Appendix A. A Simple Set Theory Approach

```
try cap: A•A --- try 2229: A•A

try sup: B•B --- try 2283: B•B

try sub: C•C --- try 2282: C•C

try empty: D•D --- try 2205: D•D

try ne: E≠E --- try 2260: E≠E

try 2260: F...F --- try 2026: F...F

try nbsp: G G --- try 0020: G Z

para¹

para²

para²

para³

para⁴

para⁵
```


¹try cap: A∩A --- try 2229: A∩A

²try sup: B⊃B --- try 2283: B⊃B

³try sub: C⊂C --- try 2282: C⊂C

⁴try empty: DØD --- try 2205: DØD

⁵try ne: E≠E --- try 2260: E≠E

para⁶
para⁷

Table A.1. The Effect of Constraints upon the Size of the Population Set^a

Independent Requirement ⊡	Popula-	Population of set:	Intersection Set •
(X Z Z ≠X≠ G)	tion 10	0.0024	(A:B:C:D:E:F:G)
(≠ • • • H)	1 in 10	0.0002	(A-B-C-D-E-F-G-H)

^a ... then we have no knowledge of the possible overlap of the two sets, (we have no knowledge of whether $B \cap A = \emptyset$, $B \subset A$, B = A or $B \supset A$.) However, if B = A or $B \supset A$; then we would have to infer \neq ...

⁶try hellip: F...F --- try 2026: F...F ⁷try nbsp: G G --- try 0020: G Z