Link-
relationship attributes (369), and @keyref (388).

Examples
This section contains examples of how the <xref> element can be used.

Figure 96: Cross reference to another topic, without link text

The following code sample shows a cross reference to another topic; link text is not provided. Processor
typically use the topic title as the link text.

<p>Background information about DITA is provided in
<xref href="overview-of-dita.dita"/>.</p>

The same cross reference could be created using @keyref instead of @href; using @keyref allows the
link to be redirected to different resources when the topic is used in different contexts.

Figure 97: Cross references with link text specified

The following code sample shows a cross reference that specifies link text:

<p>While this set of tutorials gives several simple examples of
<xref keyref="markup-examples">common DITA features</xref>, a comprehensive

DITA TC work product Page 242 of 430

list of DITA features is available in the DITA specification
<xref keyref="dita-conformance">conformance clause</xref>.</p>

Figure 98: Cross reference to a URI that contains an ampersand

The following code sample shows a cross reference that contains an ampersand:

<xref href="https://www.example.com/docview.wss?rs=757&context=SSVNX5"
scope="external" format="html">Part number SSVNX5</xref>

Because the @href attribute value needs to be a valid URI, the ampersand must be escaped, as shown
in the revised code sample below:

<xref href="https://www.example.com/docview.wss?rs=757&context=SSVNX5"
scope="external" format="html">Part number SSVNX5</xref>

Although the entity is in the DITA source, the entity might not show up when the link target is displayed in
an editor or a Web browser; the URI might be shown as the following:

https://www.example.com/docview.wss?rs=757&context=SSVNX5

Related concepts
DITA addressing (73)

DITA provides two addressing mechanisms. DITA addresses either are direct URI-based addresses, or
they are indirect key-based addresses. Within DITA documents, individual elements are addressed by
unique identifiers specified on the @id attribute. DITA defines two fragment-identifier syntaxes; one is the
full fragment-identifier syntax, and the other is an abbreviated fragment-identifier syntax that can be used
when addressing non-topic elements from within the same topic.

Related reference
link (253)

A link is a reference to another DITA topic or a non-DITA resource.

10.3.3 Multimedia elements
The multimedia elements are used to reference audio or video content. The elements in this domain are
modeled on the HTML5 <audio> and <video> elements.

10.3.3.1 <audio>
Audio is sound that the human ear is capable of hearing.

Usage information
The <audio> element is modeled on the HTML5 <audio> element.

An audio resource can be referenced by @href, @keyref, and nested <media-source> elements.

Behaviors such as auto-playing, looping, and muting are determined by attributes. When not specified,
the default behavior is determined by the user agent that is used to present the media.

Comment by Kristen J Eberlein on 22 April 2019

If we keep the above wording, we need to define the term user agent.

DITA TC work product Page 243 of 430

Rendering expectations
When an audio resource cannot be rendered in a meaningful way, processors SHOULD present the
contents of the <fallback> element, if it is present.

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366) and the
attributes defined below.

@autoplay
Specifies whether the resource automatically plays when it is presented. The following values are
recognized: "true", "false", and "-dita-use-conref-target ". The default value is "true".

@controls
Specifies whether the presentation of the resource includes user interface controls. The following
values are recognized: "true", "false", and "-dita-use-conref-target ". The default value is "true".

@format
Specifies the MIME type for the resource. This attribute enables processors to avoid loading
unsupported resources. If @format is not specified and @keyref is specified, the effective type for
the key named by the @keyref attribute is used as the value. If an explicit @format is not specified
on either the <audio> element or key definition, processors can use other means, such the URI file
extension, to determine the effective MIME type of the resource.

@href
Specifies the absolute or relative URI of the audio resource. If @href is specified, specify @format
also.

@keyref
Specifies a key reference to the audio resource.

@loop
Specifies whether the resource loops when played. The following values are recognized: "true",
"false", and "-dita-use-conref-target ". The default value is "true".

@muted
Specifies whether the resource is muted. The following values are recognized: "true", "false", and "-
dita-use-conref-target ". The default value is "true".

@scope
The @scope attribute describes the closeness of the relationship between the current document and
the target resource. Resources in the same information unit are considered "local"; resources in
the same system as the referencing content but not part of the same information unit are considered
"peer"; and resources outside the system, such as Web pages, are considered "external".

@tabindex
Specifies whether the audio resource can be focused and where it participates in sequential
keyboard navigation. See @tabindex in the HTML specification (WHATWG version).

DITA TC work product Page 244 of 430

https://html.spec.whatwg.org/dev/interaction.html#the-tabindex-attribute

Examples
Figure 99: An <audio> element that uses direct addressing

In the following code sample, an audio resource is referenced using direct addressing. The @type
attribute specifies the MIME type of the audio resource.

<audio href="message.mp3" format="audio/mp3"/>

Figure 100: An <audio> element that uses indirect addressing

In the following code sample, the audio resource is addressed using a key reference:

<audio keyref="message"/>

Both the URI and the MIME type are specified on the key definition:

<keydef keys="message" href="message.mp3" format="audio/mp3"/>

Figure 101: An <audio> element with multiple formats

In the following code sample, <media-source> elements are used to specify the different audio formats
that are available.

<audio>
 <media-source href="message.mp3" format="audio/mp3"/>
 <media-source href="message.wav" format="audio/wav"/>
</audio>

Figure 102: Example of a complex <audio> element

The following code sample specifies an audio resource and defines multiple presentational details; it also
provides fallback behavior for when the audio resource cannot be rendered.

<audio autoplay="true"
 controls="true"
 loop="false"
 muted="false">
 <desc>A sound file narrating the performance of this procedure.</desc>
 <fallback>The audio track walking through this procedure is not available.</fallback>
 <!-- Multiple formats, with URI and MIME type referenced using a key -->
 <media-source keyref="walkthrough-mp3"/>
 <media-source keyref="walkthrough-wav"/>
</audio>

10.3.3.2 <media-source>
The media source specifies the location of an audio or video resource.

Usage information
The media source is modeled on the <source> element used in HTML5 media elements.

Rendering expectations
When multiple <media-source> elements are present, the user agent evaluates them in document
order and selects the first resource that can be played.

DITA TC work product Page 245 of 430

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366) and the
attributes defined below.

@format
Specifies the format of the resource being addressed.

@href
Specifies the URI of the media resource.

@keyref
Specifies a key reference to the media resource.

@scope
The @scope attribute describes the closeness of the relationship between the current document and
the target resource. Resources in the same information unit are considered "local"; resources in
the same system as the referencing content but not part of the same information unit are considered
"peer"; and resources outside the system, such as Web pages, are considered "external".

Example
See 10.3.3.1 audio (243) and 10.3.3.4 video (247).

10.3.3.3 <media-track>
Media track settings specify the location of supplemental text-based data for the referenced media, for
example, subtitles or descriptions.

Usage information
The media track settings are modeled on the <track> element used in HTML5 media elements. They
refer to track resources that use Web Video Text Track Format (WebVTT).

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366) and the
attributes defined below.

@format
Specifies the format of the resource being addressed.

@href
Specifies the URI of the track resource.

@keyref
Specifies a key reference to the track resource.

@kind
Specifies the usage for the track resource. This attribute is modeled on the @kind attribute on the
HTML5 <track> element, as described by the HTML specification, WHATWG version. The values
for this attribute are derived from the HTML5 standard:

captions
Transcription or translation of the dialogue, sound effects, relevant musical cues, and other
relevant audio information. This is intended for use when the soundtrack is unavailable, for
example, because it is muted or because the user is hard-of-hearing. This information is
rendered over the video and labeled as appropriate for hard-of-hearing users.

DITA TC work product Page 246 of 430

https://www.w3.org/TR/webvtt1/
https://html.spec.whatwg.org/dev/media.html#dom-TrackList-getKind-categories

chapters
Chapter titles, which are intended to be used for navigating the media resource. The chapter
titles are rendered as an interactive list in the interface for the user agent.

descriptions
Textual descriptions of the video component of the media resource. This is intended for audio
synthesis when the visual component is unavailable, for example, because the user is
interacting with the application without a screen or because the user is blind. Descriptions are
synthesized as separate audio tracks.

metadata
Tracks intended for use from script. This metadata is not displayed by the user agent.

subtitles
Transcription or translation of the dialogue, suitable for when the sound is available but not
understood, for example, because the user does not understand the language of the soundtrack.
Subtitles are rendered over the video.

-dita-use-conref-target
See 10.8.3.4.1 Using the -dita-use-conref-target value (385) for more information.

@scope
The @scope attribute describes the closeness of the relationship between the current document and
the target resource. Resources in the same information unit are considered "local"; resources in
the same system as the referencing content but not part of the same information unit are considered
"peer"; and resources outside the system, such as Web pages, are considered "external".

@srclang
Specifies the language of the track resource.

Example
See 10.3.3.4 video (247).

10.3.3.4 <video>
A video is a recording of moving visual images.

Usage information
The <video> element is modeled on the HTML5 <video> element.

A video resource can be referenced by @href, @keyref, and nested <media-source> elements.

Behaviors such as auto-playing, looping, and muting are determined by attributes. When not specified,
the default behavior is determined by the user agent that is used to present the media.

Rendering expectations
The video resource typically is rendered in the main flow of the content.

Processors SHOULD scale the video resource when values are provided for the @height and @width
attributes. The following expectations apply:

• If a height value is specified and no width value is specified, processors SHOULD scale the width
by the same factor as the height.

• If a width value is specified and no height value is specified, processors SHOULD scale the height
by the same factor as the width.

DITA TC work product Page 247 of 430

• If both a height value and width value are specified, implementations MAY ignore one of the two
values when they are unable to scale to each direction using different factors.

When a video resource cannot be rendered in a meaningful way, processors SHOULD render the
contents of the <fallback> element, if it is present.

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366) and the
attributes defined below.

Comment by rodaande
This list was significantly reworked when the element moved into the base vocabulary; need to validate
that the list is still correct for LwDITA.

@autoplay
Specifies whether the resource automatically plays when it is presented. The following values are
recognized: "true", "false", and "-dita-use-conref-target ". The default value is "true".

@controls
Specifies whether the presentation of the resource includes user interface controls. The following
values are recognized: "true", "false", and "-dita-use-conref-target ". The default value is "true".

@format
Specifies the MIME type for the resource. This attribute enables processors to avoid loading
unsupported resources. If @format is not specified and @keyref is specified, the effective type for
the key named by the @keyref attribute is used as the value. If an explicit @format is not specified
on either the <video> element or key definition, processors can use other means, such the URI file
extension, to determine the effective MIME type of the resource.

@height
Indicates the vertical dimension for the resulting display. The value of this attribute is a real number
(expressed in decimal notation) optionally followed by a unit of measure from the set of cm, em, in,
mm, pc, pt, px, and Q (centimeters, ems, inches, picas, points, pixels, millimeters, and quarter-
millimeters, respectively). The default unit is px (pixels). Possible values include: "5", "5in", and
"10.5cm".

@href
Specifies the absolute or relative URI of the video resource. If @href is specified, specify @format
also.

@keyref
Specifies a key reference to the video resource.

@loop
Specifies whether the resource loops when played. The following values are recognized: "true",
"false", and "-dita-use-conref-target ". The default value is "true".

@muted
Specifies whether the resource is muted. The following values are recognized: "true", "false", and "-
dita-use-conref-target ". The default value is "true".

@poster
Specifies the absolute or relative URI of the image that is rendered before video playback begins.

@posterkeyref
Specifies a key reference for the poster image.

DITA TC work product Page 248 of 430

@scope
The @scope attribute describes the closeness of the relationship between the current document and
the target resource. Resources in the same information unit are considered "local"; resources in
the same system as the referencing content but not part of the same information unit are considered
"peer"; and resources outside the system, such as Web pages, are considered "external".

@tabindex

Comment by rodaande
Need to add the linked version of the HTML spec into our resources.

Specifies whether the video resource can be focused and where it participates in sequential
keyboard navigation. See @tabindex in the HTML specification (WHATWG version).

@width
Indicates the horizontal dimension for the resulting display. The value of this attribute is a real
number (expressed in decimal notation) optionally followed by a unit of measure from the set of cm,
em, in, mm, pc, pt, px, and Q (centimeters, ems, inches, picas, points, pixels, millimeters, and
quarter-millimeters, respectively). The default unit is px (pixels). Possible values include: "5", "5in",
and "10.5cm".

Examples
This section contains examples of how the <video> element can be used.

Figure 103: A <video> element that uses direct addressing

In the following code sample, a video resource is referenced using direct addressing. The @format
attribute specifies the MIME type of the video.

<video href="video.mp4" format="video/mp4"/>

Figure 104: A <video> element that uses indirect addressing

In the following code sample, the video resource is addressed using a key reference:

<video keyref="video"/>

Both the URI and the MIME type are specified on the key definition:

<keydef keys="video" href="video.mp4" format="video/mp4"/>

Figure 105: A <video> element with multiple formats

In the following code sample, <media-source> elements are used to specify the different video formats
that are available.

<video>
 <media-source href="video.mp4" format="video/mp4"/>
 <media-source href="video.ogg" format="video/ogg"/>

DITA TC work product Page 249 of 430

https://html.spec.whatwg.org/#the-tabindex-attribute

 <media-source href="video.webm" format="video/webm"/>
</video>

Figure 106: Example of a <video> element with multiple formats and multilingual subtitles

The following code sample defines multiple presentational details for a video that is available in multiple
formats. The video is referenced using key reference and a fallback image is provided for use when the
video cannot be displayed.

<video height="300px"
 loop="false"
 muted="false"
 poster="demo1-video-poster"
 width="400px">
 <desc>A video illustrating this procedure.</desc>
 <fallback>
 <image href="video-not-available.png">
 <alt>This video cannot be displayed.</alt>
 </image>
 </fallback>
 <!-- Multiple formats, referenced via key. The key definition
 specifies both the URI and the MIME type -->
 <media-source keyref="demo1-video-mp4"/>
 <media-source keyref="demo1-video-ogg"/>
 <media-source keyref="demo1-video-webm"/>
 <!-- Subtitle tracks in English, French and German.
 Each key definition provides a URI and sets type="subtitles". -->
 <media-track srclang="en" keyref="demo1-video-subtitles-en"/>
 <media-track srclang="fr" keyref="demo1-video-subtitles-fr"/>
 <media-track srclang="de" keyref="demo1-video-subtitles-de"/>
</video>

10.3.4 Indexing elements
The indexing elements provide content that a processor can use to generate an index.

10.3.4.1 <index-see>
An <index-see> element directs the reader to an index entry that the reader should use instead of the
current one.

Usage information
There can be multiple <index-see> elements within an <indexterm> element.

Processing expectations
Processors should ignore an <index-see> element if its parent <indexterm> element contains any
<indexterm> children.

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366) and
@keyref (388).

DITA TC work product Page 250 of 430

Examples
This section contains examples of how <index-see> elements can be used.

Figure 107: Use of an <index-see> element

The following code sample shows how an <index-see> element is used to refer readers to the
preferred term:

<indexterm>Carassius auratus
 <index-see>goldfish</index-see>
</indexterm>

This markup will generate an index entry without a page reference.

Figure 108: Use of an <index-see> element to redirect to a multi-level index entry

The following code sample shows how an <index-see> is used to redirect to a multilevel index entry:

<indexterm>feeding goldfish
 <index-see>goldfish
 <indexterm>feeding</indexterm>
 </index-see>
</indexterm>

10.3.4.2 <index-see-also>
An <index-see-also> element directs the reader to an index entry that the reader should use in
addition to the current one.

Usage information
There can be multiple <index-see-also> elements within a single <indexterm> element.

Processing expectations
Processors should ignore an <index-see-also> element if its parent <indexterm> element contains
any <indexterm> children.

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366) and
@keyref (388).

Examples
This section contains examples of how <index-see-also> elements can be used.

Figure 109: Use of an <index-see-also> element

The following code sample shows the use of an <index-see-also> element to generate a "see also"
reference to the index entry for "goldfish".

<indexterm>carp
 <index-see-also>goldfish</index-see-also>
</indexterm>

DITA TC work product Page 251 of 430

This markup generates a primary index entry for "carp" and a redirection that instructs the reader to "see
also goldfish".

Figure 110: Use of an <index-see-also> element to redirect to a multilevel index entry

The following code sample shows the use of an <index-see-also> element to redirect to a multilevel
<indexterm> element:

<indexterm>feeding
 <index-see-also>goldfish
 <indexterm>feeding</indexterm>
 </index-see-also>
</indexterm>

10.3.4.3 <indexterm>
An <indexterm> element contains content that is used to produce an index entry in a generated index.
Nested <indexterm> elements create multi-level indexes.

Rendering expectations
The content of @indexterm entries is not rendered in the flow of body text; it is rendered only as part of
a generated index.

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366), @keyref
(388), and the attributes defined below.

@start
Specifies an identifier that indicates the start of an index range.

@end
Specifies an identifier that indicates the end of an index range.

Examples
This section contains examples of how <indexterm> elements can be used.

Figure 111: Index reference to a point within in a topic

When index entries are placed in the body of a topic, they serve as point references to their location in the
topic.

In the following code sample, the <indexterm> element provides a point reference to the beginning of
the paragraph.

<p><indexterm>databases</indexterm>Databases are used to ...</p>

Figure 112: Index entries within topic prologues or DITA maps

When index entries are located within the <prolog> element in a topic or the <topicmeta> element in
a DITA map, they serve as point references to the start of the topic title.

In the following code sample, the <indexterm> element provides a reference to the topic as a whole;
the generated index entry is associated with the start of the <title> element.

<topic id="about-databases">
 <title>About databases</title>
 <prolog>
 <metadata>

DITA TC work product Page 252 of 430

 <keywords>
 <indexterm>databases</indexterm>
 </keywords>
 </metadata>
 </prolog>
 <body>
 <!-- content... -->
 </body>
</topic>

The effect is the same as if the <indexterm> element had been located in the map:

<map>
 <topicref href="aboutdatabases.dita">
 <topicmeta>
 <keywords>
 <indexterm>databases</indexterm>
 </keywords>
 </topicmeta>
 </topicref>
 <!-- ... -->
</map>

Figure 113: A simple index range

A simple index range will look something like this:

<indexterm start="cheese">cheese</indexterm>
<!-- ... additional content -->
<indexterm end="cheese"/>

This markup will generate a top-level index term for "cheese" that covers a series of pages, such as:

cheese 18-24

Figure 114: A more complex index range

Specifying a range for nested terms is similar. In this sample, the range is specified for the tertiary index
entry "pecorino":

<indexterm>cheese
 <indexterm>sheeps milk
 <indexterm start="level-3-pecorino">pecorino</indexterm>
 </indexterm>
</indexterm>
 <!-- ... additional content ... -->
<indexterm end="level-3-pecorino"/>

10.3.5 Related links elements
Related links are topic-to-topic connections or connections from DITA topics to non-DITA resources.
These embedded references in DITA topics establish dependencies from the topics to the referenced
resources.

10.3.5.1 <link>
A link is a reference to another DITA topic or a non-DITA resource.

Processing expectations
When displayed, links typically are sorted based on their attributes, which define the type or role of the
link target in relation to the current topic.

DITA TC work product Page 253 of 430

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366), Link-
relationship attributes (369), @keyref (388), and 10.8.3.10 The role and otherrole attributes (390).

Example
The following code sample shows a simple collection of links in a DITA topic:

<related-links>
 <link href="covid-19.dita"/>
 <link href="covid-19-testing.dita"/>
 <link format="html" href="covid-19-nc.html">
 <linktext>COVID-19 in North Carolina</linktext>
 </link>
 <link format="html" href="239fh49.html#resources">
 <linktext>Public health resources in Durham, NC</linktext>
 <desc>When you work as a contact tracer, you need to know ...</desc>
 </link>
</related-links>

Related concepts
DITA addressing (73)

DITA provides two addressing mechanisms. DITA addresses either are direct URI-based addresses, or
they are indirect key-based addresses. Within DITA documents, individual elements are addressed by
unique identifiers specified on the @id attribute. DITA defines two fragment-identifier syntaxes; one is the
full fragment-identifier syntax, and the other is an abbreviated fragment-identifier syntax that can be used
when addressing non-topic elements from within the same topic.

Related reference
xref (242)

A cross reference is an inline link. A cross reference can link to a different location within the current topic,
another topic, a specific location in another topic, or an external resource such as a PDF or Web page.

10.3.5.2 <linkinfo>
The <linkinfo> element specifies a paragraph that describes or provides additional information about
the links that are contained in a <linklist> element.

Processing expectations

Comment by Kristen J Eberlein on 01 June 2018

What processing expectations do we have for this element? I'm assuming that we expect processors to
render the content somewhere and probably in a paragraph format, based on the short description.

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366).

DITA TC work product Page 254 of 430

Example
The following code sample shows how the <linkinfo> element provides additional information about
the links related to "Repairing widgets":

<linklist>
 <title>Repairing widgets</title>
 <link href="debug.dita" type="task"/>
 <link href="repair.dita" type="task"/>
 <link href="test.dita" type="task"/>
 <linkinfo>To repair a reciprocating widget,follow the instructions carefully
 and in the specified order.</linkinfo>
</linklist>

10.3.5.3 <linklist>
A link list is an author-ordered group of links.

Usage information
Attributes that are set on the <linklist> element cascade to the contained links.

Rendering expectations
When rendering links, processors MUST preserve the order of links that are specified within <linklist>
elements.

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366), collection-
type (common map attributes) (371), 10.8.3.10 The role and otherrole attributes (390), spectitle
(specialization attributes) (376), and the attributes defined below. This element also uses @format,
@scope, and @type from Link-relationship attributes (369).

@duplicates
Specifies whether duplicate links are removed from a group of links. Duplicate links are links that
address the same resource using the same properties, such as link text and link role. How duplicate
links are determined is processor-specific. The following values are permitted:
yes

Specifies that duplicate links are retained.
no

Specifies that duplicate links are removed.
-dita-use-conref-target

See 10.8.3.4.1 Using the -dita-use-conref-target value (385) for more information.

The suggested processing default is "yes" within <linklist> elements and "no" for other links.

@collection-type
See collection-type (common map attributes) (371) for a full definition and list of supported values.

Example
The following code sample shows how the <linklist> element is used to construct an author-defined
group of links. The @format and @scope attributes are set on the <linklist> element and cascade to
the contained links. The order of links is preserved in the output.

<related-links>
 <linklist format="html" scope="external">

DITA TC work product Page 255 of 430

 <link href="http://www.example.org">
 <linktext>Example 1</linktext>
 </link>
 <link href="http://www.example.com">
 <linktext>Example 2</linktext>
 </link>
 </linklist>
</related-links>

10.3.5.4 <linkpool>
A link pool is a group of links; the order that the links are rendered in the output is determined by the
processor.

Usage information
Attributes that are set on the <linkpool> element cascade to the contained links.

Rendering expectations
The order in which links in a <linkpool> element are rendered is processor-specific. A processor might
order links based on role or type. A processor might move or remove links based on the context; for
example, prerequisite links might be rendered at the beginning of a Web page, or links to the next topic
might be removed if the two topics are rendered on the same page in a PDF. Processors might
automatically sort some links, while others are left ordered as authored.

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366), collection-
type (common map attributes) (371), 10.8.3.10 The role and otherrole attributes (390), and the attributes
defined below. This element also uses @format, @scope, and @type from Link-relationship attributes
(369).

@duplicates
Specifies whether duplicate links are removed from a group of links. Duplicate links are links that
address the same resource using the same properties, such as link text and link role. How duplicate
links are determined is processor-specific. The following values are permitted:

yes
Specifies that duplicate links are retained.

no
Specifies that duplicate links are removed.

-dita-use-conref-target
See 10.8.3.4.1 Using the -dita-use-conref-target value (385) for more information.

The suggested processing default is "yes" within <linklist> elements and "no" for other links.

@collection-type
See collection-type (common map attributes) (371) for a full definition and list of supported values.

Example
The following code sample shows how a <linkpool> element is used to group a set of conceptual
information. The order in which the links are rendered in the output is processor-dependent.

<related-links>
 <linkpool type="concept">
 <link href="czez.dita#czez" role="next"/>

DITA TC work product Page 256 of 430

 <link href="czunder.dita"/>
 <link format="html" href="czover.htm#sqljsupp" role="parent">
 <linktext>Overview of the CZ</linktext>
 </link>
 <link format="html" href="czesqlj.htm#sqljemb">
 <linktext>Working with CZESQLJ</linktext>
 <desc>When you work with CZESQLJ, you need to know...</desc>
 </link>
 </linkpool>
</related-links>

10.3.5.5 <linktext>
Link text is the label for a link or resource.

Usage information
The <linktext> element can provide descriptive text for a link when the target cannot be resolved
during processing, for example, as when the link is to a peer, external, or non-DITA resource. When used
in conjunction with a local DITA resource, the content of the <linktext> is used as a label for the
generated link.

Comment by Kristen J Eberlein on 31 October 2020

Is the above correct and adequately resolves your draft comment from 2018?

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366).

Examples
This section contains examples of how the <linktext> element can be used.

Figure 115: Link text within a topic

The following code sample shows how a <linktext> element can be used within a topic to provide text
for a related link to a non-DITA resource:

<related-links>
 <link href="SQLJ-example.html" format="html" scope="local">
 <linktext>Accessing relational data with SQLJ</linktext>
 </link>
</related-links>

10.3.6 Table elements
DITA topics support two types of tables. The <table> element uses the OASIS Exchange Table Model
(formerly known as the CALS table model). The OASIS table supports the spanning of multiple rows or
columns for special layout or organizational needs, and provides a wide variety of controls over the
display properties of the data and even the table structure itself.

The other table structure in DITA is called <simpletable>. As the name implies, it is structurally less
complex than the OASIS table, and it can be used as a very simple, regular table for which close control
of formatting is not as important. The main advantage of <simpletable> is for describing lists of data
with regular headings, such as telephone directory listings, display adapter configuration data, or API
properties.

DITA TC work product Page 257 of 430

10.3.6.1 <colspec>
A column specifications provides information about a single column in a table from on the OASIS
Exchange Table Model, such as a column name and number, cell content alignment, or a column width.

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366) (without the
Metadata attribute group), @base from the Metadata attributes (366), and the attributes defined below.
This element also uses @align, @char, @charoff, @colsep, @rowsep, and @rowheader from
Complex table attributes (369).

@colnum
Indicates the number of a column in the table, counting from the first logical column to the last
column.

@colname
Specifies a name for the column defined by this element. The <entry> element can use @colname
to refer to the name of this column.

@colwidth
Describes the column width.

Example
See 10.3.6.8 table (262).

10.3.6.2 <entry>
A table entry represents a single cell in a table based on the OASIS Exchange Table Model.

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366) (without the
Metadata attribute group), @base and @rev from the Metadata attributes (366), and the attributes
defined below. This element also uses @align, @char, @charoff, @colsep, @rowsep, and @valign
from the Complex table attributes (369).

@rotate
Specifies whether the contents of the entry is rotated. Supported values are:

1
The contents of the cell are rotated 90 degrees counterclockwise.

0
No rotation occurs.

-dita-use-conref-target
See 10.8.3.4.1 Using the -dita-use-conref-target value (385) for more information.

If this attribute is not specified, no rotation occurs. In situations where a stylesheet or other formatting
mechanism specifies table cell orientation, the @rotate attribute can be ignored.

@colname
Specifies the column name in which an entry is found. The value is a reference to the @colname
attribute on the <colspec> element.

@namest
Specifies the first logical column that is included in a horizontal span. The value is a reference to the
@colname attribute on the <colspec> element.

DITA TC work product Page 258 of 430

@nameend
Specifies the last logical column that is included in a horizontal span. The value is a reference to the
@colname attribute on the <colspec> element.

@morerows
Specifies the number of additional rows to add in a vertical span.

@scope
Specifies that the current entry is a header for other table entries. Allowable values are:

row
The current entry is a header for all cells in the row.

col
The current entry is a header for all cells in the column.

rowgroup
The current entry is a header for all cells in the rows spanned by this entry.

colgroup
The current entry is a header for all cells in the columns spanned by this entry.

-dita-use-conref-target
See 10.8.3.4.1 Using the -dita-use-conref-target value (385) for more information.

@headers
Specifies one or more <entry> headers that apply to the current entry. The @headers attribute
contains an unordered set of unique space-separated tokens, each of which is an ID reference of an
entry from the same table.

Example
See 10.3.6.8 table (262).

10.3.6.3 <row>
A table row is a single row in a table based on the OASIS Exchange Table Model.

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366), along with
@rowsep and @valign from Complex table attributes (369).

Example
See 10.3.6.8 table (262).

10.3.6.4 <simpletable>
Simple tables are a basic tabular environment to present organized content.

Usage information
Choose the <simpletable> element when control of tabular formatting is not as important.
<simpletable> is designed for closer compatibility with HTML5 tables. For example, multi-column
tabular data such as phone directory listings or parts lists are good candidates for <simpletable>.
Another good use of <simpletable> is for information that seems to beg for a three-part definition list;
the @keycol attribute can be used to indicate which column represents the "key" or term-like column of
the structure.

DITA TC work product Page 259 of 430

The @keycol attribute indicates which column represents the "key" or term-like column of the structure.

The close match of <simpletable> to tabular, regular data makes <simpletable> suitable as the
basis for specialized structures such as <properties> (for programming information) and choice tables
(for tasks).

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366), Display
attributes (369), Simpletable attributes (369), and spectitle (specialization attributes) (376).

Examples
Figure 116: Example of a simple table

The following code sample shows a simple table that is used to represent a truth table from Boolean
logic:

<simpletable>
 <sthead>
 <stentry>P</stentry>
 <stentry>not P</stentry>
 </sthead>
 <strow>
 <stentry>true</stentry>
 <stentry>false</stentry>
 </strow>
 <strow>
 <stentry>false</stentry>
 <stentry>true</stentry>
 </strow>
</simpletable>

Figure 117: Example with column and row spanning

The following code sample shows a simple table that tracks meals:

<simpletable>
 <title>Food log for Wednesday</title>
 <sthead>
 <stentry>Meal</stentry>
 <stentry>Food</stentry>
 </sthead>
 <strow>
 <stentry colspan="2">Fasting period</stentry>
 </strow>
 <strow>
 <stentry>Lunch</stentry>
 <stentry rowspan="2">Pasta</stentry>
 </strow>
 <strow>
 <stentry>Dinner</stentry>
 </strow>
</simpletable>

Figure 118: Example using @keycol

The following code sample shows how the @keycol attribute can be used. The value of the @keycol
attribute specifies that the first column is the header column. This indicates that items in the first column
are headers for the row. Rendering of the header column is left up to the implementation.

<simpletable keycol="1">
 <sthead>
 <stentry>Term</stentry>
 <stentry>Categorization</stentry>

DITA TC work product Page 260 of 430

 <stentry>Definition</stentry>
 </sthead>
 <strow>
 <stentry>Widget</stentry>
 <stentry>noun</stentry>
 <stentry>Thing that is used for something</stentry>
 </strow>
 <strow>
 <stentry>Frustration</stentry>
 <stentry>noun</stentry>
 <stentry>What you feel when you drop the widget</stentry>
 </strow>
</simpletable>

10.3.6.5 <stentry>
A simple table entry represents a single cell within a simple table.

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366), specentry
(specialization attributes) (376), and the attributes defined below.

@colspan
Specifies the number of columns that a cell is to span inside a simple table.

@rowspan
Specifies the number of rows that a cells is to span inside a simple table.

@scope
Specifies that the current entry is a header for other table entries. Allowable values are:

row
The current entry is a header for all cells in the row.

col
The current entry is a header for all cells in the column.

rowgroup
The current entry is a header for all cells in the rows spanned by this entry.

colgroup
The current entry is a header for all cells in the columns spanned by this entry.

-dita-use-conref-target
See 10.8.3.4.1 Using the -dita-use-conref-target value (385) for more information.

@headers
Specifies one or more <entry> headers that apply to the current entry. The @headers attribute
contains an unordered set of unique space-separated tokens, each of which is an ID reference of an
entry from the same table.

Example
See 10.3.6.4 simpletable (259).

10.3.6.6 <sthead>
A simple table header is an optional header row for a simple table.

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366).

DITA TC work product Page 261 of 430

Example
See 10.3.6.4 simpletable (259).

10.3.6.7 <strow>
A simple table row is a single row in a simple table.

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366).

Example
See 10.3.6.4 simpletable (259).

10.3.6.8 <table>
A table based on the OASIS Exchange Table Model organizes arbitrarily complex relationships of tabular
information. This standard table markup allows column or row spanning and table captions or
descriptions.

Usage information
The DITA table is based on the OASIS Exchange Table Model, augmented with DITA attributes that
enable it for accessibility, specialization, conref, and other DITA processing. An optional <title> inside
the <table> element provides a caption to describe the table. In addition, the optional <desc> element
enables table description that is parallel with figure description.

See 10.3.6.4 simpletable (259) for a simplified table model that is closer to the HTML5 table model, and
can be specialized to represent more regular relationships of data.

In DITA tables, in place of the @expanse attribute used by other DITA elements, the @pgwide attribute is
used in order to conform to the OASIS Exchange Table Model. The @pgwide attribute has a similar
semantic ("1"=page width; "0"=resize to galley or column).

Note The @scale attribute represents a stylistic markup property that is currently maintained in
tables for legacy purposes. External stylesheets should enable less dependency on this
attribute. Use the @scale attribute judiciously.

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366), @frame and
@scale from Display attributes (369), and the attributes defined below. This element also uses
@colsep, @rowsep, and @rowheader from Complex table attributes (369).

Comment by Robert
Looking for consistency on orient, pgwide, and entry/@rotate. Should they mention "not enforced by
dtd / rng"? Should they say "Supported values" (seems to imply "processors MUST support at least
these") or "Allowed values" (implies no other values are legal)?

@orient
Specifies the orientation of the table in page-based outputs. This attribute is primarily useful for print-
oriented display. Allowable values are:

port
The same orientation as the text flow.

DITA TC work product Page 262 of 430

land
90 degrees counterclockwise from the text flow.

-dita-use-conref-target
See 10.8.3.4.1 Using the -dita-use-conref-target value (385) for more information.

In situations where a stylesheet or other formatting mechanism specifies table orientation based on
other criteria, or for non-paginated outputs, the @orient attribute can be ignored.

@pgwide
Specifies the horizontal placement of the element. Supported values are 1 and 0, although these are
not mandated by the DTD or RNG grammar files.

For print-oriented display, the value "1" places the element on the left page margin; "0" aligns the
element with the left margin of the current text line and takes indention into account.

Example
Figure 119: DITA source

The following code sample shows a table that is used to provide reference information about animals and
gestation:

<table>
<tgroup cols="2">
<colspec colwidth="121*"/>
<colspec colwidth="76*"/>
<thead>
<row>
<entry colname="COLSPEC0" valign="top">Animal</entry>
<entry colname="COLSPEC1" valign="top">Gestation</entry>
</row>
</thead>
<tbody>
<row>
<entry>Elephant (African and Asian)</entry>
<entry>19-22 months</entry>
</row>
<row>
<entry>Giraffe</entry>
<entry>15 months</entry>
</row>
<row>
<entry>Rhinoceros</entry>
<entry>14-16 months</entry>
</row>
<row>
<entry>Hippopotamus</entry>
<entry>7 1/2 months</entry>
</row>
</tbody>
</tgroup>
</table>

The formatted output might be displayed as follows:

Animal Gestation

Elephant (African and Asian) 19-22 months

Giraffe 15 months

Rhinoceros 14-16 months

Hippopotamus 7 1/2 months

DITA TC work product Page 263 of 430

In this example, the use of the <thead> element for the header allows processors or screen readers to
identify a header relationship between any cell in the table body and the matching header cell above that
column.

Example: Complex table with implied accessibility markup

Comment by Robert
Discussed with Kris October 5 2020: would be good to have a section on accessibility in the
architectural spec; if that is created, some of these examples might be better placed there.

In the following example, the table uses <thead> to identify header rows and @rowheader to identify a
header column. This header relationship can be used to automatically create renderings of the table in
other formats, such as HTML, that can be navigated using a screen reader or other assistive technology.

Figure 120: DITA source

<table frame="all" rowheader="firstcol">
 <title>Sample of automated table accessibility</title>
<desc>Names are listed in the column c1. Points are listed in both data columns, with
expected points in column c2 and actual points in column c3.</desc>
 <tgroup cols="3">
 <colspec colname="c1"/>
 <colspec colname="c2"/>
 <colspec colname="c3"/>
 <thead>
 <row>
 <entry morerows="1">Name</entry>
 <entry namest="c2" nameend="c3">points</entry>
 </row>
 <row>
 <entry>expected</entry>
 <entry>actual</entry>
 </row>
 </thead>
 <tbody>
 <row>
 <entry>Mark</entry>
 <entry>10,000</entry>
 <entry>11,123.45</entry>
 </row>
 <row>
 <entry>Peter</entry>
 <entry>9,000</entry>
 <entry>11,012.34</entry>
 </row>
 <row>
 <entry>Cindy</entry>
 <entry>10,000</entry>
 <entry>10,987.64</entry>
 </row>
 </tbody>
 </tgroup>
</table>

In this sample, navigation information for assistive technology is derived from two sources:

• The <thead> element contains two rows, and indicates that each <entry> in those rows is a
header cell for that column. This means that each body cell can be associated with the header cell
or cells above the column. For example, in the second body row, the entry "Peter" can be
associated with the header "Name"; similarly, the entry "9,000" can be associated with the
headers "expected" and "points".

• The @rowheader attribute implies that the first column plays a similar roll as a header. This
means that each body cell in columns two and three can be associated with the header cell in
column one. For example, in the second body row, the entry "9,000" can be associated with the
header "Peter".

DITA TC work product Page 264 of 430

As a result of these two sets of headers, a rendering of the table can associate the entry "9,000" with
three headers: "Peter", "expected", and "points", making it fully navigable by a screen reader or other
assistive technology.

The formatted output might be displayed as follows:

Table 4: Sample of automated table accessibility

Names are listed in the column c1. Points are listed in both data columns, with expected points in column
c2 and actual points in column c3.

Name points

expected actual

Mark 10,000 11,123.45

Peter 9,000 11,012.34

Cindy 10,000 10,987.64

Complex table with some manually specified accessibility markup
In some complex tables, the <thead> element and @rowheader attribute might not be enough to
support all accessibility needs. Assume that the table above is flipped so that the names are listed across
the top row, instead of in the first column, as follows:

Table 5: Sample with two header columns

Name Mark Peter Cindy

points expected 10,000 9,000 10,000

actual 11,123.45 11,012.34 10,987.64

In this case the @rowheader attribute cannot be used, because it is only able to specify the first column
as a header column. In this case, the @scope attribute can be used to indicate that entries in the first and
second columns function as headers for the entire row (or row group, in the case of a cell that spans
more than one row). The following code sample demonstrates the use of @scope to facilitate navigation
of these rows by a screen reader or other assistive technology; note that the <thead> element is still
used to imply a header relationship with the names at the top of each column.

<table frame="all">
 <title>Sample with two header columns</title>
 <tgroup cols="5">
 <colspec colname="c1"/>
 <colspec colname="c2"/>
 <colspec colname="c3"/>
 <colspec colname="c4"/>
 <colspec colname="c5"/>
 <thead>
 <row>
 <entry namest="c1" nameend="c2">Name</entry>
 <entry>Mark</entry>
 <entry>Peter</entry>
 <entry>Cindy</entry>
 </row>
 </thead>
 <tbody>
 <row>
 <entry morerows="1" scope="rowgroup">points</entry>
 <entry scope="row">expected</entry>
 <entry>10,000</entry>
 <entry>9,000</entry>
 <entry>10,000</entry>

DITA TC work product Page 265 of 430

 </row>
 <row>
 <entry scope="row">actual</entry>
 <entry>11,123.45</entry>
 <entry>11,012.34</entry>
 <entry>10,987.64</entry>
 </row>
 </tbody>
 </tgroup>
</table>

Example: complex table with manual accessibility markup
In extremely complex tables, such as those with a single header cell in the middle of the table, extremely
fine grained accessibility controls are available to explicitly associate any content cell with any header
cell. This might also be useful for cases where processors do not support the implied accessibility
relationships described above.

In the following sample, header cells are identified using the @id attribute, which is referenced using the
@headers attribute on appropriate content cells. This makes all header relationships in the table explicit.
Note that this sample ignores the @scope attribute, which could be used to exercise manual control
without setting as many attribute values; it also ignores the fact that <thead> creates a header
relationship even when the @id and @headers attributes are not used.

Figure 121: DITA source

<table frame="all">
 <title>Sample with fully manual accessibility control</title>
<desc>Names are listed in the column c1. Points are listed in both data columns, with
expected points in column c2 and actual points in column c3.</desc>
 <tgroup cols="3">
 <colspec colname="c1"/>
 <colspec colname="c2"/>
 <colspec colname="c3"/>
 <thead>
 <row>
 <entry morerows="1"> </entry>
 <entry namest="c2" nameend="c3" id="pts">points</entry>
 </row>
 <row>
 <entry id="exp" headers="pts">expected</entry>
 <entry id="act" headers="pts">actual</entry>
 </row>
 </thead>
 <tbody>
 <row>
 <entry id="name1">Mark</entry>
 <entry headers="name1 exp pts">10,000</entry>
 <entry headers="name1 act pts">11,123.45</entry>
 </row>
 <row>
 <entry id="name2">Peter</entry>
 <entry headers="name2 exp pts">9,000</entry>
 <entry headers="name2 act pts">11,012.34</entry>
 </row>
 <row>
 <entry id="name3">Cindy</entry>
 <entry headers="name3 exp pts">10,000</entry>
 <entry headers="name3 act pts">10,987.64</entry>
 </row>
 </tbody>
 </tgroup>
</table>

The formatted output might be displayed as follows:

DITA TC work product Page 266 of 430

Table 6: Sample with fully manual accessibility control

Names are listed in the column c1. Points are listed in both data columns, with expected points in column
c2 and actual points in column c3.

points

expected actual

Mark 10,000 11,123.45

Peter 9,000 11,012.34

Cindy 10,000 10,987.64

10.3.6.9 <tbody>
A table body is a group of rows in a table based on the OASIS Exchange Table Model.

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366) and
@valign from Complex table attributes (369).

Example
See 10.3.6.8 table (262).

10.3.6.10 <tgroup>
A table group is a grouping of a table header and table body, based on the OASIS Exchange Table
Model.

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366) and the
attribute defined below. This element also uses @colsep, @rowsep, and @align from Complex table
attributes (369).

@cols (REQUIRED)
Indicates the number of columns in a <tgroup>.

Example
See 10.3.6.8 table (262).

10.3.6.11 <thead>
A table header contains one or more header rows in a table based on the OASIS Exchange Table Model.

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366) and
@valign from Complex table attributes (369).

Example
See 10.3.6.8 table (262).

DITA TC work product Page 267 of 430

10.4 Map elements
Map elements include the core components of DITA maps, such as <topicref> and <reltable>, as
well as general purpose map specializations in the map group domain.

10.4.1 Basic map elements
DITA maps are built from a few core elements that are used for referencing and organizing topics. The
<topicmeta> element is also available to specify metadata for the map, for individual topics, or for
groups of topics. Many elements inside <topicmeta> are also available inside the topic prolog.

10.4.1.1 <map>
A DITA map is the mechanism for aggregating topic references and defining a context for those
references. It contains references to topics, maps, and other resources; these references are organized
into hierarchies, groups, and tables.

Usage information
A map describes the relationships among a set of DITA topics. The following are types of relationships
that can be described in a map:

Hierarchical
Nested topics create a hierarchical relationship. The topic that does the nesting is the parent, and the
topics that are nested are the children.

Ordered
Child topics can be labeled as having an ordered relationship, which means they are referenced in a
definite sequence.

Family
Child topics can be labeled as having a family relationship, which means they all refer to each other.

Rendering expectations
When rendering a map, processors might make use of the relationships defined in the map to create a
Table of Contents (TOC), aggregate topics into a PDF document, or create links between topics in the
output.

The <title> element can be used to provide a title for the map. In some scenarios the title is purely
informational; it is present only as an aid to the author. In other scenarios, the title might be useful or even
required. In a map referenced by another map, the title might be discarded as topics from the submap are
aggregated into a larger publication.

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366) (with a
narrowed definition of @id, given below), Common map attributes (369), Architectural attributes (369),
and the attributes defined below. This element also uses @type, @scope, and @format from Link-
relationship attributes (369).

@anchorref
Identifies a location within another map document where this map will be anchored. Resolution of the
map is deferred until the final step in the delivery of any rendered content. For example,
anchorref="map1.ditamap#a1" allows the map with @anchorref to be pulled into the location
of the anchor point "a1" inside map1.ditamap when map1.ditamap is rendered for delivery.

DITA TC work product Page 268 of 430

@id
Allows an ID to be specified for the map. Note that maps do not require IDs (unlike topics), and the
map ID is not included in references to elements within a map. This attribute is defined with the XML
Data Type ID.

Example
The following code sample contains six <topicref> elements. The <topicref> elements are nested
and have a hierarchical relationship. The file bats.dita is the parent topic and the other topics are its
children. The hierarchy could be used to generate a PDF, a navigation pane in an information center, a
summary of the topics, or related links between the parent topic and its children.

<map id="mybats">
 <title>Bats</title>
 <topicref href="bats.dita">
 <topicref href="batcaring.dita"/>
 <topicref href="batfeeding.dita"/>
 <topicref href="batsonar.dita"/>
 <topicref href="batguano.dita"/>
 <topicref href="bathistory.dita"/>
 </topicref>
</map>

10.4.1.2 <topicref>
A topic reference is the mechanism for referencing a topic (or another resource) from a DITA map. It can
nest, which enables the expression of navigation and table-of-content hierarchies, as well as containment
hierarchies and parent-child relationships.

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366), Link-
relationship attributes (369) (with a narrowed definition of @href, given below), Common map attributes
(369), Topicref-element attributes (369), @keys (389), and @keyref (388).

@href
Points to the resource that is represented by the <topicref>. See 10.8.3.6 The href attribute (387)
for detailed information on supported values and processing implications. References to DITA
content cannot be below the topic level: that is, you cannot reference individual elements inside a
topic. References to content other than DITA topics should use the @format attribute to identify the
kind of resource being referenced.

Example
Figure 122: Common map hierarchy using <topicref> elements

The following code sample shows a simple map that organizes several topics about the software product
Example Tool Builder. The <topicref> that refers to setup.dita uses the @collection-type
attribute to indicate that the order of three sub-topics in that section is important.

<map>
 <title>Example Tool Builder version 1.2.3</title>
 <topicref href="setup.dita" collection-type="sequence">
 <topicref href="prerequisites.dita"/>
 <topicref href="installing.dita"/>
 <topicref href="validating.dita"/>
 </topicref>
 <topicref href="everyday-use.dita">
 <!-- ... -->
 </topicref>
 <topicref href="troubleshooting.dita">

DITA TC work product Page 269 of 430

 <!-- ... -->
 </topicref>
</map>

10.4.1.3 <topicmeta>
Topic metadata is metadata that applies to a topic based on its context in a map.

Usage information
The metadata specified in a <topicmeta> element is specific to a given context within a map. If a
reference to a single resource appears more than once in a map or set of maps, unique metadata can be
specified in each instance. For example, when the parent <topicref> element results in a link,
elements within the <topicmeta> element can be used to provide context-specific information about the
link, such as link text, a short description, or a navigation title.

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366).

Example
The following example shows how the <topicmeta> element can contain a metadata element:

<map>
 <title>Indexing elements</title>
 <topicref href=indexing.dita">
 <topicmeta>
 <audience>Indexing specialists</audience>
 </topicmeta>
 <!-- Adding topic references -->
 </topicref>
</map>

The <audience> element indicates that the topic (and its child topics) are of interest to the indexing
specialists within the company.

Related concepts
Cascading of metadata attributes in a DITA map (49)

Certain map-level attributes cascade throughout a map, which facilitates attribute and metadata
management. When attributes cascade, they apply to the elements that are children of the element where
the attributes were specified. Cascading applies to a containment hierarchy, as opposed to a element-
type hierarchy.

Related reference
Reconciling topic and map metadata elements (52)

DITA TC work product Page 270 of 430

The <topicmeta> element in maps contains numerous elements that can be used to declare metadata.
These metadata elements have an effect on the parent <topicref> element, any child <topicref>
elements, and – if a direct child of the <map> element – on the map as a whole.

<anchor>
An anchor within a map is an integration point that another map can reference in order to insert its
navigation into the referenced map's navigation tree.

Usage information
The <anchor> element is typically used to allow integration of run-time components. For build-time
integration, you can use a <topicref> element to reference another map, or use the @conref or
@conkeyref attribute on an element inside the map.

Processing expectations
The mechanism by which map processors discover maps to be anchored is processor specific.

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366) (with a
narrowed definition of @id, given below).

@id (REQUIRED)
Provides an integration point that another map can reference in order to insert its navigation into the
current navigation tree. The @anchorref attribute on a map can be used to reference this attribute.
See 6.1 ID attribute (73) for more details.

Example
The following code sample shows how a map creates an <anchor> element with an @id attribute set to
"a1".
Figure 123: DITA map that contains an anchor

<map>
 <title>MyComponent tasks</title>
 <topicref href="start.dita" toc="yes">
 <navref mapref="othermap2.ditamap"/>
 <navref mapref="othermap3.ditamap"/>
 <anchor id="a1"/>
 </topicref>
</map>

The @id on an <anchor> element can be referenced by the @anchorref attribute on another map's
<map> element. For example, the map to be integrated at that spot could be defined as follows.

Figure 124: DITA map that references an anchor

<map anchorref="map1.ditamap#a1">
 <title>This map is can be rendered at the "a1" anchor
 in the MyComponent task map</title>
 <!-- ... -->
</map>

DITA TC work product Page 271 of 430

10.4.1.5 <navref>
A navigation reference is a reference to another map which is preserved as a transcluding link in the
result deliverable rather than resolved when the deliverable is produced. Output formats that support such
linking can integrate the referenced resource when displaying the referencing map to an end user.

Usage information
The <navref> element is intended as a reference to a navigation resource that can be resolved at
rendering time. It allows for maps to be published into a help system where the referenced navigation is
published independently (or may not be avilable at all). If available, the referenced navigation can then be
resolved at render time within a help system.

In order to include another map directly without depending on the output format or help system, use a
<topicref> element with the @format attribute set to ditamap. The effect is similar to using a
@conref attribute. For example, the following markup represents a literal inclusion of the map
other.ditamap:

<topicref href="other.ditamap" format="ditamap"/>

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366) and the
attribute defined below.

@mapref
Specifies the URI of the map file or non-DITA resource to be referenced. It might reference a DITA
map or a resource that is appropriate for a target help system. For example, it could reference an
XML TOC file for use with Eclipse help.

Example
In the following code sample, the map titled "MyComponent tasks" references the maps
othermap2.ditamap and othermap3.ditamap.

<map title="MyComponent tasks">
 <navref mapref="../com.example.plugin.xml.doc/othermap1.ditamap"/>
 <navref mapref="../com.example.plugin.xml.doc/othermap2.ditamap"/>
</map>

10.4.1.6 <reltable>
A relationship table is a mechanism that creates among topics, based on the familiar table model of rows,
columns, and cells.

Usage information
Each column in a relationship table typically represents a specific role in a set of relationships. For
example, a frequently-used type of relationship table uses the first column to contain references to tasks,
while the second and third columns reference concept and reference topics. The relationship table rows
define relationships between the resources referenced in different cells of the same row; in this example,
each row establishes relationships between tasks and the concept and reference topics that support the
tasks. When used in this manner, relationship tables make it easy to determine where related information
is missing or undefined.

DITA TC work product Page 272 of 430

Relationship tables can be used in conjunction with hierarchies and groups to manage all the related links
in an information set.

When a title is associated with a relationship table, the title typically is used as an authoring convenience
and is not displayed in generated publications.

Processing expectations
By default, the contents of a <reltable> element are not output for navigation or TOC purposes; they
are used only to define relationships that can be expressed as topic-to-topic links. The <relcell>
elements can contain <topicref> elements, which are then related to other <topicref> elements in
the same row (although not necessarily in the same cell).

Within a map tree, the effective relationship table is the union of all relationship tables in the map.

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366), Common
map attributes (369) (without @keyscope or @collection-type, and with a narrowed definition of
@toc, given below), and the attributes defined below. This element also uses @type, @scope, and
@format from Link-relationship attributes (369).

@toc
Specifies whether the resource appears in the table of contents (TOC). If the value is not specified
locally, but is specified on an ancestor, the value cascades from the closest containing element. By
default, the value for @toc is set to "no". See Common map attributes (369) for a complete definition
of @toc.

@title
An identifying title for this element.

Example
In this example, a relationship table is defined with three columns; one for "concept", one for "task", and
one for "reference". Three cells are defined within one row. The first cell contains one concept topic:
about-MyDevice.dita. The second cell contains two task topics: setting-up-MyDevice.dita and
operating-MyDevice.dita. The third cell contains two reference topics: MyDevice-
settings.dita and MyDevice-version-info.dita.

<map>
 <reltable>
 <relheader>
 <relcolspec type="concept"/>
 <relcolspec type="task"/>
 <relcolspec type="reference"/>
 </relheader>
 <relrow>
 <relcell>
 <topicref href="about-MyDevice.dita"/>
 </relcell>
 <relcell>
 <topicref href="setting-up-MyDevice.dita"/>
 <topicref href="operating-MyDevice.dita"/>
 </relcell>
 <relcell>
 <topicref href="MyDevice-settings.dita"/>
 <topicref href="MyDevice-version-info.dita"/>
 </relcell>
 </relrow>
 </reltable>
</map>

DITA TC work product Page 273 of 430

A graphical version of the relationship table in an editor might look like this:

type="concept" type="task" type="reference"

about-MyDevice.dita setting-up-MyDevice.dita
operating-MyDevice.dita

MyDevice-settings.dita
MyDevice-version-info.dita

On output, links should be added to topics that are in the same row, but not in the same cell. This allows
simple maintenance of parallel relationships: for example, in this case, setting-up-MyDevice.dita
and operating-MyDevice.dita are two tasks that require the same supporting information (concept
and reference topics) but might otherwise be unrelated. When topics in the same cell are in fact related,
the cell's @collection-type attribute can be set to family. If some cells or columns are intended solely
as supporting information and should not link back to topics in other cells, you can set the @linking
attribute on the <relcell> or <relcolspec> to "targetonly".

In this example, the related links would be as follows:

about-MyDevice.dita
setting-up-MyDevice.dita, operating-MyDevice.dita, MyDevice-settings.dita,
MyDevice-version-info.dita

setting-up-MyDevice.dita
about-MyDevice.dita, MyDevice-settings.dita, MyDevice-version-info.dita

operating-MyDevice.dita
about-MyDevice.dita, MyDevice-settings.dita, MyDevice-version-info.dita

MyDevice-settings.dita
about-MyDevice.dita, setting-up-MyDevice.dita, operating-MyDevice.dita

MyDevice-version-info.dita
about-MyDevice.dita, setting-up-MyDevice.dita, operating-MyDevice.dita

Although such tables can initially take some time to learn and manipulate, they are inherently an efficient
way to manage these links. In particular, they increase the prospect for reuse among topics, because
those topics do not contain context-specific links. A relationship table also makes it easy to see and
manage patterns; for example, the fact that operating-MyDevice.dita and setting-up-
MyDevice.dita have the same relationships to supporting information is clear from the table, but would
require some comparison and counting to determine from the list summary just before this paragraph.

10.4.1.7 <relrow>
A row in a relationship table creates a relationship between the cells in that row, which is expressed in
output as links between the topics or resources referenced in those cells.

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366).

Example
See 10.4.1.6 reltable (272).

10.4.1.8 <relcell>
A relationship table cell is a group of one or more topic references that are related to topic references in
other cells of the same row. A relationship table cell does not imply a relationship between topics or

DITA TC work product Page 274 of 430

resources that are referenced in the same cell, unless the @collection-type attribute cell indicates
that they are related.

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366) and
Common map attributes (369) (without @keyscope). This element also uses @type, @scope, and
@format from Link-relationship attributes (369).

Example
See 10.4.1.6 reltable (272).

10.4.1.9 <relheader>
A relationship table header row is a group of column definitions for a relationship table.

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366).

Example
See 10.4.1.6 reltable (272).

10.4.1.10 <relcolspec>
A relationship table column specification provides default attribute values for references in a single
column of a relationship table.

Usage information
You can use the <relcolspec> element to set default values for the attributes of the topics that are
referenced in the column. For example, when you set the @type attribute to "concept," all <topicref>
elements in the column that do not have a @type attribute specified are treated as concepts.

Adding a <topicref> element to the <relcolspec> element defines a relationship between the topic
(or topics) contained within the <relcolspec> element and the topics that are referenced in the column
of the relationship table. Note that this does not define a relationship between two cells in the same
column; the only new relationship is between <topicref> targets in a <relcell> and <topicref>
targets in that column's <relcolspec>.

Rendering expectations
When a <title> element exists inside of the <relcolspec> element, the content of the <title>
element is intended to be used as the label for the related links that are defined and generated by the
column. If the <title> element is not present, the labels for the related links are generated in the
following ways:

• If the <relcolspec> element contains a <topicref> element that specifies a navigation title,
that navigation title is used for the label.

• If the <relcolspec> element contains a <topicref> element that does not specify a
navigation title but does reference a DITA topic, the label is derived from the navigation title of the
referenced topic or, lacking that, the title of the topic.

DITA TC work product Page 275 of 430

• If no title is specified and no <topicref> is present in the <relcolspec>, a rendering tool
might choose to generate a title for the links generated from that column.

Processing expectations
When values are specified for attributes of <relcell> or <relrow> elements, those values are
inherited before those defined for <relcolspec> attributes. Values specified for attributes of
<relcolspec> elements are inherited before those defined for the <reltable> element.

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366) and
Common map attributes (369) (without @keyscope or @collection-type). This element also uses
@type, @scope, and @format from Link-relationship attributes (369).

Example
The following section shows how a simple relationship table uses column specifications to validate topic
types.

Figure 125: Enforcing concept, type, and reference types with <relcolspec>

The following code sample shows how a relationship table groups relationships between concepts, tasks,
and references. Three cells are defined within one row. The first cell contains one concept topic:
puffins.dita. The second cell contains two task topics: puffinFeeding.dita and
puffinCleaning.dita. The third cell contains a reference topic: puffinHistory.dita. Setting the
@type on each column allows (but does not require) processors to validate that the topics in each column
are of the expected type.

<map>
 <reltable>
 <relheader>
 <relcolspec type="concept"/>
 <relcolspec type="task"/>
 <relcolspec type="reference"/>
 </relheader>
 <relrow>
 <relcell><topicref href="puffins.dita"/></relcell>
 <relcell>
 <topicref href="puffinFeeding.dita"/>
 <topicref href="puffinCleaning.dita"/>
 </relcell>
 <relcell>
 <topicref href="puffinHistory.dita"/>
 </relcell>
 </relrow>
 </reltable>
</map>

The following section shows how relationship table columns can reference topics and specify titles for use
when generating groups of links.

Figure 126: Relationship table column headers with topics and titles

The following code sample shows how topics and titles can be specified in a relationship table column
header.

<reltable>
 <relheader>
 <relcolspec type="task">
 <topicref href="tbs.dita">
 <topicmeta><navtitle>Troubleshooting</navtitle></topicmeta>

DITA TC work product Page 276 of 430

 </topicref>
 </relcolspec>
 <relcolspec type="reference">
 <topicref href="msg.dita">
 <topicmeta><navtitle>Messages</navtitle></topicmeta>
 </topicref>
 </relcolspec>
 </relheader>
 <relrow>
 <relcell>
 <topicref href="debug_login.dita"/>
 <topicmeta><linktitle>Debugging login errors</linktitle></topicmeta>
 </topicref>
 </relcell>
 <relcell>
 <topicref href="login_error_1.dita">
 <topicmeta><linktitle>Login not found</linktitle></topicmeta>
 </topicref>
 </relcell>
 </relrow>
 <relrow>
 <relcell>
 <topicref href="checking_access.dita">
 <topicmeta><linktitle>Checking access controls</linktitle></topicmeta>
 </topicref>
 </relcell>
 <relcell>
 <topicref href="login_error_2.dita">
 <topicmeta><linktitle>Login not allowed</linktitle></topicmeta>
 </topicref>
 </relcell>
 </relrow>
</reltable>

In addition to the relationships defined by the rows in the relationship table, the following relationships are
now defined by the columns in the relationship table:

• tbs.dita <–> debug_login.dita
• tbs.dita <–> checking_access.dita
• msg.dita <–> login_error_1.dita
• msg.dita <–> login_error_2.dita

Ignoring the headers for a moment, the <reltable> here would ordinarily define a two-way relationship
between debug_login.dita and login_error1.dita. This will typically be expressed as a link from
each to the other. An application might render the link with a language-appropriate heading such as
"Related reference", indicating that the target of the link is a reference topic.

The headers change this by specifying a new title. In the second column, the <topicref> specifies a
title of "Messages", which should now be used together with the link to anything in that column. So, a
generated link from debug_login.dita to login_error1.dita should be rendered together with the
title of "Messages". How this is rendered together with the link is up to the application.

<anchor>
An anchor within a map is an integration point that another map can reference in order to insert its
navigation into the referenced map's navigation tree.

Usage information
The <anchor> element is typically used to allow integration of run-time components. For build-time
integration, you can use a <topicref> element to reference another map, or use the @conref or
@conkeyref attribute on an element inside the map.

DITA TC work product Page 277 of 430

Processing expectations
The mechanism by which map processors discover maps to be anchored is processor specific.

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366) (with a
narrowed definition of @id, given below).

@id (REQUIRED)
Provides an integration point that another map can reference in order to insert its navigation into the
current navigation tree. The @anchorref attribute on a map can be used to reference this attribute.
See 6.1 ID attribute (73) for more details.

Example
The following code sample shows how a map creates an <anchor> element with an @id attribute set to
"a1".
Figure 127: DITA map that contains an anchor

<map>
 <title>MyComponent tasks</title>
 <topicref href="start.dita" toc="yes">
 <navref mapref="othermap2.ditamap"/>
 <navref mapref="othermap3.ditamap"/>
 <anchor id="a1"/>
 </topicref>
</map>

The @id on an <anchor> element can be referenced by the @anchorref attribute on another map's
<map> element. For example, the map to be integrated at that spot could be defined as follows.

Figure 128: DITA map that references an anchor

<map anchorref="map1.ditamap#a1">
 <title>This map is can be rendered at the "a1" anchor
 in the MyComponent task map</title>
 <!-- ... -->
</map>

10.4.1.12 <keytext>
A <keytext> element specifies variable or link text; it also specifies alternate text for images that are
referenced by keys.

Processing expectations
See 6.4.9 Processing key references to generate text or link text (85).

Comment by Kristen J Eberlein on 31 October 2020

Should this be a related link instead of a cross reference?

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366).

DITA TC work product Page 278 of 430

Examples
The section contains examples of how the <keytext> element can be used.

Figure 129: Simple example

The following code sample shows how variable text can be defined using the <keytext> element:

<keydef keys="company-name">
 <topicmeta>
 <keytext translate="no">Acme Widget Company</keytext>
 </topicmeta>
</keydef>

Figure 130: More complex example

The following code sample shows a variable-text definition that includes highlighting elements:

<keydef keys="company-name">
 <topicmeta>
 <keytext translate="no">
 <i>Super</i> Widget Squared²
 </keytext>
 </topicmeta>
</keydef>

Figure 131: Alternate text for an image

DITA implementations often reference images using keys. In such cases, the <keytext> element
provides the alternate text for the image. The following code sample shows the markup for the
<keytext> element

<keydef keys="company-logo" href="images/logo.jpg" format="jpg">
 <topicmeta>
 <keytext>Blue Acorn logo</keytext>
 </topicmeta>
</keydef>

The image can be referenced by <image keyref="company-logo"/>. When rendered to mediums
that support alternate text, the effective alternative text for the image is "Blue Acorn," as though a literal
<alt>element had been a child of the 
 <area><shape>rect</shape><coords>2,0,53,59</coords>
 <xref href="d1-s1.dita">Section 1 alternative text</xref>
 </area>
 <area><shape>rect</shape><coords>54,1,117,60</coords>
 <xref href="d1-s2.dita"><!-- Pull title from d1-s2.dita --></xref>
 </area>
 <area><shape>rect</shape><coords>54,62,114,116</coords>
 <xref href="#inline" type="topic">Alternative text for this rectangle</xref>
 </area>
 <area><shape>circle</shape><coords>120,154,29</coords>
 <xref format="html" href="test.html">Link to a test html file</xref>
 </area>
 <area><shape>poly</shape>
 <coords>246,39,200,35,173,52,177,86,215,90,245,84,254,65</coords>
 <xref format="pdf" href="test.pdf">Link to a test PDF file</xref>
 </area>
</imagemap>

The areas defined correspond to this graphic image with the areas visible:

DITA TC work product Page 351 of 430

Comment by Robert
I think we should update this to use the HTML5 model, rather than HTML4.1: https://www.w3.org/TR/
2011/WD-html5-20110525/the-map-element.html#the-area-element

The "latest" version is much newer, but is also a living standard, and creating a dependency would
seem to turn this one element from DITA into its own living standard: https://html.spec.whatwg.org/
multipage/image-maps.html#image-map-processing-model:the-area-element-10

The values for use in the <shape> and <coords> elements follow the guidelines defined for image
maps in HTML 4.1, Client-side image maps: the MAP and AREA elements

10.6.8.4 <shape>
The <shape> element defines the shape of a linkable area in an <imagemap>.

Usage information
The <shape> element supports these values:

rect
Define a rectangular region. If you leave the <shape> element blank, a rectangular shape is
assumed.

circle
Define a circular region.

poly
Define a polygonal region.

default
Indicates the entire diagram.

Specialization hierarchy
The <shape> element is specialized from <keyword>. It is defined in the utilities-domain module.

DITA TC work product Page 352 of 430

https://www.w3.org/TR/2011/WD-html5-20110525/the-map-element.html#the-area-element
https://www.w3.org/TR/2011/WD-html5-20110525/the-map-element.html#the-area-element
https://html.spec.whatwg.org/multipage/image-maps.html#image-map-processing-model:the-area-element-10
https://html.spec.whatwg.org/multipage/image-maps.html#image-map-processing-model:the-area-element-10
http://www.w3.org/TR/html401/struct/objects.html#edef-MAP

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366) (with a
narrowed definition of @translate, given below), and @keyref (388).

@translate
Specifies whether the content of the element is translatable. The default value is "no". Setting
@translate to "yes" overrides the default value. The DITA specification contains a list of each
OASIS DITA element and its common processing default for the translate value; because this
element uses an actual default, it is always treated as translate="no" unless overridden.
Available values are:

no
The content of this element is not translatable.

yes
The content of this element is translatable.

-dita-use-conref-target
See 10.8.3.4.1 Using the -dita-use-conref-target value (385) for more information.

Example
See 10.6.8.3 imagemap (350).

10.6.8.5 <sort-as>
For elements that are sorted, the <sort-as> element provides text that is combined with the base sort
phrase to construct the effective sort phrase.

Usage information
Sort text can be specified in the content of the <sort-as> element or in the @value attribute on the
<sort-as> element. The <sort-as> element also is useful for elements where the base sort phrase is
inadequate or non-existent, for example, a glossary or index entry for a Japanese Kanji phrase.

If a <keyword> element is used within <sort-as>, the @keyref attribute can be used to set the sort
phrase. If a <keyword> uses @keyref and would otherwise also act as a navigation link, the link aspect
of the @keyref attribute is ignored.

Some elements in the base DITA vocabulary are natural candidates for sorting, including topics, definition
list entries, index entries, and rows in tables and simple tables. Authors are likely to include <sort-as>
elements in the following locations:

• For topics, the <sort-as> element can be included directly in <title> or <titlealt> when
the different forms of title need different effective sort phrases. If the effective sort phrase is
common to all the titles for a topic, the <sort-as> element can be included as a direct child of
the <prolog> element in the topic.

• For glossary entry topics, the <sort-as> element can be included directly in <glossterm> or
as a direct child of the <prolog> element.

• For topic references, the <sort-as> element can be included directly in the <titlealt>
element with a @title-role of navigation, such as <navtitle>, within <topicmeta> or
as a child of <topicmeta>.

• For definition list items, the <sort-as> element can be included in the <dt> element.
• For index entries, the <sort-as> can be included as a child of <indexterm>. In a multilevel

<indexterm> element, the <sort-as> element only affects the level in which it occurs.

DITA TC work product Page 353 of 430

Processing expectations
As a specialization of <data>, the <sort-as> element is allowed in any context where <data> is
allowed. However, the presence of <sort-as> within an element does not, by itself, indicate that the
containing element should be sorted. Processors can choose to sort any DITA elements for any reason.
Likewise, processors are not required to sort any elements. See 7.7 Sorting (139) for more information on
sorting.

Processors SHOULD expect to encounter <sort-as> elements in the above locations. Processors that
sort SHOULD use the following precedence rules:

• A <sort-as> element that is specified in a title takes precedence over a <sort-as> element
that is specified as a child of the topic prolog.

• Except for instances in the topic prolog, processors only apply <sort-as> elements that are
either a direct child of the element to be sorted or a direct child of the title- or label-defining
element of the element to be sorted.

• When an element contains multiple, direct-child, <sort-as> elements, the first direct-child
<sort-as> element in document order takes precedence.

• It is an error if there is more than one <sort-as> child for a given <indexterm>. An
implementation encountering more than one <sort-as> in this case might give an error
message.

• Sort phrases are determined after filtering and content reference resolution occur.

When a <sort-as> element is specified, processors that sort the containing element MUST construct
the effective sort phrase by prepending the content of the <sort-as> element to the base sort phrase.
This ensures that two items with the same <sort-as> element but different base sort phrases will sort in
the appropriate order.

For example, if a processor uses the content of the <title> element as the base sort phrase, and the
title of a topic is "24 Hour Support Hotline" and the value of the <sort-as> element is "twenty-four hour",
then the effective sort phrase would be "twenty-four hour24 Hour Support Hotline".

Specialization hierarchy
The <sort-as> element is specialized from <data>. It is defined in the utilities-domain module.

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366) and the
attributes defined below.

@name
Specifies the metadata item that the element represents. The default value is "sort-as".
Specializations of <sort-as> can set the default value of the @name attribute to reflect the tag name
of the specialized element.

@value
Specifies the value of the metadata item. When the <sort-as> element has content and the
@value attribute is specified, the @value attribute takes precedence. If the @value attribute is not
specified and the <sort-as> element does not contain content, then the <sort-as> element has
no effect.

DITA TC work product Page 354 of 430

Example
The following examples illustrate how a glossary entry for the Chinese ideographic character for "big"
might specify an effective sort phrase of "dada" (the Pin-Yin transliteration for Mandarin):

Figure 155: The <sort-as> element located within <glossterm>

<glossentry id="gloss-dada">
 <glossterm><sort-as value="dada"/>大大</glossterm>
 <glossdef>Literally "big big".</glossdef>
</glossentry>

Figure 156: The <sort-as> element within <prolog>

<glossentry id="gloss-dada">
 <glossterm>大大</glossterm>
 <prolog>
 <sort-as>dada</sort-as>
 </prolog>
 <glossdef>Literally "big big".</glossdef>
</glossentry>

Related concepts
Sorting (139)

Processors can be configured to sort elements. Typical processing includes sorting glossary entries,
index entries, lists of parameters or reference entries in custom navigation structures, and tables based
on the contents of cells in specific columns or rows.

10.7 Other elements

10.7.1 Legacy conversion elements
Conversion elements exist primarily to aid in the conversion of content to DITA.

10.7.1.1 <required-cleanup>
Required cleanup sections are placeholders for migrated elements that cannot be appropriately tagged
without manual intervention, or for content that must be cleaned up before publishing.

Usage information
As the element name implies, the intent for authors is to clean up the contained material and eventually
remove the <required-cleanup> element.

Rendering expectations

Comment by Robert on 20200831
The following statement was written as if RFC-level "must" was used, but was not marked with RFC.
I've added the RFC notation; if this is not meant to be "MUST" then we need to find alternate wording.

We should probably also use a clearer definition of "Processors" in this context, as an editor is a
processor that should not be forced to strip the content from displaying.

Update 2020-10-19: moving the "must strip" language into a rendering section. This is about not
rendering the element.

DITA TC work product Page 355 of 430

Processors MUST strip this element from output by default. The content of <required-cleanup> is not
considered to be publishable data.

Processing expectations
Processor options might be provided to allow a draft view of migrated content in context.

Attributes
The following attributes are available on this element: 10.8.1 Universal attribute group (366) (with a
modified definition of @translate, given below), and the attributes defined below.

@remap
Specifies information about the origins of the content of the <required-cleanup> element. This
provides authors with context for determining how migrated content was originally encoded.

@translate
Specifies whether the content of the element should be translated or not. The default value for this
element is "no"; setting to "yes" will override the default. The -dita-use-conref-target (385) value is
also available. The DITA architectural specification contains a list of each OASIS DITA element and
its common processing default for the translate value; because this element uses an actual default, it
will always be treated as translate="no" unless overridden as described.

Example
In the following example, an HTML document that used the <center> element was migrated to DITA.
Because DITA has no clear equivalent element, the content is stored in <required-cleanup> until it
can be marked up appropriately.

<section>
 <title>Using the display</title>
 <required-cleanup remap="center">If you cannot read
your display, see "Adjusting the language setting"
before you continue.</required-cleanup>
</section>

10.7.2 DITAVAL elements
A conditional processing profile (DITAVAL file) is used to identify which values are to be used for
conditional processing during a particular output, build, or some other purpose. The profile should have
an extension of .ditaval.

The DITAVAL format has several elements: <val>, the root element, can contain a <style-conflict>
element followed by <prop> or <revprop> elements; the <prop> and <revprop> elements can
contain <startflag> and <endflag> elements; and the <startflag> and <endflag> elements can
contain <alt-text> elements.

Notes on DITAVAL messages
Conditional processing code should provide a report of any attribute values encountered in content that
do not have an action associated with them.

Note on DITAVAL flagging of images
If an image in DITA content becomes flagged using a background color, the color should be represented
as a thick border. If a foreground color is expressed, it should be represented as a thin border.

DITA TC work product Page 356 of 430

Related concepts
Filtering and flagging attributes (32)

Conditional-processing attributes are available on most elements.

Conditional processing (profiling) (117)
Conditional processing, also known as profiling, is the filtering or flagging of information based on
processing-time criteria.

Conditional processing values and groups (117)
Conditional processing attributes classify elements with metadata. The metadata is specified using
space-delimited string values or grouped values.

10.7.2.1 <alt-text>
The <alt-text> element in a DITAVAL document provides alternate text for an image used for flagging.

Rendering expectations
If alternate text is specified but the containing element does not reference an image, applications can
render the text itself as a way to flag content.

When no alternate text is specified for a revision flag, the default alternate text for <revprop> start of
change is typically a localized translation of "Start of change", and the default alternate text for
<revprop> end of change is typically a localized translation of "End of change".

Attributes
This element does not define any attributes.

Example
See 10.7.2.7 val (363).

10.7.2.2 <endflag>
The <endflag> element in a DITAVAL document provides information that identifies the end of flagged
content.

Usage information
The <endflag> element defines a flag to be used at the end of content identified by "flag" conditions in a
DITAVAL document:

• If an image is specified, the specified image is a flag to identify the end of the content, with the
<alt-text> contents as alternative text for that image.

• If <alt-text> is specified but <endflag> does not reference an image, that text can be used to
flag the content instead of an image.

• If no image and no <alt-text> are specified, then this element has no defined purpose.

Attributes
The following attribute is available on this element:

DITA TC work product Page 357 of 430

@imageref
Provides a URI reference to the image file, using the same syntax as the @href attribute. See
10.8.3.6 The href attribute (387) for information on supported values and processing implications.

Example
See 10.7.2.7 val (363).

10.7.2.3 <prop>
The <prop> element in a DITAVAL document identifies an attribute, and usually values in the attribute, to
take an action on. The identified attribute is a conditional-processing attribute (either @props or a
specialization of @props, such as @audience, @deliveryTarget, @platform, @product, or
@otherprops).

Usage information
A <prop> element performs the following functions:

• A <prop> element with no @att attribute specified sets a default action for every <prop>
element.

• A <prop> element with an @att attribute but no @val attribute sets a default action for that
specific attribute or attribute group.

• A <prop> element with an @att attribute and a @val attribute sets an action for that value within
that attribute or attribute group.

Rendering expectations
For the @color and @backcolor attributes on <rev> and <revprop>, processors SHOULD support
the following:

• The color names listed under the heading "<color>" in http://www.w3.org/TR/2006/REC-
xsl11-20061205/#datatype

• The associated 6 digit hex code form (#rrggbb, case insensitive).

For the @style attribute on <rev> and <revprop>, the following tokens SHOULD be processed by all
DITAVAL processors:

• underline
• double-underline
• italics
• overline
• bold

In addition, processors MAY support other proprietary tokens for the @style attribute. Such tokens
SHOULD have a processor-specific prefix to identify them as proprietary. If a processor encounters an
unsupported style token, it MAY issue a warning, and MAY render content flagged with such a style token
using some default formatting.

Processing expectations

Comment by rodaande
This seems a weird way to write up error conditions, feels like each list item should explicitly state "It is
an error to XYZ"?

DITA TC work product Page 358 of 430

http://www.w3.org/TR/2006/REC-xsl11-20061205/#datatype
http://www.w3.org/TR/2006/REC-xsl11-20061205/#datatype

Processors MAY provide an error or warning message for the following error conditions in a DITAVAL
document:

• More than one <prop> element with no @att attribute
• More than one <prop> element with the same @att attribute and no value
• More than one <prop> element with the same @att attribute and same @value

Attributes
The following attributes are available on this element:

@att
Specifies the attribute to be acted upon. If using a literal attribute name, it is @props or a
specialization of @props (such as @audience, @deliveryTarget, @platform, @product, or
@otherprops). Otherwise, the value is the name of a group within one of those attributes, with the
group name specified using the generalized attribute syntax. If the @att attribute is absent, then the
<prop> element declares a default behavior for any conditional processing attribute.

@val
Specifies the attribute value to be acted upon. If the @val attribute is absent, then the <prop>
element declares a default behavior for any value in the specified attribute.

@action (REQUIRED)
Specifies the action to be taken. Allowable values are:

include
Include the content in output. This is the default behavior unless otherwise set.

exclude
Exclude the content from output (if all values in the particular attribute are excluded).

passthrough
Include the content in output, and preserve the attribute value as part of the output stream for
further processing by a runtime engine. For example, this could be used to enable runtime
filtering based on individual user settings. The value should be preserved in whatever syntax is
required by the target runtime. Values that are not explicitly passed through should be removed
from the output stream, even though the content is still included.

flag
Include and flag the content on output (if the content has not been excluded).

@outputclass
If the @action attribute is set to "flag", treat the flagged element as if the full @outputclass value
in the DITAVAL was specified on that element's @outputclass attribute. If two or more DITAVAL
properties apply @outputclass flags to the same element, treat the flagged element as if each
value was specified on that element's @outputclass attribute; in that case, the order of those
DITAVAL-based tokens is undefined. If the flagged element already specifies @outputclass, treat
the flagged element as if all DITAVAL-based @outputclass values come first in the attribute.

@color
If the @action attribute is set to "flag", specifies the color to use to flag text. Colors can be entered
by name or code. If the @action attribute is not set to "flag", this attribute is ignored.

@backcolor
If the @action attribute is set to "flag", specifies the color to use as background for flagged text.
Colors can be entered by name or code. If the @action attribute is not set to "flag", this attribute is
ignored.

DITA TC work product Page 359 of 430

@style
If the @action attribute is set to "flag", specifies the text styles to use for flagged text. This attribute
can contain multiple space-delimited tokens. If the @action attribute is not set to "flag", this attribute
is ignored.

Example
See the example in the <val> (363) description.

10.7.2.4 <revprop>
The <revprop> element in a DITAVAL document identifies a value in the @rev attribute that should be
flagged in some manner. Unlike the conditional processing attributes, which can be used for both filtering
and flagging, the @rev attribute only can be used for flagging.

Usage information
The @rev attribute identifies when a particular section of a document was added or modified. The
attribute is not considered a filtering attribute because this is not sufficient to be used for full version
control, such as single-sourcing multiple product variants based on version level – it only represents one
aspect of the revision level.

Rendering expectations
When no alternate text is specified for a revision flag, the default alternate text for <revprop> start of
change is typically a localized translation of "Start of change", and the default alternate text for
<revprop> end of change is typically a localized translation of "End of change".

For the @color and @backcolor attributes on <rev> and <revprop>, processors SHOULD support
the following:

• The color names listed under the heading "<color>" in http://www.w3.org/TR/2006/REC-
xsl11-20061205/#datatype

• The associated 6 digit hex code form (#rrggbb, case insensitive).

For the @style attribute on <rev> and <revprop>, the following tokens SHOULD be processed by all
DITAVAL processors:

• underline
• double-underline
• italics
• overline
• bold

In addition, processors MAY support other proprietary tokens for the @style attribute. Such tokens
SHOULD have a processor-specific prefix to identify them as proprietary. If a processor encounters an
unsupported style token, it MAY issue a warning, and MAY render content flagged with such a style token
using some default formatting.

Processing expectations
It is an error to include more than one <revprop> element with the same @val attribute setting.
Recovery from this error is implementation dependent; in such cases processors MAY provide an error or
warning message.

DITA TC work product Page 360 of 430

http://www.w3.org/TR/2006/REC-xsl11-20061205/#datatype
http://www.w3.org/TR/2006/REC-xsl11-20061205/#datatype

Attributes
The following attributes are available on this element:

@val
Specifies the revision value to be acted upon. If the @val attribute is absent, then the <revprop>
element declares a default behavior for any value in the @rev attribute.

@action (REQUIRED)
Specifies the action to be taken. Allowable values are:

include
Include the content in output without flags. This is the default behavior unless otherwise set.

passthrough
Include the content in output, and preserve the attribute value as part of the output stream for
further processing by a runtime engine. For example, this could be used to enable runtime
highlighting based on individual user settings. The value should be preserved in whatever syntax
is required by the target runtime. Values that are not explicitly passed through should be
removed from the output stream, even though the content is still included.

flag
Include and flag the content when rendered (if the content has not been excluded).

@changebar
When flag has been set, specify a changebar color, style, or character, according to the changebar
support of the target output format. If the @action attribute is not set to "flag", this attribute is
ignored.

@outputclass
If the @action attribute is set to "flag", treat the flagged element as if the full @outputclass value
in the DITAVAL was specified on that element's @outputclass attribute. If two or more DITAVAL
properties apply @outputclass flags to the same element, treat the flagged element as if each
value was specified on that element's @outputclass attribute; in that case, the order of those
DITAVAL-based tokens is undefined. If the flagged element already specifies @outputclass, treat
the flagged element as if all DITAVAL-based @outputclass values come first in the attribute.

@color
If the @action attribute is set to "flag", specifies the color to use to flag text. Colors can be entered
by name or code. If the @action attribute is not set to "flag", this attribute is ignored.

@backcolor
If the @action attribute is set to "flag", specifies the color to use as background for flagged text.
Colors can be entered by name or code. If the @action attribute is not set to "flag", this attribute is
ignored.

@style
If the @action attribute is set to "flag", specifies the text styles to use for flagged text. This attribute
can contain multiple space-delimited tokens. If the @action attribute is not set to "flag", this attribute
is ignored.

Example
See 10.7.2.7 val (363).

Related concepts
Flagging (120)

DITA TC work product Page 361 of 430

Flagging is the application of text, images, or styling during rendering. This can highlight the fact that
content applies to a specific audience or operating system, for example; it also can draw a reader's
attention to content that has been marked as being revised.

10.7.2.5 <startflag>
The <startflag> element in a DITAVAL document provides information that identifies the beginning of
flagged content.

Usage information
The <start> element defines a flag to be used at the beginning of content identified by "flag" conditions
in a DITAVAL document:

• If an image is specified, the specified image is a flag to identify the beginning of the content, with
the <alt-text> contents as alternative text for that image.

• If <alt-text> is specified but <startflag> does not reference an image, that text can be
used to flag the content instead of an image.

• If no image and no <alt-text> are specified, then this element has no defined purpose.

Attributes
The following attribute is available on this element:

@imageref
Provides a URI reference to the image file, using the same syntax as the @href attribute. See
10.8.3.6 The href attribute (387) for information on supported values and processing implications.

Example
See 10.7.2.7 val (363).

10.7.2.6 <style-conflict>
The <style-conflict> element in a DITAVAL document declares the behavior to be used when one or
more flagging methods collide on a single content element.

Usage information
In case of conflicts between flagging methods at different levels (for example, a section is flagged green
and a paragraph within the section is flagged red), the most deeply nested flagging method applies.

Rendering expectations
In case of conflicts between flagging methods on the same element (for example, a single element is
being flagged with both green and red color), it is recommended that the conflicts be resolved as follows:

Flagging
method

Conflict behavior

<startflag> Add all flags that apply.
<endflag> Add all flags that apply.
color Follow the <style-conflict> element's @foreground-conflict-color

setting, or use an output-appropriate default color if no conflict color is set.

DITA TC work product Page 362 of 430

Flagging
method

Conflict behavior

backcolor Follow the <style-conflict> element's @background-conflict-color
setting, or use an output-appropriate default color if no conflict color is set.

style Add all font styles that apply. If two different kinds of underline are used, default to
the heaviest (double underline) and use the @foreground-conflict-color.

changebar Add all change bars that apply.

Attributes
The following attributes are available on this element:

@foreground-conflict-color
Specifies the color to be used when more than one flagging color applies to a single content element.

@background-conflict-color
Specifies the color to be used when more than one flagging background color applies to a single
content element.

Example
See 10.7.2.7 val (363).

10.7.2.7 <val>
The <val> element is the root element of a DITAVAL document.

Usage information
For information about processing DITAVAL files, including how to filter or flag elements with multiple
property attributes or multiple properties within a single attribute, see 7.4 Conditional processing
(profiling) (117).

Attributes
This element does not define any attributes.

Example
Figure 157: Sample DITAVAL file

<val>
 <style-conflict background-conflict-color="red"/>
 <prop action="include" att="audience" val="everybody"/>
 <prop action="flag" att="product" val="YourProd" backcolor="purple"/>
 <prop action="flag" att="product" backcolor="blue"
 color="yellow" style="underline" val="MyProd">
 <startflag imageref="startflag.jpg">
 <alt-text>This is the start of my product info</alt-text>
 </startflag>
 <endflag imageref="endflag.jpg">
 <alt-text>This is the end of my product info</alt-text>
 </endflag>
 </prop>
 <revprop action="flag" val="1.2"/>
</val>

This sample DITAVAL file performs the following actions:

DITA TC work product Page 363 of 430

• Elements with audience="everybody" are included without change.
• Elements with product="YourProd" get a background color of purple.
• Elements with product="MyProd" get the following actions:

– The image startflag.jpg is placed at the start of the element.
– The image endflag.jpg is placed at the end of the element.
– The element gets a background color of blue.
– The text in the element appears in yellow; the text is underlined.

• Elements marked with are flagged with the default revision flags, which are implementation
dependent.

• When there are conflicts, for example, if an element is marked with product="MyProd
YourProd", it will be flagged with a background color of red.

Figure 158: DITAVAL file that overrides the default "include" action

<val>
 <prop action="exclude"/>
 <prop action="include" att="audience" val="everybody"/>
 <prop action="include" att="audience" val="novice"/>
 <prop action="include" att="product" val="productA"/>
 <prop action="include" att="product" val="productB"/>
</val>

This simple DITAVAL file performs the following actions:

• The first <prop> element does not specify an attribute, which sets a default action of "exclude"
for every prop value. This means that, by default, any property value not otherwise defined in this
file evaluates to "exclude". Note that this same behavior can be limited to a single attribute; the
following <prop> element sets a default action of "exclude" for all properties specified on the
@platform attribute: <prop action="exclude" att="platform"/>

• The second and third <prop> elements set an action of "include" for two values on the
@audience attribute. All other values on the @audience attribute still evaluate to "exclude".

• The fourth and fifth <prop> elements set an action of "include" for two values on the @product
attribute. All other values on the @product attribute still evaluate to "exclude".

Figure 159: DITAVAL with conditions for groups

<val>
 <prop action="exclude" att="product" val="appserver"/>
 <prop action="include" att="product" val="mySERVER"/>
 <prop action="include" att="database" val="dbFIRST"/>
 <prop action="include" att="database" val="dbSECOND"/>
 <prop action="exclude" att="database" val="newDB"/>
</val>

Assume that "database" and "appServer" are used as group names within the @product attribute. In that
case, the sample DITAVAL above performs the following actions:

• The first <prop> element excludes the value "appServer" when used within the @product
attribute. It also sets a default of "exclude" for values within any appServer() group inside of the
@product attribute.

• The second <prop> element sets "mySERVER" to include; this applies whether "mySERVER"
appears alone in the @product attribute (product="mySERVER") or inside of any group
(product="appServer(mySERVER)" or product="otherGroup(mySERVER)").

• The third and fourth <prop> elements set the database values "dbFIRST" and "dbSECOND" to
include. If those values appear inside of a "database" group, they are explicitly set to "include". If
they appear elsewhere in a conditional attribute (such as product="dbFIRST" or
platform="dbSECOND"), this rule does not apply.

DITA TC work product Page 364 of 430

• The final <prop> element sets the database value "newDB" to exclude. If that value appears
inside of a database group, it is explicitly set to "exclude". If it appears in any other group or
attribute, this rule does not apply.

Remember that with groups, if all values inside of a single group evaluate to "exclude", that is equivalent
to an entire attribute evaluating to "exclude", which results in the removal of the content. Using the above
sample DITAVAL:

• <p product="appServer"> is filtered out, because this value is excluded.
• <p product="appServer(A B)"> is filtered out, because there is no explicit rule for A or B,

and values in the "appServer" group inside of @product default to exclude.
• <p product="appServer(A B mySERVER)"> is included, because product="mySERVER"

evaluates to "include", which means the entire group evaluates to "include".
• <p product="newDB"> is included, because no rule in the DITAVAL applies, so the "newDB"

token defaults to "include".
• <p product="database(newDB)"> is filtered out, because the token "newDB" is excluded

when found in the database group.
• <p product="database(dbFIRST dbSECOND newDB)"> is included, because both

"dbFIRST" and "dbSECOND" are included, so the group evaluates to include.
• <p product="database(newDB) appserver(mySERVER)"> is filtered out, because the

token "newDB" is excluded when found in the database group. The entire "database" group on
this paragraph evaluates to "exclude", so the element is excluded, regardless of how the
"appServer" group evaluates.

Note If two groups with the same name exist on different attributes, each group will evaluate the
same way. For example, rules for the database group in this sample would evaluate the same
whether the group is used within @product or @platform. See 7.4 Conditional processing
(profiling) (117) for suggestions on how to handle similar groups on different attributes.

Related concepts
Filtering (118)

At processing time, a conditional processing profile can be used to specify profiling attribute values that
determine whether an element with those values is included or excluded.

Flagging (120)
Flagging is the application of text, images, or styling during rendering. This can highlight the fact that
content applies to a specific audience or operating system, for example; it also can draw a reader's
attention to content that has been marked as being revised.

Examples of conditional processing (121)

DITA TC work product Page 365 of 430

This section provides examples that illustrate the ways that conditional processing attributes can be set
and used.

10.8 Attributes
This section collects commonly used attributes, with common definitions. If an element uses a different
definition, or narrows the scope of, an otherwise common attribute, it will be called out in the topic that
defines the element.

10.8.1 Universal attribute group
The universal attribute group defines a set of common attributes that are available on almost every DITA
element. The universal attribute group includes all attributes from the ID, metadata, and localization
attribute groups, plus the @class and @outputclass attributes.

Common attribute groups
The following groups are referenced in this specification, and are also used in grammar files when
defining attributes for elements.

Universal attributes
Includes @class and @outputclass, along with every attribute in the ID, Localization, and
Metadata attribute groups.

ID attributes
Includes attributes that enable the naming and referencing of elements in topics and maps:
@conaction, @conkeyref, @conref, @conrefend, and @id.

Localization attributes
Includes attributes that are related to translation and localization: @dir, @translate, and
@xml:lang.

Metadata attributes
Includes common metadata attributes, two of which are available for specialization: @base,
@importance, @props, @rev, and @status.
The base DITA vocabulary from OASIS includes several predefined specializations of @props.
These attributes are defined as independent attribute extension domains; they are integrated by
default into all OASIS-provided document-type shells, and can be easily removed from custom
document-type shells: @audience, @deliveryTarget, @platform, @product, and
@otherprops.

Universal attribute definitions
The universal attributes for OASIS DITA elements are defined below. Specialized attributes, which are
part of the OASIS distribution but are only available when explicitly included in a shell, are noted in the
list.

@audience (specialized attribute)
Indicates the intended audience for the element. If no value is specified, but the attribute is specified
on an ancestor within a map or within the related-links section, the value will cascade from the
closest ancestor.

@base
A generic attribute that has no specific purpose. It is intended to act as a base for specialized
attributes that have a simple value syntax like the conditional processing attributes (one or more
alphanumeric values separated by whitespace), but is not itself a filtering or flagging attribute.

DITA TC work product Page 366 of 430

The @base attribute takes a space-delimited set of values. However, when acting as a container for
generalized attributes, the attribute values will be more complex; see 8.4.4 Attribute generalization
(154) for more details.

@class (not for use by authors)
This attribute is not for use by authors. If an editor displays @class attribute values, do not edit
them. The @class attribute supports specialization. Its predefined values allow DITA tools to work
correctly with ranges of related content. In a generalized DITA document the @class attribute value
in the generalized instance might differ from the default value for the @class attribute for the
element as given in the DTD or schema. See 8.3.6 class attribute rules and syntax (147) for more
information. This attribute is specified on every element except for the <dita> container element. It
is always specified with a default value, which varies for each element.

@conaction
This attribute enables users to push content into a new location. Allowable values are "mark",
"pushafter", "pushbefore", "pushreplace", and "-dita-use-conref-target". See 10.8.3.1 The conaction
attribute (377) for examples and details about the syntax.

@conkeyref
Allows the conref feature to operate using a key instead of a URI. See 10.8.3.3 The conkeyref
attribute (384) for more details about the syntax and behaviors.

@conref
This attribute is used to reference an ID on content that can be reused. See 10.8.3.4 The conref
attribute (384) for examples and details about the syntax.

@conrefend
The @conrefend attribute is used when reusing a range of elements through @conref. The syntax
is the same as for the @conref attribute; see 10.8.3.2 The conrefend attribute (380) for examples.

@deliveryTarget (specialized attribute)
The intended delivery target of the content, for example, "html", "pdf", or "epub". If no value is
specified, but the attribute is specified on an ancestor within a map or within the related-links section,
the value will cascade from the closest ancestor.

@dir
Specifies the directionality of text: left-to-right ("ltr", the processing default) or right-to-left ("rtl"). The
value "lro" indicates an override of normal bidirectional text presentation, forcing the element into left-
to-right mode; "rlo" overrides normal rules to force right-to-left presentation. Allowable values are "ltr",
"rtl", "lro", "rlo", and "-dita-use-conref-target". See 7.6.2 The dir attribute (138) for more information.

@id
An anchor point. This ID is the target for references by @href and @conref attributes and for
external applications that refer to DITA content. This attribute is defined with the XML data type
NMTOKEN, except where noted for specific elements within the language reference. See 6.1 ID
attribute (73) for more details.

@importance
A range of values that describe an importance or priority attributed to an element. For example, in
steps of a task, the attribute indicates whether a step is optional or required. This attribute is not used
for DITAVAL-based filtering or flagging; applications might use the importance value to highlight
elements. Allowable values are: "obsolete", "deprecated", "optional", "default", "low", "normal", "high",
"recommended", "required", "urgent", and "-dita-use-conref-target".

@otherprops (specialized attribute)
This attribute can be used for any other properties that might be needed to describe an audience, or
to provide selection criteria for the element. Alternatively, the @props attribute can be specialized to
provide a new metadata attribute instead of using the general @otherprops attribute. If no value is

DITA TC work product Page 367 of 430

specified, but the attribute is specified on an ancestor within a map or within the related-links section,
the value will cascade from the closest ancestor.

@outputclass
Names a role that the element is playing. The role must be consistent with the basic semantic and
expectations for the element. In particular, the @outputclass attribute can be used for styling
during output processing; HTML output will typically preserve @outputclass for CSS processing.

@platform (specialized attribute)
Indicates operating system and hardware. If no value is specified, but the attribute is specified on an
ancestor within a map or within the related-links section, the value will cascade from the closest
ancestor.

@product (specialized attribute)
Contains the name of the product to which the element applies. If no value is specified, but the
attribute is specified on an ancestor within a map or within the related-links section, the value will
cascade from the closest ancestor.

@props
Root attribute from which new metadata attributes can be specialized. This is a property attribute
which supports conditional processing for filtering or flagging. If no value is specified, but the attribute
is specified on an ancestor within a map or within the related-links section, the value will cascade
from the closest ancestor.
The @props attribute takes a space-delimited set of values. However, when acting as a container for
generalized attributes, the attribute values will be more complex; see 8.4.4 Attribute generalization
(154) for more details.

@rev
Indicates a revision level of an element that identifies when the element was added or modified. It
can be used to flag outputs when it matches a run-time parameter; it cannot be used for filtering. It is
not sufficient to be used for version control. If no value is specified, but the attribute is specified on an
ancestor within a map or within the related-links section, the value will cascade from the closest
ancestor.

@status
The modification status of the current element. Allowable values are: "new", "changed", "deleted",
"unchanged", and "-dita-use-conref-target".

@translate
Indicates whether the content of the element should be translated or not. Allowable values are "yes",
"no", and "-dita-use-conref-target". See C.6 Element-by-element recommendations for translators
(402) for suggested processing defaults for each element.

@xml:lang
Specifies the language of the element content. The @xml:lang attribute and its values are
described in the XML Recommendation at http://www.w3.org/TR/REC-xml/#sec-lang-tag. Allowable
values are language tokens or the null string.

Related concepts
Specialization (144)

The specialization feature of DITA allows for the creation of new element types and attributes that are
explicitly and formally derived from existing types. This facilitates interchange of conforming DITA content
and ensures a minimum level of common processing for all DITA content. It also allows specialization-
aware processors to add specialization-specific processing to existing base processing.

DTD: Coding requirements for attribute domain modules (181)
The vocabulary modules that define attribute domains have additional coding requirements. The module
must include a parameter entity for the new attribute, which can be referenced in document-type shells,

DITA TC work product Page 368 of 430

http://www.w3.org/TR/REC-xml/#sec-lang-tag

as well as a text entity that specifies the contribution to the @specializations attribute for the attribute
domain.

10.8.2 Common attributes
Many attributes and attribute groups are not used universally, but are still used across many DITA
elements.

Common attribute groups
The following groups are referenced in this specification, and are also used in grammar files when
defining attributes for elements.

Architectural attributes
Includes a set of attributes defined for document level elements such as <topic> and <map>:
@DITAArchVersion, @specializations, and @xmlns:ditaarch.

Common map attributes
Includes several attributes that are used on a variety of map elements: @cascade, @chunk,
@collection-type, @keyscope, @linking, @processing-role, @search, and @toc.

Complex table attributes
Includes several attributes that are defined on <table> elements (but not on <simpletable>
elements). Most of these attributes are part of the OASIS Exchange model; table elements generally
use only a subset of the attributes defined in this group: @align, @char, @charoff, @colsep,
@rowheader, @rowsep, and @valign

Data-element attributes
Includes attributes defined on <data> and its many specializations: @datatype, @name, and
@value

Date attributes
Includes attributes that take date values, and are defined on metadata elements that work with date
information: @expiry and @golive

Display attributes
Includes attributes whose values can be used for affecting the display of many elements: @expanse,
@frame, and @scale.

Inclusion attributes
Includes attributes defined on <include> and its specializations: @encoding and @parse.

Link-relationship attributes
Includes attributes whose values can be used for representing navigational relationships: @format,
@href, @type, and @scope.

Simpletable attributes
Includes attributes that are defined on the <simpletable> elements (but not on the OASIS
exchange (<table> element): @keycol and @relcolwidth.

Specialization attributes
Includes attributes designed to be used by specializations, but not intended for direct use by authors:
@specentry and @spectitle.

Topicref-element attributes
Includes attributes defined on <topicref> and on most specializations of the <topicref>
element: @copy-to.

DITA TC work product Page 369 of 430

Common attribute definitions
Common attributes, including those in the groups listed above, are defined as follows.

@align (complex table attributes)
Describes the alignment of text in a table column. Allowable values are:

left
Indicates left alignment of the text.

right
Indicates right alignment of the text.

center
Indicates center alignment of the text.

justify
Justifies the contents to both the left and the right.

char
Use the character specified on the @char attribute for alignment.

-dita-use-conref-target
See 10.8.3.4.1 Using the -dita-use-conref-target value (385) for more information.

The @align attribute is available on the following table elements: <tgroup>, <colspec>, and
<entry>.

@anchorref
Identifies a location within another map file where this map will be anchored at runtime. Resolution of
the map is deferred until the final step in the delivery of any rendered content. For example,
anchorref="map1.ditamap/a1" causes this map to be pulled into the location of the anchor
point "a1" inside map1.ditamap when map1.ditamap is rendered for delivery.

@cascade (common map attributes)

Controls how metadata attributes cascade within a map. There are two defined values that should be
supported: "merge" and "nomerge".

If no value is set, and no value cascades from an ancestor element, processors SHOULD assume a
default of "merge".

See 5.3.1 Cascading of metadata attributes in a DITA map (49) for more information about how this
attribute interacts with metadata attributes.

@char (complex table attributes)
Specifies the character for aligning the table entry data.

Default source for <entry> elements starting in this column. If character alignment is specified, the
value is the single alignment character source for any implied @char values for entry immediately in
this column. A value of "" (the null string) means there is no aligning character.

For example, if align="char" and char="r" are specified, then text in the entry should align with
the first occurrence of the letter "r" within the entry.

The @char attribute is available on the following table elements: <colspec> and <entry>.

@charoff (complex table attributes)
Specifies the horizontal offset of alignment character when align="char".

DITA TC work product Page 370 of 430

Default source for <entry> elements starting in this column. For character alignment on an entry in
the column, horizontal character offset is the percent of the current column width to the left of the (left
edge of the) alignment character.

This value should be number, greater than 0 and less than or equal to 100.

For example, if align="char", char="r", and charoff="50" are all specified, then text in the
entry should align 50% of the distance to the left of the first occurrence of the character "r" within the
entry.

The @charoff attribute is available on the following table elements: <colspec> and <entry>.

@chunk (common map attributes)
When a set of topics is transformed using a map, the @chunk attribute allows documents that contain
multiple topics to be broken into smaller files and multiple individual topics to be combined into larger
combined documents.

For a detailed description of the @chunk attribute and its usage, see 5.4 Chunking (57).

@collection-type (common map attributes)
Collection types describe how links relate to each other. The processing default is "unordered",
although no default is specified in the DTD or Schema. Allowable values are:

unordered
Indicates that the order of the child topics is not significant.

sequence
Indicates that the order of the child topics is significant; output processors will typically link
between them in order.

choice
Indicates that one of the children should be selected.

family
Represents a tight grouping in which each of the referenced topics not only relates to the current
topic but also relate to each other.

@colsep (complex table attributes)
Column separator. A value of 0 indicates no separators; 1 indicates separators.

The @colsep attribute is available on the following table elements: <table>, <tgroup>,
<colspec>, and <entry>.

@compact
Indicates close vertical spacing between list items. Expanded spacing is the processing default. The
output result of compact spacing depends on the processor or browser. Allowable values are:

yes
Indicates compact spacing.

no
Indicates expanded spacing.

-dita-use-conref-target
See 10.8.3.4.1 Using the -dita-use-conref-target value (385) for more information.

@copy-to (topicref-element attributes)

Use the @copy-to attribute on the <topicref> element to provide a different resource name for a
particular instance of a resource referenced by the <topicref> (for example, to separate out the
different versions of the topic, rather than combining them on output). If applicable, the @copy-to

DITA TC work product Page 371 of 430

value can include path information. The links and navigation associated with that instance will point
to a copy of the topic with the file name you specified.

Applications MAY support @copy-to for references to local non-DITA resources.

The @copy-to attribute is not supported for references to resources where the effective value for
@scope is "peer" or "external".

Use the <linktext> and <shortdesc> in the <topicref>'s <topicmeta> to provide a unique
name and short description for the new copy.

@datatype (data-element attributes)
Describes the type of data contained in the @value attribute or within the <data> element. A typical
use of @datatype will be the identifying URI for an XML Schema datatype.

@DITAArchVersion (architectural attributes)
Designates the version of the architecture that is in use. The default value will increase with each
release of DITA. This attribute is in the namespace "http://dita.oasis-open.org/architecture/2005/".
This attribute is defined with the XML data type CDATA, but uses a default value of the current
version of DITA. The current default is "2.0".

@encoding (inclusion attributes)
Specifies the character encoding to use when translating the character data from the referenced
content. The value should be a valid encoding name. If not specified, processors may make attempts
to automatically determine the correct encoding, for example using HTTP headers, through analysis
of the binary structure of the referenced data, or the <?xml?> processing instruction when including
XML as text. The resource should be treated as UTF-8 if no other encoding information can be
determined.

When parse="xml", standard XML parsing rules apply for the detection of character encoding. The
necessity and uses of @encoding for non-standard values of @parse are implementation-
dependent.

@expanse (display attributes)
Determines the horizontal placement of the element. Allowable values are:

column
Aligns the element with the current column margin.

page
Places the element on the left page margin for left-to-right presentation, or right page margin for
right-to-left presentation.

spread
Indicates that, if possible, the object should be rendered across a multi-page spread. If the
rendition target does not have anything corresponding to spreads then spread has the same
meaning as "page".

textline
Aligns the element with the left (for left to right presentation) or right (for right to left presentation)
margin of the current text line and takes indention into account.

-dita-use-conref-target
See 10.8.3.4.1 Using the -dita-use-conref-target value (385) for more information.

In DITA tables, in place of the @expanse attribute used by other DITA elements, the @pgwide
attribute is used in order to conform to the OASIS Exchange Table Model. The @pgwide attribute has
a similar semantic ("1"=page width; "0"=resize to galley or column).

Some DITA processors or output formats might not be able to support all values.

DITA TC work product Page 372 of 430

@expiry (date attributes)
The date when the information should be retired or refreshed, entered as YYYY-MM-DD, where
YYYY is the year, MM is the month from 01 to 12, and DD is the day from 01-31.

@format (link-relationship attributes)
The @format attribute identifies the format of the resource being referenced. See 10.8.3.5 The
format attribute (386) for details on supported values.

@frame (display attributes)
Specifies which portion of a border should surround the element. Allowable values are:

all
Draw a box around the element

bottom
Draw a line after the element

none
Don't draw any lines around this element

sides
Draw a line at each side of the element

top
Draw a line before the element

topbot
Draw a line both before and after the element

-dita-use-conref-target
See 10.8.3.4.1 Using the -dita-use-conref-target value (385) for more information.

Some DITA processors or output formats might not be able to support all values.

@golive (date attributes)
The publication or general availability (GA) date, entered as YYYY-MM-DD, where YYYY is the year,
MM is the month from 01 to 12, and DD is the day from 01-31.

@href (link-relationship attributes)
Provides a reference to a resource. See 10.8.3.6 The href attribute (387) for detailed information on
supported values and processing implications.

@keycol (simpletable attributes)
Defines the column that contains headings for each row. No value indicates no key column. When
present, the numerical value causes the specified column to be treated as a vertical header.

@keyref
@keyref provides a redirectable reference based on a key defined within a map. See 10.8.3.7 The
keyref attribute (388) for information on using this attribute.

@keyscope (common map attributes)
Specifies that the element marks the boundaries of a key scope. See 10.8.3.9 The keyscope attribute
(389) for details on how to use the @keyscope attribute.

@linking (common map attributes)
Defines some specific linking characteristics of a topic's current location in the map. If the value is not
specified locally, the value might cascade from another element in the map (for cascade rules, see
5.3.1 Cascading of metadata attributes in a DITA map (49)). Allowable values are:

targetonly
A topic can only be linked to and cannot link to other topics.

DITA TC work product Page 373 of 430

sourceonly
A topic cannot be linked to but can link to other topics.

normal
A topic can be linked to and can link to other topics. Use this to override the linking value of a
parent topic.

none
A topic cannot be linked to or link to other topics.

-dita-use-conref-target
See 10.8.3.4.1 Using the -dita-use-conref-target value (385) for more information.

@name (data-element attributes)
Defines a unique name for the object.

@parse (inclusion attributes)
Specifies the processing expectations for the referenced resource. Processors must support the
following values:

text

The contents should be treated as plain text. Reserved XML characters should be displayed,
and not interpreted as XML markup.

xml

The contents of the referenced resource should be treated as an XML document, and the
referenced element should be inserted at the location of the <include> element. If a fragment
identifier is included in the address of the content, processors must select the element with the
specified ID. If no fragment identifier is included, the root element of the referenced XML
document is selected. Any grammar processing should be performed during resolution, such
that default attribute values are explicitly populated. Prolog content must be discarded.

It is an error to use parse="xml" anywhere other than within <foreign> or a specialization
thereof.

Processors may support other values for the @parse attribute with proprietary processing semantics.
Processors should issue warnings and use <fallback> when they encounter unsupported @parse
values. Non-standard @parse instructions should be expressed as URIs.

Note Proprietary @parse values will likely limit the portability and interoperability of DITA
content, so should be used with care.

@processing-role (common map attributes)
Describes the processing role of the referenced topic. The processing default is "normal". If no value
is specified, but the attribute is specified on an ancestor within a map or within the related-links
section, the value will cascade from the closest ancestor. Allowable values are:

normal
Normal topic that is a readable part of the information.

resource-only
The topic is used as a resource for processing purposes. This topic should not be included in a
rendered table of contents, and the topic should not be rendered on its own.

-dita-use-conref-target
See 10.8.3.4.1 Using the -dita-use-conref-target value (385) for more information.

DITA TC work product Page 374 of 430

@relcolwidth (simpletable attributes)
Specifies the width of each column in relationship to the width of the other columns. The value is a
space separated list of relative column widths; each column width is specified as a positive integer or
decimal number followed by an asterisk character.

For example, the value relcolwidth="1* 2* 3*" gives a total of 6 units across three columns.
The relative widths are 1/6, 2/6, and 3/6 (16.7%, 33.3%, and 50%). Similarly, the value
relcolwidth="90* 150*" causes relative widths of 90/240 and 150/240 (37.5% and 62.5%).

@rowsep (complex table attributes)
Row separator. A value of "0" indicates no separators; "1" indicates separators.

The @rowsep attribute is available on the following table elements: <table>, <tgroup>, <row>,
<colspec>, and <entry>.

@rowheader (complex table attributes)
Indicates whether the entries in the respective column SHOULD be considered row headers.
Allowable values are:

firstcol
Indicates that entries in the first column of the table are functionally row headers (analogous to
the way that a <thead> element provides column headers). Applies when @rowheader is used
on the <table> element.

headers
Indicates that entries of a column described using the <colspec> element are functionally row
headers (for cases with more than one column of row headers). Applies when @rowheader is
used on the <colspec> element.

norowheader
Indicates that entries in the first column have no special significance with respect to column
headers. Applies when @rowheader is used on the <table> element.

-dita-use-conref-target
See 10.8.3.4.1 Using the -dita-use-conref-target value (385) for more information.

Note This attribute is not part of the OASIS Exchange Table model upon which DITA tables are
based. Some DITA processors or output formats might not support all values.

The @rowheader attribute is available on the following table elements: <table> and <colspec>.

@scale (display attributes)
Specifies a percentage, selected from an enumerated list, that is used to resize fonts in relation to
the normal text size. This attribute is primarily useful for print-oriented display.

The @scale attribute provides an acknowledged style-based property directly on DITA elements. For
the <table> and <fig> elements, the intent of the property is to allow authors to adjust font sizes
on the content of the containing element, primarily for print accommodation. An <image> in these
contexts is to be scaled only by its own direct scale property. If not specifically scaled, such an
<image> is unchanged by the scale property of its parent <table> or <fig>.

Allowable values are 50, 60, 70, 80, 90, 100, 110, 120, 140, 160, 180, 200, and -dita-use-conref-
target (385). Some DITA processors or output formats might not be able to support all values.

@scope (link-relationship attributes)
The @scope attribute identifies the closeness of the relationship between the current document and
the target resource. Allowable values are "local", "peer", "external", and "-dita-use-conref-target"; see
10.8.3.11 The scope attribute (391) for more information on these values.

DITA TC work product Page 375 of 430

@search (common map attributes)
Describes whether the target is available for searching. If the value is not specified locally, the value
might cascade from another element in the map (for cascade rules, see 5.3.1 Cascading of metadata
attributes in a DITA map (49)). Allowable values are:

yes

no

-dita-use-conref-target (385)

@specentry (specialization attributes)
The specialized entry attribute allows architects of specialized types to define a fixed or default
header title for a specialized <stentry> element. Not intended for direct use by authors.

@specializations (architectural attributes)
Indicates the specialized attribute domains that are included in the grammar file. This attribute is
defined with the XML data type CDATA. The value will differ depending on what domains are
included in the current DTD or Schema; a sample value is @props/audience @props/
deliveryTarget @base/newBaseAtt.

@spectitle (specialization attributes)
The specialized title attribute allows architects of specialized types to define a fixed or default title for
a specialized element. Not intended for direct use by authors.

@toc (common map attributes)
Specifies whether a topic appears in the table of contents (TOC). If the value is not specified locally,
the value might cascade from another element in the map (for cascade rules, see 5.3.1 Cascading of
metadata attributes in a DITA map (49)). Allowable values are:

yes
The topic appears in a generated TOC.

no
The topic does not appear in a generated TOC.

-dita-use-conref-target
See 10.8.3.4.1 Using the -dita-use-conref-target value (385) for more information.

@type (link-relationship attributes)
Describes the target of a reference. See 10.8.3.12 The type attribute (391) for detailed information
on supported values and processing implications.

@value (data-element attributes)
Specifies a value associated with the current property or element.

@valign (complex table attributes)
Indicates the vertical alignment of text in a table entry (cell). Allowable values are:

top
Align the text to the top of the table entry (cell).

bottom
Align the text to the bottom of the table entry (cell).

middle
Align the text to the middle of the table entry (cell).

-dita-use-conref-target
See 10.8.3.4.1 Using the -dita-use-conref-target value (385) for more information.

DITA TC work product Page 376 of 430

The @valign attribute is available on the following table elements: <thead>, <tbody>, <row>, and
<entry>.

@xml:space
This attribute is provided on <pre>, <lines>, and on elements specialized from those. It ensures
that parsers in editors and transforms respect the white space, including line-end characters, that is
part of the data in those elements. It is intended to be part of the default properties of these
elements, and not for authors to change or delete. When defined, it has a fixed value of "preserve".

@xmlns:ditaarch (architectural attributes)
Declares the default DITA namespace. Although this is technically a namespace rather than an
attribute, it is included here because it is specified as an attribute in the DTD grammar files
distributed by OASIS. The value is fixed to "http://dita.oasis-open.org/architecture/2005/".

Related concepts
Cascading of metadata attributes in a DITA map (49)

Certain map-level attributes cascade throughout a map, which facilitates attribute and metadata
management. When attributes cascade, they apply to the elements that are children of the element where
the attributes were specified. Cascading applies to a containment hierarchy, as opposed to a element-
type hierarchy.

10.8.3 Complex attribute definitions
Several DITA attributes require more explanation. Those attributes are collected here.

10.8.3.1 The @conaction attribute
The @conaction attribute allows users to push content from one topic into another. It causes the
@conref attribute to work in reverse, so that the content is pushed from the current topic into another,
rather than pulled from another topic into the current one. Allowable values for @conaction are:
"pushafter", "pushbefore", "pushreplace", mark"", and "-dita-use-conref-target".

Note In the descriptions below, the word target always refers to the element referenced by a
@conref attribute.

There are three possible functions using the @conaction attribute: replacing an element, pushing
content before an element, and pushing content after an element. The @conaction attribute always
declares the desired function while the @conref attribute provides the target of the reference using the
standard @conref syntax.

In each case, an element pushed using @conref must be of the same type as, or more specialized than,
its target. If the pushed element is more specialized than the target, then it should be generalized when
the @conref is resolved. This ensures that the content will be valid in the target topic.

• It is valid to push using @conref when the two elements involved are of the same type. For
example, a <step> element can use the conref push feature with another <step> as the target
of the @conref.

• The target element can be more general than the source. For example, it is legal to push a
<step> element to replace a general list item (); the <step> element should be generalized
back to a list item during the process.

• It is not possible to push a more general element into a specialized context. For example, it is not
legal to push a list item () in order to replace a <step>, because the list item allows many
items that are not valid in the specialized context.

DITA TC work product Page 377 of 430

Replacing content in another topic
When the @conaction attribute is set to "pushreplace", the source element will replace the target
specified on the @conref attribute. The pushed content remains in the source topic where it was
originally authored.

For example, assume that a task in example.dita has the @id set to example"", and it contains a
<step> element with the @id set to "b":

<task id="example" xml:lang="en">
 <title>Example topic</title>
 <taskbody>
 <steps>
 <step id="a"><cmd>A</cmd></step>
 <step id="b"><cmd>B</cmd></step>
 <step id="c"><cmd>C</cmd></step>
 </steps>
 </taskbody>
</task>

In order to replace the step with id="b", another topic must combine a @conaction value of
"pushreplace" with a @conref attribute that references this <step>:

<task id="other" xml:lang="en">
 ...
 <step conaction="pushreplace"
 conref="example.dita#example/b">
 <cmd>Updated B</cmd>
 </step>
 ...
</task>

The result will be an updated version of example.dita which contains the pushed <step>:

<task id="example" xml:lang="en">
 <title>Example topic</title>
 <taskbody>
 <steps>
 <step id="a"><cmd>A</cmd></step>
 <step id="b"><cmd>Updated B</cmd></step>
 <step id="c"><cmd>C</cmd></step>
 </steps>
 </taskbody>
</task>

When resolving a conref push action, attributes are resolved using the same precedence as for normal
@conref, with one exception. Attributes on the element with the @conref attribute (in this case, the
source doing the push) will take priority over those on the referenced element. The exception is that if the
source element does not specify an ID, the ID on the referenced element remains; if the source element
does specify an ID then that replaces the ID on the referenced element.

It is an error for two source topics to replace the same element. Applications MAY warn users if more than
one element attempts to replace a single target.

Pushing content before or after another element
Setting the @conaction attribute to "pushbefore" allows an element to be pushed before the element
referenced by the @conref attribute. Likewise, setting the @conaction attribute to "pushafter" allows an
element to be pushed after the element referenced by the @conref attribute. Multiple sources can push
content before or after the same target; the order in which that content is pushed is undefined.

DITA TC work product Page 378 of 430

When an element is pushed before or after a target, the resulting document will have at least two of that
element. Because this is not always valid, a document attempting to push content before or after a target
must take an extra step to ensure that the result will be valid. The extra step makes use of the
conaction="mark" value.

When pushing before, the @conref attribute itself looks just as it did when replacing, but the
@conaction attribute is set to mark"" because it is marking the target element. This element remains
empty; its purpose is to ensure that it is legal to have more than one of the current element. Immediately
before the element which marks the target, you will place the content that you actually want to push. This
element will set the @conaction attribute to "pushbefore".

When pushing after, the procedure is the same, except that the order of the elements is reversed. The
element with conaction="pushafter" comes immediately after the element which marks the target.

Attributes on the element which is pushed (the one with conaction="pushbefore") must be retained
on the target, apart from the @conaction attribute itself. If this causes the result document to end up
with duplicate IDs, an application can recover by dropping the duplicate ID, modifying it to ensure
uniqueness, or warning the user.

The following restrictions apply when pushing content before or after an element:

• The elements that use conaction="mark" and conaction="pushbefore" are the same
type as each other and appear in sequence. This restriction prevents a topic from trying to push a
<body> element before or after another <body> element, because it is not valid to have two body
elements in sequence.

• Either the container elements of the source and target match, or the container of the source
element is be a specialization of the target's container. This is also to ensure validity of the target;
for example, while it is possible to include multiple titles in a <section>, it is not possible to do
so in a figure. Comparing the parents prevents a second <section> title from being pushed
before a figure title (the resulting figure would not be valid DITA). This restriction only applies to
the "pushbefore" or" pushafter" actions, not to the "pushreplace" action.

When content is pushed from one topic to another, it is still rendered in the original context. Processors
might delete the empty element that has the conaction="mark" attribute. In order to push content from
a topic without actually rendering that topic on its own, the topic should be referenced from the map with
the @processing-role attribute set to "resource-only".

Example: pushing an element before the target
The following example pushes a <step> before "b" in the example.dita file shown above.

<step conaction="pushbefore"><cmd>Do this before B</cmd></step>
<step conaction="mark" conref="example.dita#example/b">
 <cmd/>
</step>

The result contains the pushed <step> element before "b".

<task id="example" xml:lang="en">
 <title>Example topic</title>
 <taskbody>
 <steps>
 <step id="a"><cmd>A</cmd></step>
 <step><cmd>Do this before B</cmd></step>
 <step id="b"><cmd>B</cmd></step>
 <step id="c"><cmd>C</cmd></step>
 </steps>
 </taskbody>
</task>

DITA TC work product Page 379 of 430

Example: pushing an element after the target
Pushing an element after a target is exactly the same as pushing before, except that the order of the
"mark" element and the pushed element are reversed.

<step conaction="mark" conref="example.dita#example/b">
 <cmd/>
</step>
<step conaction="pushafter"><cmd>Do this AFTER B</cmd></step>

In this case the resulting document has the pushed content after <step> b:

<task id="example" xml:lang="en">
 <title>Example topic</title>
 <taskbody>
 <steps>
 <step id="a"><cmd>A</cmd></step>
 <step id="b"><cmd>B</cmd></step>
 <step><cmd>Do this AFTER B</cmd></step>
 <step id="c"><cmd>C</cmd></step>
 </steps>
 </taskbody>
</task>

Combining @conaction with @conkeyref or @conrefend
The @conkeyref attribute can be used as an indirect way to specify a @conref target. If the
@conkeyref attribute is specified on an element that also uses the @conaction attribute, the
@conkeyref attribute is used to determine the target of the conref push (as it would normally be used to
determine the target of @conref).

The conref push function does not provide the ability to push a range of elements, so it is an error to
specify the @conrefend attribute together with the @conaction attribute. If the two are specified
together an application can recover by warning the user, ignoring the @conrefend attribute, or with some
other implementation strategy.

10.8.3.2 The @conrefend attribute
The @conrefend attribute is used when referencing a range of elements with the conref mechanism.
The @conref or @conkeyref attribute references the first element in the range, while @conrefend
references the last element in the range.

Using @conref together with @conrefend
The following markup rules apply when using or implementing @conrefend:

• The start and end elements of a range MUST be of the same type as the referencing element or
generalizable to the referencing element.

• The start and end elements in a range MUST share the same parent, and the start element MUST
precede the end element in document order.

• The parent of the referencing element MUST be the same as the parent of the referenced range
or generalizable to the parent of the referencing element.

In addition, several other items must be taken into account:

• Processors will resolve the range by pulling in the start target and following sibling XML nodes
across to and including the end target.

• As with @conref, if the @conrefend references a more specialized version of the referencing
element, applications should generalize the target when resolving.

DITA TC work product Page 380 of 430

• It is not valid to use @conrefend to reference a more general version of an element (such as
using <step> to reference an element).

• Other nodes (such as elements or text) between the start and end of a range do not have to
match the referencing element.

• With single conref, an @id attribute from the referenced element will not be preserved on the
resolved content. With a range, an @id on both the start and the end elements will not be
preserved. @id attributes on intermediate or child nodes should be preserved; if this results in
duplicate @id values, an application can recover by changing the @id, warning the user, or
implementing another strategy.

• With a single conref, attributes specified on the referencing elementcan be used to override
attributes on the referenced element. With a conref range, the same is true, with the following
clarifications:

– When an @id attribute is specified on the referencing element, it will only be preserved on
the first element of the resolved range.

– When other attributes are specified, they will only apply to referenced elements of the
same type. For example, if <step> is used to pull in a range of sequential <step>
elements, locally specified attributes apply to all steps in the range. If is used to pull
in a series of (, <p>,), locally specified attributes apply only to the
elements in that range.

Example: reusing a set of list items
Figure 160: List example: Source topic.dita with ids

<topic id="x">
 ...
 <body>

 <li id="apple">A
 <li id="bear">B
 <li id="cat">C
 <li id="dog">D
 <li id="eel">E

 </body>
 </topic>

Figure 161: List example: Reusing topic with conrefs

 <topic id="y">
 ...
 <body>

 My own first item
 <li conref="topic.dita#x/bear" conrefend="topic.dita#x/dog"/>
 And a different final item

 </body>
 </topic>

Figure 162: List example: Processed result of reusing topic

 <topic id="y">
 ...
 <body>

 My own first item

DITA TC work product Page 381 of 430

 B
 <li id="cat">C
 D
 And a different final item

 </body>
</topic>

Example: Reusing a set of blocks
Figure 163: Block level example: Source topic.dita with ids

<topic id="x">
 ...
 <body>
 <p id="p1">First para</p>
 <ol id="mylist">
 <li id="apple">A
 <li id="bear">B
 <li id="cat">C
 <li id="dog">D
 <li id="eel">E

 <p id="p2">Second para</p>
 </body>
 </topic>

Figure 164: Block level example: Reusing topic with conrefs

 <topic id="y">
 ...
 <body>
 <p conref="topic.dita#x/p1" conrefend="topic.dita#x/p2"/>
 </body>
 </topic>

Figure 165: Block level example: Processed result of reusing topic

 <topic id="y">
 ...
 <body>
 <p>First para</p>
 <ol id="mylist">
 <li id="apple">A
 <li id="bear">B
 <li id="cat">C
 <li id="dog">D
 <li id="eel">E

 <p>Second para</p>
 </body>
</topic>

Using @conrefend together with @conkeyref
When the @conkeyref attribute is used in place of @conref, a key is used to address the target of the
reference. The @conrefend attribute, which indicates the end of a @conref range, cannot use a key.
Instead the map or topic element addressed by the key name component of the @conkeyref is used in
place of whatever map or topic element is addressed by the @conrefend attribute.

For example, if the value of the @conkeyref attribute is "config/step1" and the value of the @conrefend
is "defaultconfig.dita#config/laststep", the conref range will end with the step that has id="laststep" in

DITA TC work product Page 382 of 430

whatever topic is addressed by the key name "config". If the key name "config" is not defined, and the
@conref attribute itself is not present for fallback, the @conrefend attribute is ignored.

Example: Combining @conrefend with @conkeyref
Figure 166: Defining and referencing a key with @conkeyref

In this example the key "xmp" is defined as the first topic in the file examples.dita.

<map>
 <!-- ... -->
 <keydef keys="xmp" href="examples.dita"/>
 <!-- ... -->
</map>

examples.dita:
<topic id="examples">
 <title>These are examples</title>
 <body>

 <li id="first">A first example
 Another trivial example
 <li id="last">Final example

 </body>
</topic>

To reuse these list items by using the key, the @conkeyref attribute combines the key itself with the sub-
topic id (first) to define the start of the range. The @conrefend attribute defines a default high-level
object along with the sub-topic id (last) that ends the range:

 <li conkeyref="xmp/first"
 conrefend="default.dita#default/last"/>

The @conkeyref attribute uses a key to reference the first topic in examples.dita, so the range
begins with the object examples.dita#examples/first. The high-level object in the @conrefend
attribute (default.dita#default) is replaced with the object represented by the key (the first topic in
examples.dita), resulting in a range that ends with the object examples.dita#examples/last.

Figure 167: Combining @conref, @conkeyref, and @conrefend

When @conref, @conkeyref, and @conrefend are all specified, the key value takes priority.

 <li conkeyref="thisconfig/start"
 conref="standardconfig.dita#config/start"
 conrefend="standardconfig.dita#config/end"/>

• If the key "thisconfig" is defined as mySpecialConfig.dita#myconfig, then the range will go
from the list item with id="start" to the list item withid="end" in the topic
mySpecialConfig.dita#myconfig.

• If the key "thisconfig" is defined as myConfig.dita, then the range will go from the list item with
id="start" to the list item with id="end" within the first topic in myConfig.dita.

• If the key "thisconfig" is not defined, then the unchanged @conref and @conrefend attributes
are used as fallback. In that case, the range will go from the list item with id="start" to the list
item with id="end" within the topic standardconfig.dita#config.

Error conditions
When encountering an error condition, an implementation can issue an error message.

DITA TC work product Page 383 of 430

Condition or Issue Result

The @conref attribute cannot be resolved in the target
document (the target element might have been removed
or its id has changed).

The @conref is ignored.

The @conrefend attribute cannot be resolved in the
target document (the target element might have been
removed or its id has changed).

Range cannot be resolved, optional recovery processes
the result as a simple conref.

Start and end elements are not siblings in the target
document.

If the start element exists, optional recovery processes
the result as a simple conref.

End element occurs before the start element in the
target document.

If the start element exists, optional recovery processes
the result as a simple conref.

An element has a @conrefend attribute but is missing
the @conref attribute.

No result.

10.8.3.3 The @conkeyref attribute
The @conkeyref attribute provides an indirect content reference to topic elements, map elements, or
elements within maps or topics. When the DITA content is processed, the key references are resolved
using key definitions from DITA maps.

For content references from map elements to map elements or topic elements to topic elements, the
value of the @conkeyref attribute is a key name, where the key must be bound to a map element (for
references from map elements) or a topic element (for references from topic elements). For all other
elements, the value of the @conkeyref attribute is a key name, an optional slash ("/"), and the ID of the
target element, where the key name must be bound to the map or topic that contains the topic element.

When the key name specified by the @conkeyref attribute is not defined and the element also specifies
a @conref attribute, the @conref attribute is used to determine the content reference relationship. If no
@conref attribute is specified there is no content reference relationship.

Processors SHOULD issue a warning when a @conkeyref reference cannot be resolved and there is no
@conref attribute to use as a fallback. Processors MAY issue a warning when a @conkeyref cannot be
resolved to an element and a specified @conref is used as a fallback.

The @conrefend attribute, which defines the end of a conref range, cannot include a key. Instead the
map or topic element addressed by the key name component of the @conkeyref is used in place of
whatever map or topic element is addressed by the @conrefend attribute. See Using conrefend together
with conkeyref (382) for more information and for examples of this behavior.

10.8.3.4 The @conref attribute
The @conref attribute is used to reference content that can be reused. It allows reuse of DITA elements,
including topic or map level elements.

The value of the @conref attribute must be a URI reference to a DITA element. See 6.3 URI-based
(direct) addressing (74) for details on specifying URI references to DITA elements. As with other DITA
references, a @conref attribute that references a resource without an ID is treated as a reference to the
first topic or map in the document.

Note When using the @conref attribute on an element, the content of that element is ignored. For
example, if a phrase is marked up like this:

<ph conref="#topic/ph">Something</ph>

DITA TC work product Page 384 of 430

the word "Something" will be replaced by the content of the referenced <ph> element.

Related concepts
Content reference (conref) (112)

The DITA conref attributes provide mechanisms for reusing content. DITA content references support
reuse scenarios that are difficult or impossible to implement using other XML-based inclusion
mechanisms like XInclude and entities. Additionally, DITA content references have rules that help ensure
that the results of content inclusion remain valid after resolution

10.8.3.4.1 Using the "-dita-use-conref-target" value
The value "-dita-use-conref-target" is available on enumerated attributes and can also be specified on
other attributes. When an element uses @conref to pull in content, for any of its attributes assigned a
value of "-dita-use-conref-target", the resulting value for those attributes is also pulled in from the
referenced element.

Ordinarily, when an element uses @conref, any other attributes specified locally will be preserved when
the reference is resolved. This causes problems when attributes are required, because required attributes
must be specified regardless of whether the @conref attribute is present. The purpose of the "-dita-use-
conref-target" value is to allow the author to specify a value for a required attribute while still allowing the
conref resolution process to use the matching attribute from the referenced element. The value has the
same result when the attribute is not required.

The" -dita-use-conref-target" token is allowed on any attribute where it is not prohibited by the XML
grammar files or by the specification. For example, while @cols on the <tgroup> element is defined as
being a number, this token is implicitly allowed in order to support conref processing for <tgroup>.
However, the token is not allowed for the @id attribute on the <topic> element, because "-dita-use-
conref-target" does not fit the syntax required by the XML grammar files.

This example shows a DITA map where the <topichead> element uses @conref. It specifies the
@deliveryTarget attribute as well as the @toc attribute. In the resolved element, @deliveryTarget
from the referencing element is not preserved because it uses "-dita-use-conref-target". The @toc
attribute from the referencing element overrides the @toc attribute on the referenced element using
normal conref resolution rules.

Figure 168: Before resolution

<map><title>Conref demonstration</title>
 <topichead id="heading"
 deliveryTarget="pdf"
 toc="yes"
 linking="normal">
 <topicmeta>
 <navtitle>This is a heading</navtitle>
 </topicmeta>
 <topicref href="topic.dita"/>
 </topichead>

 <topichead conref="#heading"
 deliveryTarget="-dita-use-conref-target"
 toc="no">
 </topichead>
</map>

Figure 169: Effective result post-resolution

<map><title>Conref demonstration</title>
 <topichead id="heading"
 deliveryTarget="pdf"

DITA TC work product Page 385 of 430

 toc="yes"
 linking="normal">
 <topicmeta>
 <navtitle>This is a heading</navtitle>
 </topicmeta>
 <topicref href="topic.dita"/>
 </topichead>

 <topichead deliveryTarget="pdf"
 toc="no"
 linking="normal">
 <topicmeta>
 <navtitle>This is a heading</navtitle>
 </topicmeta>
 <topicref href="topic.dita"/>
 </topichead>
</map>

Related concepts
Content reference (conref) (112)

The DITA conref attributes provide mechanisms for reusing content. DITA content references support
reuse scenarios that are difficult or impossible to implement using other XML-based inclusion
mechanisms like XInclude and entities. Additionally, DITA content references have rules that help ensure
that the results of content inclusion remain valid after resolution

10.8.3.5 The @format attribute
The @format attribute identifies the format of the resource that is referenced. If no value is specified, but
the attribute is specified on an ancestor within a map or within the related-links section, the value will
cascade from the closest ancestor.

The following values for @format have special processing implications:

dita
The destination uses DITA topic markup or markup specialized from a DITA topic. Unless otherwise
specified, when @format is set to "dita", the value for the @type attribute will be treated as topic"".

ditamap
The linked-to resource is a DITA map. It represents the referenced hierarchy at the current point in
the referencing map. References to other maps can occur at any point in a map, but because
relationship tables are only valid as children of a map, referenced relationship tables are treated as
children of the referencing map.

Note If a <topicref> element that references a map contains child <topicref> elements,
the processing behavior regarding the child <topicref> elements is undefined.

(no value)
The processing default is used. The processing default for the @format attribute is determined by
inspecting the value of the @href attribute. If the @href attribute specifies a file extension, the
processing default for the @format attribute is that extension, after conversion to lower-case and
with no leading period. The only exception to this is if the extension is .xml, in which case the
default value for @format is "dita". If there is no extension, but the @href value is an absolute URI
whose scheme is "http" or "https", then the processing default is "html". In all other cases where no
extension is available, the processing default is "dita."

If the actual format of the referenced content differs from the effective value of the @format attribute,
and a processor is capable of identifying such cases, it MAY recover gracefully and treat the content
as its actual format, but SHOULD also issue a message.

DITA TC work product Page 386 of 430

For DITA processors that support Lightweight DITA, the following values for @format have special
processing implications:

xdita
The format of the resource is XDITA.

mdita
The format of the resource is MDITA.

hdita
The format of the resource is HDITA.

xditamap
The resource is an XDITA map.

hditamap
The resource is an HDITA map.

mditamap
The resource is an MDITA map.

For other formats, using the file extension without the "." character typically represents the format. For
example, the following values are all possible values for @format:

html
The format of the linked-to resource is HTML or XHTML.

pdf
The format of the linked-to resource is PDF.

txt
The format of the linked-to resource is a text file.

10.8.3.6 The @href attribute
The @href attribute is used to reference another DITA topic or map, a specific element inside a DITA
topic or map, an external Web page, or another non-DITA resource.

The value of a DITA @href attribute must be a valid URI reference [RFC 3986].

if the value of the @href attribute is not a valid URI reference, an implementation MAY generate an error
message; it MAY recover from this error condition by attempting to convert the value to a valid URI
reference.

Note that the path separator character in a URI is the forward slash (“/”); the backward slash character
(“\”) is not permitted unescaped within URIs.

When an @href attribute references a DITA resource, an @href value that consists of a URI without a
fragment identifier resolves to the document element in the referenced document. For the purposes of
rendering, such as when a <topicref> reference to a DITA document is used to render the content as
HTML, this means that all topics (and topic specializations) in the target document are included in the
reference. For the purpose of linking, the reference resolves to the first (or only) topic (or topic
specialization) in the document.

An @href value that consists of a URI with a fragment identifier must have a DITA local identifier as the
portion after the hash. A DITA local identifier consists of topicID/elementID for a subelement of a
topic, and of elementID for topics, maps, and subelements of a map. If the topic referenced by a DITA
local identifier is for the same topic, then topicID can be replaced by a period; see 7.3.4 Processing xrefs
and conrefs within a conref (114) for more information on how this syntax relates to conref resolution.

Note that certain characters—including but not limited to the hash sign ("#"), question mark ("?"), back
slash ("\"), and space—are not permitted unescaped within URIs. Such characters must be percent-

DITA TC work product Page 387 of 430

http://www.ietf.org/rfc/rfc3986.txt

encoded. Also note that the ampersand ("&") and less than (“<”) characters are not permitted in XML
attribute values; they must be represented by appropriate character or entity references. Some tools
might perform this encoding automatically, while other tools might require that users either avoid the
special characters or manually insert the encoding.

Example: Common syntax for the @href attribute
The following table includes some examples of common @href syntax. Note that these examples
represent only a few common scenarios and are not all inclusive.

Target Syntax

The first topic in a DITA
document

href="file.dita"

A specific topic in a DITA
document

href="file.dita#topicid"

A non-topic element inside
a DITA topic

href="#topicid/elementid"

A non-topic element inside
the same DITA topic as the
reference

href="#./elementid"

An element in a DITA map href="myMap.ditamap#map-branch"
An image href="exampleImage.jpg"
An external resource href="http://www.example.org"

where:

• topicid is the value of the @id attribute on the DITA topic.
• elementid is the value of the @id attribute on the (non-topic) DITA element.
• map-branch is the value of the @id attribute on the DITA map element.

10.8.3.7 The @keyref attribute
The @keyref attribute provides an indirect, late-bound reference to topics, to collections of topics
(ditabase), to maps, to referenceable portions of maps, to non-DITA documents, to external URIs, or to
XML content contained within a key definition topic reference. When the DITA content is processed, the
key references are resolved using key definitions from DITA maps.

For elements that only refer to topics or non-DITA resources, the value of the @keyref attribute is a key
name. For elements that can refer to elements within maps or topics, the value of the @keyref attribute
is a key name, a slash ("/"), and the ID of the target element, where the key name must be bound to either
the map or topic that contains the target element.

Related concepts
Indirect key-based addressing (77)

DITA TC work product Page 388 of 430

DITA keys provide an alternative to direct addressing. The key reference mechanism provides a layer of
indirection so that resources (for example, URIs, metadata, or variable text strings) can be defined at the
DITA map level instead of locally in each topic.

10.8.3.8 The @keys attribute
A @keys attribute consists of one or more space-separated keys. Map authors define keys using a
<topicref> or <topicref> specialization that contains the @keys attribute. Each key definition
introduces an identifier for a resource referenced from a map. Keys resolve to the resources given as the
@href value on the key definition <topicref> element, to content contained within the key definition
<topicref> element, or both.

The @keys attribute uses the following syntax:

• The value of the @keys attribute is one or more space-separated key names.
• Key names consist of characters that are legal in a URI. The case of key names is significant.
• The following characters are prohibited in key names: "{", "}", "[", "]", "/", "#", "?", and whitespace

characters.

A key cannot resolve to sub-topic elements, although a @keyref attribute can do so by combining a key
with a sub-topic element id.

Related concepts
Indirect key-based addressing (77)

DITA keys provide an alternative to direct addressing. The key reference mechanism provides a layer of
indirection so that resources (for example, URIs, metadata, or variable text strings) can be defined at the
DITA map level instead of locally in each topic.

10.8.3.9 The @keyscope attribute
The @keyscope attribute consists of one or more space-separated key scope names. Map authors
define the boundaries for key scopes by specifying the @keyscope attribute on <map> elements,
<topicref> elements, or elements that are specializations of <map> or <topicref>. Such elements,
their contents, and any locally-scoped content referenced from within the element, are considered to be
part of the scope. Keys defined within a scope are only directly referenceable from within the same
scope. They can be referenced from the parent scope using the scope's name, followed by a period,
followed by the key name.

All key scopes are contiguous and non-intersecting. Within a root map, two distinct key scopes with the
same name have no relationship with each other aside from that implied by their relative locations in the
key scope hierarchy. They do not, for example, share key definitions. The only processing impact of a key
scope's names is in defining the prefixes used when contributing qualified key names to the parent scope.
For example, consider the following map segment:

<map>
 <topicgroup keyscope="xyz" id="scope1">
 <keydef keys="a" id="def1"/>
 <!-- other topic references -->
 </topicgroup>
 <topicgroup keyscope="xyz" id="scope2">
 <keydef keys="a" id="def2"/>
 <!-- other topic references -->
 </topicgroup>
 <!-- lots of other content -->
</map>

DITA TC work product Page 389 of 430

This map creates two distinct scopes that happen to use the same name ("xyz"). This results in the
following:

• Each <topicgroup> sets a scope of "xyz" and includes a key "a". From outside of those two
scopes, references to keyref="xyz.a" (key "a" within the scope "xyz") will always resolve to
the first instance of that value, which is in the first <topicgroup>.

• Within the first <topicgroup>, content uses keyref="a" will resolve to the key in that branch
(defined on the element with id="def1").

• Within the second <topicgroup>, content uses keyref="a" will resolve to the key in that
branch (defined on the element with id="def2").

10.8.3.10 The @role and @otherrole attributes
The @role attribute defines the role the target topic plays in relationship with the current topic. For
example, in a parent/child relationship, the role would be "parent" when the target is the parent of the
current topic, and "child" when the target is the child of the current topic. This structure could be used to
sort and classify links at display time.

Supported values for @role
Allowable values for the @role attribute are:

parent
Indicates a link to a topic that is a parent of the current topic.

child
Indicates a link to a direct child such as a directly nested or dependent topic.

sibling
Indicates a link between two children of the same parent topic.

friend
Indicates a link to a similar topic that is not necessarily part of the same hierarchy.

next
Indicates a link to the next topic in a sequence.

previous
Indicates a link to the previous topic in a sequence.

cousin
Indicates a link to another topic in the same hierarchy that is not a parent, child, sibling, next, or
previous.

ancestor
Indicates a link to a topic above the parent topic.

descendant
Indicates a link to a topic below a child topic.

other
Indicates any other kind of relationship or role. Enter that role as the value for the @otherrole
attribute.

-dita-use-conref-target
See 10.8.3.4.1 Using the -dita-use-conref-target value (385) for more information.

The @otherrole attribute is available to specify an alternate role that is not available in the list above,
and should be used in conjunction with role="other".

DITA TC work product Page 390 of 430

10.8.3.11 The @scope attribute
The @scope attribute identifies the closeness of the relationship between the current document and the
target resource.

• Set @scope to "local" when the resource is part of the current set of content.
• Set @scope to "peer" when the resource is part of the current set of content but might not

accessible at build time, or for maps to be treated as root maps for the purpose of creating map-
to-map key references (peer maps). An implementation might open such resources in the same
browser window to distinguish them from those with @scope set to "external".

• Set @scope to "external" when the resource is not part of the current information set and should
open in a new browser window.

• See 10.8.3.4.1 Using the -dita-use-conref-target value (385) for more information on "-dita-use-
conref-target".

If no value is specified, but the attribute is specified on an ancestor within a map or within the related-links
section, the value will cascade from the closest ancestor. The processing default is determined by the
value of the @href attribute. In most cases, the processing default is "local". However the processing
default is "external" whenever the absolute URI in the @href attribute begins with one of the following
schemes:

• "http"
• "https"
• "ftp"
• "mailto"

Processors can consider additional URI schemes as "external" by default. Processors MUST always
consider relative URIs as "local" by default.

10.8.3.12 The @type attribute
The @type attribute is used on linking elements to describe the target of a cross-reference. It also is used
on the <note> element to describe the note type, as well as on several other elements for varying
purposes.

The descriptions for the @type attribute on linking elements and on <note> are included in this section;
for other elements, such as <audience>, <copyright>, and <object>, the description can be found
with the topic for the specific element.

Using @type on a linking element
The @type attribute describes the target of a cross-reference and might generate cross-reference text
based on that description. Only the <xref> element can link to content below the topic level: other types
of linking can target whole topics, but not parts of topics. Typically <xref> should also be limited to topic-
level targets, unless the output is primarily print-oriented. Web-based referencing works best at the level
of whole topics, rather than anchor locations within topics.

If not explicitly specified on an element, the @type attribute value cascades from the closest ancestor
element. If there is no explicit value for the @type attribute on any ancestor, a default value of “topic” is
used.

During output processing for references to DITA topics (format="dita"), it is an error if the actual type
of a DITA topic and the explicit, inherited, or default value for the @type attribute are not the same as or a
specialization of the @type attribute value. In this case, an implementation MAY give an error message,
and MAY recover from this error condition by using the @type attribute value.

DITA TC work product Page 391 of 430

During output processing for references to non-DITA objects (that is, either scope is “external" or format is
neither "dita" nor "ditamap") or other cases where the type of the referenced item cannot be determined
from the item itself, the explicit, inherited, or default value for the @type attribute is used without any
validation.

When a referencing element is first added to or updated in a document, DITA-aware editors MAY set the
@type attribute value based on the actual type of a referenced DITA topic.

If the @type attribute is specified when referencing DITA content, it should match one of the values in the
referenced element's @class attribute. The @type value can be an unqualified local name (for example,
"fig") or a qualified name exactly as specified in the @class attribute (for example, "mymodule/mytype").
Processors might ignore qualified names or consider only the local name.

For example, if the value is set to type="topic", the link could be to a generic topic, or any
specialization of topic, including concept, task, and reference. Applications MAY issue a warning when the
specified or inherited @type attribute value does not match the target (or a specialization ancestor of the
target).

Some possible values for use on the <xref> element and its specializations include:

fig
Indicates a link to a figure.

table
Indicates a link to a table.

li
Indicates a link to an ordered list item.

fn
Indicates a link to a footnote.

section
Indicates a link to a section.

Other values that can be used on any linking element include:

concept, task, reference, topic
Cross-reference to a topic type.

(no value)
The processor should retrieve the actual type from the target if available. If the type cannot be
determined, the default should be treated as "topic".

-dita-use-conref-target
See 10.8.3.4.1 Using the -dita-use-conref-target value (385) for more information.

Other values can be used to indicate other types of topics or elements as targets. Processing is only
required to support the above list or specializations of types in that list. Supporting additional types as
targets might require the creation of processing overrides.

Using @type in a <note> element
In a <note> element, this defines the type of note. For example, if the note is a tip, the word Tip might be
used to draw the reader's attention to it. The values danger, warning, and notice have meanings that are
based on ANSI Z535 and ISO 3864 regulations.

If @type is set to "other", the value of the @othertype attribute can be used. If you use @othertype,
many processors will require additional information on how to process the value. Allowable values for the
@type attribute are:

DITA TC work product Page 392 of 430

note
This is just a note.

attention
Please pay extra attention to this note.

caution
Care is required when proceeding.

danger
Important! Be aware of this before doing anything else. When used with the <hazardstatement>
element, this indicates an imminently hazardous situation which, if not avoided, will result in death or
serious injury.

fastpath
This note will speed you on your way.

important
This note is important.

notice
Indicates a potential situation which, if not avoided, might result in an undesirable result or state.

remember
Don't forget to do what this note says.

restriction
You can't do what this note says.

tip
This is a fine little tip.

warning
Indicates a potentially hazardous situation. When used with the <hazardstatement> element, this
indicates a situation which, if not avoided, could result in death or serious injury.

trouble
Provides information about how to remedy a trouble situation.

other
This is something other than a normal note.

-dita-use-conref-target
See 10.8.3.4.1 Using the -dita-use-conref-target value (385) for more information.

DITA TC work product Page 393 of 430

11 Conformance
An implementation is a conforming implementation of DITA if the implementation meets the conditions
that are described in Section 4.1. A document is a conforming DITA document if the document meets the
conditions in that are described in Section 4.2.

Conformance to the DITA specification allows documents and document types that are used with different
processors to produce the same or similar results with little or no reimplementation or modification.
Conformance also allows DITA specializations to work with any conforming DITA application, with at least
the same level of support available to unspecialized documents.

4.1 Conformance of DITA implementations
The DITA specification defines several core features, as summarized in the following list. Any
implementation that supports a feature MUST conform to all rules laid out in the section that describes the
feature.

1. Specialization-based processing, as described in X.
2. Resolving links to elements in DITA documents, as described in section X.
3. Resolving @keyref attributes to a key defined in a map, as described in section X.
4. Resolving @keyref attributes across key scopes, as described in section X.
5. Pulling content references, as described in 7.3 Content reference (conref) (112)
6. Pushing content references, as described in 7.3 Content reference (conref) (112).
7. Resolving conditional processing based on DITAVAL documents, as described in 7.4 Conditional

processing (profiling) (117).
8. Resolving branch filtering markup, as described in 7.5 Branch filtering (122).
9. Resolving @chunk attributes, as described in 5.4 Chunking (57).

In addition, certain DITA elements have normative rules associated regarding how to render or process
those elements.

1. <desc>, as described in 10.3.2.5 desc (214)
2. <draft-comment>, as described in 10.3.2.10 draft-comment (218)
3. <image>, as described in 10.3.2.18 image (224)
4. <linklist>, as described in 10.3.5.3 linklist (255)
5. <pre>, as described in 10.3.2.32 pre (237)
6. <q>, as described in 10.3.2.33 q (237)
7. <related-links>, as described in 10.3.1.5 related-links (205)
8. <relcolspec>, as described in 10.4.1.10 relcolspec (275)
9. <reltable>, as described in 10.4.1.6 reltable (272)
10.<shortdesc>, as described in 10.3.1.6 shortdesc (206)
11.<title>, as described in 10.3.1.7 title (208)
12.<titlealt>, as described in 10.3.1.8 titlealt (208)
13.<topichead>, as described in 10.6.7.6 topichead (348)

Conforming DITA implementations SHOULD include a conformance statement that gives the version of
the DITA specification that is supported, indicate if all features from the list above are supported, and
indicate that all normative rendering rules are supported.

DITA TC work product Page 394 of 430

If only a subset of features is supported, implementations SHOULD indicate which features are (or are
not) supported. If an implementation supports rendering DITA elements but does not render all elements
as described above, that application SHOULD indicate which elements are (or are not) supported.

Not all DITA features are relevant for all implementations. For example, a DITA editor that does not render
content references in context does not need to conform to rules regarding the @conref attribute.
However, any application that renders content references MUST conform to the rules described in7.3
Content reference (conref) (112).

Implementations that support only a subset of DITA features are considered conforming as long as all
supported features follow the requirements that are given in the DITA specification. An implementation
that does not support a particular feature MUST be prepared to interoperate with other implementations
that do support the feature.

4.2 Conformance of DITA documents
A document conforms with the DITA standard if it meets all of the following conditions.

1. A DITA document that refers to document type shells distributed by OASIS MUST be valid
according to both the grammar files and any assertions provided in the language reference.

2. If a DITA document refers to a custom document type shell, that shell MUST also conform to the
rules laid out in X.X.X.X Rules for document-type shells.

3. If a DITA document's custom document type shell includes constraints, that shell MUST also
conform to the rules laid out in X.X.X.X Constraint rules

4. If a DITA document uses specialized elements or attributes, those elements or attributes MUST
also conform to the rules laid out in X.X.X Specialization rules for element types, X.X.X
Specialization rules for attributes, and X.X.X Class attribute rules and syntax.

DITA TC work product Page 395 of 430

http://example.com
http://example.com
http://example.com
http://example.com
http://example.com
http://example.com

A Acknowledgments
(Non-normative) Many members of the OASIS DITA Technical Committee participated in the creation of
this specification and are gratefully acknowledged.

Robert Anderson, Oracle
Deb Bissantz, Vasont Systems
Bill Burns, Healthwise
Carsten Brennecke, SAP
Bill Burns, Healthwise
Stan Doherty, Individual member
Kristen James Eberlein, Eberlein Consulting LLC
Carlos Evia, Virginia Tech
Nancy Harrison, Individual member
Alan Houser, Individual member
Scott Hudson, ServiceNow
Gershon Joseph, Precision Content
Eliot Kimber, Individual member
Zöe Lawson, Casenet LLC
Tom Magliery, JustSystems
Chris Nitchie, Individual member
Keith Schengili-Roberts, Individual member
Eric Sirois, IXIASOFT
Dawn Stevens, Comtech Services
Bob Thomas, Individual member
Frank Wegmann, Software AG

Comment by Kristen J Eberlein on 31 August 2020

From Chris Nitchie's stage three review of #351 "Add multimedia elements to base": “I'm wondering if
we shouldn't recognize WHATWG in the acknowledgements topic, since we basically stole this design
from them.”

DITA TC work product Page 396 of 430

B Aggregated RFC-2119 statements
This appendix contains all the normative statements from the DITA 2.0 specification. They are aggregated
here for convenience in this non-normative appendix.

DITA TC work product Page 397 of 430

C Non-normative information
This section contains non-normative information, including topics about new features in DITA 2.0 and
migrating to DITA 2.0.

C.1 About the specification source
The DITA specification is authored in DITA. It is a complex document that uses many DITA features,
including key references (keyrefs), content references (conrefs), and controlled values set in a subject
scheme map.

The source files for the DITA specification are managed in a GitHub repository that is maintained by
OASIS; they also can be downloaded from OASIS.

The DITA Technical Committee used the following applications to work with the DITA source:

• DITA Open Toolkit
• <oXygen/> XML Editor and XMetaL Author Enterprise
• DITAweb
• Antenna House Formatter

C.2 Changes from DITA 1.3 to DITA 2.0

C.3 File naming conventions
The DITA OASIS Technical Committee uses certain conventions for the names of XML grammar files. We
suggest using these conventions as a best practice to facilitate interchange of grammar files.

Globally unique identifiers
Vocabulary modules that are intended for use outside of a narrowly-restricted context should have one or
more associated, globally-unique names by which the modules can be referenced without regard to their
local storage location. The globally-unique names can be public identifiers, URNs, or absolute URLs.

Document type shells
Document type shells should be given a name that distinguishes their name, owner, or purpose; for
example, acme-concept.dtd. The document type shells that are provided by the DITA Technical
Committee use the root element of the primary specialization as the basis for the file name.

Module names
Each vocabulary module has a short name that is used to construct entity names and other names that
are used in associated declarations. Modules also can have abbreviated names that further shorten the
short name, for example "hi-d" for the "highlight" domain, where "software" is the short name and "hi-d" is
the abbreviated name.

For structural modules, the module name should be the element type name of the top-level topic or map
type defined by the module, such as "concept" or "bookmap".

DITA TC work product Page 398 of 430

For element domain modules, the module name should be a name that reflects the subject domain to
which the domain applies, such as "highlight" or "software". Domain module names should be sufficiently
unique that they are unlikely to conflict with any other domains.

DTD-based specialization modules
Use the following file-naming conventions for DTD-based specialization modules.

Module type File name (entities) File name (elements) Example

Structural ModuleName.ent ModuleName.mod concept.ent or
concept.mod

Element domain DomainNameDomain.ent DomainNameDomain.mod highlightDomain.ent
or
highlightDomain.mod

Attribute domain AttributeNameAttDoma
in.ent

Not applicable deliveryTargetAttDom
ain.ent

where:

• ModuleName is the name of the element type, such as "concept" or "glossentry".
• DomainName is the name of the domain, for example, "highlight" or "utilities".
• AttributeName is the name of the specialized attribute, for example, "deliveryTarget".

RELAX NG-based specialization modules
Use the following file-naming conventions for RELAX NG-based specialization modules.

Module type File name Example

Structural ModuleNameMod.rng conceptMod.rng
Element domain DomainNameDomainMod.rng highlightDomainM

od.rng
Attribute domain AttributeNameAttDomain.rng deliveryTargetAt

tDomainMod.rng

where:

• ModuleName is the name of the element type, such as "concept" or "glossentry".
• DomainName is the name of the domain, for example, "highlight" or "utilities".
• AttributeName is the name of the specialized attribute, for example, "deliveryTarget".

XSD-based specialization modules
Use the following file-naming conventions for XSD-based specialization modules.

Module File name Example

Structural
modules:
Element groups

ModuleNameGrp.xsd conceptGrp.xsd

Structural
modules: All

ModuleNameMod.xsd conceptMod.xsd

DITA TC work product Page 399 of 430

Module File name Example

other
declarations

Domain modules DomainName.xsd highlightDomain.xsd
Attribute domain AttributeNameAttDomain.xsd deliveryTargetAttDomain.xsd

where:

• ModuleName is the name of the element type, such as "concept" or "glossentry".
• DomainName is the name of the domain, for example, "highlight" or "utilities".
• AttributeName is the name of the specialized attribute, for example, "deliveryTarget".

Constraint modules
Use the following file-naming conventions for constraint modules.

Structural modules

Structural constraint modules should be named using the following format:

DTD qualifierTagnameConstraint.mod
RELAX NG qualifierTagnameConstraintMod.rng
XSD qualifierTagnameConstraintMod.xsd

where:

• qualifier is a string that is specific to the constraints module and characterizes it, for example,
"strict" or "requiredTitle" or "myCompany-".

• Tagname is the element type name with an initial capital, for example, "Topic".

For example, the file names for the constraint that is applied to the general task to create the strict
task are strictTaskbodyConstraint.mod, strictTaskbodyConstraintMod.rng, or
strictTaskbodyConstraintMod.xsd.

Domain modules

Domain constraint modules should be named using the following format:

DTD qualifierdomainDomainConstraint.ent
RELAX NG qualifierdomainDomainConstraintMod.rng
XSD qualifierdomainDomainConstraintMod.xsd

where:

• qualifier is a string that is specific to the constraints module and characterizes it, for example,
"noSyntaxDiagram" or "myCompany-".

• domain is the name of the domain to which the constraints apply, for example, "Highlighting"
or "Programming".

For example, the file name for a constraint module that removes the syntax diagram from the
programming domain might be noSyntaxDiagramProgrammingDomainConstraint.ent.

DITA TC work product Page 400 of 430

Because of restrictions on the redefine feature of XML Schema, it is sometimes necessary to use an
intermediate level of redefinition, which requires a separate XSD document. In that case, the
intermediate XSD document should be named qualifierdomainDomainConstraintsInt.xsd.

C.4 Migrating to DITA 2.0

C.5 Considerations for generalizing <foreign> elements
The <foreign> element can contain a mixture of DITA and non-DITA content. Non-DITA content that is
contained within a <foreign> element cannot be generalized. However, the <foreign> element itself,
as well as any DITA elements that it contains, can be generalized using normal rules.

If a <foreign> element contains non-DITA content, the non-DITA content can be exported to a separate
file and replaced in-line with an <object> element. The @data attribute of the <object> element would
reference the generated file, and the @type attribute of the <object> element would be set to the value
"DITA-foreign".

If an <object> element is present within the <foreign> element during generalization, it is not included
with the content that is exported to the separate file. This original <object>element is used to specify
alternate content in publishing systems that cannot display the foreign content. It would not be modified
except as the ordinary rules of generalization require it.

In the exported file, exported content would be enclosed within a root <foreign> element in order to
accommodate the possibility that it might contain several main elements apart from the alternate content.

For easy recognition, the name of the exported file would start with "dita-generalized-", and it is
recommended that the file name also contain the topic ID, specialization type, and element ID or
generated identifier.

Example: Simple object generalization
For example, a DITA document could contain a specialization of <foreign> for MathML using the
OASIS MathML domain. It could look like this:

<mathml class="+ topic/foreign mathml-d/mathml ">
 <m:math>
 <m:mi>x</m:mi><m:mo>+</m:mo><m:mn>3</m:mn>
 </m:math>
 <data>X plus three</data>
</mathml>

The <mathml> container is a DITA element, so it should be generalized using normal rules. The
<m:math> element, which is not a DITA element, will be exported to another file. The <data> element
will remain:

<foreign class="+ topic/foreign mathml-d/mathml ">
 <object data="dita-generalized-topicid_mathml1.xml" type="DITA-foreign"/>
 <data>X plus three</data>
</foreign>

Contents of dita-generalized-topicid_mathml1.xml:
<foreign class="+ topic/foreign mathml-d/mathml "
 xmlns:m="http://www.w3.org/1998/Math/MathML">
>
 <m:math>
 <m:mi>x</m:mi><m:mo>+</m:mo><m:mn>3</m:mn>
 </m:math>
</foreign>

DITA TC work product Page 401 of 430

Example: Multiple object generalization
An object might also contain multiple object elements:

<mathml class="+ topic/foreign mathml-d/mathml ">
 <m:math>
 <m:mi>x</m:mi><m:mo>+</m:mo><m:mn>3</m:mn>
 </m:math>
 <data>X plus three</data>
 <m:math>
 <m:mi>y</m:mi><m:mo>-</m:mo><m:mn>2</m:mn>
 </m:math>
</mathml>

The <mathml> container, which is a normal DITA element, should be generalized using normal rules. A
file should generated for each set of elements bounded by the container and any existing object
elements. In this case, two files will be generated, and two new object elements added to the source.

The modified source:

<foreign class="+ topic/foreign mathml-d/mathml ">
 <object data="dita-generalized-topicid_mathml1.xml" type="DITA-foreign"/>
 <data>X plus three</data>
 <object data="dita-generalized-topicid_mathml2.xml" type="DITA-foreign"/>
</foreign>

The contents of dita-generalized-topicid_mathml1.xml, the first exported file:

<foreign class="+ topic/foreign mathml-d/mathml "
 xmlns:m="http://www.w3.org/1998/Math/MathML">
 <m:math>
 <m:mi>x</m:mi><m:mo>+</m:mo><m:mn>3</m:mn>
 </m:math>
</foreign>

The contents of dita-generalized-topicid_mathml2.xml, the second exported file:

<foreign class="+ topic/foreign mathml-d/mathml "
 xmlns:m="http://www.w3.org/1998/Math/MathML">
 <m:math>
 <m:mi>y</m:mi><m:mo>-</m:mo><m:mn>2</m:mn>
 </m:math>
</foreign>

C.6 Element-by-element recommendations for translators
This topic contains a list of all OASIS DITA elements that are available in the edition. It includes
recommendations on how to present the element type to translators, whether the element contents are
likely to be suitable for translation, and whether the element has attributes whose values are likely to be
suitable for translation. Examples of content that is not suitable for translation include code fragments and
mailing addresses.

Since the distinction between block and inline elements is ultimately controlled by the container of the
element and the processing associated with it, the same element might be a block in one context and an
inline element in another. Specializing document types might vary this behavior according to the needs of
the document type being created, and the distinctions given below are provided only as a guide to known
behavior with the base DITA document types.

DITA TC work product Page 402 of 430

Notes on the tables below
• For specializations, the second column gives the ancestor element, and the third column gives a

quick yes/no guide to indicate whether all behavior is inherited. If something is not inherited, the
change will appear in bold.

• For any specialization not listed below, the suggested default is to fall back to the closest listed
ancestor.

• The block/inline presentation column indicates whether the element is formatted as a single block.
• The block/inline translation column indicates whether the element represents a complete

translatable segment. For example, the element <cmd> is presented inline with other elements,
but represents a complete translation segment.

• Items marked as block*** are blocks on their own, but might appear in the middle of a segment.
They should not break the flow of the current segment. These are considered "subflow" elements
for translation. We recommend that, when possible, these elements should only be placed at
sentence boundaries to aid in translation.

• For all elements, the @translate attribute will override the suggested default translation setting.
So, a translation setting of "yes" or "no" in the table below does not guarantee that an element will
always, or never, be translated.

• If an element has translatable attributes, they are listed in the last column. Note that the
@spectitle and @specentry attributes are described with a footnote.

• The <keyword> element (as well as specializations of <keyword>) is an inline, phrase-like
element when it appears in the body of a document. It can also appear in the <keywords>
element in <topicmeta> (for maps) or in the <prolog> (for topic). When it appears in the
<keywords> element, each <keyword> represents an individual segment, and is not part of a
larger segment; in that location, <keyword> can be considered a "subflow" element.

Topic elements

Element name Specialized
from

Block/Inline
(presentation)

Block/Inline
(translation)

Translatable
content?

Translatable
attributes?

<abstract> N/A block block yes

<alt> N/A block***Footnote. block yes

<audience> N/A block (metadata) block yes

<audio> N/A block block yes

<author> N/A block (metadata) block yes

1 This element is considered a "subflow" element for translation. If it is located in the middle of a
translation segment, it should not be translated as part of that segment. For example,
<indexterm>, <fn>, and <draft-comment> might divide a sentence in two, but should be
treated as blocks, and should not interrupt the sentence.

2 The @spectitle and @specentry attributes can contain translatable text. The direct use of fixed-
in-the-DTD text by tools is discouraged, in favor of using the value as a look up string to find the
translation outside of the file, using accepted localization methods for generated text.

3 The block vs. inline designation for the <foreign> element is likely to change for some
specializations.

4 The <desc>, <object>, and <image> elements inside <foreign> should still be translatable;
they provide an alternative display if the foreign content cannot be processed.

DITA TC work product Page 403 of 430

Element name Specialized
from

Block/Inline
(presentation)

Block/Inline
(translation)

Translatable
content?

Translatable
attributes?

<body> N/A block block yes

<bodydiv> N/A block block yes

<brand> N/A block (metadata) block yes

<category> N/A block (metadata) block yes

<cite> N/A inline inline yes

<colspec> N/A n/a n/a n/a

<component> N/A block (metadata) block yes

<copyrholder> N/A block (metadata) block yes

<copyright> N/A block (metadata) block yes

<copyryear> N/A block (metadata) block yes

<created> N/A block (metadata) block yes

<critdates> N/A block (metadata) block yes

<data> N/A N/A (metadata) block no (likely to
change for some
specializations)

<dd> N/A block block yes

<ddhd> N/A block block yes

<desc> N/A block block yes

<div> N/A block block yes

<dl> N/A block block yes @spectitleF
ootnote.

<dlentry> N/A block block yes

<dlhead> N/A block block yes

<draft-comment> N/A block***Footnote. block no

<dt> N/A block block yes

<dthd> N/A block block yes

<entry> N/A block block yes

<example> N/A block block yes @spectitleF
ootnote.

<fallback> N/A block block yes

<featnum> N/A block (metadata) block yes

<fig> N/A block block yes @spectitleF
ootnote.

5 The <desc>, <object>, and <image> elements inside <foreign> should still be translatable; they
provide an alternative display if the foreign content cannot be processed.

DITA TC work product Page 404 of 430

Element name Specialized
from

Block/Inline
(presentation)

Block/Inline
(translation)

Translatable
content?

Translatable
attributes?

<figgroup> N/A block block yes

<fn> N/A block***Footnote. block yes

<foreign> 6 N/A blockFootnote. blockFootnote. noFootnote.

<image> N/A block when
@placement=
break, otherwise
inline

block when
@placement=
break, otherwise
inline

yes

<include> N/A inline inline yes

<index-see> N/A block***Footnote. block yes yes

<index-see-
also>

N/A block***Footnote. block yes yes

<indexterm> N/A block***Footnote. block yes

<keytext> N/A block block yes

<keyword> N/A inline inline (except
when within
<keywords> –
see note above
the table)

yes

<keywords> N/A block block yes

 N/A block block yes

<lines> N/A block block yes @spectitleF
ootnote.

<link> N/A block block yes

<linkinfo> N/A block block yes

<linklist> N/A block block yes @spectitleF
ootnote.

<linkpool> N/A block block yes

<linktext> N/A block block yes

<lq> N/A block block yes @reftitle
<media-source> N/A block block n/a

<media-track> N/A block block n/a

<metadata> N/A block (metadata) block yes

<no-topic-
nesting>

N/A n/a n/a n/a

6 The block vs. inline designation for the <foreign> element is likely to change for some
specializations.

DITA TC work product Page 405 of 430

Element name Specialized
from

Block/Inline
(presentation)

Block/Inline
(translation)

Translatable
content?

Translatable
attributes?

<note> N/A block block yes @othertype,
@spectitleF
ootnote.

<object> N/A block block yes @standby
 N/A block block yes @spectitleF

ootnote.

<othermeta> N/A block (metadata) block yes @content
<p> N/A block block yes

<param> N/A block block n/a

<permissions> N/A block (metadata) block yes

<ph> N/A inline inline yes

<platform> N/A block (metadata) block yes

<pre> N/A block block yes @spectitleF
ootnote.

<prodinfo> N/A block (metadata) block yes

<prodname> N/A block (metadata) block yes

<prognum> N/A block (metadata) block yes

<prolog> N/A block (metadata) block yes

<publisher> N/A block (metadata) block yes

<q> N/A inline inline yes

<related-links> N/A block block yes

<required-
cleanup>

N/A block***Footnote. block no

<resourceid> N/A block (metadata) block yes

<revised> N/A block (metadata) block yes

<row> N/A block block yes

<section> N/A block block yes @spectitleF
ootnote.

<sectiondiv> N/A block block yes

<series> N/A block (metadata) block yes

<shortdesc> N/A block block yes

<simpletable> N/A block block yes @spectitleF
ootnote.

<sl> N/A block block yes @spectitleF
ootnote.

<sli> N/A block block yes

DITA TC work product Page 406 of 430

Element name Specialized
from

Block/Inline
(presentation)

Block/Inline
(translation)

Translatable
content?

Translatable
attributes?

<source> N/A block (metadata) block yes

<state> N/A inline inline yes @value
<stentry> N/A block block yes @specentryF

ootnote.

<sthead> N/A block block yes

<strow> N/A block block yes

<table> N/A block block yes

<tbody> N/A block block yes

<term> N/A inline inline yes

<text> N/A inline inline yes

<tgroup> N/A block block yes

<thead> N/A block block yes

<title> N/A block block yes

<titlealt> N/A block block yes

<tm> N/A inline inline yes

<topic> N/A block block yes

 N/A block block yes @spectitleF
ootnote.

<unknown> N/A block block no

<video> N/A block block yes

<vrm> N/A block (metadata) block yes

<vrmlist> N/A block (metadata) block yes

<xref> N/A inline inline yes

Map elements

Element name Specialized from Block/Inline
(presentation)

Block/Inline
(translation)

Translatable
content?

Translatable
attributes?

<anchor> N/A n/a n/a n/a

<map> N/A block block yes

<navref> N/A n/a n/a n/a

<relcell> N/A block block yes

<relcolspec> N/A block block yes

<relheader> N/A block block yes

<relrow> N/A block block yes

<reltable> N/A block block yes

DITA TC work product Page 407 of 430

Element name Specialized from Block/Inline
(presentation)

Block/Inline
(translation)

Translatable
content?

Translatable
attributes?

<shortdesc> N/A block block yes

<topicmeta> N/A block block yes

<topicref> N/A block block yes

<ux-window> N/A N/A (empty) N/A (empty) no

Alternative Title Elements

Element name Specialized
from

Inherits
everything
from
ancestor?

Block/Inline
(presentation)

Block/Inline
(translation)

Translatable
content?

Translatable
attributes?

<linktitle> <titlealt> yes N/A (metadata) block yes

<navtitle> <titlealt> yes N/A (metadata) block yes

<searchtitle> <titlealt> yes N/A (metadata) block yes

<subtitle> <titlealt> yes block block yes

<titlehint> <titlealt> yes N/A (metadata) block yes

Emphasis domain elements (emphasis-d)

Element
name

Specialized
from

Inherits
everything
from
ancestor?

Block/Inline
(presentation)

Block/Inline
(translation)

Translatable
content?

Translatable
attributes?

 <ph> yes inline inline yes

 yes inline inline yes

Hazard statement domain (hazard-d elements)

Element name Specialized
from

Inherits
everything
from
ancestor?

Block/Inline
(presentation)

Block/Inline
(translation)

Translatable
content?

Translatable
attributes?

<consequence> yes block block yes

<hazardstatement> <note> yes block block yes @othertype,
@spectitle
Footnote.

<hazardsymbol> <image> yes block when
@placement=
break,
otherwise
inline

block when
@placement=
break,
otherwise
inline

yes

<howtoavoid> yes block block yes

DITA TC work product Page 408 of 430

Element name Specialized
from

Inherits
everything
from
ancestor?

Block/Inline
(presentation)

Block/Inline
(translation)

Translatable
content?

Translatable
attributes?

<messagepanel> yes block block yes @spectitle
Footnote.

<typeofhazard> yes block block yes

Highlight domain elements (hi-d)

Element name Specialized
from

Inherits
everything
from
ancestor?

Block/Inline
(presentation)

Block/Inline
(translation)

Translatable
content?

Translatable
attributes?

 <ph> yes inline inline yes

<line-
through>

yes inline inline yes

<i> <ph> yes inline inline yes

<overline> <ph> yes inline inline yes

<sub> <ph> yes inline inline yes

<sup> <ph> yes inline inline yes

<tt> <ph> yes inline inline yes

<u> <ph> yes inline inline yes

Utilities domain elements

Element
name

Specialized
from

Inherits
everything
from
ancestor?

Block/Inline
(presentation)

Block/Inline
(translation)

Translatable
content?

Translatable
attributes?

<area> <figgroup> yes block block yes

<coords> <ph> NO inline inline no

<imagemap> <fig> yes block block yes (can
contain
translatable
alternate text)

@spectitle
Footnote.

<shape> <keyword> NO inline inline no

<sort-as> <data> NO block***Footnote
.

block yes

DITA TC work product Page 409 of 430

Classification domain elements (classify-d)

Element name Specialized
from

Inherits
everything
from
ancestor?

Block/Inline
(presentation)

Block/Inline
(translation)

Translatable
content?

Translatable
attributes?

<subjectCell> <relcell> yes block block yes

<subjectref> <topicref> yes block block yes

<topicapply> <topicref> yes block block yes

<topicCell> <relcell> yes block block yes

<topicsubject> <topicref> yes block block yes

<topicSubjectHeader> <relrow> yes block block yes

<topicSubjectRow> <relrow> yes block block yes

<topicSubjectTable> <reltable> yes block block yes

DITAVALref domain elements

Element name Specialized
from

Inherits
everything
from
ancestor?

Block/Inline
(presentation)

Block/Inline
(translation)

Translatable
content?

Translatable
attributes?

<ditavalmeta> <topicmeta> yes block block yes

<ditavalref> <topicref> yes block block yes

<dvrKeyscopePrefix> <data> yes N/A
(metadata)

block no

<dvrKeyscopeSuffix> <data> yes N/A
(metadata)

block no

<dvrResourcePrefix> <data> yes N/A
(metadata)

block no

<dvrResourceSuffix> <data> yes N/A
(metadata)

block no

Map group domain elements (mapgroup-d)

Element name Specialized
from

Inherits
everything
from
ancestor?

Block/Inline
(presentation)

Block/Inline
(translation)

Translatable
content?

Translatable
attributes?

<anchorref> <topicref> yes block block yes

<keydef> <topicref> yes block block yes

<mapref> <topicref> yes block block yes

<mapresources> <topicref> yes block block yes

<topicgroup> <topicref> yes block block yes

DITA TC work product Page 410 of 430

Element name Specialized
from

Inherits
everything
from
ancestor?

Block/Inline
(presentation)

Block/Inline
(translation)

Translatable
content?

Translatable
attributes?

<topichead> <topicref> yes block block yes

DITAVAL elements
The DITAVAL elements are not specialized, and are not rendered on their own, so related columns are
dropped from this table. There are no translatable attributes in the DITAVAL element set.

The only element that directly contains text for translation is <alt-text>.

Element name Block/Inline (translation) Translatable content?

<alt-text> block yes

<endflag> block yes (inside nested elements)

<prop> block yes (inside nested elements)

<revprop> block yes (inside nested elements)

<startflag> block yes (inside nested elements)

<style-conflict> block N/A (empty element)

<val> block yes (inside nested elements)

C.7 Formatting expectations
DITA is a standard that supports the creation of human-readable content. Accordingly, DITA defines
fundamental document components. Since there is a reasonable expectation that such document
components be rendered consistently, we suggest the following formatting conventions.

Table 8: Formatting expectations for DITA elements

Element Suggested formatting

 Apply bold highlighting to the contents of the element.

<cite> Set citations apart from the surrounding text by a form of highlighting, for example, italics.

<dd> See <dl>.

<dl> Apply the following conventions:

• The term (<dt>) is against the starting margin of the page or column.
• The description or definition (<dd>) is either indented and on the next line or on the

same line after the term.
• The <dlhead> looks like a table heading row.

<dlhead> See <dl>.

<dt> See <dl>.

<i> For Western languages, apply italic highlighting to the contents of the <i> element.

DITA TC work product Page 411 of 430

Element Suggested formatting

 Apply the following conventions:

• In ordered lists, list items are indicated by numbers or alphabetical characters.
• In unordered lists, list items are indicated by bullets or dashes.

<lines> Render the contents of <lines> elements in a non-monospaced font.

<line-through> Render the contents of the <line-through> element with a line struck through.

<lq> Render the contents of the <lq> element as an indented block.

<note> Render a label for notes. The content of the label depends on the values of the @type
attribute. A note typically is formatted in a way that stands out from the surrounding content.

 See .

<overline> Render a line above the contents of the <overline> element.

<pre> Render the content of a <pre> element in a monospaced font.

<sl> See <sli>.

<sli> Apply the following conventions:

• The content of each simple list item is placed on a separate line.
• The lines are not distinguished by numbers, bullets, or other icons.

<sub> Render the contents of the <sub> element lower in relationship to the surrounding text and
in a smaller font.

<sup> Render the contents of the <sup> element higher in relationship to the surrounding text and
in a smaller font.

<tt> Render the contents of the <tt> element in a monospaced font.

<u> Apply underlining to the contents of the <u> element.

C.8 DTD public identifiers
Each document-type shell (.dtd file) or module component (.mod or .ent file) has a public identifier.
The public identifier can reference either the latest version or a specific version of the document-type
shell or module component.

The public identifiers for the DTD files that are maintained by OASIS use the following format:

"-//OASIS//DTD DITA version information-type//EN"

where:

• version either is the DITA specific version number (for example, 2.0, 1.3, or 1.2), 2.x (representing
the latest version of DITA 2.x), or 1.x (representing 1.3, which is the final version of 1.x).
Ommitting the version number entirely is also equivalent to the final release of DITA 1.x.

• information-type is the name of the topic or map type, for example, Concept or BookMap.

Note that "OASIS" is the owner identifier; this indicates that the artifacts are owned by OASIS. The
keyword "DITA" is a convention that indicates that the artifact is DITA-related.

DITA TC work product Page 412 of 430

C.9 Domains and constraints in the OASIS specification
This section provides a summary of the domains and constraints that are available as part of the OASIS
specification, as well as a summary of how they are used.

C.9.1 Domains and constraints in the OASIS specification
OASIS distributes grammar files for a set of domains and constraints.

A designation of (map) after the domain name indicates that the domain only specializes map elements; a
designation of (topic) indicates that the domain specializes elements that are only available in topic or that
it can only be used in topics. A designation of (map/topic) indicates that the domain specializes elements
that are common to both maps and topics, so could be used in either even if it is generally intended for
one or the other. Attribute domains can always be used in both topics and maps.

Table 9: Base domains

Domain Description Short name

Classify (map) For associating content in a map with subjects in a subject
scheme.

classify-d

@deliveryTarget
attribute

Attribute for filtering based on delivery target. N/A

DITAVALref (map) For filtering a branch of a map. ditavalref-d

Hazard statements (map/
topic)

For providing detailed information about safety hazards. hazard-d

Highlighting (map/topic) For highlighting when the appropriate semantic element does
not exist yet.

hi-d

Indexing (map/topic) For extended indexing functions such as see and see-also. indexing-d

Map group (map) Utility elements for use in maps. mapgroup-d

Utilities (map/topic) For providing image maps, sort keys, and other useful
structures.

ut-d

C.9.2 Base domains: Where they are used
This section provides a summary of which document types use each of the base OASIS domains.

Domain What includes it What does NOT include it

Classify (map) • Base map, base topic

@deliveryTarget attribute (base) • Base map, base topic • N/A

DITAVALref (map) • Base map • Base topic

Hazard statement (map/topic) • Base map, base topic

Highlighting (map/topic) • Base map, base topic • N/A

Indexing (map/topic) • Base map, base topic

Map group (map) • Base map • Base topic

DITA TC work product Page 413 of 430

Domain What includes it What does NOT include it

Utilities (map/topic) • Base map, base topic • N/A

C.9.3 Base document types: Included domains
This topic provides a summary of which domains are used in each of the base document types.

Table 10: Domain usage in base document types

Document type Includes these domains Does not include

base map • @deliveryTarget
attribute

• Hazard statement (map/
topic)

• Highlighting (map/topic)
• Indexing (map/topic)
• Utilities (map/topic)
• DITAVALref (map)
• Map group (map)

base topic • @deliveryTarget
attribute

• Hazard statement (map/
topic)

• Highlighting (map/topic)
• Indexing (map/topic)
• Utilities (map/topic)

• Base domains

– DITAVALref (map)
– Map group (map)

C.10 Processing interoperability considerations
The DITA specification does not require processors to perform filtering, content reference resolution, key
space construction, and other processing related to base DITA semantics in any particular order. This
means that different conforming DITA processors might produce different results for the same initial data
set and filtering conditions. DITA users and DITA implementers need to be aware of these potential
differences in behavior when DITA content will be processed by different processors.

In general, in any situation in which two elements interact during processing, applying filtering before or
after the processing is done can result in different results when either or both of the elements is
conditional.

For conditional elements, an element is "applicable" if it is filtered in and "inapplicable" if it is filtered out.

Filtering and content reference resolution
When two elements are merged as result of a content reference, the attributes of the two elements are
combined. By default, the attributes of the referencing element take precedence over the referenced
element. However, any attribute can specify the value "-dita-use-conref-target", which causes the
referenced element attribute to take precedence. This means that the effective value of filtering attributes
might reflect either the referencing element or the referenced element depending on how each attribute is
configured on the referencing element. This in turn means that, in certain cases, filtering before resolving
content references will produce a different result than when filtering is applied after resolving content
references.

DITA TC work product Page 414 of 430

In two cases, the order in which filtering is applied results in either an element being in the effective result
or an element not being in the effective result. There is a third case in which there will be either an empty
element (and unresolvable content reference) or no element.

In the case where a referenced element is not applicable and the referencing element is explicitly
applicable for the same condition (that is, both elements specify values for the same filtering attribute and
the referencing element is applicable), if content references are resolved before filtering, the content
reference is resolved and the effective value of the referencing element reflects the referenced element. If
content referencing is resolved after filtering, the referenced element is filtered out and the content
reference cannot be resolved, typically generating an error.

The same scenario results in different results for the case of conref push. An applicable, referencing
element can use conref push to replace another element that would otherwise be filtered out. If content
references are resolved before filtering, the content is pushed and the effective value of the referenced
element reflects the referencing element. If content referencing is resolved after filtering, the referenced
element will be filtered out and the content reference can no longer be resolved.

If the referencing element is not conditional and the referenced element is inapplicable, filtering applied
before content reference resolution results in an unresolvable content reference. If filtering is applied after
content resolution, the explicit condition on the referenced element becomes the effective value for that
condition following content resolution and the result is then filtered out. The difference in these two cases
is that in the first case the content reference cannot be resolved, resulting in a processing error and a
potentially nonsensical element if the referencing element has required subelements (for example, a
content reference from a topic to another topic, where the referencing topic must have a title subelement),
but in the second case the element is filtered completely out.

Different processing orders might also provide different results in the case where pushed content is
wrapped in an element that is filtered out. If filtering is applied before content resolution, that entire block
of content (the wrapper and the content to be pushed) is filtered out before the content reference is
resolved. If filtering is applied after content resolution, the push action will be resolved first so that content
appears in the referenced location, after which the referencing element (along with its wrapper) is filtered
from the original source location.

Filtering and key space resolution
See Keys and conditional processing (84) for a discussion of effective key definitions and conditional
processing.

As an implementation detail for key-space-constructing processors, if filtering is applied before
constructing the key space, then the set of effective key definitions is simply the first definition of each
unique key name. However, if filtering is applied after key space construction, and in particular, if a
processor needs to allow dynamic resolution of keys based on different filtering specifications applied to
the same constructed key space, then the set of effective key definitions is the first definition of each pair
of unique key name and unique selection specification set. This second form of constructed key space
would be needed by processors such as editors and content management systems that need to quickly
provide different filtering-specific key bindings without reconstructing the entire key space for each new
set of filtering conditions.

For example, given a map that contains two definitions for the key "topic-01", one with an @audience
value of "expert" and one with an @audience value of "novice", a filter-first processor would only have at
most one effective key definition for the key name "topic-01", whichever of the two definitions was filtered
in by the active filter specification and was the first definition encountered (if both happen to be filtered in).
In a processor that supports dynamic key definition filtering, there would be two effective definitions for
the key name "topic-01", one for @audience of "expert" and one for @audience of "novice". The
processor would also need to maintain knowledge of the definition order of the two key definitions in order

DITA TC work product Page 415 of 430

to correctly handle the case when both "expert" and "novice" are applicable for a given key access
request (in which case, whichever of the two definitions was first would be used as the effective value of
the key).

Link resolution
If a cross reference, link, or other linking element is resolved to its target before filtering and the target is
subsequently filtered out, the link would be to a non-existent target but might reflect properties of the
target (for example, a cross reference link text might reflect the target title). If the link is resolved after
filtering is applied and the target is filtered out, the link is to a non-existent target, which will result in a
different link text. The rendition effect for the navigation link is the same: the link cannot be navigated
because the target does not exist in the rendered result.

Topicref resolution
Resolution of <topicref> elements before filtering can result in use of topic-provided navigation titles or
metadata that would not be used if the target topic was filtered out before resolution. In both cases, the
topicref as rendered would be to a missing topic.

Copy-to processing
If copy-to processing is done before filtering, two <topicref> elements, only one of which is applicable,
could specify the same @copy-to target, leading to a conflict and a potential ambiguity about which
governs. If the <topicref> elements are filtered before @copy-to processing, the conflict does not
occur.

C.11 Specialization design, customization, and the limits of
specialization
DITA specialization imposes certain restrictions. An inherent challenge in designing DITA vocabulary
modules and document types is understanding how to satisfy markup requirements within those
restrictions and, when the requirements cannot be met by a design that fully conforms to the DITA
architecture, how to create customized document types that diverge from the DITA standard as little as
possible.

DITA imposes the following structural restrictions:

• All topics must have titles.
• Topic body content must be contained within a body element.
• Section elements cannot nest.
• Metadata specific to an element type must be represented using elements, not attributes.

When markup requirements cannot be met within the DITA architecture, there still might be an interest in
using DITA features and technology, or a business need for interoperability with conforming DITA
documents and processors. In this case, the solution is to create customized document types.
Customized document types are document types that do not conform to the DITA standard. To reduce the
cost of producing conforming documents from non-conforming documents, custom document types
should minimize the extent to which they diverge from the DITA standard.

Typical reasons for considering custom document types include the following:

• Optimizing markup for authoring
• Supporting legacy markup structures that are not consistent with DITA structural rules, for

example, footnotes within titles

DITA TC work product Page 416 of 430

• Defining different forms of existing structures, such as lists, where the DITA-defined structures are
too constrained

• Providing attributes required by specific processors, such as CMS-defined attributes for
maintaining management metadata

• Embedding tool-imposed markup in places that do not allow the <foreign> or <unknown>
elements

Remember that customized document types do not conform to the DITA standard, and thus are not
considered DITA. In many of the cases above, it is possible to define document types that conform to the
DITA standard. Explore this fully before developing customized document types.

Optimizing document types
Conforming DITA grammar files are modular, which facilitates exchange of vocabulary modules and
constraints and simplifies the process of assembling document type shells. In some cases there might be
a reason to avoid the modular approach and use an optimized document type composed of a single file
(or a smaller number of files). For example, this could be advantageous in situations where validation
occurs over a network.

In an optimized DTD, entities might also be resolved to further optimize processing or validation. This
could speed up processing for environments that process and validate large numbers of DITA maps and
topics.

An optimized document type will still allow for the creation of conforming DITA content that follows all
other rules in the DITA specification. In these cases it is still possible to create a document type that
conforms completely to standard DITA coding practices. Maintaining a conforming copy ensures that the
optimized document type is still conforming to the standard, and might also ease interchange with tools
that expect conforming document types.

Creating custom document types for non-standard markup
When the relaxed content models for DITA elements are inappropriately open for authoring purposes,
document type shells can remove undesirable domains or use constraint modules to restrict content
models. If content models are not relaxed enough, and markup requirements include content models that
are less constrained than those defined by DITA, custom document types might be the only option.

Customized document types do not conform to the DITA standard. Preprocessing can ensure
compatibility with existing publishing processes, but it does not ensure compatibility with DITA-supporting
authoring tools or content management systems. However, when an implementation is being heavily
customized, a customized document type can help isolate and control the consequences of non-standard
design.

For example, if an authoring group requires the <p> element to be spelled out as <paragraph>, the
document type could be customized to change <p> to <paragraph> for authoring purposes. Such
documents then could be preprocessed to rename <paragraph> back to <p> before they are fed into a
standard DITA publishing process.

Because DITA document types are designed to enable constraints, such customized documents can still
take advantage of existing override schemes. While still not valid DITA, a document type shell could be
set up that implements local requirements (such as adding global CMS-defined attributes), and then
imports an otherwise valid document type shell. This helps isolate non-compliant portions of the
document type, while reusing as much as possible of the original DITA grammar.

DITA TC work product Page 417 of 430

Specialization design considerations
Requirements for new markup often appear to be incompatible with DITA architectural rules or existing
markup, especially when mapping existing non-DITA markup practice to DITA, where the existing markup
might have used structures that cannot be directly expressed in DITA. For example, you might need
markup for a specialized form of list where the details are not consistent with the base model for DITA
lists.

In this case you have two alternatives, one that conforms to DITA and one that does not.

• Specialize from more generic base elements or attributes.
• Define non-conforming structures and map them to conforming DITA structures as necessary for

processing by DITA-aware processors or for interchange as conforming DITA documents.

Specializing from more generic base elements, such as defining a list using specializations of <ph> or
<div>, while technically conforming, might still impede interchange of such documents. Generic DITA
processors will have no way of knowing that what they see as a sequence of phrases or divisions is really
a list and should be rendered in a manner similar to standard DITA lists. However, your documents will be
reliably interchangeable with conforming DITA systems.

Defining non-conforming markup structures means that the resulting documents are not conforming DITA
documents. They cannot be reliably processed by generic DITA-aware processors or interchanged with
other DITA systems. However, as long as the documents can be transformed into conforming DITA
documents without undue effort, interchange and interoperability requirements can be satisfied as
needed. For example, a content management system could add its own required markup for
management metadata, but strip the metadata when delivering content to conforming DITA processors.

Note that even if one uses the DITA-defined types as a starting point, any change to those base types not
accomplished through specialization or the constraint feature defines a completely new document type
that has no normative relationship to the DITA document types, and cannot be considered in any way to
be a conforming DITA application. In particular, the use of DITA specialization from non-DITA base types
does not produce DITA-conforming vocabularies.

Specialize from generic elements or attributes
Most DITA element types have relaxed content models that are specifically designed to allow a wide set
of options when specializing from them. However, some DITA element types do impose limits that might
not be acceptable or appropriate for a specific markup application. In this case, consider specializing from
a more generic base element or attribute.

Generic elements are available in DITA at every level of detail, from whole topics down to individual
keywords, and the generic @base attribute is available for attribute domain specialization.

For example, if you want to create a new kind of list but cannot usefully do so specializing from ,
, <sl>, or <dl>, you can create a new set of list elements by specializing nested <div> elements.
This new list structure will require specialized processing to generate appropriate output styling, because
it is not semantically tied to the other lists by ancestry. Nevertheless, it will remain a valid DITA
specialization, with the standard support for generalization, content referencing, conditional processing,
and more.

The following base elements in <topic> are generic enough to support almost any structurally-valid
DITA specialization:

<topic>
Any content unit that has a title and associated content

<section>
Any non-nesting division of content within a topic, titled or not

DITA TC work product Page 418 of 430

<p>
Any non-nesting non-titled block of content below the section level

<fig>
Any titled block of content below the section level

, , <dl>, <sl>, <simpletable>
Any structured block of content that consists of listed items in one or more columns

<ph>
Any division of content below the paragraph level

<text>
Text within a phrase

<keyword>
Any non-nesting division of content below the paragraph level

<data>
Any content that acts as metadata rather than core topic or map content

<foreign>
Any content that already has a non-DITA markup standard, but still needs to be authored as part of
the DITA document. Processors should attempt to render this element, if at all possible.

<unknown>
Any non-standard markup that does not fit the DITA model, but needs to be managed as part of a
DITA document. Processors should not attempt to render this element.

<bodydiv>
A generic, untitled, nestable container for content within topic bodies

<sectiondiv>
A generic, untitled, nestable container for content within sections

<div>
A generic, untitled, nestable container for content within topic bodies or sections

The following attributes in topic are suitable for domain specialization to provide new attributes that are
required throughout a document type:

@props
Any new conditional processing attribute

@base
Any new attribute that is universally available, has a simple syntax (space-delimited alphanumeric
values), and does not already have a semantic equivalent

Whenever possible, specialize from the element or attribute that is the closest semantic match.

DITA TC work product Page 419 of 430

D Revision history
The following table contains information about revisions to this document.

Revision Date Editor Description of changes

01 10 May 2019 Kristen James Eberlein Generated working draft #01. Contains
updated TOC that reduces level of topic
nesting.

02 17 May 2019 Kristen James Eberlein Generated working draft #02. Contains
reworked markup and styling for RFC-2119
statements.

03 24 May 2019 Kristen James Eberlein Generated working draft #03. Contains a
non-normative appendix of all conformance
statements (generated with prototype
code).

04 03 June 2019 Kristen James Eberlein Generated working draft #04.

Draft comments in "Attribute generalization"
and "<lines>" topics resolved per TC call
on 28 May 2019.

TOC reorganized to move purely illustrative
content from "DITA markup" and into
"Overview of DITA".

05 05 July 2019 Kristen James Eberlein Generated working draft #05.

<topicgroup> and <topichead> topics
reworked per TC call on 02 July 2019.

Renamed "DITA markup" to "DITA
processing". Added "Chunking" content
and a new "DITA maps and their usage"
topic. The new topic contains a list of
material to cover.

06 15 July 2019 Kristen James Eberlein Generated working draft #06

Conditional processing applied to element
and attribute topics shared with LwDITA.
Attribute definitions listed in alphabetical
order. Attribute values tagged with
<keyword> and rendered styled with
quotation marks.

07 02 August 2019 Kristen James Eberlein Generated working draft #07.

Includes rework of indexing content

08 05 August 2019 Kristen James Eberlein Generated working draft #08.

Includes completed edits of multimedia
domain topics (based on DITAweb review
comments).

DITA TC work product Page 420 of 430

Revision Date Editor Description of changes

09 13 August 2019 Kristen James Eberlein Generated working draft #09.

Contains revised indexing content, based
on reviews by Robert Anderson, Stan
Doherty, Eliot Kimber, and Joyce Lam.

Added (as yet incomplete) "DITA attributes,
A to Z" topic.

10 20 August 20201 Kristen James Eberlein Generated working draft #10.

Includes additional edits to indexing
content, plus new placeholder topic about
effective attribute values.

11 27 August 2019 Kristen James Eberlein Generated working draft #11.

Includes fully implemented issue #253:
Remove indexing domain.

12 29 August 2020 Kristen James Eberlein Generated working draft #12.

Includes bug fixes, spelling corrections,
changes in organizational affiliation,
updates to acknowledgments, and
implementation of the following DITA 2.0
proposals:

• #29 Add <mapresources>
• #34 Remove <topicset> and

<topicsetref>
• #217 Remove @domains attribute
• #258: Add @outputclass to

DITAVAL
• #277: Change specialization base

of <imagemap>
• #278 Remove @lockmeta
• #292 Add attributes and <title>

to <simpletable>
• #297 Allow <example> in more

places

DITA TC work product Page 421 of 430

Index

Special Characters
-dita-use-conref-target 113

A
accessibility

images 213, 224
addressing mechanisms

effect on conref resolution 114
same-topic fragment identifier

authoring responsibility 114
effect on conref resolution 114

alternate text 213
attribute groups

universal 366
attributes

conditional processing 32
values, "-dita-use-conref-target" 385

attributes, complex
@conaction 377
@conref 384
@conrefend 380
@format 386
@href 387
@keyref 388
@keys 389
@keyscope 389
@otherrole 390
@role 390
@scope 391
@type 391

B
base sort phrase 139
best practices

document-type shells 142
specialization 144

bi-directional text 138
binding controlled values 40
body elements 213
branch filtering 123, 124

examples 326

C
carp 252

See also
@cascade attribute

example 25
cascading

cascading (continued)
definition 49
map-to-map

attributes 54
exceptions 56
metadata elements 55

citations 214
@class attribute

examples 147
generalization 151
rules and syntax 147

classification domain 44
<subjectCell> 320
<subjectref> 320
<topicapply> 321
<topicCell> 322
<topicsubject> 322
<topicSubjectHeader> 323
<topicSubjectRow> 324
<topicSubjectTable> 324

classification maps 44
classifying content 39
coding requirements

DTD
attribute-domain modules 181
constraints 182
document-type shells 172
element-domain modules 180
element-type declarations 176
entities, use of 171
expansion 183
overview 171
structural modules 179

RNG
attribute-domain modules 193
constraints 194
document-type shells 185
element-domain modules 192
expansion 195
overview 184
structural modules 190

collation 139
common attributes 369
conditional processing

attributes 32
subset of a map 326

conref
combining attributes 113
overview 112
processing expectations 113
pull 112
push 112
range 112

DITA TC work product Page 422 of 430

conref (continued)
validity of 113
xrefs and conref within a conref 114

constraints
design and implementation rules 156
DTD

coding requirements 182
examples

applying multiple constraints 159
redefining the content model 157
replacing base element with domain extensions
159
restricting attributes for an element 158
restricting content model for a domain 159, 161

overview 155
processing and interoperability 156
RNG

coding requirements 194
integrating into document type shells 194

content references, See conref
controlled values

binding 280
binding to attributes 40
classifying content for flagging and filtering 39
defining a taxonomy 43
definition of 39
overview 39
precedence rules 40
validation of 40, 42

convenience elements
<keydef> 344
<mapref> 345
<mapresources> 347

core concepts
addressing 17
conditional processing 17
configuration 17
constraints 17
content reuse 17
information typing 17
maps 17
specialization 17
topics 17

cross-references 242
resolving within conrefs 114

D
definition lists

description 214
entries 217
headings 217

definition columns 214
term columns 219

overview 216
terms 219

definitions
attribute domain modules 146

definitions (continued)
base sort phrase 139
cascading 49
controlled values 39
element domain modules 146
structural modules 146

@deliveryTarget
defining values for 40

descriptions 214
design and implementation rules

attribute types 147
document-type shells 143
element types 146
expansion modules 162

@dir attribute 138
DITA maps, See maps
DITAVAL

elements
<alt-text> 357
<endflag> 357
<prop> 358
<revprop> 360
<startflag> 362
<style-conflict> 362
<val> 363

processing expectations 42
DITAVAL reference domain 326

<ditavalmeta> 328
<ditavalref> 326
<dvrKeyscopePrefix> 331
<dvrKeyscopeSuffix> 331
<dvrResourcePrefix> 329
<dvrResourceSuffix> 330

divisions 215
document-type shells

conformance 144
DTD

parameter entities 172
sections, patterns of 172

equivalence 143
overview 142
public identifiers 143
RNG

sections, patterns of 185
rules 143

domain constraint modules
DTD

coding requirements 182
RNG

coding requirements 194
domains

alternative titles 315
classification 320
DITAVAL reference 326
emphasis 332
hazard statement 333
highlighting 339

DITA TC work product Page 423 of 430

domains (continued)
mapgroup 342
utilities 349

draft comments 218
DTD

coding requirements
attribute-domain modules 181
document-type shells 172
element-domain modules 180
element-type declarations 176
entities, use of 171
expansion modules 183
overview 171
structural modules 179

parameter entities, use of 172

E
effective sort phrase 139
element groups

basic map 268
body 213
DITAVAL 356
indexing 250
legacy conversion 355
prolog 296
related links 253
specialization 310
subjectScheme 280
table 257

element-type constraint modules
DTD

coding requirements 182
elements

basic map
<anchor> 271, 277
<keytext> 278
<map> 268
<navref> 272
<relcell> 274
<relcolspec> 275
<relheader> 275
<relrow> 274
<reltable> 272
<topicmeta> 270
<topicref> 269

body
<alt> 213
<cite> 214
<dd> 214
<ddhd> 214
<desc> 214
<div> 215
<dl> 216
<dlentry> 217
<dlhead> 217

elements (continued)
body (continued)

<draft-comment> 218
<dt> 219
<dthd> 219
<example> 219
<fallback> 220
<fig> 220
<figgroup> 220
<fn> 221
<image> 224
<include> 225
<keyword> 227
 228
<lines> 228
<longdescref> 228
<longquoteref> 229
<lq> 230
<note> 230
<object> 231
 234
<p> 235
<param> 235
<ph> 236
<pre> 237
<q> 237
<section> 238
<sectiondiv> 239
<sl> 239
<sli> 240
<term> 240
<text> 240
<tm> 241
 242
<xref> 242

DITAVAL
<alt-text> 357
<endflag> 357
<prop> 358
<revprop> 360
<startflag> 362
<style-conflict> 362
<val> 363

indexing
<index-see> 250
<index-see-also> 251
<indexterm> 252

legacy conversion
<required-cleanup> 355

prolog
<audience> 296
<author> 297
<brand> 297
<category> 298

DITA TC work product Page 424 of 430

elements (continued)
prolog (continued)

<component> 298
<copyrholder> 299
<copyright> 299
<copyryear> 300
<created> 300
<critdates> 301
<featnum> 301
<keywords> 301
<metadata> 302
<othermeta> 303
<permissions> 303
<platform> 304
<prodinfo> 304
<prodname> 305
<prognum> 305
<prolog> 305
<publisher> 305
<resourceid> 306
<revised> 308
<series> 308
<source> 309
<vrm> 310
<vrmlist> 309

related links
<link> 253
<linkinfo> 254
<linklist> 255
<linkpool> 256
<linktext> 257

subjectScheme, See subjectScheme elements
emphasis domain

 332
 333

entities, role in DTDs 171
examples

@class attribute 147
constraints

applying multiple constraints 159
redefining the content model 157
replacing base element with domain extensions
159
restricting attributes for an element 158
restricting content model for a domain 159, 161

document-type shells
public identifiers 143

DTD
parameter entities for domain extensions 180

effective sort phrase 139
expansion modules

aggregating constraint and expansion modules
166
expanding attributes for an element 163, 168

examples (continued)
expansion modules (continued)

expanding content model of <section> 164,
167

generalization
attribute types 154
element types 152

links
order of links within <linklist> 255

maps
audience definition 270
@collection-type and @linking in
relationship tables 25
relationship tables 25
use of @cascade attribute 25

processing
filtering or flagging a hierarchy 42, 44
xrefs and conref within a conref 114

related links 253
relationship tables 272, 275
RNG

domain extension patterns 192
specialization

<context> and <prereq> 144
including non-DITA content 150
reuse of elements from non-ancestor
specializations 151

@specializations attribute 149
subjectScheme

binding controlled values 40
defining a taxonomy 43
defining values for @deliveryTarget 48
extending a subject scheme 46, 47
filtering or flagging a hierarchy 42, 44
providing a subject-definition resource 39

@xml:lang 136
expansion modules

design and implementation rules 162
DTD

coding requirements 183
naming conventions for parameter entities 183

examples
aggregating constraint and expansion modules
166
expanding attributes for an element 163, 168
expanding content model of <section> 164,
167

overview 162
RNG

coding requirements 195
naming conventions for patterns 195

F
figures 220
file extensions

conditional processing profiles 15

DITA TC work product Page 425 of 430

file extensions (continued)
DITAVAL 15
maps 15
topics 15

file names
RNG

domain constraint modules 194
structural constraint modules 194

filtering 356
attributes 32

filtering and flagging
classifying content for 39
processing expectations 42

flagging 356
alternate text 357
attributes 32

footnotes 221
foreign vocabularies, including 312
formatting conventions

link previews 10
navigation links 11

G
generalization

@class and @specializations attributes 151
conref resolution 113
examples

attribute types 154
element types 152

overview 151
processing expectations 152
syntax 154

grammar mechanisms supported 170
grouping 139
grouping elements

<bodydiv> 204
<div> 204, 215
<figgroup> 220
<sectiondiv> 204, 239
<topicgroup> 348

H
hazard statement domain 333

<consequence> 333
<hazardstatement> 334
<hazardsymbol> 335
<howtoavoid> 337
<messagepanel> 337
<typeofhazard> 338

highlighting domain
 339
<i> 339
<line-through> 340
<overline> 340

highlighting domain (continued)
<sub> 340
<sup> 341
<tt> 341
<u> 341

I
illustrations

document-type shell 142
images

accessibility 213
alternate text 224
long descriptions 228
overview 224
placement 224
size 224

indexes
elements 103
location of index elements 103
locators 104
ranges 105
redirections 104
see also reference 103
see reference 103
terminology 103

information typing
benefits 21
history 21
overview 21

interoperability
constraints 156

K
key reference

conref resolution, effect on 114
key scopes

conref resolution, effect on 114
keys

definition
examples 344

L
legacy conversion elements

<required-cleanup> 355
links

cross-references 242
examples 253
labels 257

lists
definition

definition columns 214
description 214
entries 217
headings 217

DITA TC work product Page 426 of 430

lists (continued)
definition (continued)

overview 216
term columns 219
terms 219

ordered
list items 228
overview 234

simple
list items 240
overview 239

unordered
list items 228
overview 242

M
map-to-map cascading

attributes 54
exceptions 56
metadata elements 55

mapgroup domain
<anchorref> 342
<keydef> 344
<mapref> 345
<mapresources> 347
<topicgroup> 348
<topichead> 348

maps
attributes

shared with topics 25
unique to maps 25

examples 268
audience definition 270
key definition 344
relationship tables 25, 272, 275

metadata 270
overview 24, 268
purposes 25
short descriptions in 202, 206
subject scheme, See subjectScheme
use of @xml:lang 136

messages issued by processors
<navtitle> within <topicgroup> 348
<topichead> with no navigation title 348

metadata
cascading 32
conditional processing attributes 32
elements 32
maps 270

modularization
overview 145

multimedia elements 243
<audio> 243
<media-source> 245
<media-track> 246
<video> 247

N
naming conventions

attribute domain modules 146
document-type shells

parameter entities 172
DTD

parameter entity for element domains 180, 181
element domain modules 146
expansion modules

naming conventions for parameter entities 183
naming conventions for patterns 195

RNG
parameter entity for element domains 193
pattern for element domains 192

structural modules 146
nested topics 19, 22
non-normative references 8
normative

grammar files 7
references 8
specification format 7

normative statements
<desc> 214
<draft-comment> 218
<fn> 221
@image 224
<include> 225
<object> 231
<pre> 237
<q> 237
<title> in <section> 238

O
objects

long descriptions 228
overview 231
parameters 235

ordered lists
list items 228
overview 234

@outputclass attribute
example 32
overview 32

P
paragraphs 235
phrases 236
precedence rules

combining attributes on conrefs 113
controlled values 40

preformatted text 237
processing

conrefs 113
controlled values 42

DITA TC work product Page 427 of 430

processing (continued)
examples

filtering or flagging a hierarchy 42, 44
xrefs and conref within a conref 114

sorting 139
xrefs and conref within a conref 114

processing expectations
<abstract> 202
attribute values, hierarchies of 42
base sort phrase, documentation of 139
bi-directional text 138
combining attributes on conrefs 113
conrefs, validity of 113
controlled values 39
DITAVAL 42
filtering and flagging 42
formatting 18
generalization 152
generalization during conref resolution 113
<include> 225
indexing

matching content 108
merging 108
ranges 105

<keyword> 227
labels for related links 275
link previews 202
<linktitle> 315
<longquoteref> 229
multiple <shortdesc> within <abstract> 202
<navtitle> 316
parameters for referencing subjectScheme 39
related links 205, 253
<searchtitle> 317
short descriptions 202
subject-definition resources 39
<subtitle> 318
<title> in a relationship table 208
<titlealt> 208
<titlehint> 319
validating controlled values 40
@xml:lang 136
xrefs and conref within a conref 114

prolog elements
<audience> 296
<author> 297
<brand> 297
<category> 298
<component> 298
<copyrholder> 299
<copyright> 299
<copyryear> 300
<created> 300
<critdates> 301
<featnum> 301
<keywords> 301

prolog elements (continued)
<metadata> 302
<othermeta> 303
<permissions> 303
<platform> 304
<prodinfo> 304
<prodname> 305
<prognum> 305
<prolog> 305
<publisher> 305
<resourceid> 306
<revised> 308
<series> 308
<source> 309
<vrm> 310
<vrmlist> 309

Q
quotations

long 230
reference to source 229
short 237

R
references

non-normative 8
normative 8

related links elements
<link> 253
<linkinfo> 254
<linklist> 255
<linkpool> 256
<linktext> 257

relationship tables
cells 274
column definitions 275
examples 25, 272, 275
headers 275
labels for related links 275
overview 272
processing expectations 275
rows 274
titles 208

rendering expectations
<desc> 214
<draft-comment> 218
<fn> 221
<hazardsymbol> 335
@image 224
link previews 206
<linklist> 255
<navtitle> within <topicgroup> 348
<object> 231

DITA TC work product Page 428 of 430

rendering expectations (continued)
<pre> 237
<q> 237
related links 205
short descriptions 206
<title> in <section> 238
<topicgroup> 348

revisions 356
RFC 2119 terminology 7
RNG

coding requirements
attribute-domain modules 193
document-type shells 185
element-domain modules 192
expansion modules 195
overview 184
structural modules 190

S
same-topic fragment identifier

authoring responsibility 114
effect on conref resolution 114

section divisions 239
sections 238
short descriptions 206
simple lists

list items 240
overview 239

simple tables 259
single sourcing 18
sorting 139
specialization

benefits 145
best practices 21, 144
examples

<context> and <prereq> 144
including non-DITA content 150
reuse of elements from non-ancestor
specializations 151

including non-DITA content 150
modularization 145
overview 144
reuse of elements from non-ancestor specializations
151
rules

attribute types 147
element types 146

specialization elements
<data> 311
<foreign> 312
<no-topic-nesting> 313
<state> 314
<unknown> 314

@specializations attribute
examples 149
generalization 151

@specializations attribute (continued)
rules and syntax 149

specification
available formats 7
formatting in HTML5 version 10
link previews 10
navigation links 11
XML grammar files 7

structural constraint modules
RNG

coding requirements 194
subject reference 320
subject-definition resources 39
subjectScheme

binding controlled values 40
defining a taxonomy 43
defining controlled values 39
elements

<attributedef> 280
<defaultSubject> 281
<elementdef> 282
<enumerationdef> 283
<hasInstance> 284
<hasKind> 285
<hasNarrower> 286
<hasPart> 286
<hasRelated> 287
<relatedSubjects> 287
<schemeref> 288
<subjectdef> 289
<subjectHead> 290
<subjectHeadMeta> 291
<subjectRel> 292
<subjectRelHeader> 294
<subjectRelTable> 292
<subjectRole> 294
<subjectScheme> 295

examples
binding controlled values 40
defining a taxonomy 43
defining values for @deliveryTarget 48
extending a subject scheme 46, 47
filtering or flagging a hierarchy 42, 44
providing a subject-definition resource 39

extending 39
overview 39

T
table elements

<colspec> 258
<entry> 258
<row> 259
<simpletable> 259
<stentry> 261

DITA TC work product Page 429 of 430

table elements (continued)
<sthead> 261
<strow> 262
<table> 262
<tbody> 267
<tgroup> 267
<thead> 267

tables
simple 259

cells 261
headers 261
rows 262

taxonomy, defining 43
terminology

attribute domain modules 146
cascading 49
element domain modules 146
indexing

see also reference 103
see reference 103

RFC 2119 7
structural module 146

titles 208
topic nesting

controlling 179, 190
disabling 179, 190

topic subject 322
topic subject table 323
topics

benefits 20
content 23
generic topic type 22
groups 348
information typing 21
overview 19
reuse 20
structure 22
use of @xml:lang 136

trademarks 241
translation

@xml:lang 136

U
universal attribute group 366
unordered lists

list items 228
overview 242

use by reference, See conref
utilities domain

<area> 349
<coords> 350
<imagemap> 350
<shape> 352
<sort-as> 353

V
validating controlled values 40, 42

X
XML grammar files 7
@xml:lang attribute

best practices 136
default values 136
example 136
overview 136
use with @conref or @conkeyref 136

xrefs, See

DITA TC work product Page 430 of 430

	Table of contents
	1 Introduction
	1.1 About the DITA 2.0 specification
	1.1.1 XML grammar files
	1.1.2 Written specification

	1.2 Terminology
	1.3 IPR policy
	1.4 Normative references
	1.5 Non-normative references
	1.6 Formatting conventions in the HTML5 version of the specification
	1.6.1 Link previews
	1.6.2 Navigation links

	2 DITA terminology, notation, and conventions
	2.1 Normative and non-normative information
	2.2 Notation
	2.3 Basic DITA terminology
	2.4 Specialization terminology
	2.5 DITA module terminology
	2.6 Linking and addressing terminology
	2.7 Key terminology
	2.8 Map terminology
	2.9 File extensions

	3 Overview of DITA
	3.1 Basic concepts
	3.2 Producing different deliverables from a single source
	3.3 DITA topics
	3.3.1 The topic as the basic unit of information
	3.3.2 The benefits of a topic-based architecture
	3.3.3 Disciplined, topic-oriented writing
	3.3.4 Information typing
	3.3.5 Generic topics
	3.3.6 Topic structure
	3.3.7 Topic content

	3.4 DITA maps
	3.4.1 Definition of DITA maps
	3.4.2 Purpose of DITA maps
	3.4.3 DITA map attributes
	3.4.4 Examples of DITA maps
	3.4.4.1 Example: DITA map that references a subordinate map
	3.4.4.2 Example: DITA map with a simple relationship table
	3.4.4.3 Example: How the @collection-type and @linking attributes determine links
	3.4.4.4 Example: How the @cascade attribute functions

	3.5 DITA metadata
	3.5.1 Metadata elements
	3.5.2 Metadata attributes
	3.5.2.1 Filtering and flagging attributes
	3.5.2.2 Other processing attributes
	3.5.2.3 Translation and localization attributes
	3.5.2.4 Architectural attributes

	3.5.3 Metadata in maps and topics
	3.5.4 Context hooks and window metadata for user assistance

	4 Determining effective attribute values
	5 DITA map processing
	5.1 DITA maps and their usage
	5.2 Subject scheme maps and their usage
	5.2.1 Subject scheme maps
	5.2.2 Defining controlled values for attributes
	5.2.3 Binding controlled values to an attribute
	5.2.4 Processing controlled attribute values
	5.2.5 Extending subject schemes
	5.2.6 Scaling a list of controlled values to define a taxonomy
	5.2.7 Classification maps
	5.2.8 Examples of subject scheme maps
	5.2.8.1 Example: How hierarchies defined in a subject scheme map affect filtering
	5.2.8.2 Example: Extending a subject scheme
	5.2.8.3 Example: Extending a subject scheme upwards
	5.2.8.4 Example: Defining values for @deliveryTarget

	5.3 Map cascading
	5.3.1 Cascading of metadata attributes in a DITA map
	5.3.1.1 Merging of cascading attributes
	5.3.1.2 Processing cascading attributes in a map

	5.3.2 Reconciling topic and map metadata elements
	5.3.3 Map-to-map cascading behaviors
	5.3.3.1 Cascading of attributes from map to map
	5.3.3.2 Cascading of metadata elements from map to map
	5.3.3.3 Cascading of roles from map to map

	5.4 Chunking
	5.4.1 About the @chunk attribute
	5.4.2 Processing chunk="combine"
	5.4.3 Processing chunk="split"
	5.4.4 Using the @chunk attribute for other purposes
	5.4.5 Examples of the @chunk attribute
	5.4.5.1 Example: Using @chunk to combine all documents into one
	5.4.5.2 Example: Using @chunk to render a single document from one branch
	5.4.5.3 Example: Using @chunk to combine a group of topics
	5.4.5.4 Example: Using @chunk to combine nested documents
	5.4.5.5 Example: Using @chunk to split documents
	5.4.5.6 Example: Using @chunk to split nested documents
	5.4.5.7 Example: When @chunk is ignored
	5.4.5.8 Example: Combining topics within a split context
	5.4.5.9 Example: Managing links when chunking

	6 DITA addressing
	6.1 ID attribute
	6.2 DITA linking
	6.3 URI-based (direct) addressing
	6.4 Indirect key-based addressing
	6.4.1 Core concepts for working with keys
	6.4.2 Key scopes
	6.4.3 Using keys for addressing
	6.4.4 Addressing keys across scopes
	6.4.5 Cross-deliverable addressing and linking
	6.4.6 Processing key references
	6.4.7 Processing key references for navigation links and images
	6.4.8 Processing key references on <topicref> elements
	6.4.9 Processing key references to generate text or link text
	6.4.10 Examples of keys
	6.4.10.1 Examples: Key definition
	6.4.10.2 Examples: Key definitions for variable text
	6.4.10.3 Example: Duplicate key definitions within a single map
	6.4.10.4 Example: Duplicate key definitions across multiple maps
	6.4.10.5 Example: Key definition with key reference
	6.4.10.6 Example: Link redirection
	6.4.10.7 Example: Link modification or removal
	6.4.10.8 Example: Links from <term> or <keyword> elements
	6.4.10.9 Example: conref redirection
	6.4.10.10 Example: Keys and collaboration

	6.4.11 Examples of scoped keys
	6.4.11.1 Example: Scoped key definitions for variable text
	6.4.11.2 Example: References to scoped keys
	6.4.11.3 Example: Key definitions in nested key scopes
	6.4.11.4 Example: Key scopes and omnibus publications
	6.4.11.5 Example: How key scopes affect key precedence

	7 DITA processing
	7.1 Navigation
	7.1.1 Table of contents

	7.2 Indexes
	7.2.1 Index elements
	7.2.2 Location of <indexterm> elements
	7.2.3 Index locators
	7.2.4 Index redirection
	7.2.5 Index ranges
	7.2.6 Index sorting
	7.2.7 Merging index elements
	7.2.8 Examples of indexing
	7.2.8.1 Example: Merging <indexterm> elements
	7.2.8.2 Example: Index range defined in a single topic
	7.2.8.3 Example: Index range defined in a topic prolog
	7.2.8.4 Example: Index range defined in a map

	7.3 Content reference (conref)
	7.3.1 Conref overview
	7.3.2 Processing conrefs
	7.3.3 Processing attributes when resolving conrefs
	7.3.4 Processing xrefs and conrefs within a conref

	7.4 Conditional processing (profiling)
	7.4.1 Conditional processing values and groups
	7.4.2 Filtering
	7.4.3 Flagging
	7.4.4 Conditional processing to generate multiple deliverable types
	7.4.5 Examples of conditional processing
	7.4.5.1 Example: Setting conditional processing values and groups
	7.4.5.2 Example: Filtering and flagging topic content

	7.5 Branch filtering
	7.5.1 Overview of branch filtering
	7.5.2 Branch filtering: Single condition set for a branch
	7.5.3 Branch filtering: Multiple condition sets for a branch
	7.5.4 Branch filtering: Impact on resource and key names
	7.5.5 Branch filtering: Implications of processing order
	7.5.6 Examples of branch filtering
	7.5.6.1 Example: Single <ditavalref> on a branch
	7.5.6.2 Example: Multiple <ditavalref> elements on a branch
	7.5.6.3 Example: Single <ditavalref> as a child of <map>
	7.5.6.4 Example: Single <ditavalref> in a reference to a map
	7.5.6.5 Example: Multiple <ditavalref> elements as children of <map> in a root map
	7.5.6.6 Example: Multiple <ditavalref> elements in a reference to a map
	7.5.6.7 Example: <ditavalref> within a branch that already uses <ditavalref>
	7.5.6.8 Example: <ditavalref> error conditions

	7.6 Translation and localization
	7.6.1 The @xml:lang attribute
	7.6.2 The @dir attribute

	7.7 Sorting

	8 Configuration, specialization, generalization, constraints, and expansion
	8.1 Overview of DITA extension facilities
	8.2 Document-type configuration
	8.2.1 Overview of document-type shells
	8.2.2 Rules for document-type shells
	8.2.3 Equivalence of document-type shells
	8.2.4 Conformance of document-type shells

	8.3 Specialization
	8.3.1 Overview of specialization
	8.3.2 Modularization
	8.3.3 Vocabulary modules
	8.3.4 Specialization rules for element types
	8.3.5 Specialization rules for attributes
	8.3.6 @class attribute rules and syntax
	8.3.7 @specializations attribute rules and syntax
	8.3.8 Specializing to include non-DITA content
	8.3.9 Sharing elements across specializations

	8.4 Generalization
	8.4.1 Overview of generalization
	8.4.2 Element generalization
	8.4.3 Processor expectations when generalizing elements
	8.4.4 Attribute generalization
	8.4.5 Generalization with cross-specialization dependencies

	8.5 Constraints
	8.5.1 Overview of constraints
	8.5.2 Constraint rules
	8.5.3 Constraints, processing, and interoperability
	8.5.4 Examples: Constraints implemented using DTDs
	8.5.4.1 Example: Redefine the content model for the <topic> element
	8.5.4.2 Example: Constrain attributes for the <section> element
	8.5.4.3 Example: Constrain a domain module
	8.5.4.4 Example: Replace a base element with the domain extensions
	8.5.4.5 Example: Apply multiple constraints to a single document-type shell
	8.5.4.6 Example: Correct the constraint for the machinery task

	8.5.5 Examples: Constraints implemented using RNG
	8.5.5.1 Example: Constrain a domain using RNG

	8.6 Expansion modules
	8.6.1 Overview of expansion modules
	8.6.2 Expansion module rules
	8.6.3 Example: Expansion modules
	8.6.3.1 Examples: Expansion implemented using DTDs
	8.6.3.1.1 DTD: Adding an attribute to certain table elements
	8.6.3.1.2 DTD: Adding an element to the <section> element
	8.6.3.1.3 DTD: Aggregating constraint and expansion modules

	8.6.3.2 Examples: Expansion implemented using RNG
	8.6.3.2.1 RNG: Adding an element to the <section> element
	8.6.3.2.2 RNG: Adding an attribute to certain table elements
	8.6.3.2.3 RNG: Aggregating constraint and expansion modules

	9 Coding practices for DITA grammar files
	9.1 Recognized XML-document grammar mechanisms
	9.2 Normative versions of DITA grammar files
	9.3 DTD coding requirements
	9.3.1 DTD: Use of entities
	9.3.2 DTD: Coding requirements for document-type shells
	9.3.3 DTD: Coding requirements for element-type declarations
	9.3.4 DTD: Coding requirements for structural modules
	9.3.5 DTD: Coding requirements for element-domain modules
	9.3.6 DTD: Coding requirements for attribute domain modules
	9.3.7 DTD: Coding requirements for constraint modules
	9.3.8 DTD: Coding requirements for expansion modules

	9.4 RELAX NG coding requirements
	9.4.1 RELAX NG: Overview of coding requirements
	9.4.2 RELAX NG: Coding requirements for document-type shells
	9.4.3 RELAX NG: Coding requirements for element-type declarations
	9.4.4 RELAX NG: Coding requirements for structural modules
	9.4.5 RELAX NG: Coding requirements for element-domain modules
	9.4.6 RELAX NG: Coding requirements for attribute-domain modules
	9.4.7 RELAX NG: Coding requirements for constraint modules
	9.4.8 RNG: Coding requirements for expansion modules

	10 Element reference
	10.1 DITA elements, A to Z
	10.2 DITA attributes, A to Z
	10.3 Topic elements
	10.3.1 Basic topic elements
	10.3.1.1 <abstract>
	10.3.1.2 <body>
	10.3.1.3 <bodydiv>
	10.3.1.4 <dita>
	10.3.1.5 <related-links>
	10.3.1.6 <shortdesc>
	10.3.1.7 <title>
	10.3.1.8 <titlealt>
	10.3.1.9 <topic>

	10.3.2 Body elements
	10.3.2.1 <alt>
	10.3.2.2 <cite>
	10.3.2.3 <dd>
	10.3.2.4 <ddhd>
	10.3.2.5 <desc>
	10.3.2.6 <div>
	10.3.2.7 <dl>
	10.3.2.8 <dlentry>
	10.3.2.9 <dlhead>
	10.3.2.10 <draft-comment>
	10.3.2.11 <dt>
	10.3.2.12 <dthd>
	10.3.2.13 <example>
	10.3.2.14 <fallback>
	10.3.2.15 <fig>
	10.3.2.16 <figgroup>
	10.3.2.17 <fn>
	10.3.2.18 <image>
	10.3.2.19 <include>
	10.3.2.20 <keyword>
	10.3.2.21
	10.3.2.22 <lines>
	10.3.2.23 <longdescref>
	10.3.2.24 <longquoteref>
	10.3.2.25 <lq>
	10.3.2.26 <note>
	10.3.2.27 <object>
	10.3.2.28
	10.3.2.29 <p>
	10.3.2.30 <param>
	10.3.2.31 <ph>
	10.3.2.32 <pre>
	10.3.2.33 <q>
	10.3.2.34 <section>
	10.3.2.35 <sectiondiv>
	10.3.2.36 <sl>
	10.3.2.37 <sli>
	10.3.2.38 <term>
	10.3.2.39 <text>
	10.3.2.40 <tm>
	10.3.2.41
	10.3.2.42 <xref>

	10.3.3 Multimedia elements
	10.3.3.1 <audio>
	10.3.3.2 <media-source>
	10.3.3.3 <media-track>
	10.3.3.4 <video>

	10.3.4 Indexing elements
	10.3.4.1 <index-see>
	10.3.4.2 <index-see-also>
	10.3.4.3 <indexterm>

	10.3.5 Related links elements
	10.3.5.1 <link>
	10.3.5.2 <linkinfo>
	10.3.5.3 <linklist>
	10.3.5.4 <linkpool>
	10.3.5.5 <linktext>

	10.3.6 Table elements
	10.3.6.1 <colspec>
	10.3.6.2 <entry>
	10.3.6.3 <row>
	10.3.6.4 <simpletable>
	10.3.6.5 <stentry>
	10.3.6.6 <sthead>
	10.3.6.7 <strow>
	10.3.6.8 <table>
	10.3.6.9 <tbody>
	10.3.6.10 <tgroup>
	10.3.6.11 <thead>

	10.4 Map elements
	10.4.1 Basic map elements
	10.4.1.1 <map>
	10.4.1.2 <topicref>
	10.4.1.3 <topicmeta>
	<anchor>
	10.4.1.5 <navref>
	10.4.1.6 <reltable>
	10.4.1.7 <relrow>
	10.4.1.8 <relcell>
	10.4.1.9 <relheader>
	10.4.1.10 <relcolspec>
	<anchor>
	10.4.1.12 <keytext>

	10.4.2 Subject scheme elements
	10.4.2.1 <attributedef>
	10.4.2.2 <defaultSubject>
	10.4.2.3 <elementdef>
	10.4.2.4 <enumerationdef>
	10.4.2.5 <hasInstance>
	10.4.2.6 <hasKind>
	10.4.2.7 <hasNarrower>
	10.4.2.8 <hasPart>
	10.4.2.9 <hasRelated>
	10.4.2.10 <relatedSubjects>
	10.4.2.11 <schemeref>
	10.4.2.12 <subjectdef>
	10.4.2.13 <subjectHead>
	10.4.2.14 <subjectHeadMeta>
	10.4.2.15 <subjectRel>
	10.4.2.16 <subjectRelTable>
	10.4.2.17 <subjectRelHeader>
	10.4.2.18 <subjectRole>
	10.4.2.19 <subjectScheme>

	10.5 Metadata elements
	10.5.1 Prolog (metadata) elements
	10.5.1.1 <audience>
	10.5.1.2 <author>
	10.5.1.3 <brand>
	10.5.1.4 <category>
	10.5.1.5 <component>
	10.5.1.6 <copyrholder>
	10.5.1.7 <copyright>
	10.5.1.8 <copyryear>
	10.5.1.9 <created>
	10.5.1.10 <critdates>
	10.5.1.11 <featnum>
	10.5.1.12 <keywords>
	10.5.1.13 <metadata>
	10.5.1.14 <othermeta>
	10.5.1.15 <permissions>
	10.5.1.16 <platform>
	10.5.1.17 <prodinfo>
	10.5.1.18 <prodname>
	10.5.1.19 <prognum>
	10.5.1.20 <prolog>
	10.5.1.21 <publisher>
	10.5.1.22 <resourceid>
	10.5.1.23 <revised>
	10.5.1.24 <series>
	10.5.1.25 <source>
	10.5.1.26 <vrmlist>
	10.5.1.27 <vrm>

	10.5.2 Specialization elements
	10.5.2.1 <data>
	10.5.2.2 <foreign>
	10.5.2.3 <no-topic-nesting>
	10.5.2.4 <state>
	10.5.2.5 <unknown>

	10.6 Domain elements
	10.6.1 Alternative titles domain elements
	10.6.1.1 <linktitle>
	10.6.1.2 <navtitle>
	10.6.1.3 <searchtitle>
	10.6.1.4 <subtitle>
	10.6.1.5 <titlehint>

	10.6.2 Classification domain elements
	10.6.2.1 <subjectCell>
	10.6.2.2 <subjectref>
	10.6.2.3 <topicapply>
	10.6.2.4 <topicCell>
	10.6.2.5 <topicsubject>
	10.6.2.6 <topicSubjectHeader>
	10.6.2.7 <topicSubjectRow>
	10.6.2.8 <topicSubjectTable>

	10.6.3 DITAVAL-reference domain element
	10.6.3.1 <ditavalref>
	10.6.3.2 <ditavalmeta>
	10.6.3.3 <dvrResourcePrefix>
	10.6.3.4 <dvrResourceSuffix>
	10.6.3.5 <dvrKeyscopePrefix>
	10.6.3.6 <dvrKeyscopeSuffix>

	10.6.4 Emphasis domain elements
	10.6.4.1
	10.6.4.2

	10.6.5 Hazard-statement domain elements
	10.6.5.1 <consequence>
	10.6.5.2 <hazardstatement>
	10.6.5.3 <hazardsymbol>
	10.6.5.4 <howtoavoid>
	10.6.5.5 <messagepanel>
	10.6.5.6 <typeofhazard>

	10.6.6 Highlighting domain elements
	10.6.6.1
	10.6.6.2 <i>
	10.6.6.3 <line-through>
	10.6.6.4 <overline>
	10.6.6.5 <sub>
	10.6.6.6 <sup>
	10.6.6.7 <tt>
	10.6.6.8 <u>

	10.6.7 Mapgroup domain elements
	10.6.7.1 <anchorref>
	10.6.7.2 <keydef>
	10.6.7.3 <mapref>
	10.6.7.4 <mapresources>
	10.6.7.5 <topicgroup>
	10.6.7.6 <topichead>

	10.6.8 Utilities domain elements
	10.6.8.1 <area>
	10.6.8.2 <coords>
	10.6.8.3 <imagemap>
	10.6.8.4 <shape>
	10.6.8.5 <sort-as>

	10.7 Other elements
	10.7.1 Legacy conversion elements
	10.7.1.1 <required-cleanup>

	10.7.2 DITAVAL elements
	10.7.2.1 <alt-text>
	10.7.2.2 <endflag>
	10.7.2.3 <prop>
	10.7.2.4 <revprop>
	10.7.2.5 <startflag>
	10.7.2.6 <style-conflict>
	10.7.2.7 <val>

	10.8 Attributes
	10.8.1 Universal attribute group
	10.8.2 Common attributes
	10.8.3 Complex attribute definitions
	10.8.3.1 The @conaction attribute
	10.8.3.2 The @conrefend attribute
	10.8.3.3 The @conkeyref attribute
	10.8.3.4 The @conref attribute
	10.8.3.4.1 Using the "-dita-use-conref-target" value

	10.8.3.5 The @format attribute
	10.8.3.6 The @href attribute
	10.8.3.7 The @keyref attribute
	10.8.3.8 The @keys attribute
	10.8.3.9 The @keyscope attribute
	10.8.3.10 The @role and @otherrole attributes
	10.8.3.11 The @scope attribute
	10.8.3.12 The @type attribute

	11 Conformance
	A Acknowledgments
	B Aggregated RFC-2119 statements
	C Non-normative information
	C.1 About the specification source
	C.2 Changes from DITA 1.3 to DITA 2.0
	C.3 File naming conventions
	C.4 Migrating to DITA 2.0
	C.5 Considerations for generalizing <foreign> elements
	C.6 Element-by-element recommendations for translators
	C.7 Formatting expectations
	C.8 DTD public identifiers
	C.9 Domains and constraints in the OASIS specification
	C.9.1 Domains and constraints in the OASIS specification
	C.9.2 Base domains: Where they are used
	C.9.3 Base document types: Included domains

	C.10 Processing interoperability considerations
	C.11 Specialization design, customization, and the limits of specialization

	D Revision history
	Index
	Special Characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	X

