8.4 Generalization

Generalization is the process of reversing a specialization. It converts specialized elements or attributes
into the original types from which they were derived.

8.4.1 Overview of generalization

Specialized content can be generalized to any ancestor type. The generalization process can preserve
information about the former level of specialization to allow round-tripping between specialized and
unspecialized forms of the same content.

All DITA documents contain a mix of markup from at least one structural type and zero or more domains.
When generalizing the document, any individual structural type or domain can be left as-is, or it can be
generalized to any of its ancestors. If the document will be edited or processed in generalized form, it
might be necessary to have a document-type shell that includes all non-generalized modules from the
original document-type shell.

Generalization serves several purposes:

« |t can be used to migrate content. For example, if a specialization is unsuccessful or is no longer
needed, the content can be generalized back to a less specialized form.

e |t can be used for temporary round-tripping. For example, if content is shared with a process that
is not specialization aware, it can be temporarily generalized for that process and then returned to
specialized form.

* It can allow reuse of specialized content in an environment that does not support the
specialization. Similar to round-tripping, content can be generalized for sharing, without the need
to re-specialize.

When generalizing for migration, the @class attribute and @specializations attribute need to be
absent from the generalized instance document, so that the default values in the document-type shell are
used.

064 (409) When generalizing for round-tripping, the @class attribute and
@specializations attribute SHOULD retain the original specialized values in the
generalized instance document.

Note that when using constraints, a document instance can always be converted from a constrained
document type to an unconstrained document type merely by switching the binding of the document
instance to the less restricted document type shell. No renaming of elements is needed to remove
constraints.

However, a document whose document-type shell uses expansion modules might not be interchangeable
without first generalizing the element and attribute types that were introduced by the expansion modules.

8.4.2 Element generalization

Elements are generalized by examining the @class attribute. When a generalization process detects that
an element belongs to one of the modules that is being generalized, the element is renamed to a more
general form.

For example, the <step> element has a @class attribute value of "~ topic/1i task/step ".Ifthe
task module is generalized, the <step> element is renamed to its more general form from the topic
module: <1i>.

For specific concerns when generalizing structural types with dependencies on non-ancestor modules,
see 8.4.5 Generalization with cross-specialization dependencies (190).

dita-2.0-specification 29 July 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 187 of 447

GershonJoseph
Underline
one of the ancestor types from which they were derived.

GershonJoseph
Sticky Note
Why is this paragraph not a normative rule while the next one is? Surely both should either be normative rules or neither should be normative rules?

GershonJoseph
Sticky Note
Do we care whether they do this or use some other method to generalize? I suspect this is part of the processing stuff we are trying to remove in 2.0, right?

I think we can rewrite this without making it a process, but explaining how the element names would change.

While the tag hame of a given element is normally the same as the type name of the last token in the
@class value, this is not required. For example, if a generalization process has already run on the
element, the @class attribute could contain tokens from two or more modules based on the original
specialization. In that case, the element name could already match the first token or an intermediate
token in the @class attribute. A second generalization process could end up renaming the element again
or could leave it alone, depending on the target module or document type.

8.4.3 Processor expectations when generalizing elements

Generalization processors convert elements from one or more modules into their less specialized form.
The list of modules can be supplied to a generalization processor, or it can be inferred based on
knowledge of a target document-type shell.

The person or application initiating a generalization process can supply the source and target modules for
each generalization, for example, "generalize from reference to topic". Multiple target modules can be
specified, for example, "generalize from reference to topic and from user-interface domain to topic". When
the source and target modules are not supplied, the generalization process is assumed to be from all
structural types to the base (topic or map), and no generalization is performed for domains.

The person or application initiating a generalization process also can supply the target document-type
shell. When the target document-type shell is not supplied, the generalized document will not contain a
reference to a document-type shell.

065 (409) A generalization processor SHOULD be able to handle cases where it is given:

* Only source modules for generalization (in which case the designated
source types are generalized to topic or map)

* Only target modules for generalization (in which case all descendants of
each target are generalized to that target)

< Both (in which case only the specified descendants of each target are
generalized to that target)

For each structural type instance, the generalization processor checks whether the structural type
instance is a candidate for generalization, or whether it has domains that are candidates for
generalization. It is important to be selective about which structural type instances to process; if the
process simply generalizes every element based on its @class attribute values, an instruction to
generalize "reference" to "topic" could leave a specialization of reference with an invalid content model,
since any elements it reuses from "reference” would have been renamed to topic-level equivalents.

The @class attribute for the root element of the structural type is checked before generalizing structural
types:

Source module unspecified Source module specified

Target module | Generalize this structural type to Check whether the root element of the topic type matches a
unspecified its base ancestor specified source module; generalize to its base ancestor if it
does, otherwise ignore the structural type instance unless it
has domains to generalize.

Target module | Check whether the @class It is an error if the root element matches a specified source
specified attribute contains the target but its @class attribute does not contain the target. If the
module. If it does contain the root element matches a specified source module and its

target, rename the element to the | @class attribute does contain the target module, generalize
value associated with the target to the target module. Otherwise, ignore the structural type
module. Otherwise, ignore the instance unless it has domains to generalize.

element.

dita-2.0-specification 29 July 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 188 of 447

GershonJoseph
Sticky Note
rework this paragraph to make it clearer. It seems to assume mostly that there in a single specialization. We should make it more easily understood when more than two levels of specialization are involved.

GershonJoseph
Sticky Note
Remove this topic from the spec.

For each element in a candidate structural type instance:

Source module unspecified Source module specified
Target module | If the @class attribute starts with "-" Check whether the last value of the @class attribute
unspecified (part of a structural type), rename the matches a specified source; generalize to its base

element to its base ancestor equivalent. | ancestor if it does, otherwise ignore the element.
Otherwise ignore it.

Target module | Check whether the @class attribute Itis an error if the last value in the @class attribute

specified contains the target module; rename the | matches a specified source but the previous values do
element to the value associated with the | not include the target. If the last value in the Gclass
target module if it does contain the attribute matches a specified source module and the
target, otherwise ignore the element. previous values do include the target module, rename

the element to the value associated with the target
module. Otherwise, ignore the element.

066 (410) When renaming elements during round-trip generalization, the generalization
processor SHOULD preserve the values of all attributes. When renaming elements
during one-way or migration generalization, the process SHOULD preserve the
values of all attributes except the @class attribute, which is supplied by the target
document type.

8.4.4 Attribute generalization

DITA provides a syntax to generalize attributes that have been specialized from the @props or @base
attribute.

067 (410) Specialization-aware processors MUST process both the specialized and
generalized forms of an attribute as equivalent in their values.

When a specialized attribute is generalized to an ancestor attribute, the value of the ancestor attribute
consists of the name of the specialized attribute followed by its specialized value in parentheses.

For example, if @jobrole is an attribute specialized from @person, which in turn is specialized from
@props:

* jobrole="programmer" can be generalized to person="jobrole (programmer) " or to
props="jobrole (programmer) "

e props="jobrole (programmer) " can be respecialized to
person="jobrole (programmer)" Or t0 jobrole="programmer"

In this example, processors performing generalization and respecialization can use the
@specializations attribute to determine the ancestry of the specialized @jobrole attribute, and
therefore the validity of the specialized @person attribute as an intermediate target for generalization.

If more than one attribute is generalized, the value of each is separately represented in this way in the
value of the ancestor attribute.

Generalized attributes are typically not expected to be authored or edited directly. They are used by
processors to preserve the values of the specialized attributes during the time or in the circumstances in
which the document is in a generalized form.

068 (410) A single element MUST NOT contain both generalized and specialized values for
the same attribute.

dita-2.0-specification 29 July 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 189 of 447

GershonJoseph
Sticky Note
Rework this requirement into the generalization topic after the paragraphs or rules that talk about the @class attribute values.

GershonJoseph
Sticky Note
This indeed seems to be spec material. Interesting. Need to figure out where to put this in the new generalization topic. Hopefully once we rework the element generalization topic this attribute generalization will fit.

For example, the following <p> element provides two values for the @ jobrole attribute, one in a
generalized syntax and the other in a specialized syntax:

<p person="jobrole (programmer)" jobrole="admin">
== 500 ==2
</p>

This is an error condition, since it means the document has been only partially generalized, or that the
document has been generalized and then edited using a specialized document type.

8.4.5 Generalization with cross-specialization dependencies

Dependencies across specializations limit generalization targets to those that either preserve the
dependency or eliminate them. Some generalization targets will not be valid and need to be detected
before generalization occurs.

When a structural specialization has a dependency on a domain specialization, then the domain cannot
be generalized without also generalizing the reusing structural specialization.

For example, a structural specialization <codeConcept> might incorporate and require the
<codeblock> element from the programming domain. A generalization process that turns programming
domain elements back into topic elements would convert <codeblock> to <pre>, making a document
that uses <codeConcept> invalid. However, cadeCaoncept<> could be generalized to concept or topic,
without generalizing programming domain elements, as long as the target document type includes the
programming domain.

When a structural specialization has a dependency on another structural specialization, then both must
be generalized together to a common ancestor.

For example, if the task elements in checklist were generalized without also generalizing checklist
elements, then the checklist content models that referenced task elements would be broken. And if the
checklist elements were generalized to topic without also generalizing the task elements, then the task
elements would be out of place, since they cannot be validly present in topic. However, checklist and task
can be generalized together to any ancestor they have in common: in this case topic.

069 (410) When possible, generalizing processes SHOULD detect invalid generalization
target combinations and report them as errors;

8.5 Constraints

Constraint modules define additional constraints for vocabulary modules in order to restrict content
models or attribute lists for specific element types, remove certain extension elements from an integrated
domain module, or replace base element types with domain-provided, extension element types.

8.5.1 Overview of constraints

elements, A constraint is a simplification of an XML grammar such that any instance that conforms to the
constrained grammar also will conform to the original grammar.

A constraint module can perform the following functions:

Restrict the content model for an element
Constraint modules can modify content models by removing optional elements, making optional
elements required, or requiring unordered elements to occur in a specific sequence. Constraint
modules cannot make required elements optional or change the order of element occurrence for
ordered elements.

dita-2.0-specification 29 July 2022
Standards Track Work Product Copyright © OASIS Open 2022. All Rights Reserved. Page 190 of 447

GershonJoseph
Sticky Note
Why give an example that's wrong? If this example has any value, then introduce it as an error condition that should be avoided.

GershonJoseph
Cross-Out

GershonJoseph
Inserted Text
<codeConcept>

GershonJoseph
Inserted Text
or otherwise handle the situation.

GershonJoseph
Cross-Out

GershonJoseph
Inserted Text
We essentially say this twice, because the shortdesc of the 8.5 Constaints topic essentially says the same thing.

	Table of contents
	1 Introduction
	1.1 Terminology
	1.2 IPR policy
	1.3 Normative references
	1.4 Non-normative references
	1.5 Formatting conventions in the HTML5 version of the specification
	1.5.1 Link previews
	1.5.2 Navigation links

	2 DITA terminology, notation, and conventions
	2.1 Normative and non-normative information
	2.2 Notation
	2.3 Basic DITA terminology
	2.4 Specialization terminology
	2.5 DITA module terminology
	2.6 Linking and addressing terminology
	2.7 Key terminology
	2.8 Map terminology
	2.9 File extensions

	3 Overview of DITA
	3.1 Basic concepts
	3.2 Producing different deliverables from a single source
	3.3 DITA topics
	3.3.1 The topic as the basic unit of information
	3.3.2 The benefits of a topic-based architecture
	3.3.3 Disciplined, topic-oriented writing
	3.3.4 Information typing
	3.3.5 Generic topics
	3.3.6 Topic structure
	3.3.7 Topic content

	3.4 DITA maps
	3.4.1 Definition of DITA maps
	3.4.2 Purpose of DITA maps
	3.4.3 DITA map attributes
	3.4.4 Examples of DITA maps
	3.4.4.1 Example: DITA map that references a subordinate map
	3.4.4.2 Example: DITA map with a simple relationship table
	3.4.4.3 Example: How the @collection-type and @linking attributes determine links
	3.4.4.4 Example: How the @cascade attribute functions

	3.5 DITA metadata
	3.5.1 Metadata elements
	3.5.2 Metadata attributes
	3.5.3 Metadata in maps and topics
	3.5.4 Window metadata for user assistance

	4 Accessibility and translation
	4.1 Accessibility
	4.1.1 Handling accessibility in content and in processors
	4.1.2 Accessible content
	4.1.3 Accessible tables
	4.1.4 Examples of DITA markup for accessibility
	4.1.4.1 Example: Alternate text for an image
	4.1.4.2 Example: Alternate text for an image map
	4.1.4.3 Example: Fallback information for multimedia content
	4.1.4.4 Example: Complex table with accessibility markup
	4.1.4.5 Example: Complex table with some manually-specified accessibility markup
	4.1.4.6 Example: Complex table with manual accessibility markup

	4.2 Translation and localization
	4.2.1 The @xml:lang attribute
	4.2.1.1 Recommendations for the @xml:lang attribute
	4.2.1.2 Processing expectations regarding the @xml:lang attribute
	4.2.1.3 Example: content reference and the @xml:lang attribute

	4.2.2 The @dir attribute
	4.2.2.1 The Unicode Bidirectional Algorithm
	4.2.2.2 Recommended usage of the @dir attribute
	4.2.2.3 Processing expectations regarding the Unicode Bidirectional Algorithm

	4.2.3 The @translate attribute

	5 DITA map processing
	5.1 DITA maps and their usage
	5.2 Subject scheme maps and their usage
	5.2.1 Subject scheme maps
	5.2.2 Defining controlled values for attributes
	5.2.3 Binding controlled values to an attribute
	5.2.4 Processing controlled attribute values
	5.2.5 The @subjectrefs attribute
	5.2.6 Examples of subject scheme maps
	5.2.6.1 Example: a subject scheme map used to define taxonomic subjects
	5.2.6.2 Example: How hierarchies defined in a subject scheme map affect filtering
	5.2.6.3 Example: Defining values for @deliveryTarget

	5.3 Metadata cascading
	5.3.1 Cascading of metadata attributes in a DITA map
	5.3.1.1 Processing cascading attributes in a map
	5.3.1.2 Merging of cascading attributes

	5.3.2 Reconciling topic and map metadata elements
	5.3.3 Map-to-map cascading behaviors
	5.3.3.1 Cascading of attributes from map to map
	5.3.3.2 Cascading of metadata elements from map to map
	5.3.3.3 Cascading of roles from map to map

	5.3.4 Examples of metadata cascading
	5.3.4.1 Example: How map-level metadata elements cascade to the referenced topics
	5.3.4.2 Example: How metadata elements cascade from one map to another
	5.3.4.3 Example: How attributes cascade from one map to another
	5.3.4.4 Example: How the @cascade attribute affects attribute cascading
	5.3.4.5 Example: How <topicref> roles cascade to referenced maps

	5.4 Chunking
	5.4.1 About the @chunk attribute
	5.4.2 Processing chunk="combine"
	5.4.3 Processing chunk="split"
	5.4.4 Using the @chunk attribute for other purposes
	5.4.5 Examples of the @chunk attribute
	5.4.5.1 Example: Using @chunk to combine all documents into one
	5.4.5.2 Example: Using @chunk to render a single document from one or more branches
	5.4.5.3 Example: Using @chunk to combine groups of topics
	5.4.5.4 Example: How chunk="combine" effects the map hierarchy
	5.4.5.5 Example: Using @chunk to split documents
	5.4.5.6 Example: How chunk="split" affects the map hierarchy
	5.4.5.7 Example: When @chunk is ignored
	5.4.5.8 Example: Using chunk="combine" when the root map specifies chunk="split"
	5.4.5.9 Example: Managing links when chunking

	6 DITA addressing
	6.1 ID attribute
	6.2 DITA linking
	6.2.1 The @format attribute
	6.2.2 The @href attribute
	6.2.3 The @scope attribute
	6.2.4 The @type attribute

	6.3 URI-based (direct) addressing
	6.4 Indirect key-based addressing
	6.4.1 Core concepts for working with keys
	6.4.2 Setting key names with the @keys attribute
	6.4.3 The @keyref attribute
	6.4.4 Using keys for addressing
	6.4.5 Key scopes
	6.4.6 The @keyscope attribute
	6.4.7 Addressing keys across scopes
	6.4.8 Cross-deliverable addressing and linking
	6.4.9 Processing key references
	6.4.10 Processing key references for navigation links and images
	6.4.11 Processing key references on <topicref> elements
	6.4.12 Processing key references to generate text or link text
	6.4.13 Examples of keys
	6.4.13.1 Examples: Key definition
	6.4.13.2 Examples: Key definitions for variable text
	6.4.13.3 Example: Duplicate key definitions within a single map
	6.4.13.4 Example: Duplicate key definitions across multiple maps
	6.4.13.5 Example: Key definition with key reference
	6.4.13.6 Example: Link redirection
	6.4.13.7 Example: Link modification or removal
	6.4.13.8 Example: Links from <term> or <keyword> elements
	6.4.13.9 Example: conref redirection
	6.4.13.10 Example: Keys and collaboration

	6.4.14 Examples of scoped keys
	6.4.14.1 Example: Scoped key definitions for variable text
	6.4.14.2 Example: References to scoped keys
	6.4.14.3 Example: Key definitions in nested key scopes
	6.4.14.4 Example: Key scopes and omnibus publications
	6.4.14.5 Example: How key scopes affect key precedence
	6.4.14.6 Example: How key scopes with the same name interact
	6.4.14.7 Example: @subjectrefs attribute with key scopes

	6.5 Context hooks for user assistance

	7 DITA processing
	7.1 Navigation
	7.1.1 Table of contents
	7.1.2 Alternative titles

	7.2 Indexes
	7.2.1 Index elements
	7.2.2 Location of <indexterm> elements
	7.2.3 Index locators
	7.2.4 Index redirection
	7.2.5 Index ranges
	7.2.6 Index sorting
	7.2.7 Merging index elements
	7.2.8 Examples of indexing
	7.2.8.1 Example: Merging <indexterm> elements
	7.2.8.2 Example: Index range defined in a single topic
	7.2.8.3 Example: Index range defined in a topic prolog
	7.2.8.4 Example: Index range defined in a map

	7.3 Content reference (conref)
	7.3.1 Conref overview
	7.3.2 The @conaction attribute
	7.3.3 The @conrefend attribute
	7.3.4 The @conkeyref attribute
	7.3.5 The @conref attribute
	7.3.6 Using the "-dita-use-conref-target" value
	7.3.7 Processing conrefs
	7.3.8 Processing attributes when resolving conrefs
	7.3.9 Processing xrefs and conrefs within a conref

	7.4 Conditional processing
	7.4.1 About conditional processing
	7.4.2 Expectations for conditional processing
	7.4.3 About the DITAVAL document
	7.4.4 Conditional processing attribute values
	7.4.5 Conditional processing attribute values with groups
	7.4.6 Conditional processing and subject schemes
	7.4.7 Filtering based on metadata attributes
	7.4.8 Flagging based on metadata attributes
	7.4.9 Examples of conditional processing
	7.4.9.1 Example: Setting conditional processing values
	7.4.9.2 Example: Simple DITAVAL document
	7.4.9.3 Example: Changing the default behavior to "exclude"
	7.4.9.4 Example: Flagging with @outputclass
	7.4.9.5 Example: Filtering based on groups
	7.4.9.6 Example: Filtering and flagging topic content
	7.4.9.7 Example: Simple DITAVAL document
	7.4.9.8 Example: DITAVAL with conditions for groups

	7.5 Branch filtering
	7.5.1 Overview of branch filtering
	7.5.2 How filtering rules interact
	7.5.3 Branch filtering: Single referenced DITAVAL document for a branch
	7.5.4 Branch filtering: Multiple referenced DITAVAL documents for a branch
	7.5.5 Branch filtering: Impact on resource and key names
	7.5.5.1 Using metadata elements in the DITAVAL reference domain
	7.5.5.2 Renaming based on multiple <ditavalref> elements
	7.5.5.3 Handling resource name conflicts caused by branch filtering

	7.5.6 Branch filtering: Implications of processing order
	7.5.7 Examples of branch filtering
	7.5.7.1 Example: Single <ditavalref> on a branch
	7.5.7.2 Example: Multiple <ditavalref> elements on a branch
	7.5.7.3 Example: Single <ditavalref> as a child of <map>
	7.5.7.4 Example: Single <ditavalref> in a reference to a map
	7.5.7.5 Example: Multiple <ditavalref> elements as children of <map> in a root map
	7.5.7.6 Example: Multiple <ditavalref> elements in a reference to a map
	7.5.7.7 Example: <ditavalref> within a branch that already uses <ditavalref>
	7.5.7.8 Example: <ditavalref> error conditions

	7.6 Sorting
	7.7 Determining effective attribute values

	8 Configuration, specialization, generalization, constraints, and expansion
	8.1 Overview of DITA extension facilities
	8.2 Document-type configuration
	8.2.1 Overview of document-type shells
	8.2.2 Rules for document-type shells
	8.2.3 Equivalence of document-type shells
	8.2.4 Conformance of document-type shells

	8.3 Specialization
	8.3.1 Overview of specialization
	8.3.2 Modularization
	8.3.3 Vocabulary modules
	8.3.4 Specialization rules for element types
	8.3.5 Specialization rules for attributes
	8.3.6 @class attribute rules and syntax
	8.3.7 @specializations attribute rules and syntax
	8.3.8 Specializing to include non-DITA content
	8.3.9 Sharing elements across specializations

	8.4 Generalization
	8.4.1 Overview of generalization
	8.4.2 Element generalization
	8.4.3 Processor expectations when generalizing elements
	8.4.4 Attribute generalization
	8.4.5 Generalization with cross-specialization dependencies

	8.5 Constraints
	8.5.1 Overview of constraints
	8.5.2 Constraint rules
	8.5.3 Constraints, processing, and interoperability
	8.5.4 Examples: Constraints implemented using DTDs
	8.5.4.1 Example: Redefine the content model for the <topic> element using DTD
	8.5.4.2 Example: Constrain attributes for the <section> element using DTD
	8.5.4.3 Example: Constrain a domain module using DTD
	8.5.4.4 Example: Replace a base element with the domain extensions using DTD
	8.5.4.5 Example: Apply multiple constraints to a single document-type shell using DTD

	8.5.5 Examples: Constraints implemented using RNG
	8.5.5.1 Example: Redefine the content model for the <topic> element using RNG
	8.5.5.2 Example: Constrain attributes for the <section> element using RNG
	8.5.5.3 Example: Constrain a domain module using RNG
	8.5.5.4 Example: Replace a base element with the domain extensions using RNG
	8.5.5.5 Example: Apply multiple constraints to a single document-type shell using RNG

	8.6 Expansion modules
	8.6.1 Overview of expansion modules
	8.6.2 Expansion module rules
	8.6.3 Examples: Expansion implemented using DTDs
	8.6.3.1 Example: Adding an element to the <section> element using DTDs
	8.6.3.2 Example: Adding an attribute to certain table elements using DTDs
	8.6.3.3 Example: Adding an existing domain attribute to certain elements using DTDs
	8.6.3.4 Example: Aggregating constraint and expansion modules using DTDs

	8.6.4 Examples: Expansion implemented using RNG
	8.6.4.1 Example: Adding an element to the <section> element using RNG
	8.6.4.2 Example: Adding an attribute to certain table elements using RNG
	8.6.4.3 Example: Adding an existing domain attribute to certain elements using RNG
	8.6.4.4 Example: Aggregating constraint and expansion modules using RNG

	9 Coding practices for DITA grammar files
	9.1 Recognized XML-document grammar mechanisms
	9.2 Normative versions of DITA grammar files
	9.3 DTD coding requirements
	9.3.1 DTD: Use of entities
	9.3.2 DTD: Coding requirements for document-type shells
	9.3.3 DTD: Coding requirements for element-type declarations
	9.3.4 DTD: Coding requirements for structural modules
	9.3.5 DTD: Coding requirements for element-domain modules
	9.3.6 DTD: Coding requirements for attribute domain modules
	9.3.7 DTD: Coding requirements for element-configuration modules

	9.4 RELAX NG coding requirements
	9.4.1 RELAX NG: Overview of coding requirements
	9.4.2 RELAX NG: Coding requirements for document-type shells
	9.4.3 RELAX NG: Coding requirements for element-type declarations
	9.4.4 RELAX NG: Coding requirements for structural modules
	9.4.5 RELAX NG: Coding requirements for element-domain modules
	9.4.6 RELAX NG: Coding requirements for attribute-domain modules
	9.4.7 RELAX NG: Coding requirements for element-configuration modules

	10 Element reference
	10.1 DITA elements, A to Z
	10.2 DITA attributes, A to Z
	10.3 Topic elements
	10.3.1 Basic topic elements
	10.3.1.1 <abstract>
	10.3.1.2 <body>
	10.3.1.3 <bodydiv>
	10.3.1.4 <dita>
	10.3.1.5 <prolog>
	10.3.1.6 <related-links>
	10.3.1.7 <shortdesc>
	10.3.1.8 <title>
	10.3.1.9 <titlealt>
	10.3.1.10 <topic>

	10.3.2 Body elements
	10.3.2.1 <alt>
	10.3.2.2 <cite>
	10.3.2.3 <dd>
	10.3.2.4 <ddhd>
	10.3.2.5 <desc>
	10.3.2.6 <div>
	10.3.2.7 <dl>
	10.3.2.8 <dlentry>
	10.3.2.9 <dlhead>
	10.3.2.10 <draft-comment>
	10.3.2.11 <dt>
	10.3.2.12 <dthd>
	10.3.2.13 <example>
	10.3.2.14 <fallback>
	10.3.2.15 <fig>
	10.3.2.16 <figgroup>
	10.3.2.17 <fn>
	10.3.2.18 <image>
	10.3.2.19 <include>
	10.3.2.20 <keyword>
	10.3.2.21
	10.3.2.22 <lines>
	10.3.2.23 <longdescref>
	10.3.2.24 <lq>
	10.3.2.25 <note>
	10.3.2.26 <object>
	10.3.2.27
	10.3.2.28 <p>
	10.3.2.29 <param>
	10.3.2.30 <ph>
	10.3.2.31 <pre>
	10.3.2.32 <q>
	10.3.2.33 <section>
	10.3.2.34 <sl>
	10.3.2.35 <sli>
	10.3.2.36 <term>
	10.3.2.37 <text>
	10.3.2.38 <tm>
	10.3.2.39
	10.3.2.40 <xref>

	10.3.3 Multimedia elements
	10.3.3.1 <audio>
	10.3.3.2 <media-source>
	10.3.3.3 <media-track>
	10.3.3.4 <video>

	10.3.4 Indexing elements
	10.3.4.1 <index-see>
	10.3.4.2 <index-see-also>
	10.3.4.3 <indexterm>

	10.3.5 Related links elements
	10.3.5.1 <link>
	10.3.5.2 <linkinfo>
	10.3.5.3 <linklist>
	10.3.5.4 <linkpool>
	10.3.5.5 <linktext>

	10.3.6 Table elements
	10.3.6.1 <colspec>
	10.3.6.2 <entry>
	10.3.6.3 <row>
	10.3.6.4 <simpletable>
	10.3.6.5 <stentry>
	10.3.6.6 <sthead>
	10.3.6.7 <strow>
	10.3.6.8 <table>
	10.3.6.9 <tbody>
	10.3.6.10 <tgroup>
	10.3.6.11 <thead>

	10.4 Map elements
	10.4.1 Basic map elements
	10.4.1.1 <keytext>
	10.4.1.2 <map>
	10.4.1.3 <navref>
	10.4.1.4 <relcell>
	10.4.1.5 <relcolspec>
	10.4.1.6 <relheader>
	10.4.1.7 <relrow>
	10.4.1.8 <reltable>
	10.4.1.9 <topicref>
	10.4.1.10 <topicmeta>
	10.4.1.11 <ux-window>

	10.4.2 Subject scheme elements
	10.4.2.1 <attributedef>
	10.4.2.2 <defaultSubject>
	10.4.2.3 <elementdef>
	10.4.2.4 <enumerationdef>
	10.4.2.5 <schemeref>
	10.4.2.6 <subjectdef>
	10.4.2.7 <subjectHead>
	10.4.2.8 <subjectHeadMeta>
	10.4.2.9 <subjectScheme>

	10.5 Metadata elements
	10.5.1 Prolog (metadata) elements
	10.5.1.1 <audience>
	10.5.1.2 <author>
	10.5.1.3 <brand>
	10.5.1.4 <category>
	10.5.1.5 <component>
	10.5.1.6 <copyrholder>
	10.5.1.7 <copyright>
	10.5.1.8 <copyryear>
	10.5.1.9 <created>
	10.5.1.10 <critdates>
	10.5.1.11 <featnum>
	10.5.1.12 <keywords>
	10.5.1.13 <metadata>
	10.5.1.14 <othermeta>
	10.5.1.15 <permissions>
	10.5.1.16 <platform>
	10.5.1.17 <prodinfo>
	10.5.1.18 <prodname>
	10.5.1.19 <prognum>
	10.5.1.20 <publisher>
	10.5.1.21 <resourceid>
	10.5.1.22 <revised>
	10.5.1.23 <series>
	10.5.1.24 <source>
	10.5.1.25 <vrmlist>
	10.5.1.26 <vrm>

	10.5.2 Specialization elements
	10.5.2.1 <data>
	10.5.2.2 <foreign>
	10.5.2.3 <no-topic-nesting>
	10.5.2.4 <state>
	10.5.2.5 <unknown>

	10.6 Domain elements
	10.6.1 Alternative-titles domain elements
	10.6.1.1 <linktitle>
	10.6.1.2 <navtitle>
	10.6.1.3 <searchtitle>
	10.6.1.4 <subtitle>
	10.6.1.5 <titlehint>

	10.6.2 DITAVAL-reference domain element
	10.6.2.1 <ditavalref>
	10.6.2.2 <ditavalmeta>
	10.6.2.3 <dvrResourcePrefix>
	10.6.2.4 <dvrResourceSuffix>
	10.6.2.5 <dvrKeyscopePrefix>
	10.6.2.6 <dvrKeyscopeSuffix>

	10.6.3 Emphasis domain elements
	10.6.3.1
	10.6.3.2

	10.6.4 Hazard-statement domain elements
	10.6.4.1 <consequence>
	10.6.4.2 <hazardstatement>
	10.6.4.3 <hazardsymbol>
	10.6.4.4 <howtoavoid>
	10.6.4.5 <messagepanel>
	10.6.4.6 <typeofhazard>

	10.6.5 Highlighting domain elements
	10.6.5.1
	10.6.5.2 <i>
	10.6.5.3 <line-through>
	10.6.5.4 <overline>
	10.6.5.5 <sub>
	10.6.5.6 <sup>
	10.6.5.7 <tt>
	10.6.5.8 <u>

	10.6.6 Mapgroup domain elements
	10.6.6.1 <keydef>
	10.6.6.2 <mapref>
	10.6.6.3 <mapresources>
	10.6.6.4 <topicgroup>
	10.6.6.5 <topichead>

	10.6.7 Utilities domain elements
	10.6.7.1 <area>
	10.6.7.2 <coords>
	10.6.7.3 <imagemap>
	10.6.7.4 <shape>
	10.6.7.5 <sort-as>

	10.7 Other elements
	10.7.1 Legacy conversion elements
	10.7.1.1 <required-cleanup>

	10.7.2 DITAVAL elements
	10.7.2.1 <alt-text>
	10.7.2.2 <endflag>
	10.7.2.3 <prop>
	10.7.2.4 <revprop>
	10.7.2.5 <startflag>
	10.7.2.6 <style-conflict>
	10.7.2.7 <val>

	10.8 Attributes
	10.8.1 Universal attribute group
	10.8.2 Common attributes

	11 Conformance
	A Acknowledgments
	B Aggregated RFC-2119 statements
	C Non-normative information
	C.1 About the specification source
	C.2 Changes from DITA 1.3 to DITA 2.0
	C.3 File naming conventions
	C.4 Migrating to DITA 2.0
	C.5 Considerations for generalizing <foreign> elements
	C.6 Element-by-element recommendations for translators
	C.7 Formatting expectations
	C.8 DTD public identifiers
	C.9 Domains and constraints in the OASIS specification
	C.9.1 Domains and constraints in the OASIS specification
	C.9.2 Base domains: Where they are used
	C.9.3 Base document types: Included domains

	C.10 Processing interoperability considerations
	C.11 Specialization design, customization, and the limits of specialization

	D Revision history
	Index
	Special Characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	X

