
Review P: Configuration

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 1 of 41

Table of contents
1 Configuration, specialization, generalization, constraints, and expansion ..3

1.1 Overview of DITA extension facilities...3
1.2 Document-type configuration...4

1.2.1 Overview of document-type shells...4
1.2.2 Rules for document-type shells... 5
1.2.3 Equivalence of document-type shells..5
1.2.4 Conformance of document-type shells..6

1.3 Specialization...6
1.3.1 Overview of specialization...6
1.3.2 Modularization... 7
1.3.3 Vocabulary modules.. 8
1.3.4 Specialization rules for element types...9
1.3.5 Specialization rules for attributes...9
1.3.6 The @class attribute rules and syntax.. 10
1.3.7 The @specializations attribute rules and syntax... 11
1.3.8 Specializing to include non-DITA content.. 12
1.3.9 Sharing elements across specializations...13

1.4 Constraints...14
1.4.1 Overview of constraints... 14
1.4.2 Constraint rules... 15
1.4.3 Constraints, processing, and interoperability...15
1.4.4 Examples: Constraints implemented using DTDs... 16
1.4.5 Examples: Constraints implemented using RNG.. 20

1.5 Expansion modules... 25
1.5.1 Overview of expansion modules..25
1.5.2 Expansion module rules.. 25
1.5.3 Examples: Expansion implemented using DTDs...26
1.5.4 Examples: Expansion implemented using RNG..32

A Aggregated RFC-2119 statements..39

Index...40

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 2 of 41

1 Configuration, specialization, generalization,
constraints, and expansion
The extension facilities of DITA allow document-type shells, vocabulary modules, and element-
configuration modules (constraint and expansion) to be combined to create specific DITA document
types.

1.1 Overview of DITA extension facilities
DITA provides three extension facilities: Document-type configuration, specialization, and element-type
configuration.

Document-type configuration
Document-type configuration enables the definition of DITA document types that include only the
vocabulary modules that are required for a given set of documents. There is no need to modify the
vocabulary modules. Document-type configurations are implemented as document-type shells.

Specialization
Specialization enables the creation of new element types in a way that preserves the ability to
interchange those new element types with conforming DITA applications. Specializations are
implemented as vocabulary modules, which are integrated into document-type shells.

Specialization modules declare the elements and entities that are unique to a specialization. The
separation of the vocabulary and its declarations into modules makes it easy to extend existing
modules, because new modules can be added without affecting existing document types. It also
makes it easy to assemble elements from different sources into a single document-type shell and to
reuse specific parts of the specialization hierarchy in more than one document-type shell.

DITA content that uses specializations can be treated as, or converted to, unspecialized markup
through the process of generalization. The information about the original specialized form can be
retained.

Element-type configuration

Element-type configuration enables DITA architects to modify the content models and attribute lists
for individual elements, without modifying the vocabulary modules in which the elements are defined.

There are two types of element configuration: Constraint and expansion. Both constraint and
expansion are implemented as modules that are integrated into document-type shells:

Constraint
Constraint modules enable the restriction of content models and attribute lists for individual
elements.

Expansion
Expansion modules enable the expansion of content models and attribute lists for individual
elements.

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 3 of 41

1.2 Document-type configuration
Document-type configuration enables the definition of DITA document types that include only the
vocabulary modules that are required for a given set of documents. There is no need to modify the
vocabulary modules. Document-type configurations are implemented using document-type shells.

1.2.1 Overview of document-type shells
A document-type shell is an XML grammar file that specifies the elements and attributes that are allowed
in a DITA document. The document-type shell integrates structural modules, domain modules, and
element-configuration modules. In addition, a document-type shell specifies whether and how topics can
nest.

A DITA document either must have an associated document-type definition or all required attributes must
be made explicit in the document instances. Most DITA documents have an associated document-type
shell. DITA documents that reference a document-type shell can be validated using most standard XML
processors. Such validation enables processors to read the XML grammar files and determine default
values for the @specializations and @class attributes.

The following figure illustrates the relationship between a DTD-based DITA document, its document-type
shell, the vocabulary modules that it uses, and the element-configuration modules (constraint and
expansion) that it integrates. Similar structure applies to DITA documents that use other XML grammars.

Figure 1: Document type shell

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 4 of 41

Comment by Kristen J Eberlein on 28 March 2021

The illustration needs to be updated to include expansion modules.

The DITA specification contains a starter set of document-type shells. These document-type shells are
commented and can be used as templates for creating custom document-type shells.

While the OASIS-provided document-type shells can be used without any modification, creating custom
document-type shells is a best practice. If the document-type shells need to be modified in the future, for
example, to include a specialization or integrate an element-configuration module (constraint or
expansion), the existing DITA documents will not need to be modified to reference a new document-type
shell.

1.2.2 Rules for document-type shells
This topic collects the rules that concern DITA document-type shells.

XML grammars

001
(39)

While the DITA specification only defines coding requirements for DTD and
RELAX NG, conforming DITA documents MAY use other document-type
constraint languages, such as XSD or Schematron.

Defining element or attribute types

002
(39)

With two exceptions, a document-type shell MUST NOT directly define
element or attribute types; it only includes vocabulary and element-
configuration modules (constraint and expansion). The exceptions to this
rule are the following:

• The ditabase document-type shell directly defines the <dita>
element.

• RNG-based document-type shells directly specify values for the
@specializations attribute. These values reflect the details of
the attribute domains that are integrated by the document-type
shell.

Document-type shells not provided by OASIS

003
(39)

Document-type shells that are not provided by OASIS MUST have a unique
public identifier, if public identifiers are used.

004
(39)

Document-type shells that are not provided by OASIS MUST NOT indicate
OASIS as the owner. The public identifier or URN for such document-type
shells SHOULD reflect the owner or creator of the document-type shell.

For example, if example.com creates a copy of the document-type shell for topic, an appropriate
public identifier would be "-//EXAMPLE//DTD DITA Topic//EN", where "EXAMPLE" is the component
of the public identifier that identifies the owner. An appropriate URN would be
"urn:example.com:names:dita:rng:topic.rng".

1.2.3 Equivalence of document-type shells
Two distinct DITA document types that are taken from different tools or environments might be
functionally equivalent.

A DITA document type is defined by the following:

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 5 of 41

• The set of vocabulary and element-configuration modules (constraint and expansion) that are
integrated by the document-type shell

• The values of the @class attributes of all the elements in the document
• Rules for topic nesting

Two document-type shells define the same DITA document type if they integrate identical vocabulary
modules, element-configuration modules (constraint and expansion), and rules for topic nesting. For
example, a document-type shell that is an unmodified copy of the OASIS-provided document-type shell
for topic defines the same DITA document type as the original document-type shell. However, the new
document-type shell has the following differences:

• It is a distinct file that is stored in a different location.
• It has a distinct system identifier.
• If it has a public identifier, the public identifier is unique.

Note The public or system identifier that is associated with a given document-type shell is not
necessarily distinguishing. Two different people or groups might use the same modules and
constraints to assemble equivalent document-type shells, while giving them different names
or public identifiers.

1.2.4 Conformance of document-type shells
DITA documents typically are governed by a conforming DITA document-type shell. However, the
conformance of a DITA document is a function of the document instance, not its governing grammar.
Conforming DITA documents are not required to use a conforming document-type shell.

Conforming DITA documents are not required to have any governing document-type declaration or
schema. There might be compelling or practical reasons to use non-conforming document-type shells.
For example, a document might use a document-type shell that does not conform to the DITA
requirements for shells in order to meet the needs of a specific application or tool. Such a non-conforming
document-type shell still might enable the creation of conforming DITA content.

1.3 Specialization
The specialization feature of DITA allows for the creation of new element types and attributes that are
explicitly and formally derived from existing types. This facilitates interchange of conforming DITA content
and ensures a minimum level of common processing for all DITA content. It also allows specialization-
aware processors to add specialization-specific processing to existing base processing.

1.3.1 Overview of specialization
Specialization allows information architects to define new kinds of information (new structural types or
new domains of information), while reusing as much of existing design and code as possible, and
minimizing or eliminating the costs of interchange, migration, and maintenance.

Specialization modules enable information architects to create new element types and attributes. These
new element types and attributes are derived from existing element types and attributes.

In traditional XML applications, all semantics for a given element instance are bound to the element type,
such as <para> for a paragraph or <title> for a title. The XML specification provides no built-in
mechanism for relating two element types to say "element type B is a subtype of element type A".

In contrast, the DITA specialization mechanism provides a standard mechanism for declaring that an
element type or attribute is derived from an ancestor type. This means that a specialized type inherits the
semantics and default processing behavior from its ancestor type. Additional processing behavior
optionally can be associated with the specialized descendant type.

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 6 of 41

For example, the <section> element type is part of the DITA base. It represents an organizational
division in a topic. Within the task information type (itself a specialization of <topic>), the <section>
element type is further specialized to other element types (such as <prereq> and <context>) that
provide more precise semantics about the type of organizational division that they represent. The
specialized element types inherit both semantic meaning and default processing from the ancestor
elements.

There are two types of DITA specializations:

Structural specialization

Structural specializations are developed from either topic or map types. Structural specializations
enable information architects to add new document types to DITA. The structures defined in the new
document types either directly use, or inherit from, elements found in other document types. For
example, concept, task, and reference are specialized from topic, and bookmap is specialized from
map.

Domain specialization
Domain specializations are developed from elements defined within topic or map, or from the
@props or @base attributes. They define markup for a specific information domain or subject area.
Domain specializations can be added to document-type shells.

Each type of specialization module represents an “is a” hierarchy, in object-oriented terms, with each
structural type or domain being a subclass of its parent. For example, a specialization of task is still a
task, and a specialization of the user interface domain is still part of the user interface domain. A given
domain can be used with any map or topic type. In addition, specific structural types might require the use
of specific domains.

Use specialization when you need a new structural type or domain. Specialization is appropriate in the
following circumstances:

• You need to create markup to represent new semantics (meaningful categories of information).
This might enable you to have increased consistency or descriptiveness in your content model.

• You have specific needs for output processing and formatting that cannot be addressed using the
current content model.

Do not use specialization to simply eliminate element types from specific content models. Use constraint
modules to restrict content models and attribute lists without changing semantics.

1.3.2 Modularization
Modularization is at the core of DITA design and implementation. It enables reuse and extension of the
DITA specialization hierarchy.

The DITA XML grammar files are a set of module files that declare the markup and entities that are
required for each specialization. The document-type shell then integrates the modules that are needed for
a particular authoring and publishing context.

Because all the pieces are modular, the task of developing a new information type or domain is simplified.
An information architect can start with existing base types (topic or map)—or with an existing
specialization if it comes close to matching their business requirements—and only develop an extension
that adds the extra semantics or functionality that is required. A specialization reuses elements from
ancestor modules, but it only needs to declare the elements and attributes that are unique to the
specialization. This saves considerable time and effort, reduces error, enforces consistency, and makes
interoperability possible.

Because all the pieces are modular, it is simpler to reuse different modules in different contexts.

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 7 of 41

For example, a company that produces machines can use the hazard statement domain, while a
company that produces software can use the software, user interface, and programming domains. A
company that produces health information for consumers can avoid using the standard domains. Instead,
it develops a new domain that contains the elements necessary for capturing and tracking the comments
made by medical professionals who review information for accuracy and completeness.

Because all the pieces are modular, new modules can be created and put into use without affecting
existing document-type shells.

For example, a marketing division of a company can develop a new specialization for message
campaigns and have their content authors begin using that specialization, without affecting any of the
other information types that they have in place.

1.3.3 Vocabulary modules
A DITA element type or attribute is declared in exactly one vocabulary module.

The following terminology is used to refer to DITA vocabulary modules:

structural module
A vocabulary module that defines a top-level map or topic type.

element domain module
A vocabulary module that defines one or more specialized element types that can be integrated into
maps or topics.

attribute domain module
A vocabulary module that defines exactly one specialization of either the @base or @props attribute.

For structural types, the module name is typically the same as the root element. For example, "task" is the
name of the structural vocabulary module whose root element is <task>.

For element domain modules, the module name is typically a name that reflects the subject domain to
which the domain applies, such as "highlight" or "software". Domain modules often have an associated
short name, such as "hi-d" for the highlighting domain or "sw-d" for the software domain.

The name (or short name) of an element domain module is used to identify the module in @class
attribute values. While module names need not be globally unique, module names must be unique within
the scope of a given specialization hierarchy. The short name must be a valid XML name token.

005 (39) Structural modules based on topic MAY define additional topic types that are then
allowed to occur as subordinate topics within the top-level topic. However, such
subordinate topic types MAY NOT be used as the root elements of conforming DITA
documents.

For example, a top-level topic type might require the use of subordinate topic types that would only ever
be meaningful in the context of their containing type and thus would never be candidates for standalone
authoring or aggregation using maps. In that case, the subordinate topic type can be declared in the
module for the top-level topic type that uses it. However, in most cases, potential subordinate topics are
best defined in their own vocabulary modules.

006 (39) Domain elements intended for use in topics MUST ultimately be specialized from
elements that are defined in the topic module. Domain elements intended for use in
maps MUST ultimately be specialized from elements defined by or used in the map
module. Maps share some element types with topics but no map-specific elements
can be used within topics.

Structural modules also can define specializations of, or reuse elements from, domain or other structural
modules. When this happens, the structural module becomes dependent.

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 8 of 41

1.3.4 Specialization rules for element types
There are certain rules that apply to element type specializations.

Characteristics

A specialized element type has the following characteristics:

Comment by Kristen J Eberlein on 07 August 2022

Robert Anderson and I both think that the 2nd bullet point needs expansion, to cover the effects of
expansion modules.

• A properly-formed @class attribute that specifies the specialization hierarchy of the element
• A content model that is the same or less inclusive than that of the element from which it was

specialized
• A set of attributes that are the same or a subset of those of the element from which it was

specialized, except for specializations of @base or @props
• Values or value ranges of attributes that are the same or a subset of those of the element

from which it was specialized

Namespaces

DITA elements are never in a namespace. Only the @DITAArchVersion attribute is in a DITA-
defined namespace. All other attributes, except for those defined by the XML standard, are in no
namespace.

This limitation is imposed by the details of the @class attribute syntax, which makes it impractical to
have namespace-qualified names for either vocabulary modules or individual element types or
attributes. Elements included as descendants of the DITA <foreign> element type can be in any
namespace.

Note Domain modules that are intended for wide use should define element type names that are
unlikely to conflict with names used in other domains, for example, by using a domain-specific
prefix on all names.

Comment by Kristen J Eberlein on 31 August 2022

We should consider moving the above note elsewhere.

1.3.5 Specialization rules for attributes
There are certain rules that apply to attribute specializations.

A specialized attribute has the following characteristics:

• It is specialized from @props or @base.
• It can be integrated into a document-type shell either globally, which makes it available on all

elements, or it can be assigned to specific elements by using an expansion module.
• It does not have values or value ranges that are more extensive than those of the attribute from

which it was specialized.
• Its values must be alphanumeric, space-delimited values.
• In generalized form, the values must conform to the rules for attribute generalization.

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 9 of 41

1.3.6 The @class attribute rules and syntax
The specialization hierarchy of each DITA element is declared as the value of the @class attribute. The
@class attribute provides a mapping from the current name of the element to its more general
equivalents. The @class attribute also can provide a mapping from the current name to more specialized
equivalents. All specialization-aware processing can be defined in terms of @class attribute values.

The @class attribute tells a processor what general classes of elements the current element belongs to.
DITA scopes elements by module type instead of document type. Examples of module types are topic
type, domain type, or map type. This enables document-type developers to combine multiple module
types in a single document without complicating transformation logic.

The sequence of values in the @class attribute is important because it tells processors which value is the
most general and which is most specific. This sequence is what enables both specialization aware
processing and generalization.

Syntax
Values for the @class attribute have the following syntax requirements:

• An initial "-" or "+" character followed by one or more spaces. Use "-" for element types that are
defined in structural vocabulary modules, and use "+" for element types that are defined in domain
modules.

• A sequence of one or more tokens of the form "modulename/typename", with each token
separated by one or more spaces, where modulename is the short name of the vocabulary
module and typename is the element type name. Tokens are ordered left to right from most
general to most specialized.

These tokens provide a mapping for every structural type or domain in the ancestry of the
specialized element. The specialization hierarchy for a given element type must reflect any
intermediate modules between the base type and the specialization type, even those in which no
element renaming occurs.

• At least one trailing space character (" "). The trailing space ensures that string matches on the
tokens can always include a leading and trailing space in order to reliably match full tokens.

Rules

007 (39) Every DITA element (except the <dita> element that is used as the root of a
ditabase document) MUST declare a @class attribute.

008 (39) When the @class attribute is declared in an XML grammar, it MUST be declared
with a default value. In order to support generalization round-tripping (generalizing
specialized content into a generic form and then returning it to the specialized form)
the default value MUST NOT be fixed. This allows a generalization process to
overwrite the default values that are defined by a general document type with
specialized values taken from the document being generalized.

009 (39) A vocabulary module MUST NOT change the @class attribute for elements that it
does not specialize, but simply reuses by reference from more generic levels.

010 (39) Authors SHOULD NOT modify the @class attribute. The @class attribute and its
value is generally not surfaced in authored DITA topics, although it might be made
explicit as part of a processing operation.

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 10 of 41

Example: DTD declaration for @class attribute for the <step> element
The following code sample lists the DTD declaration for the @class attribute for the <step> element:

<!ATTLIST step class CDATA "- topic/li task/step ">

This indicates that the <step> element is specialized from the element in the topic module. It also
indicates explicitly that the <step> element is available in a task topic. This declaration enables round-
trip migration between upper level and lower level types without the loss of information.

Example: Element with @class attribute made explicit
The following code sample shows the value of the @class attribute for the <wintitle> element:

<wintitle class="+ topic/keyword ui-d/wintitle ">A specialized keyword</wintitle>

Example: @class attribute with intermediate value

Comment by Kristen J Eberlein on 01 September 2022
This example needs to be reviewed as part of the generalization content.

In addition, it would benefit by an edit that started by asking "What exactly are we trying to convey
here? What are the critical points?

The following code sample shows the value of a @class attribute for an element in the guiTask module,
which is specialized from <task>. The element is specialized from <keyword> in the base topic
vocabulary, rather than from an element in the task module:

<windowName class="- topic/keyword task/keyword guiTask/windowname ">...</windowName>

The intermediate values are necessary so that generalizing and specializing transformations can map the
values simply and accurately. For example, if task/keyword was missing as a value, and a user
decided to generalize this guiTask up to a task topic, then the transformation would have to guess
whether to map to keyword (appropriate if task is more general than guiTask, which it is) or leave it as
windowName (appropriate if task were more specialized, which it isn't). By always providing mappings for
more general values, processors can then apply the simple rule that missing mappings must by default be
to more specialized values than the one we are generalizing to, which means the last value in the list is
appropriate. For example, when generalizing <guitask> to <task>, if a <p> element has no target
value for <task>, we can safely assume that <p> does not specialize from <task> and does not need to
be generalized.

1.3.7 The @specializations attribute rules and syntax
The @specializations attribute enables processors to determine what attribute specializations are
available in a document. The attribute is declared on the root element for each topic or map type. Each
attribute domain defines a token to declare the extension. The effective value of the @specializations
attribute is composed of these tokens.

Syntax and rules
The @props and @base attributes are the only two core attributes available for specialization.

011 (39) Each specialization of the @props and @base attributes MUST provide a token for
use by the @specializations attribute.

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 11 of 41

The @specializations token for an attribute specialization begins with either @props or @base
followed by a slash, followed by the name of the new attribute:

'@', props-or-base, ('/', attname)+

For example:

• If @props is specialized to create @myNewProp, this results in the following token: @props/
myNewProp

• If @base is specialized to create @myFirstBase, this results in the following token: @base/
myFirstBase

• If that specialized attribute @myFirstBase is further specialized to create @mySecondBase, this
results in the following token: @base/myFirstBase/mySecondBase

Note that the value for the @specializations attribute is not authored. Instead, the value is defaulted
based on the modules that are included in the document type shell.

Example: @specializations attribute for a task with multiple domains
In this example, a document-type shell integrates the task structural module and the following domain
modules:

Domain Domain short name

User interface ui-d

Software sw-d

@deliveryTarget attribute deliveryTarget

@platform attribute platform

@product attribute product

The value of the @specializations attribute includes one value from each attribute module. The
effective value is the following:

specializations="@props/deliveryTarget @props/platform @props/product"

If the document-type shell also used a specialization of the @platform attribute that describes the
hardware platform, the new @hardwarePlatform attribute domain would add an additional value to the
@specializations attribute:

specializations="@props/deliveryTarget @props/platform @props/platform/hardwarePlatform
@props/product"

1.3.8 Specializing to include non-DITA content
You can extend DITA to incorporate standard vocabularies for non-textual content, such as MathML and
SVG, as markup within DITA documents. This is done by specializing the <foreign> or <unknown>
elements.

There are three methods of incorporating foreign content into DITA.

• A domain specialization of the <foreign> or <unknown> element. This is the usual
implementation.

• A structural specialization using the <foreign> or <unknown> element. This affords more
control over the content model.

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 12 of 41

• Directly embedding the non-DITA content within <foreign> or <unknown> elements. If the non-
DITA content has interoperability or vocabulary naming issues such as those that are addressed
by specialization in DITA, they must be addressed by means that are appropriate to the non-DITA
content.

Do not use <foreign> or <unknown> elements to include textual content or metadata in DITA
documents.

Example: Creating an element domain specialization for SVG
The following code sample, which is from the svgDomain.ent file, shows the domain declaration for the
SVG domain.

<!-- === -->
<!-- SVG DOMAIN ENTITIES -->
<!-- === -->

<!-- SVG elements must be prefixed, otherwise they conflict with
 existing DITA elements (e.g., <desc> and <title>.
 -->
<!ENTITY % NS.prefixed "INCLUDE" >
<!ENTITY % SVG.prefix "svg" >

<!ENTITY % svg-d-foreign
 "svg-container
 "
>

Note that the SVG-specific %SVG.prefix; parameter entity is declared. This establishes the default
namespace prefix to be used for the SVG content embedded with this domain. The namespace can be
overridden in a document-type shell by declaring the parameter entity before the reference to the
svgDomain.ent file. Other foreign domains might need similar entities when required by the new
vocabulary.

For more information, see the svgDomain.mod file that is shipped with the DITA Technical Content
edition. For an example of including the SVG domain in a document-type shell, see task.dtd.

1.3.9 Sharing elements across specializations
Specialization enables reuse of elements from ancestor specializations. However, it is also possible to
reuse elements from non-ancestor specializations.

A structural specialization can incorporate elements from unrelated domains or other structural
specializations by referencing them in the content model of a specialized element. The elements included
in this manner must be specialized from ancestor content that is valid in the new context. If the reusing
and reused specializations share common ancestry, the reused elements must be valid in the reusing
context at every level they share in common.

Although a well-designed structural specialization hierarchy with controlled use of domains is still the
primary means of sharing and reusing elements in DITA, the ability to also share elements declared
elsewhere in the hierarchy allows for situations where relevant markup comes from multiple sources and
would otherwise be developed redundantly.

Example: A specialization of <concept> reuses an element from the task module
A specialized concept topic could declare a specialized <process> section that contains the <steps>
element that is defined in the task module. This is possible because of the following factors:

• The <steps> element is specialized from .
• The <process> element is specialized from <section>, and the content model of <section>

includes .

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 13 of 41

The <steps> element in <process> always can be generalized back to in <section>.

Example: A specialization of <reference> reuses an element from the programming
domain
A specialized reference topic could declare a specialized list (<apilist>) in which each
<apilistitem> contains an <apiname> element that is borrowed from the programming domain.

1.4 Constraints
Constraint modules restrict content models or attribute lists for specific element types, remove certain
extension elements from an integrated domain module, or replace base element types with domain-
provided, extension element types.

1.4.1 Overview of constraints
Constraint modules enable information architects to restrict the content models or attributes of DITA
elements. A constraint is a simplification of an XML grammar such that any instance that conforms to the
constrained grammar also will conform to the original grammar.

A constraint module can perform the following functions:

Restrict the content model for an element
Constraint modules can modify content models by removing optional elements, making optional
elements required, or requiring unordered elements to occur in a specific sequence. Constraint
modules cannot make required elements optional or change the order of element occurrence for
ordered elements.

For example, a constraint for <topic> can require <shortdesc>, can remove <abstract>, and
can require that the first child of <body> be <p>. A constraint cannot allow <shortdesc> to follow
<prolog>, because the content model for <topic> requires that <shortdesc> precedes
<prolog>.

Restrict the attributes that are available on an element

Constraint modules can restrict the attributes that are available on an element. They also can limit
the set of permissible values for an attribute.

For example, a constraint for <note> can limit the set of allowed values for the @type attribute to
"note" and "tip". It also can omit the @othertype attribute, since it is needed only when the value of
the @type attribute is "other".

Restrict the elements that are available in a domain

Constraint modules can restrict the set of extension elements that are provided in a domain. They
also can restrict the content models for the extension elements.

For example, a constraint on the programming domain can reduce the list of included extension
elements to <codeph> and <codeblock>.

Note For DITA implementations that use RNG-based grammar files, restricting the set of
extension elements that are provided in a domain can be handled simply by document-
type configuration.

Replace base elements with domain extensions
Constraint modules can replace base element types with the domain-provided extension elements.

For example, a constraint module can replace the <ph> element with the domain-provided elements,
making <ph> unavailable.

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 14 of 41

1.4.2 Constraint rules
There are certain rules that apply to the design and implementation of constraints.

Content model

The content model for a constrained element must be at least as restrictive as the unconstrained
content model for the element.

Domain constraints

When a domain module is integrated into a document-type shell, the base domain element can be
omitted from the domain extension group or parameter entity. In such a case, there is no separate
constraint declaration, because the content model is configured directly in the document-type shell.

A domain module can be constrained by only one constraint module. This means that all restrictions
for the extension elements that are defined in the domain must be contained within that one
constraint module.

Structural constraints

Each constraint module can constrain elements from only one vocabulary module. For example, a
single constraint module that constrains <refsyn> from reference.mod and constrains
<context> from task.mod is not allowed. This rule maintains granularity of reuse at the module
level.

Constraint modules that restrict different elements from within the same vocabulary module can be
combined with one another. Such combinations of constraints on a single vocabulary module have
no meaningful order or precedence.

Aggregation of constraint modules

The content model of an element can be modified by either of the following element-configuration
modules:

• Constraint module
• Expansion module

For any document-type shell, the content model of an element can only be modified by a single
element-type configuration module. If multiple constraints or extensions need to be applied to a
single element, the element configurations must be combined into a single module that reflects all the
constraints and expansions that were defined in the original separate modules.

1.4.3 Constraints, processing, and interoperability
Because constraints can make optional elements required, documents that use the same vocabulary
modules might have incompatible constraints. Thus the use of constraints can affect the ability for content
from one topic or map to be used in another topic or map.

A constraint does not change basic or inherited element semantics. The constrained instances remain
valid instances of the unconstrained element type, and the element type retains the same semantics and
@class attribute declaration. Thus, a constraint never creates a new case to which content processing
might need to react.

For example, a document type constrained to require the <shortdesc> element allows a subset of the
possible instances of the unconstrained document type with an optional <shortdesc> element. Thus,
the content processing for topic still works when <topic> is constrained to require a short description.
Similarly, an unconstrained task is compatible with an unconstrained topic, because the <task> element
can be generalized to <topic>.

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 15 of 41

However, if a topic document type is constrained to require the <shortdesc> element, a document type
with an unconstrained task is not compatible with the constrained topic document type, because some
instances of the task might not have a <shortdesc> element. But, if the task document type also has
been constrained to require the <shortdesc> element, it is compatible with the constrained topic
document type.

1.4.4 Examples: Constraints implemented using DTDs
This section of the specification contains examples of constraints implemented using DTD.

1.4.4.1 Example: Restrict the content model for the <topic> element using DTD
In this scenario, the DITA architect for Acme Incorporated wants to redefine the content model for the
topic document type. They want to omit certain elements, make the <shortdesc> element required, and
disallow topic nesting.

Specifically, the DITA architect wants to redefine the content model in the following ways:

• Remove <abstract>
• Require <shortdesc>
• Remove <related-links>
• Remove the %task-info-types; entity in order to disallow topic nesting

1. The DITA architect creates a constraint module: acme-TopicConstraint.mod.
2. They add the following content to acme-TopicConstraint.mod:

<!-- === -->
<!-- CONSTRAINED TOPIC ENTITIES -->
<!-- === -->

<!-- Declares the entities referenced in the constrained content -->
<!-- model. -->

<!ENTITY % title "title">
<!ENTITY % shortdesc "shortdesc">
<!ENTITY % prolog "prolog">
<!ENTITY % body "body">

<!-- Defines the constrained content model for <topic>. -->

<!ENTITY % topic.content
 "((%title;),
 (%shortdesc;),
 (%prolog;)?,
 (%body;)?)"
>

3. They add the constraint module to the catalog.xml file.
4. They then integrate the constraint module into the document-type shell for topic by adding the

following content to the "Element-Type Configuration Integration section:

<!-- === -->
<!-- ELEMENT-TYPE CONFIGURATION INTEGRATION -->
<!-- === -->

<!ENTITY % topic-constraints-c-def
 PUBLIC "-//ACME//ELEMENTS DITA Topic Constraint//EN"
 "acme-TopicConstraint.mod">
%topic-constraints-c-def;

5. They check their test topic to ensure that the content model is modified as expected.

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 16 of 41

1.4.4.2 Example: Constrain attributes for the <section> element using DTD
In this scenario, a DITA architect wants to redefine the attributes for the <section> element. They want
to make the @id attribute required.

1. The DITA architect creates a constraint module: idRequiredSectionContraint.mod.
2. They add the following content to idRequiredSectionContraint.mod:

<!-- Declares the entities referenced in the constrained content -->
<!-- model. -->

<!ENTITY % localization-atts
 "translate
 (no |
 yes |
 -dita-use-conref-target)
 #IMPLIED
 xml:lang
 CDATA
 #IMPLIED
 dir
 (lro |
 ltr |
 rlo |
 rtl |
 -dita-use-conref-target)
 #IMPLIED"
>
<!ENTITY % filter-atts
 "props
 CDATA
 #IMPLIED
 %props-attribute-extensions;"
>
<!ENTITY % select-atts
 "%filter-atts;
 base
 CDATA
 #IMPLIED
 %base-attribute-extensions;
 importance
 (default |
 deprecated |
 high |
 low |
 normal |
 obsolete |
 optional |
 recommended |
 required |
 urgent |
 -dita-use-conref-target)
 #IMPLIED
 rev
 CDATA
 #IMPLIED
 status
 (changed |
 deleted |
 new |
 unchanged |
 -dita-use-conref-target)
 #IMPLIED"
>
<!ENTITY % conref-atts
 "conref
 CDATA
 #IMPLIED
 conrefend
 CDATA
 #IMPLIED
 conaction

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 17 of 41

 (mark |
 pushafter |
 pushbefore |
 pushreplace |
 -dita-use-conref-target)
 #IMPLIED
 conkeyref
 CDATA
 #IMPLIED"
>
<!-- Redefines the attributes available on section -->

<!ENTITY % section.attributes
 "id
 ID
 #REQUIRED
 %conref-atts;
 %select-atts;
 %localization-atts;
 outputclass
 CDATA
 #IMPLIED"
>

Note that the DITA architect had to declare all the parameter entities that are referenced in the
redefined attributes for <section>. If they did not do so, none of the attributes that are declared
in the parameter entities would be available on the <section> element. Furthermore, since the
%select-atts; parameter entity references the %filter-atts; parameter entity, the
%filter-atts; must be declared and it must precede the declaration for the %select-atts;
parameter entity. The %props-attribute-extensions; and %base-attribute-
extensions; parameter entities do not need to be declared in the constraint module, because
they are declared in the document-type shells before the inclusion of the constraint module.

3. They add the constraint module to the catalog.xml file.
4. They then integrate the constraint module into the applicable document-type shells by adding the

following code:

<!-- === -->
<!-- ELEMENT-TYPE CONFIGURATION INTEGRATION -->
<!-- === -->

<!ENTITY % section-constraints-c-def
 PUBLIC "-//ACME//ELEMENTS DITA 2.0 Section Constraint//EN"
 "idRequiredSectionContraint.mod">
%section-constraints-c-def;

5. They check their test topic to ensure that the attribute list is modified as expected.

1.4.4.3 Example: Constrain a domain module using DTD
In this scenario, a DITA architect wants to use only a subset of the elements defined in the highlighting
domain. They want to use and <i> but not any other of the elements in the domain. They want to
integrate this constraint into the document-type shell for task.

Specifically, the DITA architect wants to redefine the content model in the following ways:

• Use and <i>
• Remove <line-through>, <overline>, <sup>, <sup>, <tt>, and <u>
1. The DITA architect creates a constraint module:

reducedHighlightingDomainConstraint.mod.
2. They add the following content to reducedHighlightingDomainConstraint.mod:

<!-- === -->
<!-- CONSTRAINED HIGHLIGHT DOMAIN ENTITIES -->
<!-- === -->

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 18 of 41

<!ENTITY % HighlightingDomain-c-ph "b | i" >

3. They add the constraint module to the catalog.xml file.
4. They then integrate the constraint module into the company-specific, document-type shell for the

task topic by adding the content in the "DOMAIN CONSTRAINT INTEGRATION" section:

<!-- === -->
<!-- DOMAIN CONSTRAINT INTEGRATION -->
<!-- === -->

<!ENTITY % HighlightDomain-c-dec
 PUBLIC "-//ACME//ENTITIES DITA Highlighting Domain Constraint//EN"
 "acme-HighlightDomainConstraint.mod"
>%HighlightDomain-c-dec;

5. In the "DOMAIN EXTENSIONS" section, they replace the parameter entity for the highlighting
domain with the parameter entity for the constrained highlighting domain:

<!ENTITY % ph "ph |
 %HighlightDomain-c-ph; |
 %sw-d-ph; |
 %ui-d-ph;
 ">

6. They check their test topic to ensure that the content model is modified as expected.

1.4.4.4 Example: Replace a base element with the domain extensions using DTD
In this scenario, a DITA architect wants to remove the <ph> element but allow the extensions of <ph>
that exist in the highlighting, programming, software, and user interface domains.

1. In the "DOMAIN EXTENSIONS" section, the DITA architect removes the reference to the <ph>
element:

<!-- Removed "ph | " so as to make <ph> not available, only the domain extensions. -->
<!ENTITY % ph "%pr-d-ph; |
 %sw-d-ph; |
 %ui-d-ph;
 ">

Note Because no other entities are modified or declared outside of the usual "DOMAIN
EXTENSIONS" section, this completes the architect's task. Because no new grammar file or
entity is created that would highlight this change, adding a comment to highlight the constraint
becomes particularly important, as shown in the example above.

1.4.4.5 Example: Apply multiple constraints to a single document-type shell using
DTD
You can apply multiple constraints to a single document-type shell. However, there can be only one
constraint for a given element or domain.

Here is a list of constraint modules and what they do:

File name What it constrains Details

example-TopicConstraint.mod <topic> • Removes <abstract>
• Makes <shortdesc>

required
• Removes <related-

links>
• Disallows topic nesting

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 19 of 41

File name What it constrains Details

example-
SectionConstraint.mod

<section> Makes @id required

example-
HighlightingDomainConstrain
t.mod

Highlighting domain Reduces the highlighting domain
elements to and <i>

N/A <ph> Remove the <ph> element, allowing
only domain extensions (does not
require a .mod file)

All of these constraints can be integrated into a single document-type shell for <topic>, since they
constrain distinct element types and domains. The constraint for the highlighting domain typically is
located in the "DOMAIN CONSTRAINT INTEGRATION" section, and it must be integrated before the
"DOMAIN ENTITIES" section. The other constraints typically are located in the "ELEMENT-TYPE
CONFIGURATION INTEGRATION" section, and the order in which they are listed does not matter.

1.4.5 Examples: Constraints implemented using RNG
This section of the specification contains examples of constraints implemented using RNG

1.4.5.1 Example: Restrict the content model for the <topic> element using RNG
In this scenario, the DITA architect for Acme Incorporated wants to redefine the content model for the
topic document type. They want to omit certain elements, make the <shortdesc> element required, and
disallow topic nesting.

Specifically, the DITA architect wants to redefine the content model in the following ways:

• Remove <abstract>
• Require <shortdesc>
• Remove <related-links>
• Remove the task-info-typespattern in order to disallow topic nesting

1. The DITA architect creates a constraint module: acme-TopicConstraintMod.rng.
2. They update the catalog.xml file to include the new constraint module.
3. They add the following content to acme-TopicConstraint.mod:

<div>
 <a:documentation>CONTENT MODEL OVERRIDES</a:documentation>
 <include href="urn:oasis:names:tc:dita:rng:topicMod.rng:2.0">
 <define name="topic.content" combine="interleave">
 <ref name="title"/>
 <ref name="shortdesc"/>
 <optional>
 <ref name="prolog"/>
 </optional>
 <optional>
 <ref name="body"/>
 </optional>
 </define>
 </include>
</div>

Comment by Kristen J Eberlein on 21 April 2021

I know that the override won't happen without combine="interleave", but I don't know if we
cover that in the coding requirements topic. If people start with copying-and-pasting from the
module that they are overriding, they won't have that and will get errors.

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 20 of 41

4. They then integrate the constraint module into the document-type shell for topic by adding an
<include> element in the "ELEMENT-TYPE CONFIGURATION INTEGRATION" section:

<div>
 <a:documentation>ELEMENT-TYPE CONFIGURATION INTEGRATION</a:documentation>
 <include href="acme-TopicConstraintMod.rng"/>
</div>

5. They then remove the <include> statement that references topicMod.rng from the "MODULE
INCLUSIONS" section:

<div>
 <a:documentation>MODULE INCLUSIONS </a:documentation>
 <include href="urn:oasis:names:tc:dita:rng:topicMod.rng:2.0"/>
 <include href="urn:oasis:names:tc:dita:rng:audienceAttDomain.rng:2.0"/>
 <include href="urn:oasis:names:tc:dita:rng:deliveryTargetAttDomain.rng:2.0"/>
 <include href="urn:oasis:names:tc:dita:rng:platformAttDomain.rng:2.0"/>
 <include href="urn:oasis:names:tc:dita:rng:productAttDomain.rng:2.0"/>
 <include href="urn:oasis:names:tc:dita:rng:otherpropsAttDomain.rng:2.0"/>
 <include href="urn:oasis:names:tc:dita:rng:highlightDomain.rng:2.0"/>
 </div>

6. They check their test topic to ensure that the content model is modified as expected.

1.4.5.2 Example: Constrain attributes for the <section> element using RNG
In this scenario, a DITA architect wants to redefine the attributes for the <section> element. They want
to make the @id attribute required.

1. The DITA architect creates a constraint module: id-requiredSectionContraintMod.rng.
2. They update the catalog.xml file to include the new constraint module.
3. They add the following content to the constraint module:

<?xml version="1.0" encoding="UTF-8"?>
<grammar
 xmlns="http://relaxng.org/ns/structure/1.0"
 xmlns:dita="http://dita.oasis-open.org/architecture/2005/"
 xmlns:a="http://relaxng.org/ns/compatibility/annotations/1.0"
 datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">

 <div>
 <a:documentation>ATTRIBUTE LIST OVERRIDES</a:documentation>
 <include href="urn:oasis:names:tc:dita:rng:topicMod.rng:2.0">
 <define name="section.attributes">
 <attribute name="id">
 <data type="NMTOKEN"/>
 </attribute>
 <ref name="conref-atts"/>
 <ref name="select-atts"/>
 <ref name="localization-atts"/>
 <optional>
 <attribute name="outputclass"/>
 </optional>
 </define>
 </include>
 </div>

</grammar>

Note that unlike a constraint module that is implemented using DTD, this constraint module did
not need to re-declare the patterns that are referenced in the redefinition of the content model for
<section>

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 21 of 41

4. They then integrate the constraint module into the document-type shell for topic by adding an
<include> element in the "CONTENT CONSTRAINT INTEGRATION" section:

<div>
 <a:documentation>CONTENT CONSTRAINT INTEGRATION</a:documentation>
 <include href="id-requiredSectionConstraintMod.rng"/>
</div>

5. They then remove the <include> statement that references topicMod.rng from the "MODULE
INCLUSIONS" section:

<div>
 <a:documentation>MODULE INCLUSIONS </a:documentation>
 <include href="urn:oasis:names:tc:dita:rng:topicMod.rng:2.0"/>
 <include href="urn:oasis:names:tc:dita:rng:audienceAttDomain.rng:2.0"/>
 <include href="urn:oasis:names:tc:dita:rng:deliveryTargetAttDomain.rng:2.0"/>
 <include href="urn:oasis:names:tc:dita:rng:platformAttDomain.rng:2.0"/>
 <include href="urn:oasis:names:tc:dita:rng:productAttDomain.rng:2.0"/>
 <include href="urn:oasis:names:tc:dita:rng:otherpropsAttDomain.rng:2.0"/>
 <include href="urn:oasis:names:tc:dita:rng:highlightDomain.rng:2.0"/>
 </div>

6. They check their test topic to ensure that the content model is modified as expected.

1.4.5.3 Example: Constrain a domain module using RNG
In this scenario, a DITA architect wants to use only a subset of the elements defined in the highlighting
domain. They want to use and <i> but not any other of the elements in the domain. They want to
integrate this constraint into the document-type shell for task.

Specifically, the DITA architect wants to redefine the content model in the following ways:

• Use and <i>
• Remove <line-through>, <overline>, <sup>, <sup>, <tt>, and <u>

Note that when using RNG, domains can be constrained directly in the document-type shells.

1. They open the document-type shell for topic in an XML editor, and then they modify the "MODULE
INCLUSIONS" division to exclude the elements that they do not want the implementation to use:

<div>
 <a:documentation>MODULE INCLUSIONS</a:documentation>
 ...
 <include href="highlightDomain.rng">
 <define name="line-through.element">
 <notAllowed/>
 </define>
 <define name="overline.element">
 <notAllowed/>
 </define>
 <define name="sub.element">
 <notAllowed/>
 </define>
 <define name="sup.element">
 <notAllowed/>
 </define>
 <define name="tt.element">
 <notAllowed/>
 </define>
 <define name="u.element">
 <notAllowed/>
 </define>
 </include>
 ..
</div>

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 22 of 41

Note The DITA architect made a choice as to where in the document-type shell they would
implement the constraint. It can be placed either in the "Element-type configuration
integration" or the "Module inclusions" section.

2. They make similar changes to all the other document-type shells in which they want to constrain
the highlighting domain.

1.4.5.4 Example: Replace a base element with the domain extensions using RNG
In this scenario, the DITA architect wants to remove the <ph> element but allow the extensions of <ph>
that exist in the highlight, programming, software, and user interface domains.

1. They open the document-type shell for topic in an XML editor, and then they modify the "MODULE
INCLUSIONS" division to exclude <ph>:

<div>
 <a:documentation>MODULE INCLUSIONS</a:documentation>
 <include href="urn:oasis:names:tc:dita:rng:topicMod.rng:2.0">
 <define name="ph.element">
 <notAllowed/>
 </define>
 </include>
 ...
</div>

2. They make similar changes to all the other document-type shells in which they want <ph> to not
be available

1.4.5.5 Example: Apply multiple constraints to a single document-type shell using
RNG
In this scenario, the DITA architect wants to apply multiple constraints to a document-type shell.

Here is a list of the constraint modules and what they do:

File name What it constrains Details

example-TopicConstraint.mod <topic> • Removes <abstract>
• Makes <shortdesc>

required
• Removes <related-

links>
• Disallows topic nesting

example-
SectionConstraint.mod

<section> Makes @id required

Not applicable Highlighting domain Reduces the highlighting domain
elements to and <i>

Not applicable <ph> Remove the <ph> element, allowing
only domain extensions

The constraint modules that target the <topic> and <section > elements must be combined, since
both elements are defined in topicMod.rng. The other constraints can be implemented directly in the
document-type shell.

1. The DITA architect creates a constraint module that combines the constraints from example-
TopicConstraint.mod and example-SectionConstraint.mod:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-model href="urn:oasis:names:tc:dita:rng:vocabularyModuleDesc.rng"

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 23 of 41

 schematypens="http://relaxng.org/ns/structure/1.0"?>
<grammar xmlns="http://relaxng.org/ns/structure/1.0"
 xmlns:dita="http://dita.oasis-open.org/architecture/2005/"
 xmlns:a="http://relaxng.org/ns/compatibility/annotations/1.0"
 datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">
 <div>
 <a:documentation>CONTENT MODEL AND ATTRIBUTE LIST OVERRIDES</a:documentation>
 <include href="topicMod.rng">
 <define name="section.attributes">
 <attribute name="id">
 <data type="NMTOKEN"/>
 </attribute>
 <ref name="conref-atts"/>
 <ref name="select-atts"/>
 <ref name="localization-atts"/>
 <optional>
 <attribute name="outputclass"/>
 </optional>
 </define>
 <define name="topic.content">
 <ref name="title"/>
 <ref name="shortdesc"/>
 <optional>
 <ref name="prolog"/>
 </optional>
 <optional>
 <ref name="body"/>
 </optional>
 </define>
 </include>
 </div>
</grammar>

2. In the document-type shell, they integrate the constraint module (and remove the inclusion
statement for topicMod.rng):

<div>
 <a:documentation>ELEMENT-TYPE CONFIGURATION INTEGRATION</a:documentation>
 <include href="acme-SectionTopicContraintMod.rng"/>
</div>

3. To constrain the highlight domain, they modify the include statement for the domain module:

<div>
 <a:documentation>MODULE INCLUSIONS</a:documentation>
 ...
 <include href="highlightDomain.rng">
 <define name="line-through.element">
 <notAllowed/>
 </define>
 <define name="overline.element">
 <notAllowed/>
 </define>
 <define name="sub.element">
 <notAllowed/>
 </define>
 <define name="sup.element">
 <notAllowed/>
 </define>
 <define name="tt.element">
 <notAllowed/>
 </define>
 <define name="u.element">
 <notAllowed/>
 </define>
 </include>
 ..
</div>

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 24 of 41

4. Finally, to disallow <ph>, they add the following statement to the constraint module:

 <define name="ph.element">
 <notAllowed/>
 </define>

1.5 Expansion modules
Expansion modules enable the extension of content models and attribute lists for individual elements.
Expansion modules are the opposite of constraints. They add elements and attributes to specific content
models and attribute lists, rather than removing them.

1.5.1 Overview of expansion modules
Expansion modules enable information architects to include specialized attributes or elements in specific
element types, without making the specialized attributes or elements globally available.

An expansion module can perform the following functions:

Expand content models

Expansion modules extend the content models of specific elements, without making the specialized
elements available wherever the specialization base is permitted.

For example, an expansion for <section> can make a new element (<sectionDesc>) available
as an optional, child element. The <sectionDesc> element is specialized from <p>, but it is
available only within <section>.

The elements are defined in a separate element domain that declares the content models and
attribute lists for the new elements.

Expand attribute lists

Expansion modules extend the attribute lists of specific elements by adding attributes specialized
from either @base or @props.

For example, an expansion for <entry>, <row>, and <colspec> can make @cell-purpose
available only on those elements. The @cell-purpose attribute is specialized from @base.

The additional attribute can be either defined directly within the expansion module, or it can be
defined in a separate attribute-specialization module. In either case, the token used as a value for the
@specializations attribute must be defined.

1.5.2 Expansion module rules
There are certain rules that apply to the design and implementation of expansion modules. These rules all
stem from the requirement that the content model of a specialized element must be consistent with the
content model of the specialization base. After generalization, the content model of an element affected
by an expansion module must match the original content model for that element.

Specialization base of expanded elements

Elements that are added to content models by expansion models must be specializations of existing
elements that are permitted in the original content model.

Content model of expanded elements

Elements that are added to content models by expansion models must be allowed only where their
specialization base is allowed.

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 25 of 41

For example, when creating an expansion model that adds a specialization of <data> to , the
specialization of <data> must only be allowed before any elements, as that is the only place
that the <data> element is allowed in the content model for an ordered list.

Ordinality of expanded elements

Elements that are added to content models by expansion modules must not violate the ordinality of
the original content model. If the original content model requires a child element to occur at least
once, then the expanded content model cannot break this requirement. If the original content model
only permits a child element to occur once, then the expanded content model cannot break this
requirement.

For example, in the expansion module that adds a specialization of <data> to , the redefined
content model for cannot make the element optional.

However, an expansion module that adds a specialization of (<listIntro>) to can
redefine the content model of in the following ways:

• Make <listIntro> the first child element and be required
• Make the second child element and optional

When a DITA topic affected by this expansion module is generalized, the resulting markup would be
valid; the content model of would be respected.

Aggregation of expansion modules

The content model of an element can be modified by either of the following element-configuration
modules:

• Constraint module
• Expansion module

The content model of an element can be modified only by a single element-type configuration
module. If multiple constraints or extensions need to be applied to a single element, the element
configurations must be combined into a single module that reflects all the constraints and expansions
that were defined in the original separate modules.

1.5.3 Examples: Expansion implemented using DTDs
This section of the specification contains examples of extension modules that are implemented using
DTDs.

1.5.3.1 Example: Adding an element to the <section> element using DTDs
In this scenario, a DITA architect wants to modify the content model for the <section> element. The
DITA architect wants to add an optional <sectionDesc> element that is specialized from <p>.

To accomplish this, the DITA architect needs to create the following modules and integrate them into the
document-type shell:

• An element-domain specialization module that defines the <sectionDesc> element
• An expansion module that adds the <sectionDesc> element to the content model for

<section>
1. First, the DITA architect creates the element specialization module: sectionDescDomain.mod.

This single .mod file defines the parameter entity, content model, attributes, and value for the
@class attribute for <sectionDesc>.

<?xml version="1.0" encoding="UTF-8"?>

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 26 of 41

<!ENTITY % sectionDesc "sectionDesc">

<!ENTITY % sectionDesc.content "(%para.cnt;)*">
<!ENTITY % sectionDesc.attributes "%univ-atts;">

<!ELEMENT sectionDesc %sectionDesc.content;>
<!ATTLIST sectionDesc %sectionDesc.attributes;>

<!ATTLIST sectionDesc class CDATA "+ topic/p sectionDesc-d/sectionDesc ">

2. The DITA architect adds the element specialization module to the catalog.xml file.
3. Next, the DITA architect modifies the applicable document-type shell to integrate the applicable

element specialization module:

<!-- === -->
<!-- DOMAIN ELEMENT INTEGRATION -->
<!-- === -->

<!-- ... other domains ... -->

<!ENTITY % sectionDesc-d-def
 PUBLIC "-//ACME//ELEMENTS DITA 2.0 Section Description Domain//EN"
 "sectionDescDomain.mod"
>%sectionDesc-d-def;

At this point, the new domain is integrated into the topic document-type shell. However, the new
element is not added to the content model for <section>.

4. Next, the DITA architect creates an expansion module: acme-SectionExpansion.mod. This
module adds the <sectionDesc> element to the content model of <section>.

<?xml version="1.0" encoding="UTF-8"?>

<!-- Declares the entities referenced in the modified content -->
<!-- model. -->

<!ENTITY % dl "dl">
<!ENTITY % div "div">
<!ENTITY % fig "fig">
<!ENTITY % image "image">
<!ENTITY % lines "lines">
<!ENTITY % lq "lq">
<!ENTITY % note "note">
<!ENTITY % object "object">
<!ENTITY % ol "ol">
<!ENTITY % p "p">
<!ENTITY % pre "pre">
<!ENTITY % simpletable "simpletable">
<!ENTITY % sl "sl">
<!ENTITY % table "table">
<!ENTITY % ul "ul">
<!ENTITY % cite "cite">
<!ENTITY % include "include">
<!ENTITY % keyword "keyword">
<!ENTITY % ph "ph">
<!ENTITY % q "q">
<!ENTITY % term "term">
<!ENTITY % text "text">
<!ENTITY % tm "tm">
<!ENTITY % xref "xref">
<!ENTITY % state "state">
<!ENTITY % data "data">
<!ENTITY % foreign "foreign">
<!ENTITY % unknown "unknown">
<!ENTITY % title "title">
<!ENTITY % draft-comment "draft-comment">
<!ENTITY % fn "fn">
<!ENTITY % indexterm "indexterm">
<!ENTITY % required-cleanup "required-cleanup">
<!ENTITY % sectionDesc "sectionDesc">

<!-- Defines the modified content model for <section>. -->

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 27 of 41

<!ENTITY % section.content
 "(#PCDATA |
 %dl; |
 %div; |
 %fig; |
 %image; |
 %lines; |
 %lq; |
 %note; |
 %object; |
 %ol; |
 %p; |
 %pre; |
 %simpletable; |
 %sl; |
 %table; |
 %ul; |
 %cite; |
 %include; |
 %keyword; |
 %ph; |
 %q; |
 %term; |
 %text; |
 %tm; |
 %xref; |
 %state; |
 %data; |
 %foreign; |
 %unknown; |
 %title; |
 %draft-comment; |
 %fn; |
 %indexterm; |
 %required-cleanup; |
 %sectionDesc;)*"
>

Note that the DITA architect needed to explicitly declare all the elements, rather than using the
%section.cnt; parameter entity that is used in the definition of <section>. Because the
element-configuration modules are integrated into the document-type shell before the base
grammar modules, none of the parameter entities that are used in the base DITA vocabulary
modules are available.

5. Finally, the DITA architect integrates the expansion module into the document-type shell:

<!-- === -->
<!-- ELEMENT-TYPE CONFIGURATION INTEGRATION -->
<!-- === -->

<!-- Other constraint and expansion modules -->

<!ENTITY % acmeSection-def
 PUBLIC "-//ACME//ELEMENTS DITA 2.0 Section Expansion//EN"
 "acme-SectionExpansion.mod"
>%acmeSection-def;

6. After updating the catalog.xml file to include the expansion module and testing it, the work is
done.

1.5.3.2 Example: Adding an attribute to certain table elements using DTDs
In this scenario, a company makes extensive use of complex tables to present product listings. They
occasionally highlight individual cells, rows, or columns for various purposes. The DITA architect wants to
implement a semantically meaningful way to identify the purpose of various table elements.

The DITA architect decides to create a new attribute (@cell-purpose) and add it to the attribute lists of
the following elements:

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 28 of 41

• <colspec>
• <entry>
• <row>
• <stentry>
• <strow>

The new attribute will be specialized from @base, and it will take a small set of tokens as values.

The DITA architect decides to integrate the attribute declaration and its assignment to elements into a
single expansion module. An alternate approach would be to put each attribute-list pattern in its own
separate expansion module, thus allowing DITA architects who construct document-type shells to decide
the elements to which to apply the attribute.

1. First, the DITA architect creates the expansion module for the @cell-purpose attribute: acme-
cellPurposeAttExpansion.ent.

<!-- Define the attribute -->
<!ENTITY % cellPurposeAtt-d-attribute-expansion
 "cell-purpose (sale | out-of-stock | new | last-chance | inherit | none) #IMPLIED"
>

<!-- Declare the entity to be used in the @specializations attribute -->
<!ENTITY cellPurposeAtt-d-att "@base/cell-purpose" >

<!-- Add the attribute to the elements. -->
<!ATTLIST entry %cellPurposeAtt-d-attribute-expansion;>
<!ATTLIST row %cellPurposeAtt-d-attribute-expansion;>
<!ATTLIST colspec %cellPurposeAtt-d-attribute-expansion;>
<!ATTLIST strow %cellPurposeAtt-d-attribute-expansion;>
<!ATTLIST stentry %cellPurposeAtt-d-attribute-expansion;>

Note The attribute definition entity is optional. It is used here to enable the DITA architect to
add the same attribute with the same tokens to several elements.

2. They then update the catalog.xml file to include the expansion module.
3. They integrate this module into the applicable document-type shell.

<!-- === -->
<!-- DOMAIN ATTRIBUTES DECLARATIONS -->
<!-- === -->

<!-- ... other domains ... -->

<!ENTITY % cellPurposeAttExpansion-d-dec
 PUBLIC "-//ACME//ENTITIES DITA Cell Purpose Attribute Expansion//EN"
 "cellPurposeAttExpansion.ent"
>%cellPurposeAttExpansion-d-dec;

4. They add the entity for the contribution to the @specializations attribute.

<!-- === -->
<!-- SPECIALIZATIONS ATTRIBUTE OVERRIDE -->
<!-- === -->

<!ENTITY included-domains
 "&audienceAtt-d-att;
 &cellPurposeAtt-d-att;
 &deliveryTargetAtt-d-att;
 &otherpropsAtt-d-att;
 &platformAtt-d-att;
 &productAtt-d-att;"
>

5. After checking the test topic to ensure that the attribute lists are modified as expected, the work is
done.

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 29 of 41

1.5.3.3 Example: Adding an existing domain attribute to certain elements using
DTDs
In this scenario, a company wants to use the @otherprops attribute specialization. However, they want
to make the attribute available only on certain elements: <p>, <div>, and <section>.

The DITA architect will need to create an extension module and integrate it into the appropriate
document-type shells.

1. The DITA architect creates an expansion module that adds the @otherprops attribute to the
selected elements: acme-otherpropsAttExpansion.mod. The expansion module contains
the following code:

<?xml version="1.0" encoding="UTF-8"?>

<!-- Add the otherprops attribute to certain elements -->
<!ATTLIST p %otherpropsAtt-d-attribute;>
<!ATTLIST div %otherpropsAtt-d-attribute;>
<!ATTLIST section %otherpropsAtt-d-attribute;>

Note that the %otherpropsAtt-d-attribute; is defined in the separate attribute-
specialization module that defines the @otherprops attribute.

2. They then update the catalog.xml file to include the expansion module.
3. They integrate the extension module into the applicable document-type shell, after the declaration

for the @otherprops attribute-specialization module:

<!-- === -->
<!-- DOMAIN ATTRIBUTES DECLARATIONS -->
<!-- === -->
...

<!ENTITY % otherpropsAtt-d-dec
 PUBLIC "-//OASIS//ENTITIES DITA 2.0 Otherprops Attribute Domain//EN"
 "otherpropsAttDomain.ent"
>%otherpropsAtt-d-dec;

<!ENTITY % otherprops-expansion-e-def
 PUBLIC "-//ACME//DITA 2.0 Otherprops Expansion//EN"
 "acme-otherpropsAttExpansion.mod"
 >%otherprops-expansion-e-def;

...

4. They remove the reference to the @otherprops attribute from the props-attribute-
extension entity:

<!-- === -->
<!-- DOMAIN ATTRIBUTE EXTENSIONS -->
<!-- === -->

<!ENTITY % base-attribute-extensions
 ""
>

<!ENTITY % props-attribute-extensions
 "%audienceAtt-d-attribute;
 %deliveryTargetAtt-d-attribute;
 %otherpropsAtt-d-attribute;
 %platformAtt-d-attribute;
 %productAtt-d-attribute;"
>

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 30 of 41

5. They ensure that the included-domains entity contains the @otherprops contribution to the
@specializations attribute:

<!-- === -->
<!-- SPECIALIZATIONS ATTRIBUTE OVERRIDE -->
<!-- === -->

<!ENTITY included-domains
 "&audienceAtt-d-att;
 &deliveryTargetAtt-d-att;
 &otherpropsAtt-d-att;
 &platformAtt-d-att;
 &productAtt-d-att;"
>

6. After checking the test topic to ensure that the attribute lists are modified as expected, the work is
done.

1.5.3.4 Example: Aggregating constraint and expansion modules using DTDs
The DITA architect wants to add some extension modules to the document-type shell for topic. The
document-type shell already integrates a number of constraint modules.

The following table lists the constraints that are currently integrated into the document-type shell:

File name What it constrains Details

example-TopicConstraint.mod <topic> • Removes <abstract>
• Makes <shortdesc>

required
• Removes <related-

links>
• Disallows topic nesting

example-
SectionConstraint.mod

<section> • Makes <title> required
• Reduces the content model

of <section> to a smaller
subset

example-
HighlightingDomainConstrain
t.mod

Highlighting domain Reduces the highlighting domain
elements to and <i>

The following table lists the expansion modules that the DITA architect wants to add to the document-type
shell:

File name What it modifies Details

acme-SectionExpansion.mod <section> Adds an optional <sectionDesc>
element to <section>.

example-
dlentryModeAttExpansion.ent

<dlentry> Adds @dlentryMode to the
attributes of <dlentry>.

The constraint and expansion modules that target the <section> element must be combined into a
single element-configuration module. An element can only be targeted by a single element-configuration
module.

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 31 of 41

1.5.4 Examples: Expansion implemented using RNG
This section of the specification contains examples of extension modules implemented using RNG.

1.5.4.1 Example: Adding an element to the <section> element using RNG
In this scenario, a DITA architect wants to modify the content model for the <section> element. He
wants to add an optional <sectionDesc> element that is specialized from <p>; the <sectionDesc>
can occur once and must be directly after the section title.

To accomplish this, the DITA architect needs to create the following modules and integrate them into the
document-type shells:

• An element domain module that defines the <sectionDesc> element
• An expansion module that adds the <sectionDesc> element to the content model for

<section>
1. First, the DITA architect creates the element domain module: sectionDescDomain.rng. It

contains the following code:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-model href="urn:oasis:names:tc:dita:rng:vocabularyModuleDesc.rng"
 schematypens="http://relaxng.org/ns/structure/1.0"?>
<grammar xmlns:a="http://relaxng.org/ns/compatibility/annotations/1.0"
 xmlns:dita="http://dita.oasis-open.org/architecture/2005/"
 xmlns="http://relaxng.org/ns/structure/1.0">
 <div>
 <a:documentation>DOMAIN EXTENSION PATTERNS</a:documentation>
 </div>
 <div>
 <a:documentation>ELEMENT TYPE NAME PATTERNS</a:documentation>
 <define name="sectionDesc">
 <ref name="sectionDesc.element"/>
 </define>
 </div>
 <div>
 <a:documentation>ELEMENT TYPE DECLARATIONS</a:documentation>
 <div>
 <a:documentation>LONG NAME: Section Description</a:documentation>
 <define name="sectionDesc.content">
 <zeroOrMore>
 <ref name="para.cnt"/>
 </zeroOrMore>
 </define>
 <define name="sectionDesc.attributes">
 <ref name="univ-atts"/>
 </define>
 <define name="sectionDesc.element">
 <element name="sectionDesc" dita:longName="Section Description">
 <a:documentation/>
 <ref name="sectionDesc.attlist"/>
 <ref name="sectionDesc.content"/>
 </element>
 </define>
 <define name="sectionDesc.attlist" combine="interleave">
 <ref name="sectionDesc.attributes"/>
 </define>
 </div>
 </div>
 <div>
 <a:documentation>SPECIALIZATION ATTRIBUTE DECLARATIONS</a:documentation>
 <define name="sectionDesc.attlist" combine="interleave">
 <optional>
 <attribute name="class" a:defaultValue="+ topic/p sectionDesc-d-p/sectionDesc
"/>
 </optional>
 </define>
 </div>
</grammar>

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 32 of 41

2. The DITA architect adds the element domain module to the catalog.xml file.
3. Next, the DITA architect modifies the document-type shell (in this example, the one for topic) to

integrate the element domain module:

 <div>
 <a:documentation>MODULE INCLUSIONS</a:documentation>
 ...
 <include href="urn:example:names:tc:dita:rng:sectionDescDomain.rng:2.0"/>
 </div>

At this point, the new domain is integrated into the document-type shell. However, the new
element is not added to the content model for <section>.

4. Next, the DITA architect created an expansion module (sectionExpansionMod.rng) that adds
the <sectionDesc> element to the content model of <section>:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-model href="urn:oasis:names:tc:dita:rng:vocabularyModuleDesc.rng"
 schematypens="http://relaxng.org/ns/structure/1.0"?>
<grammar xmlns="http://relaxng.org/ns/structure/1.0"
 xmlns:dita="http://dita.oasis-open.org/architecture/2005/"
 xmlns:a="http://relaxng.org/ns/compatibility/annotations/1.0"
 datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">
 <div>
 <a:documentation>CONTENT MODEL AND ATTRIBUTE LIST OVERRIDES</a:documentation>
 <include href="urn:oasis:names:tc:dita:rng:topicMod.rng:2.0">
 <define name="topic-info-types">
 <ref name="topic.element"/>
 </define>
 <define name="section.content">
 <optional>
 <ref name="title"/>
 </optional>
 <optional>
 <ref name="sectionDesc"/>
 </optional>
 <zeroOrMore>
 <ref name="section.cnt"/>
 </zeroOrMore>
 </define>
 </include>
 </div>
</grammar>

Note that the expansion module directly integrates topicMod.rng.
5. Finally, the DITA architect integrates the expansion module into the document-type shell and

removes the inclusion statement for topicMod.rng:

 <div>
 <a:documentation>ELEMENT-TYPE CONFIGURATION INTEGRATION</a:documentation>
 <include href="sectionExpansionMod.rng"/>
 </div>
 <div>
 <a:documentation>MODULE INCLUSIONS</a:documentation>
 <include href="urn:oasis:names:tc:dita:rng:topicMod.rng:2.0">
 <define name="topic-info-types">
 <ref name="topic.element"/>
 </define>
 </include>
 ...
 <include href="urn:example:names:tc:dita:rng:sectionDescDomain.rng:2.0"/>
 </div>

6. After updating the catalog.xml file to include the expansion module and testing, the work is
done.

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 33 of 41

1.5.4.2 Example: Adding an attribute to certain table elements using RNG
In this scenario, a company makes extensive use of complex tables to present product listings. They
occasionally highlight individual cells, rows, or columns for various purposes. The DITA architect wants to
implement a semantically meaningful way to identify the purpose of various table elements.

The DITA architect decides to create a new attribute (@cell-purpose) and add it to the content model
of the following elements:

• <entry>
• <row>
• <colspec>
• <stentry>
• <strow>

The new attribute will be specialized from @base, and it will take a small set of tokens as values.

The DITA architect decides to integrate the attribute declaration and its assignment to elements into a
single expansion module. An alternate approach would be to put each <!ATTLIST declaration in its own
separate expansion module, thus allowing DITA architects who construct document-type shells to decide
the elements to which to apply the attribute.

1. The DITA architect creates an expansion module: cellPurposeAtt.rng. It contains the
following code:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-model href="urn:oasis:names:tc:dita:rng:vocabularyModuleDesc.rng"
 schematypens="http://relaxng.org/ns/structure/1.0"?>
<grammar
 xmlns="http://relaxng.org/ns/structure/1.0"
 xmlns:a="http://relaxng.org/ns/compatibility/annotations/1.0"
 xmlns:dita="http://dita.oasis-open.org/architecture/2005/"
 datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">

 <!-- DEFINE THE ATTRIBUTE SPECIALIZATION -->
 <define name="cellPurposeAtt">
 <optional>
 <attribute name="cellPurpose">
 <a:documentation>Specifies the purpose of the table cell. This is a specialized
 attribute for Acme Corporation.
 </a:documentation>
 <choice>
 <value>sale</value>
 <value>out-of-stock</value>
 <value>new</value>
 <value>last-chance</value>
 <value>inherit</value>
 <value>none</value>
 </choice>
 </attribute>
 </optional>
 </define>

 <!-- ASSIGN THE ATTRIBUTE TO CERTAIN ELEMENTS -->
 <define name="entry.attributes" combine="interleave">
 <ref name="cellPurposeAtt"/>
 </define>
 <define name="stentry.attributes" combine="interleave">
 <ref name="cellPurposeAtt"/>
 </define>
 <define name="row.attributes" combine="interleave">
 <ref name="cellPurposeAtt"/>
 </define>
 <define name="strow.attributes" combine="interleave">
 <ref name="cellPurposeAtt"/>
 </define>
 <define name="colspec.attributes" combine="interleave">

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 34 of 41

 <ref name="cellPurposeAtt"/>
 </define>
</grammar>

2. They then update the catalog.xml file to include the expansion module.
3. They integrate the expansion module into the document-type shell:

<div>
 <a:documentation>MODULE INCLUSIONS</a:documentation>
 ...
 <include href="urn:example:names:tc:dita:rng:cellPurposeAtt.rng:2.0"/>
 </div>

4. They specify the value that the @cellPurpose attribute contributes to the @specializations
attribute:

 <div>
 <a:documentation>SPECIALIZATIONS ATTRIBUTE</a:documentation>
 <define name="specializations-att">
 <optional>
 <attribute name="specializations" a:defaultValue="
 @props/audience
 @props/deliveryTarget
 @props/otherprops
 @props/platform
 @props/product
 @base/cellPurpose"/>
 </optional>
 </define>
 </div>

5. After checking the test file to ensure that the attribute lists are modified as expected, the work is
done.

1.5.4.3 Example: Adding an existing domain attribute to certain elements using
RNG
In this scenario, a company wants to use the @otherprops attribute specialization. However, they want
to make the attribute available only on certain elements: <p>, <div>, and <section>.

The DITA architect will need to create an extension module and integrate it into the appropriate
document-type shells.

1. The DITA architect creates an expansion module that adds the @otherprops attribute to the
selected elements: acme-otherpropsAttExpansion.mod. The expansion module contains
the following content:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-model href="urn:oasis:names:tc:dita:rng:vocabularyModuleDesc.rng"
 schematypens="http://relaxng.org/ns/structure/1.0"?>
<grammar xmlns="http://relaxng.org/ns/structure/1.0"
 xmlns:a="http://relaxng.org/ns/compatibility/annotations/1.0"
 xmlns:dita="http://dita.oasis-open.org/architecture/2005/"
 datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">
 <div>
 <a:documentation>CONTENT MODEL AND ATTRIBUTE LIST OVERRIDES</a:documentation>
 <include href="urn:oasis:names:tc:dita:rng:topicMod.rng:2.0">
 <define name="topic-info-types">
 <ref name="topic.element"/>
 </define>
 <define name="p.attributes" combine="interleave">
 <optional>
 <attribute name="otherprops"/>
 </optional>
 </define>
 <define name="div.attributes" combine="interleave">
 <optional>

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 35 of 41

 <attribute name="otherprops"/>
 </optional>
 </define>
 <define name="section.attributes" combine="interleave">
 <optional>
 <attribute name="otherprops"/>
 </optional>
 </define>
 </include>
 </div>
</grammar>

2. They then update the catalog.xml file to include the expansion module.
3. They integrate the extension module into the applicable document-type shell, and remove the

<include> element for topicMod.rng:

 <div>
 <a:documentation>ELEMENT-TYPE CONFIGURATION INTEGRATION</a:documentation>
 <include href="acme-otherpropsAttExpansion.rng"/>
 </div>
 <div>
 <a:documentation>MODULE INCLUSIONS</a:documentation>
 <include href="urn:oasis:names:tc:dita:rng:topicMod.rng:2.x"/>
 ...
 <include href="urn:oasis:names:tc:dita:rng:otherpropsAttDomain.rng:2.0">
 </include>
 </div>

4. They remove the reference to the @otherprops attribute from the props-attribute-
extension pattern:

 <div>
 <a:documentation>MODULE INCLUSIONS</a:documentation>
 ...
 <include href="urn:oasis:names:tc:dita:rng:otherpropsAttDomain.rng:2.0">
 <define name="props-attribute-extensions" combine="interleave">
 <empty/>
 </define>
 </include>

5. They ensure that the included-domains entity contains the @otherprops contribution to the
@specializations attribute:

 <div>
 <a:documentation>SPECIALIZATIONS ATTRIBUTE</a:documentation>
 <define name="specializations-att">
 <optional>
 <attribute name="specializations" a:defaultValue="
 @props/audience
 @props/deliveryTarget
 @props/otherprops
 @props/platform
 @props/product"/>
 </optional>
 </define>
 </div>

6. After checking the test topic to ensure that the attribute lists are modified as expected, the work is
done.

1.5.4.4 Example: Aggregating constraint and expansion modules using RNG
The DITA architect wants to add some extension modules to the document-type shell for topic. The
document-type shell already integrates a constraint module.

The following table lists the constraint module and the extension modules that the DITA architect wants to
integrate into the document-type shell for topic.

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 36 of 41

Type of element
configuration

File name What it does

Constraint topicSectionConstraint.rng Constrains <topic>:

• Removes <abstract>
• Makes <shortdesc> required
• Removes <related-links>
• Disallows topic nesting

Constrains <section>:

• Makes @id required

Expansion sectionExpansionMod.rng Adds <sectionDesc> to the content model
of <section>

Expansion tableCellAttExpansion.rng Adds @cellPurpose to the attribute lists for
certain table elements

Because all of these element-configuration modules target elements declared in topicMod.rng, the
DITA architect needs to combine them into a single element-configuration module like the following:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-model href="urn:oasis:names:tc:dita:rng:vocabularyModuleDesc.rng"
 schematypens="http://relaxng.org/ns/structure/1.0"?>
<grammar xmlns="http://relaxng.org/ns/structure/1.0"
 xmlns:dita="http://dita.oasis-open.org/architecture/2005/"
 xmlns:a="http://relaxng.org/ns/compatibility/annotations/1.0"
 datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">
 <div>
 <a:documentation>CONTENT MODEL AND ATTRIBUTE LIST OVERRIDES</a:documentation>
 <include href="urn:oasis:names:tc:dita:rng:topicMod.rng:2.0">
 <!-- Redefines attribute list for section: Makes @id required -->
 <define name="section.attributes">
 <attribute name="id">
 <data type="ID"/>
 </attribute>
 <ref name="conref-atts"/>
 <ref name="select-atts"/>
 <ref name="localization-atts"/>
 <optional>
 <attribute name="outputclass"/>
 </optional>
 </define>
 <!-- Adds sectionDesc to the content model of section -->
 <define name="section.content">
 <optional>
 <ref name="title"/>
 </optional>
 <optional>
 <ref name="sectionDesc"/>
 </optional>
 <zeroOrMore>
 <ref name="section.cnt"/>
 </zeroOrMore>
 </define>
 <!-- Adds @cellPurpose to certain table and simple table elements -->
 <define name="colspec.attributes" combine="interleave">
 <optional>
 <attribute name="cellPurpose"/>
 </optional>
 </define>
 <define name="entry.attributes" combine="interleave">
 <optional>
 <attribute name="cellPurpose"/>
 </optional>
 </define>

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 37 of 41

 <define name="row.attributes" combine="interleave">
 <optional>
 <attribute name="cellPurpose"/>
 </optional>
 </define>
 <define name="stentry.attributes" combine="interleave">
 <optional>
 <attribute name="cellPurpose"/>
 </optional>
 </define>
 <define name="strow.attributes" combine="interleave">
 <optional>
 <attribute name="cellPurpose"/>
 </optional>
 </define>
 <!-- Redefines topic: removes abstract and related-links; makes shortdesc -->
 <!-- required; disallows topic nesting -->
 <define name="topic.content">
 <ref name="title"/>
 <ref name="shortdesc"/>
 <optional>
 <ref name="prolog"/>
 </optional>
 <optional>
 <ref name="body"/>
 </optional>
 </define>
 </include>
 </div>
</grammar>

When the DITA architect edits the document-type shell to integrate the element configuration module,
they also need to do the following:

• Remove the include statement for topicMod.rng
• Add <section> to the "ID-DEFINING ELEMENT OVERRIDES" division

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 38 of 41

A Aggregated RFC-2119 statements
This appendix contains all the normative statements from the DITA 2.0 specification. They are aggregated
here for convenience in this non-normative appendix.

Item Conformance statement

001 (5) While the DITA specification only defines coding requirements for DTD and RELAX NG, conforming
DITA documents MAY use other document-type constraint languages, such as XSD or Schematron.

002 (5) With two exceptions, a document-type shell MUST NOT directly define element or attribute types; it only
includes vocabulary and element-configuration modules (constraint and expansion). The exceptions to
this rule are the following:

• The ditabase document-type shell directly defines the <dita> element.
• RNG-based document-type shells directly specify values for the @specializations attribute.

These values reflect the details of the attribute domains that are integrated by the document-
type shell.

003 (5) Document-type shells that are not provided by OASIS MUST have a unique public identifier, if public
identifiers are used.

004 (5) Document-type shells that are not provided by OASIS MUST NOT indicate OASIS as the owner. The
public identifier or URN for such document-type shells SHOULD reflect the owner or creator of the
document-type shell.

005 (8) Structural modules based on topic MAY define additional topic types that are then allowed to occur as
subordinate topics within the top-level topic. However, such subordinate topic types MAY NOT be used
as the root elements of conforming DITA documents.

006 (8) Domain elements intended for use in topics MUST ultimately be specialized from elements that are
defined in the topic module. Domain elements intended for use in maps MUST ultimately be specialized
from elements defined by or used in the map module. Maps share some element types with topics but
no map-specific elements can be used within topics.

007 (10) Every DITA element (except the <dita> element that is used as the root of a ditabase document)
MUST declare a @class attribute.

008 (10) When the @class attribute is declared in an XML grammar, it MUST be declared with a default value.
In order to support generalization round-tripping (generalizing specialized content into a generic form
and then returning it to the specialized form) the default value MUST NOT be fixed. This allows a
generalization process to overwrite the default values that are defined by a general document type with
specialized values taken from the document being generalized.

009 (10) A vocabulary module MUST NOT change the @class attribute for elements that it does not specialize,
but simply reuses by reference from more generic levels.

010 (10) Authors SHOULD NOT modify the @class attribute. The @class attribute and its value is generally not
surfaced in authored DITA topics, although it might be made explicit as part of a processing operation.

011 (11) Each specialization of the @props and @base attributes MUST provide a token for use by the
@specializations attribute.

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 39 of 41

Index

B
best practices

document-type shells 4
specialization 6

C
@class attribute

examples 10
rules and syntax 10

constraints
design and implementation rules 15
examples

applying multiple constraints 19, 23
redefining the content model 16, 20
replacing base element with domain extensions
19, 23
restricting attributes for an element 17, 21
restricting content model for a domain 18, 22

overview 14
processing and interoperability 15

D
definitions

attribute domain modules 8
element domain modules 8
structural modules 8

design and implementation rules
attribute types 9
document-type shells 5
element types 9
expansion modules 25

document-type shells
conformance 6
equivalence 5
overview 4
public identifiers 5
rules 5

E
examples

@class attribute 10
constraints

applying multiple constraints 19, 23
redefining the content model 16, 20
replacing base element with domain extensions
19, 23
restricting attributes for an element 17, 21
restricting content model for a domain 18, 22

document-type shells

examples (continued)
document-type shells (continued)

public identifiers 5
expansion modules

aggregating constraint and expansion modules
31
expanding attributes for an element 28, 30, 34,
35
expanding content model of <section> 26,
32

specialization
<context> and <prereq> 6
including non-DITA content 12
reuse of elements from non-ancestor
specializations 13

@specializations attribute 11
expansion modules

design and implementation rules 25
examples

aggregating constraint and expansion modules
31
expanding attributes for an element 28, 30, 34,
35
expanding content model of <section> 26,
32

overview 25

I
illustrations

document-type shell 4
interoperability

constraints 15

M
modularization

overview 7

N
naming conventions

attribute domain modules 8
element domain modules 8
structural modules 8

S
specialization

benefits 7
best practices 6
examples

<context> and <prereq> 6

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 40 of 41

specialization (continued)
examples (continued)

including non-DITA content 12
reuse of elements from non-ancestor
specializations 13

including non-DITA content 12
modularization 7
overview 6
reuse of elements from non-ancestor specializations
13
rules

attribute types 9
element types 9

@specializations attribute
examples 11
rules and syntax 11

T
terminology

attribute domain modules 8
element domain modules 8
structural module 8

ditaweb-review-p
Standards Track Work Product Copyright © OASIS Open . All Rights Reserved. Page 41 of 41

	Table of contents
	1 Configuration, specialization, generalization, constraints, and expansion
	1.1 Overview of DITA extension facilities
	1.2 Document-type configuration
	1.2.1 Overview of document-type shells
	1.2.2 Rules for document-type shells
	1.2.3 Equivalence of document-type shells
	1.2.4 Conformance of document-type shells

	1.3 Specialization
	1.3.1 Overview of specialization
	1.3.2 Modularization
	1.3.3 Vocabulary modules
	1.3.4 Specialization rules for element types
	1.3.5 Specialization rules for attributes
	1.3.6 The @class attribute rules and syntax
	1.3.7 The @specializations attribute rules and syntax
	1.3.8 Specializing to include non-DITA content
	1.3.9 Sharing elements across specializations

	1.4 Constraints
	1.4.1 Overview of constraints
	1.4.2 Constraint rules
	1.4.3 Constraints, processing, and interoperability
	1.4.4 Examples: Constraints implemented using DTDs
	1.4.4.1 Example: Restrict the content model for the <topic> element using DTD
	1.4.4.2 Example: Constrain attributes for the <section> element using DTD
	1.4.4.3 Example: Constrain a domain module using DTD
	1.4.4.4 Example: Replace a base element with the domain extensions using DTD
	1.4.4.5 Example: Apply multiple constraints to a single document-type shell using DTD

	1.4.5 Examples: Constraints implemented using RNG
	1.4.5.1 Example: Restrict the content model for the <topic> element using RNG
	1.4.5.2 Example: Constrain attributes for the <section> element using RNG
	1.4.5.3 Example: Constrain a domain module using RNG
	1.4.5.4 Example: Replace a base element with the domain extensions using RNG
	1.4.5.5 Example: Apply multiple constraints to a single document-type shell using RNG

	1.5 Expansion modules
	1.5.1 Overview of expansion modules
	1.5.2 Expansion module rules
	1.5.3 Examples: Expansion implemented using DTDs
	1.5.3.1 Example: Adding an element to the <section> element using DTDs
	1.5.3.2 Example: Adding an attribute to certain table elements using DTDs
	1.5.3.3 Example: Adding an existing domain attribute to certain elements using DTDs
	1.5.3.4 Example: Aggregating constraint and expansion modules using DTDs

	1.5.4 Examples: Expansion implemented using RNG
	1.5.4.1 Example: Adding an element to the <section> element using RNG
	1.5.4.2 Example: Adding an attribute to certain table elements using RNG
	1.5.4.3 Example: Adding an existing domain attribute to certain elements using RNG
	1.5.4.4 Example: Aggregating constraint and expansion modules using RNG

	A Aggregated RFC-2119 statements
	Index

