OASIS 19

DSS Extension for Local Signature
Computation Version 1.0

Committee Specification Draft 04 /
Public Review Draft 04

22 February 2018

Specification URIs

This version:
http://docs.oasis-open.org/dss-x/localsig/v1.0/csprd04/localsig-v1.0-csprd04.html (Authoritative)
http://docs.oasis-open.org/dss-x/localsig/vi1.0/csprd04/localsig-v1.0-csprd04.pdf
http://docs.oasis-open.org/dss-x/localsig/v1.0/csprd04/localsig-v1.0-csprd04.xml

Previous version:
http://docs.oasis-open.org/dss-x/localsig/v1.0/cs02/localsig-v1.0-cs01.html
http://docs.oasis-open.org/dss-x/localsig/v1.0/cs02/localsig-v1.0-cs01.pdf
http://docs.oasis-open.org/dss-x/localsig/v1.0/cs02/localsig-v1.0-cs01.xml

Latest version:
http://docs.oasis-open.org/dss-x/localsig/v1.0/localsig-v1.0.html (Authoritative)
http://docs.oasis-open.org/dss-x/localsig/v1.0/localsig-v1.0.pdf
http://docs.oasis-open.org/dss-x/localsig/v1.0/localsig-v1.0.xml

Technical Committee:
OASIS Digital Signature Services eXtended (DSS-X) TC

Chairs:
Juan Carlos Cruellas (cruellas@ac.upc.edu), UPC-DAC
Stefan Hagen (stefan@dilettant.eu), Individual

Editors:
Ernst Jan van Nigtevecht (ejvn@sonnenglanz.net), Sonnenglanz Consulting BV
Frank Cornelis (frank.cornelis@fedict.be), FedICT
Detlef Huhnlein (detlef.huehnlein@ecsec.de), Individual

Additional artifacts:
This prose specification is one component of a Work Product that also includes:

XML schemas: http://docs.oasis-open.org/dss-x/localsig/v1.0/csprd04/schemas/

Related work:
This specification is related to:

Digital Signature Service Core Protocols, Elements, and Bindings Version 1.0. Edited by
Stefan Drees. 11 April 2007. OASIS Standard. http://docs.oasis-open.org/dss/v1.0/oasis-dss-
core-spec-v1.0-o0s.html.

localsig-v1.0-csprd04 22 February 2018
Standards Track Work Product Copyright © OASIS Open 2018. All Rights Reserved. Page 1 of 69

http://docs.oasis-open.org/dss-x/localsig/v1.0/csprd04/localsig-v1.0-csprd04.html
http://docs.oasis-open.org/dss-x/localsig/v1.0/csprd04/localsig-v1.0-csprd04.pdf
http://docs.oasis-open.org/dss-x/localsig/v1.0/csprd04/localsig-v1.0-csprd04.xml
http://docs.oasis-open.org/dss-x/localsig/v1.0/cs02/localsig-v1.0-cs01.html
http://docs.oasis-open.org/dss-x/localsig/v1.0/cs02/localsig-v1.0-cs01.pdf
http://docs.oasis-open.org/dss-x/localsig/v1.0/cs02/localsig-v1.0-cs01.xml
http://docs.oasis-open.org/dss-x/localsig/v1.0/localsig-v1.0.html
http://docs.oasis-open.org/dss-x/localsig/v1.0/localsig-v1.0.pdf
http://docs.oasis-open.org/dss-x/localsig/v1.0/localsig-v1.0.xml
https://www.oasis-open.org/committees/dss-x/
mailto:cruellas@ac.upc.edu
http://www.ac.upc.edu/
mailto:stefan@dilettant.eu
mailto:ejvn@sonnenglanz.net
http://www.sonnenglanz.net
mailto:frank.cornelis@fedict.be
http://www.fedict.belgium.be/nl/
mailto:detlef.huehnlein@ecsec.de
http://docs.oasis-open.org/dss-x/localsig/v1.0/csprd04/schemas/
http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html
http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html

Declared XML Namespaces:
http://docs.oasis-open.org/dss-x/ns/localsig

Abstract:
The core OASIS Digital Signature Service webservice [DSSCore] supports the creation of
signatures on behalf of applications and / or users by utilizing server-based signature keys.

This Local Signature Computation profile extends the core functionality such that end users

can bring (use) their own (secure) signature-creation device. Examples of such devices are

smartcards or usb-tokens but also smartphones, mobile phones, tablets, pc's or laptops with
privately held signature keys.

Four solutions are presented to support the varying capabilities of applications and different

use cases. The first solution is useful for web-applications where web browsers can access the
(qualified) signature-creation device that is available at the desktop (e.g. a smartcard connected
via USB). The second solution is useful for applications that can access the (qualified) signature-
creation device themselve, for instance desktop applications or smartphone apps. The third
solution is useful for any application where the (qualified) signature-creation device can only

be accessed via a separate channel, for instance a mobile device, through a third-party. The
fourth solution is useful for web-applications, which want to access (qualified) signature-creation
devices via a localhost based ChipGateway.

Status:
This document was last revised or approved by the OASIS Digital Signature Services eXtended
(DSS-X) TC on the above date. The level of approval is also listed above. Check the "Latest
version" location noted above for possible later revisions of this document. Any other numbered
Versions and other technical work produced by the Technical Committee (TC) are listed at
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=dss-x#technical.

Technical Committee members should send comments on this specification to the Technical
Committee's email list. Others should send comments to the Technical Committee by using the
"Send A Comment" button on the Technical Committee's web page at http://www.oasis-open.org/
committees/dss-x/.

For information on whether any patents have been disclosed that may be essential to
implementing this specification, and any offers of patent licensing terms, please refer to the
Intellectual Property Rights section of the Technical Committee web page (http://www.oasis-
open.org/committees/dss-x/ipr.php).

Note that any machine-readable content (aka Computer Language Definitions) declared
Normative for this Work Product is provided in separate plain text files. In the event of a
discrepancy between any such plain text file and display content in the Work Product's prose
narrative document(s), the content in the separate plain text file prevails.

Citation format:
When referencing this specification the following citation format should be used:

[localsig-v1.0]
DSS Extension for Local Signature Computation Version 1.0. Edited by Ernst Jan van
Nigtevecht and Frank Cornelis. 22 February 2018. OASIS Committee Specification Draft
04 / Public Review Draft 04. http://docs.oasis-open.org/dss-x/localsig/v1.0/csprd04/localsig-
v1.0-csprd04.html. Latest version: http.//docs.oasis-open.org/dss-x/localsig/v1.0/localsig-
v1.0.html.

localsig-v1.0-csprd04 22 February 2018
Standards Track Work Product Copyright © OASIS Open 2018. All Rights Reserved. Page 2 of 69

http://docs.oasis-open.org/dss-x/ns/localsig
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=dss-x#technical
http://www.oasis-open.org/committees/comments/index.php?wg_abbrev=dss-x
http://www.oasis-open.org/committees/dss-x/
http://www.oasis-open.org/committees/dss-x/
http://www.oasis-open.org/committees/dss-x/ipr.php
http://www.oasis-open.org/committees/dss-x/ipr.php
http://docs.oasis-open.org/dss-x/localsig/v1.0/csprd04/localsig-v1.0-csprd04.html
http://docs.oasis-open.org/dss-x/localsig/v1.0/csprd04/localsig-v1.0-csprd04.html
http://docs.oasis-open.org/dss-x/localsig/v1.0/localsig-v1.0.html
http://docs.oasis-open.org/dss-x/localsig/v1.0/localsig-v1.0.html

Notices
Copyright © OASIS Open 2018. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS
Intellectual Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at http://
www.oasis-open.org/whof/intellectualproperty.php.

This document and translations of it may be copied and furnished to others, and derivative works
that comment on or otherwise explain it or assist in its implementation may be prepared, copied,
published, and distributed, in whole or in part, without restriction of any kind, provided that the above
copyright notice and this section are included on all such copies and derivative works. However,

this document itself may not be modified in any way, including by removing the copyright notice or
references to OASIS, except as needed for the purpose of developing any document or deliverable
produced by an OASIS Technical Committee (in which case the rules applicable to copyrights, as set
forth in the OASIS IPR Policy, must be followed) or as required to translate it into languages other
than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its
SUCCEeSSOrs or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that

would necessarily be infringed by implementations of this OASIS Committee Specification or OASIS
Standard, to notify OASIS TC Administrator and provide an indication of its willingness to grant patent
licenses to such patent claims in a manner consistent with the IPR Mode of the OASIS Technical
Committee that produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership
of any patent claims that would necessarily be infringed by implementations of this specification by
a patent holder that is not willing to provide a license to such patent claims in a manner consistent
with the IPR Mode of the OASIS Technical Committee that produced this specification. OASIS may
include such claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document
or the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS' procedures
with respect to rights in any document or deliverable produced by an OASIS Technical Committee
can be found on the OASIS website. Copies of claims of rights made available for publication and
any assurances of licenses to be made available, or the result of an attempt made to obtain a general
license or permission for the use of such proprietary rights by implementers or users of this OASIS
Committee Specification or OASIS Standard, can be obtained from the OASIS TC Administrator.
OASIS makes no representation that any information or list of intellectual property rights will at any
time be complete, or that any claims in such list are, in fact, Essential Claims.

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and
should be used only to refer to the organization and its official outputs. OASIS welcomes reference to,
and implementation and use of, specifications, while reserving the right to enforce its marks against
misleading uses. Please see http://www.oasis-open.org/who/trademark.php for above guidance.

localsig-v1.0-csprd04 22 February 2018
Standards Track Work Product Copyright © OASIS Open 2018. All Rights Reserved. Page 3 of 69

http://www.oasis-open.org/who/intellectualproperty.php
http://www.oasis-open.org/who/intellectualproperty.php
http://www.oasis-open.org
http://www.oasis-open.org/who/trademark.php

Table of Contents

LI 1o o [VT] (o o ER PPN UPPTPNN 6
1.1 TOIMINOIOQY ... ettt ettt e e ettt e e et et e e e e et e e e eeta e e e eetnaeeene 6

1.2 ADDIEVIALIONSoii e 6

1.3 Normative RefErenCesSu i e 7

1.4 Non-Normative REfErenCescoooiiuiiiiiiii e 8

1.5 NAMESPACES ...eeeiiiiiii ettt e et e ettt e et e e e e et e e e s 9

1.6 Requirements (NON-NOIMALIVE)ccouuiiiiiii e 9

1.7 Design Rationale (NON-NOIrmMatiVe)oiiiiiiiiiiiii e 10

1.7.1 INTFOAUCTION .o e 10

1.7.2 USE CASES eeeiuuuiiieeiit ettt e e ettt e e e e ettt e e e e e e e e et ittt e e e e e e e e eeeatn e e eaaaeanes 12

1.7.3 Proposed SOIULIONSoiiiiiiiiiiii e e 15

2 Profile FEAIUIES ..o et e e e e e 21
P2 I (o [T o {1 1= TSP UPPRTTRPPPIN 21

P oo o1 PPN 21

2.3 Relationship to Other Profilesoooiiiiiiiiiiii e 21

3 Profile of Signing ProtoColo et 22
T B U LT o [T o | TP PPPUPPPTTR PPNt 22
3.1.1 Element <dss:SIgNREQUESE>iiiiiiiiii e 22

3.1.2 Element <dss:SIgNRESPONSE>uiiiiiiiiiiiiiii e 22

3.2 TWO-STEP APPIOACK ...ttt e e et 23
3.2.1 Element <dss:SIgNREQUESE>oiiiiiiiiii e 23

3.2.2 Element <dsS:SIgNRESPONSE>uiiiiiiiiiiiiiii e 25

TR I I 11 (o I - U YU P PSP 25
3.3.1 Element <dss:SIgNREQUESE>oiiiiiiic e 25

3.3.2 Element <dss:SIgNRESPONSE>uiiiiiiiiiiiiiii e 27

RO A 0 41101 F= 1 L1V | PRSPPI 27
3.4.1 Element <dss:SIgNREQUESE> oot 27

3.4.2 Element <dsS:SIgNRESPONSE>uiiiiiiiiiiiiiiii e 28

3.4.3 ChipGateway Connection Establishmentccooooiiiiiiii e 29

3.4.4 ChipGateway COMMANGScciviiiiiiiiii ettt e e e e e e eeei e e e e e e eeeeaena e e eeeaeeeees 35

4 ProtOCOI BINAINGS ...ttt ettt e ettt e e ettt e e e et e e e e et e e e nrn e eae 50
4.1 WEB FORM Transport BiNAINGccouuuuuiiiiiiiiiieiiiiie et e e e e eeaeeananas 50
o R B =Y 1= PR 50

4.1.2 Message Encoding using @ HTML fOorm ..o 50

4.1.3 HTTP and Caching Considerationsccooueeiiiiiiiiiiinieeeeeeeeiiee e 51

4.2 Security Binding (NON-NOIMALIVE)coouuiiiiiii e 51
4.2.1 Security ConsSiderationsccioeeiiiiiiiiiiiie et 51

4.2.2 TLS SECULY .eunieeeiiii ettt e et e et e e e e e e e eaa e e eenens 51

4.2.3 Claimed IdeNtitYcouuueiiiieee it e e e e 51

4.2.4 ChipGateway Transport BindiNgccooeiuiiiiiiii e 52

LR 070101 {014 1 =T oo X PSSR 53
5.1 Conformance Profile A - Stateless Two-Step Approachceeiiiiiiiiiiiiiiiieeeeeeeiee, 53
5.1.1 Conformance Target: SEIVETciiiiiiiiiiiiiiaee e eeeeeaaaans 53

5.1.2 Conformance Target: CHENtooooiiiiiiiiii e 53

5.2 Conformance Profile B - Stateful Two-Step Approacheueiiiiiiiiiiiiiiiiiieeeeeeeeeien, 54
5.2.1 Conformance Target: SEIVETciiiieiiiiiiiiae e eeeeeeaaaans 54

5.2.2 Conformance Target: CHENtcoooiiiiiiiii e 54

5.3 Conformance Profile C - USEr AGENtcoouuuuiiiiiiiiiiiiie et e e 55
5.3.1 Conformance Target: SEIVETciiiieiiiiiiiiiiaa et e e e e eeeeaaans 55

5.4 Conformance Profile D - Third Partyoouuiiiiiiiiiiiii e 55
5.4.1 Conformance Target: SEIVETciiiieeiiiiiiiiiaa e eeeeeeaaanns 55

5.4.2 Conformance Target: CHENtcoooiiiiiiiiii e 56

5.5 Conformance Profile E - Chip GateWaycooeiiiiiiiiiiiiiiee et e e 57
5.5.1 Conformance Target: SEIVETciii i iiiiiiiiiiaee e eeeeeeaaanns 57

5.5.2 Conformance Target: CHENtcoooiiiiiiiiii e 57
localsig-v1.0-csprd04 22 February 2018

Standards Track Work Product Copyright © OASIS Open 2018. All Rights Reserved. Page 4 of 69

Appendixes

A XML Schema Definition (NON-NOrMatiVe)ooiiiiiiiiiiiiiiieei e 58

W S T =1 o= P 58

B Sample Application (NON-NOIMALiVE)ccoeuuiiiiiiiiie e eeeas 60
C Examples (NON-NOIMELIVE)uuiiiiiiiiiiiiii et e et e e ettt eeeeat e e e eat e eaees 62
LR B U -t g Vo =T o | PP PUPPPPPPPPTT 62
C.1.1 Web Form of the SignRequest ..o 62

C.1.2 Web Form of the SignRESPONSEccuuvuiiiiiieiiiiiiiiie e 62

O3~ RV Bt (=T o Y o] o] (0 Y- Lo o NSRRI 63
C.2.1 FIRST ReqUESH/RESPONSEuuiiiiiiiiieiiiiii ettt e et et e e e e eannns 63

C.2.2 SECOND ReqUESI/RESPONSEuiiiiiiiiiiiiiiiieeeiiiee et e et e et e e e e e eei e eeeeen 64

D Chipgateway AlGOIithMSoooiiiiiiee e e 66
D.1 Chipgateway Signature AIGOMthmScoiiiiiiiiiii e 66

D.2 ChipGateway Cipher AIgOrithmsuuuiiiiiiiii e 67

E Acknowledgements (NON-NOIMALiVE)cooeuuiiiiiiiiiiiii e 68
F Revision History (NON-NOIMALIVE)coouuiiiiiiiiiiiiiiii e e e e e eeeees 69
localsig-v1.0-csprd04 22 February 2018

Standards Track Work Product Copyright © OASIS Open 2018. All Rights Reserved. Page 5 of 69

1 Introduction

The OASIS Digital Signature Services specification [DSSCore] standardizes a protocol by which (i)
a client can send documents (or document digests) to a server and receive back a signature on the
documents, or by which (ii) a client can send documents (or document digests) and a signature to a
server, and receive back an answer on whether the signature verifies the documents.

These operations can be useful in a variety of contexts, for example they can allow clients to access a
single corporate key for signing press releases, with centralized access control, auditing, and archiving
of signature requests. They can also allow clients to create signatures without needing complex client
software and configuration.

This profile extends the OASIS DSS protocol such that a (qualified) signature-creation device (an QSCD
or SCD), under the direct control of the user, is used for the actual computation of the digital signature
value. The (qualified) signature-creation device is not part of, nor located at, the server that implements
the DSS protocol.

The (qualified) signature-creation device can have limited software and performance capabilities and
hence a OASIS DSS compliant service can be used to handle the complexities of the (qualified)
signature-creation and document manipulation.

1.1 Terminology

The key words MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT,
RECOMMENDED, MAY, and OPTIONAL are to be interpreted as described in [RFC 2119].

These keywords are capitalized when used to unambiguously specify requirements over protocol
features and behavior that affect the interoperability and security of implementations. When these words
are not capitalized, they are meant in their natural-language sense.

This specification uses the following typographical conventions in text: <ns:Element>, Attribute,
Datatype, OtherCode.

An input document that has to be signed can be any piece of data that can be used as input to a
signature calculation, according to the [DSSCore] specification, Section 2.4. Such a document can even
be a signature (for example, a pre-existing signature can be counter-signed) or timestamp.

A digital signature value is a basic form of a signature, conformant to a <ds:Signature> or
<dss:Base64Signature> within a <dssSignatureObject> element according to the [DSSCore]
specification, Section 2.5. The digital signature value is computed by the (secure) signature-creation
device for a given digest. The validity of the corresponding certificate is not checked by the device.

An advanced electronic signature is an enriched digital signature value and can include for instance
a time-stamp (to specify the time of signing) and/or revocation information (to specify the validity of the
corresponding certificate and trusted roots and/or intermediate certificates). Additionally, the advanced
electronic signature will only be created by the Digital Signature Service if the corresponding certificate
is valid (not revoked).

1.2 Abbreviations

+ SCD: Signature-Creation Device. A device that is capable of creating a digital signature value using
a private key that is stored in the device.

+ QSCD: Qualified Signature-Creation Device. A signature-creation device which meets the
requirements laid down in Annex Il of the Reglation (EU) No. 910/2014 [eIDAS].

+ LSCD: Local Signature-Creation Device. A (qualified) signature-creation device that is owned by and
in the proximity of an end user.

localsig-v1.0-csprd04 22 February 2018
Standards Track Work Product Copyright © OASIS Open 2018. All Rights Reserved. Page 6 of 69

RSCD: Remote Signature-Creation Device. A (qualified) signature-creation device that is owned by,
but not in the proximity of, an end user. Nonetheless, the usage of the device is (by some other
means) under the control of the end user.

Client. A requester of a particular resource or service that is provided by a server.

Server: A provider of a resource or service that is used by a client.

1.3 Normative References

[DSSCore]
S. Drees et al., Digital Signature Service Core Protocols and Elements, OASIS, April 2007,
http://docs.oasis-open.org/dss/v1.0/0asis-dss-core-spec-v1.0-0s.pdf

[LocalSigXSD]
E.J. van Nigtevecht et al., DSS-X Local Signature Computation Profile XML Schema
Definition, OASIS, 20 February 2017, http://docs.oasis-open.org/dss-x/localsig/v1.0/cs02/
schemas/localsig-v1.0.xsd

[Excl-C14N]
J. Boyer et al., Exclusive XML Canonicalization Version 1.0, World Wide Web Consortium, July
2002, http://www.w3.org/TR/xml-exc-c14n/

[HTML401]
D. Raggett et al., HTML 4.01 Specification, World Wide Web Consortium, December 1999,
http:.//www.w3.org/TR/html4

[RFC 2119]
S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, http://www.ietf.org/rfc/
rfc2119.txt IETF (Internet Engineering Task Force) RFC 2119, March 1997.

[RFC 2616]
R. Fielding et al., Hypertext Transfer Protocol - HTTP/1.1, http://www.ietf.org/rfc/rfc2616.txt
IETF (Internet Engineering Task Force) RFC 2616, June 1999.

[RFC 3061]
M. Mealling, A URN Namespace of Object Identifiers, http://tools.ietf.org/rfc/rfc3061.ixt 1ETF
(Internet Engineering Task Force), February 2001.

[SAMLCore]
S. Cantor et al.,, Assertions and Protocols for the OASIS Security Assertion Markup
Language (SAML) V2.0, OASIS, March 2005, http://docs.oasis-open.org/security/sami/v2.0/
saml-core-2.0-0s.pdf

[XHTML]
XHTML 1.0 The Extensible HyperText Markup Language (Second Edition), World Wide
Web Consortium Recommendation, August 2002, http.//www.w3.0rg/TR/xhtml1/ [http://
www.w3.org/TR/xhtml1/]

[XMLSig]
D. Eastlake et al., XML-Signature Syntax and Processing, W3C Recommendation, June 2008,
http://www.w3.org/TR/xmldsig-core/

[XML-ns]
T. Bray, D. Hollander, A. Layman, Namespaces in XML, W3C Recommendation, January 1999,
http://www.w3.0rg/TR/1999/REC-xml-names-19990114

[XML-Schemal]
H. S. Thompson et al., XML Schema Part 1: Structures, W3C Recommendation, May 2001,
http://www.w3.org/TR/xmischema-1/

localsig-v1.0-csprd04 22 February 2018
Standards Track Work Product Copyright © OASIS Open 2018. All Rights Reserved. Page 7 of 69

http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.pdf
http://docs.oasis-open.org/dss-x/localsig/v1.0/cs02/schemas/localsig-v1.0.xsd
http://docs.oasis-open.org/dss-x/localsig/v1.0/cs02/schemas/localsig-v1.0.xsd
http://www.w3.org/TR/xml-exc-c14n/
http://www.w3.org/TR/html4
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2616.txt
http://tools.ietf.org/rfc/rfc3061.txt
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/1999/REC-xml-names-19990114
http://www.w3.org/TR/xmlschema-1/

1.4 Non-Normative References

[BSI-TR-02102]
elD-Client, Technical Guideline Nr. 03124, Part 1-2 , Federal Office for Information
Security (Bundesamt fur Sicherheit in der Informationstechnik, BSI), February 2017, https:/
www.bsi.bund.de/EN/Publications/TechnicalGuidelines/tr02102/tr02102_node.html

[BSI-TR-03124]
elD-Client, Technical Guideline Nr. 03124, Part 1-2 , Federal Office for Information Security
(Bundesamt fir Sicherheit in der Informationstechnik, BSI), February 2015, http://docs.oasis-
open.org/dss/v1.0/oasis-dss-core-spec-v1.0-0s.pdf

[CGW-Contribution]
LuxTrust S.A., ecsec GmbH ChipGateway Protocol - OASIS Contribution https://www.oasis-
open.org/committees/download.php/60049/ChipGateway-Specification-OASIS. pdf

[eIDAS]
Regulation (EU) No. 910/2014 of the European Parliament and of the Council of 23 July 2014 on
electronic identification and trust services for electronic transactions in the internal market and
repealing Directive 1999/93/EC https://www.eid.as http://data.europa.eu/eli/reg/2014/910/0j

[ECC]
CEN CEN-TS 15480/ CEN/TC 224 - Personal identification, electronic signature and cards and
their related systems and operations

[M-COMM]
ETSI Mobile Commerce (M-COMM); Mobile Signatures; Business and Functional
Requirements, ETSI Technical Report 102 203 V1.1.1, May 2003

[ISO 24727]
Identification Cards — Integrated Circuit Cards Programming Interfaces — Part 1-6, ISO/IEC,
International Standards 2008-2014

[JCA-Names]
Java™ Cryptography Architecture Standard Algorithm Name Documentation, http:/
docs.oracle.com/javase/7/docs/technotes/guides/security/StandardNames.html Oracle.

[RFC 3852]
R. Housley, Cryptographic Message Syntax (CMS), https://www.ietf.org/rfc/rfc3852.txt |ETF
(Internet Engineering Task Force), July 2004.

[RFC 5246]
T. Dierks, E. Rescorla, The Transport Layer Security (TLS) Protocol, https://www.ietf.org/rfc/
rfc5246.txt |IETF (Internet Engineering Task Force), August 2008.

[RFC 5280]
D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, W. Polk, Infernet X.509 Public Key
Infrastructure Certificate and Certificate Revocation List (CRL) Profile, https://www.ietf.org/rfc/
rfc5280.txt IETF (Internet Engineering Task Force), May 2008.

[RFC 6931]
D. Eastlake, Additional XML Security Uniform Resource Identifiers (URIs), https://www.ietf.org/
rfc/rfc6931.txt IETF (Internet Engineering Task Force), April 2013.

[RFC 7516]
M. Jones, J. Hildebrand, JSON Web Encryption (JWE), https://www.ietf.org/rfc/rfc7516.txt IETF
(Internet Engineering Task Force), May 2015.

[RFC 7517]
M. Jones, JSON Web Key (JWK)), https://www.ietf.org/rfc/rfc7517.txt IETF (Internet
Engineering Task Force), May 2015.

localsig-v1.0-csprd04 22 February 2018
Standards Track Work Product Copyright © OASIS Open 2018. All Rights Reserved. Page 8 of 69

https://www.bsi.bund.de/EN/Publications/TechnicalGuidelines/tr02102/tr02102_node.html
https://www.bsi.bund.de/EN/Publications/TechnicalGuidelines/tr02102/tr02102_node.html
http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.pdf
http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.pdf
https://www.oasis-open.org/committees/download.php/60049/ChipGateway-Specification-OASIS.pdf
https://www.oasis-open.org/committees/download.php/60049/ChipGateway-Specification-OASIS.pdf
https://www.eid.as
http://data.europa.eu/eli/reg/2014/910/oj
http://docs.oracle.com/javase/7/docs/technotes/guides/security/StandardNames.html
http://docs.oracle.com/javase/7/docs/technotes/guides/security/StandardNames.html
https://www.ietf.org/rfc/rfc3852.txt
https://www.ietf.org/rfc/rfc5246.txt
https://www.ietf.org/rfc/rfc5246.txt
https://www.ietf.org/rfc/rfc5280.txt
https://www.ietf.org/rfc/rfc5280.txt
https://www.ietf.org/rfc/rfc6931.txt
https://www.ietf.org/rfc/rfc6931.txt
https://www.ietf.org/rfc/rfc7516.txt
https://www.ietf.org/rfc/rfc7517.txt

[PKCS#1 version 2.1]
Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography Specifications Version 2.1,
IETF RFC 3447, February 2003. http://tools.ietf.org/html/rfc3447

[PKCS#1 version 2.2]
PKCS#1 v2.2: RSA Cryptography Standard, RSA Laboratories, October 27, 2012. http./
www.rsa.com/rsalabs/pkcs/files/h11300-wp-pkcs-1v2-2-rsa-cryptography-standard.pdf

[PKCS#11-CM]
PKCS #11 Cryptographic Token Interface Current Mechanisms Specification, Susan Gleeson
and Chris Zimman (ed.), http://docs.oasis-open.org/pkcs11/pkcs11-curr/v2.40/pkcs11-curr-
v2.40.pdf OASIS Standard, December 23, 2014.

[draft-larmouth-oid-iri-04]
J. Larmouth, An IRI/URI Namespace for International Object Identifiers (OIDs), htip://
tools.ietf.org/id/draft-larmouth-oid-iri-04.txt 1IETF (Internet Engineering Task Force) DRAFT,
July 24, 2005.

[XML-Algs]
W3C: XML Security Algorithm Cross-Reference, htips://www.w3.0rg/TR/xmlsec-algorithms/
W3C Working Group Note 11, April 2013.

1.5 Namespaces

The structures described in this specification are contained in the schema file which is part of
[LocalSigXSD]. The xml schema definitions present within this document are copy of the XML schema
file and must be considered as informative text, and that in case of discrepancy, definitions within the
XML schema prevail. The schema is associated with the following XML namespace:

http://docs.oasis-open.org/dss-x/ns/localsig

Conventional XML namespace prefixes are used in this document:

The prefix xs: stands for the W3C XML Schema namespace [XML-Schema].

The prefix ds: stands for the W3C XML Signature namespace [XMLSig].

The prefix dss: stands for the OASIS DSS core namespace [DSSCore].

The prefix Llocalsig: stands for the OASIS DSS-X local signature computation profile namespace.

Applications MAY use different namespaces, and MAY use whatever namespace defaulting/scoping
conventions they desire, as long as they are compliant with the Namespace in XML specification [XML-
ns].

1.6 Requirements (Non-Normative)

This section is informative. The overall goal of the local signature computation profile is to extend the
OASIS Digital Signature Service (DSS) protocol such that an electronic signature can be created by
means of a (qualified) signature-creation device under the direct control of an end user. This section
lists the requirements for the local signature computation profile.

It is possible to use a (qualified) signature-creation device (using protocols such as [ISO/IEC 7816],
[ISO 24727] and [CEN 15480]) at a different location from the OASIS DSS server.

It is possible to specify a digest method (algorithm) to be used in the (qualified) signature-creation
process.

It is possible to obtain the digest for a given input documents (and document type) and given digest
method (algorithm).

localsig-v1.0-csprd04 22 February 2018
Standards Track Work Product Copyright © OASIS Open 2018. All Rights Reserved. Page 9 of 69

http://tools.ietf.org/html/rfc3447
http://www.rsa.com/rsalabs/pkcs/files/h11300-wp-pkcs-1v2-2-rsa-cryptography-standard.pdf
http://www.rsa.com/rsalabs/pkcs/files/h11300-wp-pkcs-1v2-2-rsa-cryptography-standard.pdf
http://docs.oasis-open.org/pkcs11/pkcs11-curr/v2.40/pkcs11-curr-v2.40.pdf
http://docs.oasis-open.org/pkcs11/pkcs11-curr/v2.40/pkcs11-curr-v2.40.pdf
http://tools.ietf.org/id/draft-larmouth-oid-iri-04.txt
http://tools.ietf.org/id/draft-larmouth-oid-iri-04.txt
https://www.w3.org/TR/xmlsec-algorithms/
https://www.w3.org/TR/xmlsec-algorithms/

1.7 Design Rationale (Non-Normative)

1.7.1 Introduction

This section is informative. The DSS protocol assumes a client-server relationship. The client initiates
a SignRequest (1) and the server creates the electronic signature for the input document (2, 3 and 4).
The resulting electronic signature (and whenever requested the document) is sent back to the client in
the SignResponse (5). This is shown in the figure below.

Figure 1. A client and server that implement the OASIS DSS protocol

</>

Q)

<dss:SignRequest>

Calculate
@ Digest
Signature

Creation ¢ °
Device

Server
@ Sign Digest

Process
Signature

®

<dss:SignResponse>

Note that the signature-creation device (SCD) is (by default) part of the server that implements the
OASIS DSS protocol.

Such an architecture is applicable in case the end users do not own a signature-creation device (SCD).
However, large-scale signing token deployments increase the use of (qualified) signature-creation
devices that are owned by and in the proximity of an end user. Examples are:

+ National elD cards or European Citizen Card [ECC], containing a qualified signature-creation device
([eIDAS]).

+ Mobile devices, where the SIM card can be used as a qualified signature-creation device (QSCD)
[M-COMM].

In such scenarios it is still interesting to keep a OASIS DSS in place for several reasons:

+ Despite the fact that every person owns a token with signing capability, he/she might not have
the appropriate software installed on the system for the creation of electronic signatures. It might
be easier to maintain a lightweight solution, for instance by means of an applet, instead of a full
blown token middleware that has to be installed on every participating client's system. The diversity
among the client platforms is also easier to manage from a centralized service instead of distributing
token middleware to all participating client systems. Furthermore, managing the configuration of the
signature policy to be used for the creation of electronic signatures within a certain context might
be easier using a centralized service.

« Transforming a business workflow that is based on paper-documents into a digital equivalent,
requires a sub-process for the creation (and validation) of electronic signatures on digital documents.
Such a sub-process might be available as a service that can be easily integrated with a business
application.

+ From a technical point of view it might be easier to maintain different OASIS Digital Signature
Services, each specialized in handling a specific signature and token types. E.g. tokens per vendor,
or per country.

localsig-v1.0-csprd04 22 February 2018
Standards Track Work Product Copyright © OASIS Open 2018. All Rights Reserved. Page 10 of 69

This profile extends the OASIS DSS protocol such that end users can present their own (qualified)
signature-creation device. Consequently, the device itself is not located at the server that implements
the DSS protocol.

Although the (qualified) signature-creation device is under the control of the end user, the location of
the device can be local or remote. The following terminology is used:

+ if the (qualified) signature-creation device is in the proximity of the end user, it is referred to as a
local (qualified) signature-creation device, abbreviated to LSCD,;

+ if the (qualified) signature-creation device is owned by the end user and stored at a remote site (still
under the direct control of the end user, but not in the proximity of the end user), it is referred to as
a remote (qualified) signature-creation device, abbreviated to RSCD.

Note that from the viewpoint of the Digital Signature Service, both LSCD and RSCD have to be treated
as remote devices.

The following diagram visualizes the (logical) relationship between the LSCD (or RSCD) and the Digital
Signature Service.

Figure 2. Local and remote device for signature creation

Sign Digest

LOCAL
(Secure) QF b -
Signature e — -)

Creation Device = Sign Digest

REMOTE

(Secure) o &
7/ Signature
Creation Device

Server

Process
Signature

<dss:SignResponse>

To re-use the existing DSS core protocol functionality as much as possible, the Digital Signature Service
can delegate the computation of the digital signature value as depicted below. It assumes that the LSCD
or RSCD implements a basic DSS protocol to serve the sign requests of a digest; only the basic signature
operations are assumed (no on-line certificate validation, timestamp requests, etcetera).

localsig-v1.0-csprd04 22 February 2018
Standards Track Work Product Copyright © OASIS Open 2018. All Rights Reserved. Page 11 of 69

Figure 3. Delegation of the signature creation to the LSCD or RSCD

®

<dss:SignRequest>
with a
<dss:Document>

®

<dss:SignRequest>
with only a
<dss:DocumentHash>

Calculate

@ Digest

Server

LSCD /RSCD
Sign Digest

@ Signature

Creation /7
Device

Process
Signature

@ ®

<dss:SignResponse> <dss:SignResponse>
with a with a
<dss:DocumentWithSignature> <dss:SignatureObject>

In general, the LSCD or RSCD have limited software and performance capabilities and hence will be
supported by a OASIS DSS compliant service to handle the complexities of the (qualified) signature-
creation, electronic signature processing and document manipulation. Furthermore, in general, the
LSCD or RSCD might not be accessible through a DSS core protocol.

The LSCD or RSCD will be able to serve a request to sign a given digest. It is assumed that the interface
to the actual (S)SCD is accessed through one of the possible standards, such as the APDU (ISO 7816)
or the IFD-Client (ISO/IEC 24727 / CEN 15480) standard. It shows that the profile does not depend on
the actual interface of the (S)SCD. It is assumed that there will be some middleware that abstracts from
the vendor-specific implementation of the (S)SCD.

The introduction of an LSCD or RSCD can have different use cases, depending on the technology as
well. For instance, is the LSCD integrated in a mobile device and is the DSS client running on different
platform? Or is the LSCD connected to the DSS client? The next section present a number of use cases
that are considered for this profile.

1.7.2 Use Cases

The basic sequence within the use cases is as follows. A user initiates a signing action by means of
a client application. The client application initiates a SignRequest to the Digital Signature Service
(1). The Digital Signature Service calculates the digest (2), obtains a digital signature value by some
mechanism (3), creates the electronic signature from the digital signature value and processes it
according to the request (4). The resulting electronic signature (and whenever requested the document)
is sent back to the client in the SignResponse (5).

1.7.2.1 Use Case 1

This use case assumes a thick or thin client platform. The (qualified) signature-creation device can be a
smartcard connected to the client platform by means of a smartcard reader. A web browser is used to let
the end user access the web application, for instance a Document Management System (DMS). The web
application (for instance a DMS) has implemented the DSS protocol to allow its users to sign documents.
To sign (a) document(s), the user selects a document from wihin the web application (for instance
a DMS) and the web application sends the document(s) to the DSS server; the DSS server obtains
(somehow) the digital signature value computed by the smartcard. Note that the DSS server cannot
access the smartcard reader without additional mechanisms; proposals to solve this are presented in
Section Section 1.7.3, “Proposed Solutions”.

localsig-v1.0-csprd04 22 February 2018
Standards Track Work Product Copyright © OASIS Open 2018. All Rights Reserved. Page 12 of 69

Figure 4. A smartcard connected to a desktop

Smartcard
Reader
A < :

Sign

Digest E
oo
@ Webbrowser

=S
Thick or Thin Client - @

<dss:SignRequest>

)

®

<dss:SignResponse>

Calculate

@ Digest
DSS

Server

@ Process

Signature

Webapplication

1.7.2.2 Use Case 2

This use case assumes the use of a mobile phone that contains a (qualified) signature-creation device.
The mobile phone is connected to the mobile operator infrastructure. A web browser is used to let the
end user access the client application. The client application has implemented the DSS protocol. To
sign (a) document(s), the client sends the document(s) to the DSS server; the DSS server obtains the
digital signature value computed by the smartcard in the mobile phone. The DSS server connects to the
mobile phone which requests the user to sign (the provided digest).

This use case resembles the ETSI standard for Mobile Commerce (M-COMM) or Mobile Signature
Service [M-COMM].

Figure 5. A mobile phone for signature creation

Sign
Digest @
: n =< ~ | f Mobile Phone
H 4 . Operator
Mobile Phone

eoe
Webbrowser N
\
\
\

=
Thick or Thin Client

Calculate

@ Digest
DSS

Server

@ Process

Signature

Webapplication

<dss:SignResponse>

1.7.2.3 Use Case 3

This use case assumes the use of a smartphone that contains a (qualified) signature-creation device.
The smartphone contains an app to sign (a) document(s), although the actual electronic signature
processing functionality is delegated to a DSS server. The app has implemented the DSS protocol and
the use of the (qualified) signature-creation device in the smartphone. Note that the DSS server cannot
access the (qualified) signature-creation device without additional mechanisms; proposals to solve this
are presented in Section Section 1.7.3, “Proposed Solutions”.

localsig-v1.0-csprd04 22 February 2018
Standards Track Work Product Copyright © OASIS Open 2018. All Rights Reserved. Page 13 of 69

Figure 6. A smartphone as a DSS client

Document
Signing
App

®

<dss:SignRequest>

Calculate

@ Digest
DSS

Server

Smartphone

Process
Signature

<dss:SignResponse>

1.7.2.4 Use Case 4

This use case is a generalisation of use case 2. It assumes the use of a mobile device that contains
a (qualified) signature-creation device, in the proximity of the end user. If the mobile device does not
contain a (qualified) signature-creation device it is assumed that it is located at the "SCD Service". The
mobile device can have more capabilities than a mobile phone. For instance, a smartphone with an
internet connection and an app to interact with the "SCD Service".

Figure 7. Signature creation delegated to another service

& Signing 3
: App

Smartphone

CXX]

R Webbrowser
.4§ ‘

B |
-
Thick or Thin Client '

Webapplication

i/

)

®

<dss:SignRequest>

Calculate
Digest

@

®

<dss:SignRequest>
with only a
<dss:DocumentHash>

Server

3 Process
@ signature
<dss:SignResponse> <dss:SignResponse>
with a

<dss:SignatureObject>

To sign (a) document(s), the client sends the document(s) to the DSS server. The DSS server delegates
the actual computation of the digital signature value to another service: the digest is sent to the "SCD
Service", with possibly (but not necessarily) a <dss:SignRequest> (A). The "SCD Service" is able to
deliver a digital signature value, based on the interaction with the mobile device by means of a certain
protocol.

If the smartphone contains a (qualified) signature-creation device, it receives or retrieves the digest from
the "SCD Service" and computes the digital signature value for the digest (3), after which the digital

localsig-v1.0-csprd04 22 February 2018
Standards Track Work Product Copyright © OASIS Open 2018. All Rights Reserved. Page 14 of 69

signature value is returned to the "SCD Service". The "SCD Service" responds with possibly (but not
necessarily) a <dss:SignResponse> (B) to the DSS server.

Note that some secure correlation is required between the initial user request and the interaction with
the smartphone.

This use case can make use of the ETSI standard for Mobile Commerce (M-COMM) or Mobile Signature
Service [M-COMM]

1.7.3 Proposed Solutions
This section describes three possible technical solutions for different use cases.

+ A User Agent at the client is introduced for use case 1 to access the (qualified) signature-creation
device (connected to the client platform) for the computation of the digital signature value. This case
is similar to the special case in which the client is a web-application and the User Agent is a localhost-
based ChipGateway.

+ A two-step approach is introduced for use case 1 and use case 3: the Digital Signature Service
returns the document digest in the first step. After the client has computed the digital signature value
for the document digest, it is returned to the Digital Signature Service in the second step (to enrich
the digital signature value, for instance with a time-stamp and/or revocation information).

+ A third-party is introduced for use case 2 and use case 4: the Digital Signature Service delegates
the computation of the digital signature value to a third-party. The third-party has some means to
contact the (secure) signature-creation device of the end user.

1.7.3.1 Introduction of a User Agent

To provide the Digital Signature Service access to a LSCD, a User Agent is introduced. The User Agent
will provide access to the LSCD. The DSS client communicates with the DSS server via the User Agent;
there is no direct communication between the DSS client and DSS server. The figure below illustrates
how this is done.

Figure 8. A LSCD used by the DSS server

Sign Digest
LOCAL

(Secure) P
@ Signature

Creation Device

@ <dss:SignRequest>

HTTP Transportbinding

Calculate

@ Digest

User
Server

Agent

\/ <dss:SignResponse> i </; ?

Process
Signature

The order of actions is as follows:
+ The DSS client sends the SignRequest to the User Agent.

+ The User Agent sends the SignRequest to the DSS server (1). The DSS server has obtained a
session (connection) with the User Agent.

localsig-v1.0-csprd04 22 February 2018
Standards Track Work Product Copyright © OASIS Open 2018. All Rights Reserved. Page 15 of 69

The DSS server calculates the digest (2) for the input document.

In order to have the digest signed, an interaction between the User Agent and the LSCD (3) is
required. This interaction will be initated by the DSS server, by means of the session (connection)
that has been obtained earlier. This profile does not specify how the User Agent obtains the digital
signature value: it is left to the implementers.

Once the digital signature value has been obtained, the DSS server creates and processes (4) the
electronic signature according the the request, and the SignResponse is built. (If requested, the
electronic signature is embedded into the document.)

The DSS server sends the SignResponse to the User Agent (5)

The User Agent sends the SignResponse to the DSS client.

For achieving this User Agent approach a transport binding needs to be introduced:

A HTTP transport binding is defined for the use of a User Agent and HTML forms. The HTML form
initiates a HTTP POST (from within the User Agent) to the specified action location (either the DSS
server or the DSS client). This transport binding is referred to as a WEB FORM transport binding
and can be found in Section 4.1, “WEB FORM Transport Binding”.

1.7.3.2 Introduction of a Two-Step Approach

The OASIS DSS protocol could be split into two related request/response pairs, such that the client can
obtain a digest of the document in the FIRST request/response. The client is able to access the LSCD.
The client interacts with the LSCD to compute the digital signature value and sends it back to the DSS
server by means of the SECOND request/response.

Figure 9. An LSCD used by the DSS client.

Sign Digest
LOCAL

(Secure) 4
@ Signature

Creation Device

@ <dss:SignRequest>

<dss:SignResponse> @

Client)

Server

@ Process

Signature

@ <dss:SignRequest>

@

<dss:SignResponse>

</

The order of actions is as follows:

The first step consists of a SignRequest (1) - SignResponse (3) pair where the SignResponse only
contains the digest, calculated by the Digital Signature Service (2).

This digest is used by the client application to compute the digital signature value (4) by means of
the (secure) signature-creation device at the client.

The second step consist of a SignRequest (5) - SignResponse (7) pair where the SignRequest
contains the digital signature value. The Digital Signature Service builts and processes (6) the

localsig-v1.0-csprd04 22 February 2018
Standards Track Work Product Copyright © OASIS Open 2018. All Rights Reserved. Page 16 of 69

electronic signature based on the digital signature value and the request received. The result is sent
to the client with the SignResponse (7).

Note that no assumptions are made about the actual connection or communication between the client
and LSCD. (Although the core DSS protocol could be used to send a <dss:DocumentHash> to the
LSCD and to obtain a <SignatureObject>.) The only assumption is that the client that implements
the (client-side of the) DSS protocol is capable of using the LSCD.

For achieving this two-step approach some Optionallnputs and OptionalOutputs elements need to be
introduced for the SignRequest or SignResponse:

1. Anoptional output <ds : DocumentHash> element in the SignResponse. After the DSS server has
received a SignRequest it calculates the digest of the document. The SignResponse contains the
<dss:DocumentHash> value.

2. Anoptional input <dss:SignatureObject> element in the second SignRequest. After the DSS
client has received the digest as a result of the first SignRequest, the LSCD computes the
digital signature value and the client incorporates it to the aforementioned SignRequest using the
<dss:SignatureObject> element. The DSS server will perform the necessary operations for
building the final electronic signature, for incorporating it within the corresponding document if
required, and for returning it within the corresponding SignResponse.

3. Anoptional output (resp. input) <localsig:CorrelationID> element in the first SignResponse
(resp. second SignRequest). The correlation identifier is used to relate the first and second
SignRequest/SignResponse pairs.

1.7.3.3 Introduction of a Third-Party

The Digital Signature Service delegates the computation of the digital signature value to a third-party for
users with a mobile device that contains a (secure) signature creation device (in that case, the mobile
device contains the LSCD). If the mobile device does not contain a (secure) signature-creation device
it is assumed that the third-party provides access to the RSCD on behalf of the end user by means of
the mobile device. See for instance Section 1.7.2.2, “Use Case 2” and Section 1.7.2.4, “Use Case 4” .

Figure 10. Signature creation delegated to a third-party.

Mobile Device

Sign Digest
LocAL Mobile Channel
@ (Secure) 4P Third-Pa rty
Signature
Creation Device @

)

®

<dss:SignRequest>

Calculate
@ Digest

Server

@ Process

Signature

®

<dss:SignResponse>

Because the end user has to be assured that it signs the correct request, an additional mechanism is
introduced: a challenge code. The challenge code is a kind of 'one-time-password': it is different for
every session. The challenge code will be shown at the client screen as well as the screen of the mobile
device (the DSS server sends the challenge code to the third-party). The end user compares the codes
and if they are the same confirms the sign request.

localsig-v1.0-csprd04 22 February 2018
Standards Track Work Product Copyright © OASIS Open 2018. All Rights Reserved. Page 17 of 69

Note. The challenge code could even be used for a kind of challenge-response authentication by the
Digital Signature Service. If the SignRequest also contains a response code, it is expected that the end
user enters that code at the mobile device. The electronic signature is only created and processed (by
the Digital Signature Service) if the response codes match. Note that the challenge-response does not
protect the end user from misuse of the signature by the third-party. (But the signature is bound to the
document by means of a unique hash value, making it useless for other documents.)

The DSS client is able to create the challenge (and optionally a response) code, unique for every session,
and will display the code(s) onto the screen of the client.

The order of actions is as follows:

+ The client sends a SignRequest, which also contains a challenge code, to the Digital Signature
Service (1).

+ The Digital Signature Service calculates the digest of the document (2) and delegates the
computation of the digital signature value to a third-party (3), for instance a Mobile Signature Service.

+ The third-party sends the request to the mobile device of the end user. The end user has to compare
the challenge code with the code that is shown on the mobile device (as part of the information that
is sent from the third-party to the mobile device). Once the end user has confirmed the code, the
mobile device computes the digital signature value (4) and sends it back to the third-party. The third-
party returns the digital signature value to the Digital Signature Service.

+ The Digital Signature Service creates and processes the electronic signature (5) based on the digital
signature value and the request received. The resulting electronic signature is returned to the client
in the SignResponse (6).

The protocol between the Digital Signature Service and third-party is not specified by this profile, but
the DSS protocol can be used for this as well, see for instance Figure 3, “Delegation of the signature
creation to the LSCD or RSCD”. (It is assumed that the challenge code is included in the request to
the third-party.)

Note that information is required about the identity of the end user to enable the third-
party to communicate with the appropriate mobile device. It is assumed that the element
<dss:ClaimedIdentity> is sufficient for this purpose.

For achieving this third-party approach some Optionallnputs elements need to be introduced for the
SignRequest:

1. Anoptionalinput<localsig:ChallengeCode> elementinthe SignRequest. The challenge code
is shown at the screen of the mobile device as well as the screen of the client.

2. Anoptional input <localsig:ResponseCode> element in the SignRequest. The response code
is entered at the mobile device after which it is sent back to the Digital Signature Service by the
third-party.

1.7.3.4 Introduction of a ChipGateway

The ChipGateway Protocol defined in the present document has been developed in a joint approach by
LuxTrust S.A. (Luxembourg) and ecsec GmbH (Germany) based on the “elD-Client” specification [BSI-
TR-03124] of the German Federal Office for Information Security and related standards. The protocol
specification [CGW-Contribution] was contributed to OASIS Digital Signature Services eXtended
(DSS-X) TC to foster the development of an open ecosystem for trust services for electronic transactions
as envisioned by the eIDAS-Regulation (EU) Nr. 910/2014 [eIDAS].

localsig-v1.0-csprd04 22 February 2018
Standards Track Work Product Copyright © OASIS Open 2018. All Rights Reserved. Page 18 of 69

Figure 11. Signature creation via ChipGateway

EstablishSession

<dss:SignRequest>

<dss:SignResponse>

Sign Digest @
LOCAL
(Secure) | © .. @
Signature

Creation Device . @ @

<dss:SignResponse>

N

@ http://localhost:24727/activate? & &

LSCD llllll
Gateway Q)
@ sz
@ LG — S : c £
LG — S : <lsp:GetCommand> / command, asrequested by Server, including onnec

LG: <lsp:ListTokensRequest>,followed by <lsp:ListTokensResponse> A
LG: <lsp:ListCertificatesRequest>, followedby<lsp:ListCertificatesResponse> List

2]
1

LG: <lsp:SignRequest>,followed by <1sp:SignResponse> A
LG: <lsp:Terminate>,followed by redirect to REF Sign

®
5

1

The order of actions in Figure 11, “Signature creation via ChipGateway” is as follows:

1.

In the first step, the Client initiates the protocol flow by sending a SignRequest to the Server,
which contains the optional input EstablishSession as specified in Section 3.4, “ChipGateway”.

The Server returns a SignResponse, which contains the ServerAddress (depicted as URL in
Figure 11, “Signature creation via ChipGateway”) and a SessionIdentifier (depicted as SID
in Figure 11, “Signature creation via ChipGateway”).

In the this step the Client activates the ChipGateway and tells it to establish a connection to the
Server at URL in order to perform the ChipGateway Protocol. This activation may be performed
by sending an activation link via the localhost-interface of the ChipGateway via a GET-call with
corresponding query-parameters. See Section 3.4.3.1, “ChipGateway Activation via localhost link”
for details.

If the activation call was well formed, the ChipGateway immediately returns and performs a redirect
to therefresh address (depicted as REF in Figure 11, “Signature creation via ChipGateway”).

Now the ChipGateway and the Server establish a connection using HelloRequest,
HelloResponse and GetCommand, as specified in Section 3.4, “ChipGateway” .

Using the established connection, the Client may send ListTokensRequest and
ListCertificatesRequest Via the Server to the ChipGateway in order to determine the
available signature tokens and certificates.

Next the Client sends another signRequest, which contains the document to be signed, the
SessionIdentifier (SID) obtained in step (2) and the KeySelector, which specifies the
signing key.

The Server sends a signRequest With the data to be signed to the ChipGateway and receives
back the raw cryptographic signature, which may need to be inserted into the signed document.

localsig-v1.0-csprd04 22 February 2018
Standards Track Work Product Copyright © OASIS Open 2018. All Rights Reserved. Page 19 of 69

=l

®l

=

=l

=

®

ernstjan
Sticky Note
The refresh address is the address specified by REF (?)

ernstjan
Sticky Note
REF = URL ??

ernstjan
Sticky Note
There a 2 different interactions with the server: <1,2> and <7,9>. They should be depicted as such. Throughout this profile document one single interaction (arrow:request + arrow:response) is used only once. Here are two different interactions: 1 and 7 (similar to the two-step approach).

ernstjan
Sticky Note
What do the dots mean between the Client and the Gateway? (just the dots...). I think they can be left out.

ernstjan
Sticky Note
What do these dots mean (with arrows)? Is there no 'real' connection between the Gateway and the LSCD? (I think there is :-)

ernstjan
Highlight

ernstjan
Sticky Note
Why 'via the Server'? The client has a connection to the Gateway.

ernstjan
Highlight

ernstjan
Sticky Note
Why should the server get a list of possible certificates? What if you want to keep it private?

ernstjan
Highlight

ernstjan
Sticky Note
I assume the hash? So, a DocumentHash?

ernstjan
Highlight

ernstjan
Sticky Note
Why do we need EstablishSession? If you don't provide the document, it is already clear that a session is requested (the second request/response contains a session, which also makes it clear that there it is a second request. So, without a document and without a SessionId, it can only be a request to establish a session.

9. The Server finally answers with a SignResponse, which in case of success contains the signed
document.

localsig-v1.0-csprd04 22 February 2018
Standards Track Work Product Copyright © OASIS Open 2018. All Rights Reserved. Page 20 of 69

2 Profile Features
2.1 Identifier

The attribute Profile MUST have the value:

http://docs.oasis-open.org/dss-x/ns/localsig

2.2 Scope

This profile extends the OASIS DSS signing functionality [DSSCore] such that end users can bring (use)
their own (secure) signature-creation device. Such a device is referrenced as local (secure) signature-
creation device and is abbreviated to LSCD.

(This profile does not explore the use of an RSCD (see Figure 2, “Local and remote device for signature
creation”).

2.3 Relationship to Other Profiles

The profile in this document is based on the [DSSCore].

This profile provides means for the explicit management of local signature computations and other
existing profiles, and as such, it may be used in conjunction with these specifications.

localsig-v1.0-csprd04 22 February 2018
Standards Track Work Product Copyright © OASIS Open 2018. All Rights Reserved. Page 21 of 69

3 Profile of Signing Protocol
3.1 User Agent

This clause enables the DSS client to obtain an electronic signature or signed document using a (secure)
signature-creation device from an end user in a single interaction with the Digital Signature Service
by means of a HTTP User Agent. The HTTP User Agent is responsible for the creation of the digital
signature value using a (secure) signature-creation device at the client.

The HTTP User Agent MUST be able to access the (secure) signature-creation device to create the
digital signature value.

A transport binding is required that creates a session between the Digital Signature Service and the
HTTP User Agent agent, see Section 4.1, “WEB FORM Transport Binding”.

The Digital Signature Service uses the session with the HTTP User Agent to obtain the digital signature
value from the HTTP User Agent. How this functionality is implemented is not specified and is not part of
this profile: it depends on the capabilities of the HTTP User Agent and the client platform (e.g. through
the use of a Java Applet in the web browser and a PKCS#11 device driver at the client platform).

3.1.1 Element <dss:SignRequest>

This clause profiles the <dss:SignRequest> element.

The [DSSCore] attribute Profile (Section 3.1) MUST have the value:
http://docs.oasis-open.org/dss-x/ns/localsig

Whenever needed, the [DSSCore] element <dss:AdditionalProfile> MAY be used to specify
additional profiles for the proper creation of the resulting document(s) by the Digital Signature Service.
The interpretation of the additional profile(s) is determined by the corresponding specification(s).

3.1.1.1 Element <dss:Optionallnputs>
This clause profiles the use of Optional Input elements.
3.1.1.1.1 Element <dss:ServicePolicy>

The [DSSCore] element <dss:ServicePolicy> (Section 2.8.1) MUST be present and MUST have
the value:

http://docs.oasis-open.org/dss-x/ns/localsig/user-agent

This policy instructs the Digital Signature Service to initiate the interaction with the User Agent to access
the (secure) signature-creation device of the end user.

3.1.1.1.2 Element <ds:DigestMethod>

The [XMLSig] element <ds : DigestMethod> (Section 4.3.3.5) MAY be present to specify which digest
method has to be used by the Digital Signature Service.

3.1.2 Element <dss:SignResponse>

This clause profiles the <dss:SignResponse> element.

The <dss:SignResponse> contains (in according to the [DSSCore] specification, Section 3.2) either
the electronic signature or the signed document, or an error message.

localsig-v1.0-csprd04 22 February 2018
Standards Track Work Product Copyright © OASIS Open 2018. All Rights Reserved. Page 22 of 69

3.1.2.1 Element <dss:Result>

In case the end user cancelled the signing operation, the Digital Signature Service MUST return a
<dss:ResultMajor> with the value RequesterError and a <dss:ResultMinor> with the value:

urn:oasis:names:tc:dss-x:profiles:localsig:user-cancelled

In case the Digital Signature Service detects a problem with the client runtime environment, the service
returns a <dss:ResultMajor> with the value RequesterError and a <dss:ResultMinor> with
the value:

urn:oasis:names:tc:dss-x:profiles:localsig:client-runtime-error

3.2 Two-Step Approach

This clause enables the client to obtain a signed document in two steps; the client MUST create of the
digital signature value using a (secure) signature-creation device based on the document digest that is
received from the Digital Signature Service. The interaction with the Digital Signature Service involves
two <dss:SignRequest> requests:

+ The FIRST <dss:SignRequest> MUST initiate the process by sending the document to the
Digital Signature Service. (This is the first step in the two-step approach.) The Digital Signature
Service MUST respond with the FIRST <dss:SignResponse>: it MUST contain the digest of the
document. The Digital Signature Service MUST postpone processing of the document until the
<dss:SignatureObject> is received in the SECOND <dss:SignRequest>.

+ The SECOND <dss:SignRequest> MUST be sent to finalize the process by sending the
<dss:SignatureObject> to the Digital Signature Service. (This is the second step in the two-
step approach.) The Digital Signature Service MUST resume processing and MUST respond with
the SECOND (and final) <dss: SignResponse> which contains the electronic signature or signed
document, depending what has been requested.

3.2.1 Element <dss:SignRequest>

This clause profiles the <dss: SignRequest> element.

The [DSSCore] attribute Profile (Section 3.1) MUST have the value:
http://docs.oasis-open.org/dss-x/ns/localsig

Whenever needed, the [DSSCore] element <dss:AdditionalProfile> MAY be used to specify
additional profiles for the proper creation of the resulting document(s) by the Digital Signature Service.
The interpretation of the additional profile(s) is determined by the corresponding specification(s).

The [DSSCore] element <dss:InputDocuments> (Section 2.4) MUST be present in the FIRST
request and MAY be present in the SECOND request. If present in the SECOND request, it MUST
contain the document as used in the FIRST request.

3.2.1.1 Element <dss:Optionallnputs>
This clause profiles Optional Input elements.
3.2.1.1.1 Element <dss:ServicePolicy>

The [DSSCore] element <dss:ServicePolicy> (Section 2.8.1) MUST be present and MUST have
the value:

localsig-v1.0-csprd04 22 February 2018
Standards Track Work Product Copyright © OASIS Open 2018. All Rights Reserved. Page 23 of 69

http://docs.oasis-open.org/dss-x/ns/localsig/two-step-approach

This policy instructs the Digital Signature Service that two request/response pairs are used to obtain
the digital signature value from the (secure) signature-creation device of the end user.

3.2.1.1.2 Element <localsig:RequestDocumentHash>

The new element <localsig:RequestDocumentHash> MUST be present in the FIRST request. The
type of the element is defined as follows (taken from [LocalSigXSD]):

<xs:element name="RequestDocumentHash">
<xs:complexType>
<xs:sequence>
<xs:element
minOccurs="0" maxOccurs="1"
ref="ds:DigestMethod" />
</xs:sequence>
<xs:attribute
name="MaintainRequestState"
use="optional"
type="xs:boolean" />
</xs:complexType>
</xs:element>

The element <localsig:RequestDocumentHash> instructs the Digital Signature Service to return
the digest of the document and to postpone further processing.

The attribute MaintainRequestState MAY be used to instruct the Digital Signature Service to
maintain the state of the request, until the SECOND request is received or a certain predefined timeout
has been reached (the timeout is determined by the Digital Signature Service). If the attribute is not
specified, the assumed value is false. If the attribute MaintainRequestStateis notused or false,
then the SECOND request MUST contain the same document as specified in the FIRST request.

The [XMLSig] element <ds:DigestMethod> (Section 4.3.3.5) MAY be used to instruct the Digital
Signature Service to use the specified type of digest method. If no method is specified, the Digital
Signature Service will use a default digest method.

Note. The state is only useful (i) in case the document digest cannot be easily re-created, for instance
if a signature has to be incorporated into a PDF document, or (ii) the document has to be transferred
only once.

3.2.1.1.3 Element <dss:SignatureObject>

The [DSSCore] element <dss:SignatureObject> (Section 2.5) MUST be used in the SECOND
request to provide the digital signature value, obtained from the (secure) signature-creation device at
the client. The Digital Signature Service creates and processes the electronic signature based on the
<dss:SignatureObject> and the request.

A <dss:Base64Signature> element MUST be used for the digital signature value together with a
specified value for the type attribute. For OID's a urn according to [RFC 3061] and [draft-larmouth-
oid-iri-04] MAY be used.

3.2.1.1.4 Element <localsig:Correlation|D>

The new element <localsig:CorrelationID> MUST only be used in the SECOND request if and
only if the FIRST response contained the element <localsig:CorrelationID>. (Their value MUST
be the same.)

localsig-v1.0-csprd04 22 February 2018
Standards Track Work Product Copyright © OASIS Open 2018. All Rights Reserved. Page 24 of 69

The type of the element is defined as follows (taken from [LocalSigXSD]):

<xs:element name="CorrelationID" type="xs:NCName"/>

3.2.2 Element <dss:SignResponse>
This clause profiles the <dss: SignResponse> element.
3.2.2.1 Element <dss:Result>

In response to a successful processing of a <dss:SignRequest> that specified the element
<localsig:RequestDocumentHash>, the <dss:ResultMajor> contains the value Success and
the <dss:ResultMinor> the value:

urn:oasis:names:tc:dss-x:profiles:localsig:document-hash

In response to a successful processing of a <dss:SignRequest> that specified the element
<localsig:SignatureObject>, the <dss:ResultMajor> and <dss:ResultMinor> follow the
[DSSCore] specification, Section 2.6.

3.2.2.2 Element <dss:OptionalOutputs>
This profile defines the Optional Output elements.
3.2.2.2.1 Element <dss:DocumentHash>

The [DSSCore] element <dss :DocumentHash> (Section 2.4.4) MUST be returned in response to a
<dss:SignRequest> that specified the element <localsig:RequestDocumentHash>. (Note that
[DSSCore] specifies the use of this element as part of the Optionallnputs.)

The client uses the document digest for further processing by the (secure) signature-creation device.
3.2.2.2.2 Element <localsig:Correlation|D>

The new element <localsig:CorrelationID> MUST be returned in response to a
<dss:SignRequest> if and only if the element <localsig:RequestDocumentHash> element was
present within the SignRequest and its MaintainRequestState attribute was set to true. The type of the
element is defined as follows (taken from [LocalSigXSD]):

<xs:element name="CorrelationID" type="xs:NCName"/>

The Digital Signature Service will generate a suitable value on its own behalf so that a client can refer
to the state of its FIRST request.

The client MUST use this value in the SECOND request to refer to this state.

3.3 Third Party

This clause enables the client to obtain an electronic signature (or signed document whenever
requested) from the Digital Signature Service.

3.3.1 Element <dss:SignRequest>

This clause profiles the <dss: SignRequest> element.

localsig-v1.0-csprd04 22 February 2018
Standards Track Work Product Copyright © OASIS Open 2018. All Rights Reserved. Page 25 of 69

The [DSSCore] attribute Profile (Section 3.1) MUST have the value:

http://docs.oasis-open.org/dss-x/ns/localsig

Whenever needed, the [DSSCore] element <dss:AdditionalProfile> MAY be used to specify
additional profiles for the proper creation of the resulting document(s) by the Digital Signature Service.
The interpretation of the additional profile(s) is determined by the corresponding specification(s).

3.3.1.1 Element <dss:Optionallnputs>
This clause profiles the Optional Inputs elements.
3.3.1.1.1 Element <dss:ServicePolicy>

The [DSSCore] element <dss:ServicePolicy> (Section 2.8.1) MUST be present and MUST have
the value:

http://docs.oasis-open.org/dss-x/ns/localsig/delegation

This policy instructs the Digital Signature Service to delegate the creation of the signature to a third-
party.

3.3.1.1.2 Element <ds:DigestMethod>

The [DSSCore] element <ds:DigestMethod> (Section 4.3.3.5) MAY be present to specify which
digest method has to be used by the Digital Signature Service.

3.3.1.1.3 Element <localsig:ChallengeCode>

The new element <localsig:ChallengeCode> MUST be present in the request and MUST have a
random value that can easily be read by a person. The type of the element is defined as follows (taken
from [LocalSigXSD]):

<xs:element name="ChallengeCode" type="xs:NCName"/>

The client has to show the challenge code to the end user. The end user MUST be able to compare the
code with the value that is shown on the mobile device before it confirms the computation of the digital
signature value by the mobile device (the challenge code is sent to the third-party as well).

3.3.1.1.4 Element <localsig:ResponseCode>

The new element <localsig:ResponseCode> MAY be present in the request. If present it MUST
have a random value that can easily be read and entered by a person. The type of the element is defined
as follows (taken from [LocalSigXSD]):

<xs:element name="ResponseCode" type="xs:NCName" />

The client has to show the response code to the end user. The end user MUST be able to enter the
response code at the mobile device before it confirms the computation of the digital signature value by
the mobile device; the third-party MUST return the response code to the Digital Signature Service. The
Digital Signature Service only creates the requested electronic signature if the response code matches
the value that was given by the client in the request.

localsig-v1.0-csprd04 22 February 2018
Standards Track Work Product Copyright © OASIS Open 2018. All Rights Reserved. Page 26 of 69

3.3.2 Element <dss:SignResponse>

This clause profiles the <dss: SignResponse> element.

The <dss:SignResponse> contains (in according to the [DSSCore] specification, Section 3.2) either
the electronic signature or the signed document, or an error message.

3.3.2.1 Element <dss:Result>

If the signature creation is cancelled by the end user the <dss:ResultMajor> contains the value for
ResponderError and the <dss:ResultMinor> the value:

urn:oasis:names:tc:dss-x:profiles:localsig:user-cancelled

If the third-party is not able to handle the signature creation the <dss:ResultMajor> contains the
value for ResponderError and the <dss:ResultMinor> the value:

urn:oasis:names:tc:dss-x:profiles:localsig:delegation-failed

If the response code that is returned by the third-party does not correspond to the value that is
provided in the request, the <dss:ResultMajor> contains the value for ResponderError and the
<dss:ResultMinor> the value:

urn:oasis:names:tc:dss-x:profiles:localsig:incorrect-responsecode

3.4 ChipGateway

This clause enables the Client to obtain an electronic signature with the help of the Server and a local
ChipGateway. To(allow an efficient protocol flow the messages exchanged in the ChipGateway Protocol
are JSON-based. @

3.4.1 Element <dss:SignRequest>

This clause profiles the <dss: SignRequest> element.

The [DSSCore] attribute Profile (Section 3.1) MUST have the value:
http://docs.oasis-open.org/dss-x/ns/localsig

3.4.1.1 Element <dss:Optionallnputs>

This clause profiles the <dss:0OptionalInputs> element.

3.4.1.1.1 Element <dss:ServicePolicy>

The [DSSCore] element <dss:ServicePolicy> (Section 2.8.1) MUST be present in any
ChipGateway-specific call and MUST have the value:

http://docs.oasis-open.org/dss-x/ns/localsig/chipgateway

This policy instructs the Digital Signature Service that the ChipGateway protocol is used to obtain the
digital signature value from the (qualified) signature-creation device of the end user.

3.4.1.1.2 Element <cg:EstablishSession>

The following XML schema snippet defines the EstablishSession element:

localsig-v1.0-csprd04 22 February 2018
Standards Track Work Product Copyright © OASIS Open 2018. All Rights Reserved. Page 27 of 69

ernstjan
Highlight

ernstjan
Sticky Note
to allow for

ernstjan
Sticky Note
Is 'json based' the real reason? Or is it just because the ChipGateway is defined in JSON only? Why is XML not efficient? Section 3.4 presents XML as well as JSON... so, it is really JSON based? If so, why do we provide XML info if it is not supported?

An empty element can usually be omitted...

<element name="EstablishSession"/> [:]

Including the EstablishSession element within OptionalInputs will yield the creation of a new
session, for which the corresponding SessionIdentifier and ServerAddress will be returned
within OptionalOutputs

3.4.1.1.3 Element <cg:TerminateSession>
The following XML schema snippet defines the TerminateSession element:
<element name="TerminateSession" type="string"/>

Including the TerminateSession element within OptionalInputs will proactively terminate the
corresponding session.

3.4.1.1.4 Element <cg:Sessionldentifier>
The following XML schema snippet defines the SessionIdentifier element:
<element name="SessionIdentifier" type="string"/>

In order to address a specific session, which has been established with EstablishSession, the
SessionIdentifier element is included within OptionalInputs.

3.4.2 Element <dss:SignResponse>

This clause profiles the <dss: SignResponse> element.

The <dss:SignResponse> contains (in accordance with the [DSSCore] specification, Section 3.2)
either the electronic signature, the signed document, or an error message.

3.4.2.1 Element <dss:Result>

If the signature creation is cancelled by the end user the <dss:ResultMajor> contains the value for
ResponderError and the <dss:ResultMinor> contains the value

urn:oasis:names:tc:dss-x:profiles:localsig:user-cancelled

If the provided session identifier within SessionIdentifier or TerminateSessionis unknown,
the <dss:ResultMajor> contains the value for ResponderError and the <dss:ResultMinor>
contains the value:

urn:oasis:names:tc:dss-x:profiles:localsig:unknown-sessionidentifier
3.4.2.2 Element <dss:OptionalOutputs>

This clause profiles the <dss:0OptionalInputs> element.

3.4.2.2.1 Element <cg:Sessionldentifier>

The identifier of a session established with EstablishSession is returned in an
SessionIdentifier element, which syntax is specified in Section 3.4.1.1.4, “Element
<cg:Sessionldentifier>", within OptionalInputs.

3.4.2.2.2 Element <cg:ServerAddress>
The following XML schema snippet defines the ServerAdddress element:
<element name="ServerAddress" type="anyURI"/>

The serverAddress is the endpoint address of the ChipGateway Server, which is returned after
providing the optional input EstablishSession and used for the establishment of the connection

localsig-v1.0-csprd04 22 February 2018
Standards Track Work Product Copyright © OASIS Open 2018. All Rights Reserved. Page 28 of 69

An empty element can usually be omitted…

ernstjan
Sticky Note
An empty element does not have a meaning; we should use a boolean value.

between the ChipGateway and the ChipGateway-Server, as explained in Section 3.4.3, “ChipGateway
Connection Establishment”.

3.4.3 ChipGateway Connection Establishment

The connection establishment between the Client, the ChipGateway and the Server is performed as
depicted in Figure 12, “ChipGateway Connection Establishment”.

Figure 12. ChipGateway Connection Establishment

Client ChipGateway Server

http://localhost:24727/activate/...

status

HelloRequest

HelloResponse
e

GetCommand

1st Command xyzRequest
T 7/7_&; Soommsmsssee— e oo n s s s s

ListTokens, — — 1st Command xyzResponse

ListCertificate, 2nd next Command XyzRequest
Sign e

\J J 2nd Command xyzResponse

Terminate
S — |

The Client initiates the connection establishment process by providing a web page with an embedded
activation link (http://localhost:24727/activate/...) on which the user clicks to start
the process. The ChipGateway immediately returns to the Client with a status indication (see
Section 3.4.3.1, “ChipGateway Activation via localhost link” for details).

Now the ChipGateway establishes the connection to the Server by sending Hel1oRequest as specified
in Section 3.4.3.2, “Element HelloRequest”, which is acknowledged by the Server with He11oResponse
as specified in Section 3.4.3.3, “HelloResponse”.

To conclude the connection establishment process, the ChipGateway finally sends GetCommand as
specified in Section 3.4.3.4, “GetCommand” to the Server, which is now able to send any of the
operational ChipGateway commands (i.e. ListTokensRequest, ListCertificatesRequest,
SignRequest) to the ChipGateway before it stops the process with Terminate. The ChipGateway
responds to each operational request with the corresponding response (i.e. ListTokensResponse,
ListCertificatesResponse, SignResponse).

3.4.3.1 ChipGateway Activation via localhost link

The Client sends an activation link to the ChipGateway via the specified localhost-interface. The
ChipGateway in turn uses the refresh address provided within the activation link to return the connection
back to the Client.

For the activation via localhost link, the ChipGateway MUST provide suitable localhost interface at the
following address:

http://127.0.0.1:24727/activate/ChipGateway
The query-parameters for the localhost interface are specified as follows:

SessionIdentifier [Required]
The identifier of the session between the ChipGateway and the Server. As [BSI-TR-02102] requires
100 bits of entropy, the length of the challenge and the session identifier is defined to be 16 bytes.

localsig-v1.0-csprd04 22 February 2018
Standards Track Work Product Copyright © OASIS Open 2018. All Rights Reserved. Page 29 of 69

ernstjan
Highlight

ernstjan
Sticky Note
This is local issue; should it be really standardized? Maybe treat it as a configuration item. The client has to now the address anyway... based on a configuration item.

TBD: Shift to specific security section?

ServerAddress [Required]
The address of the Server.

RefreshAddress [Required]
After performing the basic validation of the received request parameters and the check whether
there is already an established session, the ChipGateway redirects the browser to this address and
indicates the status of the request within an additional URL-parameter status, which is equal to:

ok - if the requested session can be established and processed as expected, or
busy - if there is already an established session.

Binding [Required]
Identifies the binding of the message to the underlying transport protocol. The JSON-based binding
specified in this document is addressed by

urn:oasis:names:tc:dss-x:profiles:localsig:binding:chipgateway:JSON

PathSecurity-Protocol [Required]
This element specifies the security protocol, which is to be used for securing the connection between
the ChipGateway and the ChipGateway-Server. The present document defines the following values:

urn:ietf:rfc:5246
TLSv1.2 according to [RFC 5246] with additional encryption of PINs transported from the Client to
the Server via the ChipGateway.

PathSecurity-Parameters [Optional]
Depending on the PathSecurity-Protocol-Parameter there may be additional parameters
here. In case the PathSecurity-Protocol above is equal to

urn:oasis:names:tc:dss-x:profiles:localsig:pathsecurity:tlsvl2-with-pin-encryption

the AES key which is to be used for PIN encryption key is provided here in form of a JSON Web
Key according to [RFC 7517].

ForceProcessing [Optional]
If there is already an existing session with the Server and the ForceProcessing parameter is
present and equal to false, then the ChipGateway will immediately return with a redirect to the
RefreshAddress specified above with status=busy. If the parameter ForceProcessing is
missing or equal to true, the Chipgateway will proactively terminate a possibly existing session,
establish the new one and return with status=ok.

Calling the localhost activation link yields one of the following HTTP status codes:

Table 1. ChipgGateway localhost interface return status codes

HTTP Status Code Description

303 See Other The basic validation of the provided request parameters
was performed successfully and hence the ChipGateway
performs a redirect to the RefreshAddress, which is
contained in the “Location” header field of the response
and which includes the result of the call within the URL-
parameter status as specified above.

400 Bad Request Malformed GET request, e.g. because required parameters
are missing.

404 Not Found The requested resource is not found within the
ChipGateway.

500 Internal Server Error Other errors.

localsig-v1.0-csprd04 22 February 2018

Standards Track Work Product Copyright © OASIS Open 2018. All Rights Reserved. Page 30 of 69

3.4.3.2 Element HelloRequest @
The HelloRequest initiates the protocol flow between the ChipGateway and the Server.

Challenge [Required]
Is a randomly generated string with sufficient entropy.

Version [Required]
Is the version of the ChipGateway consisting of three parts separated by "." (major.minor.subminor).
TBD: Add UserAgent-element to make Version unique?

SessionIdentifier [Required]
Identifies the session between the ChipGateway, the Client and the Server.

XML schema snippet defining Hel1loRequest:

<element name="HelloRequest" type="cg:HelloRequestType"/>
<complexType name="HelloRequestType">
<sequence>
<element name="Challenge" type="hexBinary"/>
<element name="Version" type="string"/>
<element name="SessionIdentifier" type="string"/>
</sequence>
</complexType>

JSON Schema snippet defining HelloRequest:

{
localName: 'HelloRequestType',
propertyInfos: [({
name: 'challenge',
required: true,
elementName: 'Challenge’,
typeInfo: 'HexBinary'
by
{
name: 'version',
required: true,
elementName: 'Version'
by
{
name: 'sessionIdentifier',
required: true,
elementName: 'SessionIdentifier’
H
}

JSON format example message for a HelloRequest

{
"Challenge" : "000102030405060708090a0b0c0c0e0f",
"Version" : "1.0.0",
"SessionIdentifier" : "000102030405060708090a0b0c0c0eOf"
}

3.4.3.3 HelloResponse @

The HelloResponse is returned after a successful HelloRequest and contains the following
attributes and elements inherited from the ResponseBaseType:

localsig-v1.0-csprd04 22 February 2018
Standards Track Work Product Copyright © OASIS Open 2018. All Rights Reserved. Page 31 of 69

ernstjan
Highlight

ernstjan
Sticky Note
Should we call this "Challenge Request ?

ernstjan
Highlight

ernstjan
Sticky Note
Should we call this 'Challenge Response'?

Result [Required]
Contains the status information and the errors of an executed action. The following error codes are
defined:

urn:oasis:names:tc:dss-x:profiles:localsig:result:ok
urn:oasis:names:tc:dss-x:profiles:localsig:result:error:unknownSessionldentifier
urn:oasis:names:tc:dss-x:profiles:localsig:result:error:unsuitableSessionldentifier
urn:oasis:names:tc:dss-x:profiles:localsig:result:error:unsuitableChallenge
urn:oasis:names:tc:dss-x:profiles:localsig:result:error:unknownVersion
urn:oasis:names:tc:dss-x:profiles:localsig:result:error:incorrectParameter
urn:oasis:names:tc:dss-x:profiles:localsig:result:error:other
urn:oasis:names:tc:dss-x:profiles:localsig:result:error:updateRequired
urn:oasis:names:tc:dss-x:profiles:localsig:result:error:updateRecommended

Signature [Required]
Is a CMS-based signature according to [RFC 3852], which has been generated by the the Server
on the received Challenge. TBD: Should we specify the recommended or admissible algorithms?

MinimumVersion [Optional]
Is the minimum required version of the ChipGateway consisting of three parts separated by
"." (major.minor.subminor). The parameter is only present, if the ChipGateway version is not up to
date, which is indicated by the Result being one of

urn:oasis:names:tc:dss-x:profiles:localsig:updateRequired
urn:oasis:names:tc:dss-x:profiles:localsig:updateRecommended

DownloadAddress [Optional]
Is the URL at which an updated version of the ChipGateway will be available. This parameter is only
present, if the ChipGateway version is not up to date.

The ChipGateway may check, whether the provided update domain is admissible and open a
dialogue box with the corresponding link to the update-site immediately, in case an update is
required, or at the end of the transaction, if an update is only recommended.

WebOrigin [Optional]
Is a sequence of parameters, which defines the set of admissible web origins for starting the
ChipGateway protocol. If the ChipGateway was activated from a web origin, which is not part of the
list of admissible web origins specified, the ChipGateway shall terminate the communication and
return to the presumably hostile web application.

XML schema snippet defining HelloResponse:

<element name="HelloResponse" type="cg:HelloResponseType"/>
<complexType name="HelloResponseType">
<complexContent>
<extension base="cg:ResponseType">
<sequence maxOccurs="1" minOccurs="0">
<element name="Signature" type="base64Binary"/>
<element name="MinimumVersion" type="string"
maxOccurs="1" minOccurs="0"/>
<element name="DownloadAddress" type="anyURI" maxOccurs="1"
minOccurs="0"/>
<element name="WebOrigin" type="string"
maxOccurs="unbounded" minOccurs="0"></element>
</sequence>
</extension>
</complexContent>
</complexType>

JSON Schema snippet for Hel1loReponse:

localsig-v1.0-csprd04 22 February 2018
Standards Track Work Product Copyright © OASIS Open 2018. All Rights Reserved. Page 32 of 69

localName: 'HelloResponseType',
baseTypeInfo: '.ResponseType',
propertyInfos: [({
name: 'signature',
required: true,
elementName: 'Signature’,
typeInfo: 'Base64Binary'

|
{
name: 'minimumVersion',
elementName: 'MinimumVersion'
|
{
name: 'downloadAddress',
elementName: 'DownloadAddress'
|
{
name: 'webOrigin',
minOccurs: 0,
collection: true,
elementName: 'WebOrigin'
}]

}

JSON format example messages for a HelloResponse:

The following example corresponds to a successful Hel1loRequest:

{
"Result" : "urn:oasis:names:tc:dss-x:profiles:localsig:result:error:ok",
"Signature" : "AAECAw==",
"WebOrigin" : "www.example.org"

}

The following example signals that there is a newer ChipGateway version than the one in use, while
the ChipGateway version is not yet lower than the given minimum version.

{

"Result" : "urn:oasis:names:tc:dss-x:profiles:localsig:result:warning:
updateRecommended",

"SessionIdentifier"” : "000102030405060708090a0b0c0c0elf",

"Signature" : "AAECAw==",

"MinimumVersion" : "1.1.0",

"DownloadAddress" : "http://example.org/download",

"WebOrigin" : "www.example.org"

}

The following example signals that there is newer ChipGateway version than the one in use, while the
ChipGateway version is lower than the given minimum version.

{

"Result" : "urn:oasis:names:tc:dss-x:profiles:localsig:result:error:
updateRequired",

"SessionIdentifier"” : "000102030405060708090a0b0c0c0elf",

"Signature" : "AAECAw==",

"MinimumVersion" : "1.10.0",

"DownloadAddress" : "http://example.org/download",

"WebOrigin" : "www.example.org"

localsig-v1.0-csprd04 22 February 2018
Standards Track Work Product Copyright © OASIS Open 2018. All Rights Reserved. Page 33 of 69

}
3.4.3.4 GetCommand

Precondition: The Server has been authenticated by the ChipGateway by successfully verifying the
Signature contained in HelloResponse. [:]

Postcondition: none

Note: none

SessionIdentifier [Required]
Identifies the session between the ChipGateway and the Server.

TokenInfo [Optional]
This parameter is present for each Token, which is currently connected to the ChipGateway. See
Section 3.4.4.2, “Element TokenlInfo”.

XML Schema snippet for GetCommand:

<element name="GetCommand" type="cg:GetCommandType" />
<complexType name="GetCommandType">
<sequence>
<element name="SessionIdentifier" type="string"/>
<element ref="cg:TokenInfo" maxOccurs="unbounded" minOccurs="0">
</element>
</sequence>
</complexType>

JSON Schema snippet for GetCommand:

{
localName: 'GetCommandType',
propertyInfos: [{
name: 'sessionIdentifier',
required: true,
elementName: 'SessionIdentifier'
Yo
{
name: 'tokenInfo',
minOccurs: 0,
collection: true,
elementName: 'TokenInfo',
typeInfo: '.TokenInfoType'
}
}

JSON format example message for a GetCommand:

{
"SessionIdentifier"” : "000102030405060708090a0b0c0c0elf",

"TokenInfo" : [{
"ConnectionHandle" : {
"CardType" : "http://example.org/cif/v3",
"SlotHandle" : "7365637265742D73657373696F6E2D6964"
by
"HasProtectedAuthPath" : false,
"NeedsPinForCertAccess" : false,
"NeedsPinForPrivateKeyAccess" : true,
"Algorithm" : "SHA256withRSA "

Pl

localsig-v1.0-csprd04 22 February 2018
Standards Track Work Product Copyright © OASIS Open 2018. All Rights Reserved. Page 34 of 69

ernstjan
Highlight

ernstjan
Sticky Note
The ChipGateway MUST be able to perform raw signature creation and signature verification operations. Based on what standard? CMS? X509?

3.4.4 ChipGateway Commands

After a logical connection from the Server to the ChipGateway has been established, the Server is able
to send the following commands to the ChipGateway:

* ListTokensRequest

* ListCertificatesRequest
* SignRequest

* Terminate

Furthermore the calls ListTokensRequest and ListCertificatesRequest may be send from
the Client to the Server.

3.4.4.1 Type ResponseType @

This clause specifies the basic ResponseType type, which is used in every ChipGateway-specific
response.

Result [Required]
Indicates the result of a ChipGateway command in form of aspecific URI. @

XML Schema snippet for ResponseType:

<complexType name="ResponseType">
<sequence>
<element name="Result" type="anyURI"/>
</sequence>

</complexType>

3.4.4.2 Element Tokeninfo @

The TokenInfo element is used in the definition of GetCommand, ListTokensRequest and
ListTokensResponse and is present for each Token currently connected to the ChipGateway. It
contains the following elements:

ConnectionHandle [Optional]
Is a handle to a connected Token. Details of the parameter are specified in Section 3.4.4.3, “Element
ConnectionHandle”

HasProtectedAuthPath [Optional]
Is True, if the card terminal which has captured the Token is equipped with a pin pad. If this
parameter is True, the PIN is captured by the card reader.

NeedsPinForCertAccess [Optional]
Is True, if reading the certificates stored on the Token requires entry of a PIN.

NeedsPinForPrivateKeyAccess [Optional]
Is True, if accessing the private key requires entry of a PIN.

Algorithm [Optional]
Is present for each asymmetric cryptographic algorithm supported by the Token. This parameter is
specified according to the Java Cryptographic Architecture (JCA) name of a supported algorithm
(cf. Appendix D, Chipgateway Algorithms).

XML Schema snippet for TokenInfo:
<element name="TokenInfo" type="cg:TokenInfoType">

<complexType name="TokenInfoType">
<sequence>

localsig-v1.0-csprd04 22 February 2018
Standards Track Work Product Copyright © OASIS Open 2018. All Rights Reserved. Page 35 of 69

ernstjan
Highlight

ernstjan
Sticky Note
How do you know if it succeeded or failed?

ernstjan
Highlight

ernstjan
Sticky Note
Element or Type? In 3.4.4.2 Element is used.

ernstjan
Sticky Note
and SignResponse (ok, send to the Server).

Maybe this scetion should list all possible commands. To avoid any confusion with the dss SignRequest maybe use SignRequestCommand, etc.

ernstjan
Sticky Note
TokenInfoCommand

<element ref="cg:ConnectionHandle" maxOccurs="1"; minOccurs="0"/>
<element name="HasProtectedAuthPath" type="boolean" maxOccurs="1"
minOccurs="0"/>

<element name="NeedsPinForCertAccess" type="boolean" maxOccurs="1>
minOccurs="0"/>

<element name="NeedsPinForPrivateKeyAccess" type="boolean">
maxOccurs="1" minOccurs="0"/>

<element name="Algorithm" type="string" maxOccurs="unbounded">
minOccurs="0"/>

</element>

</sequence>

</complexType>

JSON Schema snippet for TokenInfo:

{

localName: 'TokenInfoType',
propertyInfos: [({
name: 'connectionHandle',
elementName: 'ConnectionHandle',
typeInfo: '.ConnectionHandleType'
|

{
name: 'hasProtectedAuthPath’',

elementName: 'HasProtectedAuthPath',
typeInfo: 'Boolean'

|

{

name: 'needsPinForCertAccess',
elementName: 'NeedsPinForCertAccess',
typeInfo: 'Boolean'

|

{

name: 'needsPinForPrivateKeyAccess',
elementName: 'NeedsPinForPrivateKeyAccess',
typeInfo: 'Boolean'

by

{

name: 'algorithm',

minOccurs: 0,

collection: true,

elementName: 'Algorithm'’

H

}

3.4.4.3 Element ConnectionHandle
The ConnectionHandle elementis a handle to a connected Token. It contains the following elements:

CardType [Required]
The globally unique identifier for the type of the Token (cf. [ISO 24727], Part 3).

SlotHandle [Optional]
The (with respect to the IFD-Layer of the ChipGateway) unique handle, which addresses a
connected Token.

XML Schema snippet for ConnectionHandle:

element name="ConnectionHandle" type="cg:ConnectionHandleType" />

localsig-v1.0-csprd04 22 February 2018
Standards Track Work Product Copyright © OASIS Open 2018. All Rights Reserved. Page 36 of 69

<complexType name="ConnectionHandleType">

<sequence>

<element name="CardType" type="anyURI"/>

<element name="SlotHandle" type="hexBinary" maxOccurs="1" minOccurs="0">
</sequence>

</complexType>

JSON Schema snippet for ConnectionHandle:

{

localName: 'ConnectionHandleType',

propertyInfos: [{

name: 'cardType',
required: true,
elementName: 'CardType'

P A

name: 'slotHandle',
elementName: 'SlotHandle',
typeInfo: 'HexBinary'

H

}

3.4.4.4 Elements ListTokensRequest and ListTokensResponse

The ListTokensRequest command allows to wait for a specific Token identified by appropriate filter
mechanisms.

This function requires that the Server has been authenticated by the ChipGateway by successfully
verifying the Signature contained in HelloResponse.

3.4.4.4.1 Element ListTokensRequest
The ListTokensRequest element consists of the following elements:

SessionIdentifier [Optional]
The SessionIdentifier parameter is present, if the ListTokensRequest is sent from
the Client to the Server in order to identify the session. This parameter is omitted in
ListTokensRequest messages transmitted between the Server and the ChipGateway.

MaxWaitSeconds [Required]
Specifies the number of seconds until a timeout occurs.

TokenInfo [Required]
May be present multiple times in order to specify the set of admissible Tokens.

The sequence of TokenInfo elements is to be interpreted as combined with a logical OR and the
set of features withing a given TokenInfo element (cf. Section 3.4.4.2, “Element TokenInfo”) is to
interpreted as being combined with a logical AND.

XML Schema snippet for ListTokensRequest:

<element name="ListTokensRequest" type="cg:ListTokensRequestType" />
<complexType name="ListTokensRequestType">
<sequence>
<element name="SessionIdentifier" type="string" minOccurs="0"/>
<element name="MaxWaitSeconds" type="positiveInteger"/>
<element name="TokenInfo" type="cg:TokenInfoType"
maxOccurs="unbounded" minOccurs="1"/>
</sequence>
</complexType>

localsig-v1.0-csprd04 22 February 2018
Standards Track Work Product Copyright © OASIS Open 2018. All Rights Reserved. Page 37 of 69

JSON Schema snippet for ListTokensRequest:

{

localName: 'ListTokensRequestType',
propertyInfos: [
{
name: 'sessionIdentifier',
required: false,
elementName: 'SessionIdentifier',
typeInfo: 'string'
}o
{

name: 'maxWaitSeconds',
required: true,
elementName: 'MaxWaitSeconds',
typeInfo: 'PositivelInteger'

by

{
name: 'tokenInfo',
required: true,
collection: true,
elementName: 'TokenInfo',
typeInfo: '.TokenInfoType'

H

}

JSON format example message for a ListTokensRequest:

"ListTokensRequest" : {
"SessionIdentifier" : "000102030405060708090a0b0c0c0el0f",
"MaxWaitSeconds" : 60,
"TokenInfo" : [{
"ConnectionHandle" : {
"CardType" : "http://example.org/cif/v3"

|
"HasProtectedAuthPath" : false,
"NeedsPinForCertAccess" : true,
"NeedsPinForPrivateKeyAccess" : false,
"Algorithm" : "SHA256withRSA"

}]

}
3.4.4.4.2 Element ListTokensResponse

The element ListTokensReponse inherits ResponseType and contains the following attributes and
elements:

Result [Required]
Contains the status information for the executed action (i.e. ListTokensRequest, whereas there
are the following error codes defined:

urn:oasis:names:tc:dss-x:profiles:localsig:result:ok
urn:oasis:names:tc:dss-x:profiles:localsig:result:error:timeout
urn:oasis:names:tc:dss-x:profiles:localsig:result:error:incorrectParameter
urn:oasis:names:tc:dss-x:profiles:localsig:result:error:stopped
urn:oasis:names:tc:dss-x:profiles:localsig:result:error:other

SessionIdentifier [Optional]
Identifies the session between the ChipGateway and the Server. The SessionIdentifier
parameter is present, if the ListTokensResponse is sent from the Server to the ChipGateway.

localsig-v1.0-csprd04 22 February 2018
Standards Track Work Product Copyright © OASIS Open 2018. All Rights Reserved. Page 38 of 69

This parameter is omitted in ListTokensResponse messages transmitted between the Server
and the Client.

TokenInfo
May be present multiple times and contains the token-related information of the admissible tokens.

The details of the TokenInfo structure are specified in Section 3.4.4.2, “Element TokenlInfo”.

XML Schema snippet for ListTokensResponse:

<element name="ListTokensResponse" type="cg:ListTokensResponseType" />
<complexType name="ListTokensResponseType">
<complexContent>
<extension base="cg:ResponseType">

<sequence>
<element name="SessionIdentifier" type="string" minOccurs="0"/>

<element name="TokenInfo" type="cg:TokenInfoType"
maxOccurs="unbounded" minOccurs="0"/>
</sequence>
</extension>
</complexContent>
</complexType>

JSON Schema snippet for ListTokensResponse:

{
localName: 'ListTokensResponseType',
baseTypeInfo: '.ResponseType',
propertyInfos: [{
name: 'sessionIdentifier',
required: false,
elementName: 'SessionIdentifier'
}o
{
name: 'tokenInfo',
minOccurs: 0,
collection: true,
elementName: 'TokenInfo',
typeInfo: '.TokenInfoType'
H
}

JSON format example message for a ListTokensResponse:

"Result" : "urn:oasis:names:tc:dss-x:profiles:localsig:result:ok",
"SessionIdentifier" : "000102030405060708090a0b0c0c0el0f",
"TokenInfo" : [{
"ConnectionHandle" : {
"CardType" : "http://example.org/cif/v3",
"SlotHandle" : "7365637265742D73657373696F6E2D6964"
I
"HasProtectedAuthPath" : false,
"NeedsPinForCertAccess" : true,
"NeedsPinForPrivateKeyAccess" : false,
"Algorithm" : "SHA256withRSA"

H
3.4.4.5 Elements ListCertificatesRequest and ListCertificatesResponse

The ListCertificatesRequest command allows to retrieve the available X.509 certificates from a
connected local signature creation device.

localsig-v1.0-csprd04 22 February 2018
Standards Track Work Product Copyright © OASIS Open 2018. All Rights Reserved. Page 39 of 69

This function requires that the Server has been authenticated by the ChipGateway by successfully
verifying the Signature contained in HelloResponse.

3.4.4.5.1 Element ListCertificatesRequest
The ListCertificatesRequest consists of the following elements:

SessionIdentifier [Optional]
The SessionIdentifier parameter is present, if the ListCertificatesRequest is sent
from the Client to the Server in order to identify the session. This parameter is omitted in
ListCertificateRequest messages transmitted between the Server and the ChipGateway.

MaxWaitSeconds [Required]
Specifies the number of seconds until a timeout occurs.

SlotHandle [Required]
Addresses the specific token from which the certifcates are to be read.

PIN [Optional]
Is an optional parameter, which allows to transport the PIN, if captured within the Client, which
may be realised as web application, instead of the ChipGateway. This PIN is encrypted with the
symmetric key which has been provided whithin the PathSecurityParameter of the activation
call (see Section 3.4.3.1, “ChipGateway Activation via localhost link”). The format of the encrypted
PIN is as defined in [RFC 7516].

Whether entering the PIN in the Client and transportation via the Server is allowed or not is subject
to the applicable policy. If a card reader is equipped with a PIN-pad, it is recommended to capture
the PIN there.

CertifcateFilter [Optional]
May be present multiple times in order to specificy the requested certificate.

The sequence of CertifcateFilter elements is to be interpreted as combined with a logical
OR and the set of features within a given CertifcateFilter element (see Section 3.4.4.5.1.1,
“Element CertificateFilter”) is to be interpreted as being combined with a logical AND.

XML Schema snippet for ListCertificatesRequest:

<element name="ListCertificatesRequest"
type="cg:ListCertificatesRequestType" />
<complexType name="ListCertificatesRequestType">
<sequence>
<element name="SessionIdentifier" type="string" minOccurs="0"/>
<element name="MaxWaitSeconds" type="positivelnteger"/>
<element name="SlotHandle" type="hexBinary"/>
<element name="PIN" type="string" maxOccurs="1" minOccurs="0"/>
<element name="CertificateFilter" type="cg:CertificateFilterType'
maxOccurs="unbounded" minOccurs="0"/>
</sequence>
</complexType>

JSON Schema snippet for ListCertificatesRequest:

{

localName: 'ListCertificatesRequestType',
propertyInfos: [

name: 'sessionIdentifier',
required: false,
elementName: 'SessionIdentifier’,

localsig-v1.0-csprd04 22 February 2018
Standards Track Work Product Copyright © OASIS Open 2018. All Rights Reserved. Page 40 of 69

typeInfo: 'string'

|
{

name: 'maxWaitSeconds',
required: true,
elementName: 'MaxWaitSeconds',
typeInfo: 'Positivelnteger'

|

{
name: 'slotHandle',
required: true,
elementName: 'SlotHandle',
typeInfo: 'HexBinary'

|

{
name: 'pin',
elementName: 'PIN'

|

{
name: 'certificateFilter',
minOccurs: 0,
collection: true,
elementName: 'CertificateFilter',
typeInfo: '.CertificateFilterType'

}]

}

JSON format example message for a ListCertificatesRequest:

{
"ListCertificatesRequest" : {
"SessionIdentifier" : "000102030405060708090a0b0c0c0elf",
"MaxWaitSeconds" : 60,
"SlotHandle" : "736C6F74312D68616E646C65",
"PIN" : "eyJhbGciOiJSUOEtTOFFUCIsImVuYyI6IKEyNTZHQO00ifQ..",
"CertificateFilter" : [{
"Policy" : "1.3.171.1.1.2.4",
"Issuer" : "CN=Example",
"KeyUsage" : "authentication"
H
}
}

where "PIN" equals:

BASE64URL(UTF8({"alg": "dir", "enc": "A256GCM"}))
BASE64URL(JWE Initialization Vector)
BASE64URL(JWE Ciphertext)

BASE64URL (JWE Authentication Tag)

3.4.4.5.1.1 Element CertificateFilter
The certificate consists of the following elements:

Policy [Optional]
Allows to filter the set of returned certificates according to the Policy of the certifcate.

Issuer [Optional]
Is a regular expression, which allows to filter the set of returned certificates according to the issuer
of the certificate.

localsig-v1.0-csprd04 22 February 2018
Standards Track Work Product Copyright © OASIS Open 2018. All Rights Reserved. Page 41 of 69

This string allows to search on the RDN-components

Common Name (CN) and
Given Name (GN)

of the Issuer with a prefix search ("PartialName*"), infix search ("*PartialName™") or exact match
("PartialName").

KeyUsage [Optional]
Allows to filter the set of returned certificates according to the key usage extension of the certificate.

The mapping from the KeyUsage element defined here to the KeyUsage BIT STRING according
to [RFC 5280] is as follows:

Table 2. KeyUsage Mapping

KeyUsage [RFC 5280]

AUTHENTICATION digitalSignature (0)

SIGNATURE nonRepudiation (1)

ENCRYPTION keyEncipherment (2), dataEncipherment (3),
keyAgreement (4)

3.4.4.5.2 Element ListCertificatesResponse
The element ListCertificatesResponse contains the following elements:

Result [Required]

Contains the status information and the erros of an executed action, whereas there are the following
error codes defined:

urn:oasis:names:tc:dss-x:profiles:localsig:result:ok
urn:oasis:names:tc:dss-x:profiles:localsig:result:error:timeout
urn:oasis:names:tc:dss-x:profiles:localsig:result:error:unknownSlotHandle
urn:oasis:names:tc:dss-x:profiles:localsig:result:error:incorrectParameter
urn:oasis:names:tc:dss-x:profiles:localsig:result:error:securityConditionNotSatisfied
urn:oasis:names:tc:dss-x:profiles:localsig:result:error:stopped
urn:oasis:names:tc:dss-x:profiles:localsig:result:error:other

SessionIdentifier [Optional]
Identifies the session between the ChipGateway and the Server. The SessionIdentifier
parameter is present, if the ListCertificatesResponse is sent from the Server to the
ChipGateway. This parameter is omitted in ListCertificateResponse messages transmitted
between the Server and the Client.

RetryCounter [Optional]
If the provided PIN was wrong, the number of remaining attempts is returned in this parameter.

CertificateInfo [Optional]

Contains information with respect to the available certifcates. The details of the CertificateInfo
element are described in Section 3.4.4.5.2.1, “Element CertificateInfo”.

XML Schema snippet of ListCertificatesResponse:

<element name="ListCertificatesResponse"
type="cg:ListCertificatesResponseType" />
<complexType name="ListCertificatesResponseType">
<complexContent>
<extension base="cg:ResponseType">
<sequence maxOccurs="1" minOccurs="1">
<element name="SessionIdentifier" type="string" minOccurs="0"/>

localsig-v1.0-csprd04 22 February 2018
Standards Track Work Product Copyright © OASIS Open 2018. All Rights Reserved. Page 42 of 69

<element name="RetryCounter" type="nonNegativeInteger"
maxOccurs="1" minOccurs="0"/>
<element ref="cg:CertificateInfo" maxOccurs="unbounded"
minOccurs="0"/>
</sequence>
</extension>
</complexContent>
</complexType>

JSON Schema snippet for ListCertificatesResponse

{
localName: 'ListCertificatesResponseType’,
baseTypeInfo: '.ResponseType',
propertyInfos: [({
name: 'sessionIdentifier',
required: false,
elementName: 'SessionIdentifier'
by
{
name: 'retryCounter',
elementName: 'RetryCounter',
typeInfo: 'NonNegativelInteger'
by
{
name: 'certificateInfo',
minOccurs: O,
collection: true,
elementName: 'CertificatelInfo’,
typeInfo: '.CertificateInfoType'
}
}

JSON format example message for a ListCertificatesResponse:

{
"Result" : "urn:oasis:names:tc:dss-x:profiles:localsig:result:ok",
"SessionIdentifier" : "000102030405060708090a0b0c0c0elf",
"CertificateInfo" : [{
"DIDName" : "SignKey",
"Algorithm" : "SHA256withRSA",
"Certificate" : ["dGhpcyBzaG91bGQgYmUgYSBjZXJ0aWZpY2F0Z0Q==" 1,
"UniqueSSN" : "12345678901234567890"
]
}

where "PIN" equals:

BASE64URL (UTF8({"alg": "dir", "enc": "A256GCM"}))
BASE64URL(JWE Initialization Vector)

BASE64URL (JWE Ciphertext)

BASE64URL(JWE Authentication Tag)

3.4.4.5.2.1 Element Certificatelnfo
The Element CertificateInfo:

DIDName [Required]
The name of the Differential Identity (cf. [ISO 24727], Part 3) corresponding to the private key of
the certificate.

localsig-v1.0-csprd04 22 February 2018
Standards Track Work Product Copyright © OASIS Open 2018. All Rights Reserved. Page 43 of 69

Algorithm [Required]
Contains the name of the cryptographic algorithm related to certificate. Admissible values are
specified in section Appendix D, Chipgateway Algorithms.

Certificate [Required]
Is the end user certificate under consideration and optionally further certificates in the certificate
path which have been read from the Token.

UniqueSSN [Required]
Is the unique identifier of the certificate holder, which is contained in or derived from the certificate.

XML Schema snippet of CertificateInfo:

<element name="CertificateInfo" type="cg:CertificateInfoType"/>
<complexType name="CertificateInfoType">
<sequence>
<element name="DIDName" type="cg:NameType"/>
<element name="Algorithm" type="string"/>
<element name="Certificate" type="base64Binary"
maxOccurs="unbounded" minOccurs="1"/>
<element name="UniqueSSN" type="string"/>
</sequence>
</complexType>

JSON Schema snippet of CertificateInfo:

{

localName: 'CertificateInfoType',
propertyInfos: [({
name: 'didName’,
required: true,
elementName: 'DIDName’,
typeInfo: 'NormalizedString'

b
{
name: 'algorithm',
required: true,
elementName: 'Algorithm'
b
{
name: 'certificate’,
required: true,
collection: true,
elementName: 'Certificate’,
typeInfo: 'Base64Binary’
|
{
name: 'uniqueSSN',
required: true,
elementName: 'UniqueSSN'
}

}
3.4.4.6 Elements signRequest and SignResponse

The signRequest function allows to sign a message with a specific Token connected to the
ChipGateway.

This function requires that the Server has been authenticated by the ChipGateway by successfully
verifying the Signature contained in HelloResponse.

localsig-v1.0-csprd04 22 February 2018
Standards Track Work Product Copyright © OASIS Open 2018. All Rights Reserved. Page 44 of 69

=

ernstjan
Highlight

ernstjan
Sticky Note
But how can you know that this SignRequest is trusted as well? There is no reference to the actual session. Only an HTTPS inbound connection. So we trust the HTTPS connection.

3.4.4.6.1 Element SignRequest

The Element SignRequest consists of the following elements:

MaxWaitSeconds [Required]

Specifies the number of seconds until a timeout occurs.

SlotHandle [Required]

Addresses the specific Token which is to be used for signing.

DIDName [Required]

The name of the Differential Identity (cf. [ISO 24727], Part 3) corresponding to the private key of

the certificate.

PIN [Optional]

Is an optional parameter, which allows to transport the PIN, if captured within the Client, which
may be realised as web application, instead of the ChipGateway. This PIN is encrypted with the
symmetric key which has been provided whithin the PathSecurityParameter of the activation
call (see Section 3.4.3.1, “ChipGateway Activation via localhost link”). The format of the encrypted

PIN is as defined in [RFC 7516].

Whether entering the PIN in the Client and transportation via the Server is allowed or not is subject
to the applicable policy. If a card reader is equipped with a PIN-pad, it is recommended to capture

the PIN there.

Message [Required]

The message (or hash'value), which is to be signed. @
XML Schema snippet of SignRequest:

<element name="SignRequest" type="cg:SignRequestType" />
<complexType name="SignRequestType">

<sequence>

<element name="MaxWaitSeconds" type="positiveInteger"/>
<element name="SlotHandle" type="hexBinary"/>
<element name="DIDName" type="cg:NameType"/>

<element name="PIN" type="string" maxOccurs="1l" minOccurs="0"/>

<element name="Message" type="hexBinary"/>

</sequence>
</complexType>

JSON Schema snippet of SignRequest:

{

localName: 'SignRequestType',

propertyInfos: [({

name: 'maxWaitSeconds',

required: true,

elementName: 'MaxWaitSeconds',
typeInfo: 'PositivelInteger'

name: 'slotHandle',
required: true,

elementName: 'SlotHandle',

typeInfo: 'HexBinary'

name: 'didName’,
required: true,

localsig-v1.0-csprd04

Standards Track Work Product Copyright © OASIS Open 2018. All Rights Reserved.

22 February 2018
Page 45 of 69

ernstjan
Highlight

ernstjan
Sticky Note
Maybe use document hash?

elementName: 'DIDName’,
typeInfo: 'NormalizedString'

¥

{
name: 'pin',
elementName: 'PIN'

¥

{
name: 'message’,
required: true,
elementName: 'Message’',
typeInfo: 'HexBinary'

H

}

JSON format example message for a SignRequest:

{
"SignRequest" : {
"MaxWaitSeconds" : 60,
"SlotHandle" : "736C6F74312D68616E646C65",
"DIDName" : "AuthKey",
"PIN" : "eyJdhbGciOiJSUOEtTOFFUCIsImVuYyI6IKEyNTZHQO00ifQ..",
"Message" :
"61207772697474656E20636F6E7472616374206F76657220323030E282AC"
}
}

where "PIN" equals:

BASE64URL(UTF8({"alg": "dir", "enc": "A256GCM"}))
BASE64URL(JWE Initialization Vector)
BASE64URL(JWE Ciphertext)

BASE64URL(JWE Authentication Tag)

3.4.4.6.2 Element SignResponse
The element signResponse contains the following elements:

Result [Required]
Contains the status information and the erros of an executed action, whereas there are the following
error codes defined:

urn:oasis:names:tc:dss-x:profiles:localsig:result:ok
urn:oasis:names:tc:dss-x:profiles:localsig:result:error:timeout
urn:oasis:names:tc:dss-x:profiles:localsig:result:error:unknownSlotHandle
urn:oasis:names:tc:dss-x:profiles:localsig:result:error:incorrectParameter
urn:oasis:names:tc:dss-x:profiles:localsig:result:error:securityConditionNotSatisfied
urn:oasis:names:tc:dss-x:profiles:localsig:result:error:stopped
urn:oasis:names:tc:dss-x:profiles:localsig:result:error:other

SessionIdentifier [Required]
Identifies the session between the ChipGateway and the Server.

RetryCounter [Optional]
If the provided PIN was wrong, the number of remaining attempts is returned in this parameter.

Signature [Optional]
Contains the generated signature.

XML Schema snippet for SignResponse:

localsig-v1.0-csprd04 22 February 2018
Standards Track Work Product Copyright © OASIS Open 2018. All Rights Reserved. Page 46 of 69

<element name="SignResponse" type="cg:SignResponseType" />
<complexType name="SignResponseType">
<complexContent>
<extension base="cg:ResponseType">
<sequence>
<element name="SessionIdentifier" type="string"/>
<element name="RetryCounter" type="nonNegativeInteger"
maxOccurs="1" minOccurs="0"/>
<element name="Signature" type="base64Binary" maxOccurs="1"
minOccurs="0"/>
</sequence>
</extension>
</complexContent>
</complexType>

JSON Schema snippet for SignResponse:

{
localName: 'SignResponseType',
baseTypeInfo: '.ResponseType',
propertyInfos: [({
name: 'sessionIdentifier',
required: true,
elementName: 'SessionIdentifier'
I
{
name: 'retryCounter',
elementName: 'RetryCounter',
typeInfo: 'NonNegativelInteger'
I
{
name: 'signature',
elementName: 'Signature’,
typeInfo: 'Base64Binary'
}
}

JSON format example message for a SignResponse:

{
"Result" : "urn:oasis:names:tc:dss-x:profiles:localsig:result:ok",
"SessionIdentifier" : "000102030405060708090a0b0c0c0Oe0f ",
"Signature" : "c2lnbmvkUmVzcG9uc2U="

}

3.4.4.7 Element Terminate

The Terminate element terminates the session.

3.4.4.7.1 Element Terminate

The element Terminate has the following child elements:

Result [Required]
Contains the status information and the errors of an executed action, whereas there are the following
error codes defined:

urn:oasis:names:tc:dss-x:profiles:localsig:result:ok
urn:oasis:names:tc:dss-x:profiles:localsig:result:error:timeout
urn:oasis:names:tc:dss-x:profiles:localsig:result:error:unknownSessionldentifier

localsig-v1.0-csprd04 22 February 2018
Standards Track Work Product Copyright © OASIS Open 2018. All Rights Reserved. Page 47 of 69

urn:oasis:names:tc:dss-x:profiles:localsig:result:error:unsuitableSessionldentifier
urn:oasis:names:tc:dss-x:profiles:localsig:result:error:incorrectParameter
urn:oasis:names:tc:dss-x:profiles:localsig:result:error:cancellationByUser
urn:oasis:names:tc:dss-x:profiles:localsig:result:error:updateRequired
urn:oasis:names:tc:dss-x:profiles:localsig:result:warning:updateRecommended
urn:oasis:names:tc:dss-x:profiles:localsig:result:error:stopped
urn:oasis:names:tc:dss-x:profiles:localsig:result:error:other

SessionIdentifier [Optional]
Identifies the session between the ChipGateway and the Server.

This parameter MUST be present, if the ChipGateway proactively terminates an existing session
and sends Terminate to the Server. In this case the Result MUST be equal to

urn:oasis:names:tc:dss-x:profiles:localsig:result:error:stopped
XML Schema snippet for Terminate:

<element name="Terminate" type="cg:TerminateType"/>
<complexType name="TerminateType">
<complexContent>
<extension base="cg:ResponseType">
<sequence>
<element name="SessionIdentifier" type="string"
maxOccurs="1" minOccurs="0"/>
</sequence>
</extension>
</complexContent>
</complexType>

JSON Schema snippet for Terminate:

{
localName: 'TerminateType',
baseTypeInfo: '.ResponseType',
propertyInfos: [{
name: 'sessionIdentifier',
elementName: 'SessionIdentifier’
]
}

JSON format example messages for Terminate:

The following example corresponds to the proactive termination of an existing session by the
ChipGateway, where the Terminate message is sent from the ChipGateway to the Server:

{
"Terminate" : {
"Result" : "urn:oasis:names:tc:dss-x:profiles:localsig:result:error:stopped",
"SessionIdentifier" : "000102030405060708090a0b0c0c0e0f"
}
}

The following examples correspond to Terminate messages sent from the Server to the ChipGateway.

{
"Terminate" : {
"Result" : "urn:oasis:names:tc:dss-x:profiles:localsig:result:ok"
}
}
localsig-v1.0-csprd04 22 February 2018

Standards Track Work Product Copyright © OASIS Open 2018. All Rights Reserved. Page 48 of 69

"Terminate" : {
"Result" : "urn:oasis:names:tc:dss-x:profiles:localsig:result:error:other"

}

localsig-v1.0-csprd04 22 February 2018
Standards Track Work Product Copyright © OASIS Open 2018. All Rights Reserved. Page 49 of 69

4 Protocol Bindings

OASIS DSS bindings are categorized under either transport bindings or security bindings as defined
under Section 6 of [DSSCore]. The DSS signing protocol messages inherently assume that all security
aspects are covered by the transport binding and appropriate security binding.

In Section Section 3.1, “User Agent” a transport binding is assumed by which a session is established
between the Digital Signature Service and the HTTP User Agent. This document profiles a binding for
a HTTP User Agent at the client using a web form.

In Section Section 3.2, “Two-Step Approach” it is assumed that a session (transaction) is created
when a request contains the element <localsig:RequestDocumentHash> with the attribute
MaintainRequestState="true". The session is not profiled in this document.

4.1 WEB FORM Transport Binding

A WEB FORM binding is defined as a mechanism by which OASIS DSS protocol messages may be
transmitted within the base64-encoded content of a HTML form control.

The reference URI for this binding is:

urn:oasis:names:tc:dss-x:profiles:localsig:bindings:web-form

4.1.1 Overview

The WEB FORM binding is intended for those cases where a requester and responder need to
communicate using a HTTP User Agent (as defined in HTTP 1.1 [RFC 2616]) as an intermediary.
This may be necessary, for example, if the communicating parties do not share a direct path of
communication. It may also be needed if the responder requires an interaction with the User Agent in
order to fulfill the request, such as when the User Agent must authenticate itself.

The OASIS DSS <dss:SignRequest>and <dss:SignResponse> XML messages are encoded into
a HTML form, as described in the next Section.

4.1.2 Message Encoding using a HTML form
The HTML document MUST adhere to the XHTML 1.0 specification [XHTML] to ease parsing.

The action attribute of the HTML form MUST be the HTTP endpoint of the recipient: either the
OASIS Digital Signature Service in case of the <dss:SignRequest> or the client in case of the
<dss:SignResponse>.

The method attribute of the HTML form MUST be POST.

A <dss:SignRequest>0ra<dss:SignResponse> message MUST be base64-encoded and placed
in a hidden HTML form control within the HTML form (as defined by [HTML401] Section 17). The base64-
encoded value MAY be line-wrapped at a reasonable length in accordance with common practice.

+ If the message contains an OASIS DSS <dss:SignRequest> then the hidden HTML form control
MUST be named signrequest.

+ Ifthe message contains an OASIS DSS <dss : SignResponse>, then the hidden HTML form control
MUST be named signresponse.

The clienturl attribute MAY be used to provide the Digital Signature Service with a client URL. This
URL will be used by the Digital Signature Service for the transmission of the response HTML form. If

localsig-v1.0-csprd04 22 February 2018
Standards Track Work Product Copyright © OASIS Open 2018. All Rights Reserved. Page 50 of 69

the clienturl is not specified, either an error is returned to the HTTP agent or a predefined URL is
used by the Digital Signature Service.

Any additional HTML form controls or presentation MAY be included to allow the recipient to process
the message.

Any technique supported by the User Agent MAY be used to cause the submission of the HTML form,
and any HTML form content necessary to support this MAY be included, such as submit controls and
client-side scripting commands. However, the Digital Signature Service MUST be able to process the
message regardless for the mechanism by which the form submission is initiated.

Note that any HTML form control values included MUST be transformed so as to be safe to include in
the XHTML document. This includes transforming characters such as quotes into HTML entities, etc.

4.1.3 HTTP and Caching Considerations

HTTP proxies and the User Agent intermediary should not cache OASIS DSS protocol messages. To
ensure this, the following rules SHOULD be followed. When returning OASIS DSS protocol messages
using HTTP 1.1, HTTP responders SHOULD:

* Include a cache-Control header field set to " no-cache, no-store".
* Include a Pragma header field set to " no-cache "

There are no other restrictions on the use of HTTP headers.

4.2 Security Binding (Non-Normative)

4.2.1 Security Considerations

Before deployment, each combination of profile, transport binding, and security binding SHOULD
be analyzed for vulnerability in the context of the specific protocol exchange and the deployment
environment. Below we illustrate some of the security concerns that often come up with protocols of this
type, but we stress that this is not an exhaustive list of concerns.

As the OASIS DSS protocol defined in this document is similar to the SAML protocol most of the security
considerations defined in [SAMLCore] also apply to the OASIS DSS protocol.

The creation of document signatures using the OASIS DSS protocol yields additional attack vectors,
due to possible manipulations of the document that is being transferred between DSS client and a DSS
server. If the end user signs a different document as assumed by the DSS client, the impact could
be huge. Therefore, it is of eminent importance to properly secure the OASIS DSS protocol request
message that is transferred from DSS client to the DSS server via an intermediate User Agent.

4.2.2 TLS Security

The Section 4.1, “WEB FORM Transport Binding” SHOULD be used with the TLS Security Bindings as
defined under Section 6.3 of [DSSCore].

4.2.3 Claimed Identity

The DSS Client can include the optional <dss:ClaimedIdentity> element as defined in [DSSCore]
Section 2.8.2 to indicate the identity of the client who is making the request. The information provided
by <dss:ClaimedIdentity> can be used to further personalize the interface presented to the end
user by the DSS server.

In case the DSS server detects a problem with the claimed identity, the service returns
in <dss:SignResponse> a <dss:ResultMajor> with the value RequesterError and a
<dss:ResultMinor> with the value:

localsig-v1.0-csprd04 22 February 2018
Standards Track Work Product Copyright © OASIS Open 2018. All Rights Reserved. Page 51 of 69

urn:oasis:names:tc:dss-x:profiles:localsig:resultminor:claimed-

4.2.4 ChipGateway Transport Binding

[TODOQ] Introduction to the binding of the ChipGateway.

The reference URI for this binding is:

urn:oasis:names:tc:dss-x:profiles:localsig:bindings:chipgateway

To Do: Details of the binding of the ChipGateway.

localsig-v1.0-csprd04 22 February 2018
Standards Track Work Product Copyright © OASIS Open 2018. All Rights Reserved. Page 52 of 69

5 Conformance

There are three conformance profiles, one for each approach.
+ Profile A: Stateless Two-Step Approach

+ Profile B: Stateful Two-Step Approach

+ Profile C: User Agent Approach

+ Profile D: Third Party Approach

+ Profile E: Chip Gateway Approach

5.1 Conformance Profile A - Stateless Two-Step
Approach

This conformance profile only applies to a Two-Step approach; see Section 3.2, “Two-Step Approach”.

5.1.1 Conformance Target: Server
The subject of the conformance test is the server that implements the Digital Signature Service.
5.1.1.1 Level 1

The conformance level states that the Digital Signature Service cannot maintain state information
between subsequent requests in the Two-Step approach.

The request MUST contain the element <dss: ServicePolicy> with the value
http://docs.oasis-open.org/dss-x/ns/localsig/two-step-appro

If a request contains the element <localsig:RequestDocumentHash> and the attribute value of
MaintainRequestState is either absent or has a value of "false", then compute the digest
value of the given input document. In case of success, the response MUST contain the element
<dss:DocumentHash> with the digest value.

If a request contains the element <dss:SignatureObject> (and optionally, the
<dss:DocumentHash>), then the server MUST create the signed document by means of the given
<dss:SignatureObject> and the given input document. In case of success, the response MUST
contain the signed document.

The element <localsig:CorrelationID> is ignored in a request; the element
<localsig:CorrelationID> MUST NOT be returned in a response.

5.1.2 Conformance Target: Client
The subject of the conformance test is the client of the Digital Signature Service.
5.1.2.1 Level 1

The conformance level states that the client of the Digital Signature Service is capable of computing a
digital signature value based on a given digest value of a document

The requests MUST contain the element <dss: ServicePolicy> with the value

localsig-v1.0-csprd04 22 February 2018
Standards Track Work Product Copyright © OASIS Open 2018. All Rights Reserved. Page 53 of 69

http://docs.oasis-open.org/dss-x/ns/localsig/two-step-appro

The FIRST request MUST contain the document to be signed as well as the element
<localsig:RequestDocumentHash> for which the attribute MaintainRequestState is either
absent or has a value of "false".

The <dss:DocumentHash> is obtained from the FIRST response and MUST be used to compute the
digital signatue value.

The SECOND request MUST contain the document to be signed, as provided in the FIRST request, as
well as the <dss:SignatureObject> that contains the digital signatue value.

If the FIRST request contained the <dss:DocumentHash> element, the SECOND request MUST
contain that element too with the same value.

5.2 Conformance Profile B - Stateful Two-Step
Approach

This conformance profile only applies to a Two-Step approach; see Section 3.2, “Two-Step Approach”.

5.2.1 Conformance Target: Server
The subject of the conformance test is the server that implements the Digital Signature Service.
5.2.1.1 Level 1

The conformance level 'Stateful' states that the Digital Signature Service is able to maintain state
information between two subsequent requests (in the Two-Step approach).

The element <dss:ServicePolicy> MUST be present with the value
http://docs.oasis-open.org/dss-x/ns/localsig/two-step-appro

The FIRST request MUST contain the element <localsig:RequestDocumentHash> and
the attribute MaintainRequestState="true" in the Optionallnputs. In case of success,
the FIRST response MUST contain a reference to the state, by means of the element
<localsig:CorrelationID> and MUST contain the digest value of the input document by means
of the element <dss : DocumentHash>.

The SECOND request MUST contain the <dss:SignatureObject> and MUST contain the element
<localsig:CorrelationID> that refers to the state of a corresponding (FIRST) request. The Digital
Signature Service MUST use the referred state to create the signed document. In case of success,
the SECOND response MUST contain the electronic signature or signed document, based on the input
document found in the FIRST request and the referred state.

5.2.2 Conformance Target: Client
The subject of the conformance test is the client of the Digital Signature Service.
5.2.2.1 Level 1

The conformance level states that the client of the Digital Signature Service is capable of computing a
digital signature value based on a given digest value of a document

The FIRST request MUST contain the element <localsig:RequestDocumentHash>; the attribute
MaintainRequestState is either absent or has a value of "false".

localsig-v1.0-csprd04 22 February 2018
Standards Track Work Product Copyright © OASIS Open 2018. All Rights Reserved. Page 54 of 69

The FIRST request MUST NOT contain the element <localsig:CorrelationID>

The <dss:DocumentHash> obtained from the FIRST response MUST be used to compute the digital
signatue value.

The SECOND request MUST contain the <dss: SignatureObject> that contains the digital signatue
value.

The SECOND request MUST contain the element <localsig:CorrelationID> with the value that
is obtained from the FIRST response.

If the FIRST request contained the <dss:DocumentHash> element, the SECOND request MUST
contain that element too with the same value.

5.3 Conformance Profile C - User Agent

This conformance level only applies to the User Agent approach; see Section 3.1, “User Agent”.

5.3.1 Conformance Target: Server

The subject of the conformance test is the server that implements the Digital Signature Service.
5.3.1.1 Level 1

The conformance profile states that the Digital Signature Service is capable of using a HTTP User Agent.

The element <dss:ServicePolicy> MUST be present with the value
http://docs.oasis-open.org/dss-x/ns/localsig/user-agent

The request follows the [DSSCore] specification, Section 3.1. The response contains the electronic
signature or signed document according to the request, as defined by the [DSSCore] specification,
Section 3.2.

The server MUST implement the protocol binding according to Section 4.1, “WEB FORM Transport
Binding”.

The server MUST be able to receive the digital signature value that has been computed by the user
agent. The server MUST use the received digital signature value to create the signed document.

5.4 Conformance Profile D - Third Party

This conformance level only applies to the Third Party approach; see Section 3.3, “Third Party”.
5.4.1 Conformance Target: Server

The subject of the conformance test is the server that implements the Digital Signature Service.

5.4.1.1 Level 1

The conformance profile states that the Digital Signature Service is capable of delegating the signature
creation to a third-party.

The element <dss:ServicePolicy> MUST be present in both requests with the value

http://docs.oasis-open.org/dss-x/ns/localsig/delegation

localsig-v1.0-csprd04 22 February 2018
Standards Track Work Product Copyright © OASIS Open 2018. All Rights Reserved. Page 55 of 69

The element <localsig:ChallengeCode>, MUST be present

The server MUST create a new SignRequest and send it to the Third Party. The SignRequest
MUST contain the element <localsig:ChallengeCode>. and MUST NOT contain the element
<localsig:ResponseCode>.

If the request contains the element <ds:DigestMethod> it must instruct the Third Party to use the
specified digest method.

The server MUST wait for the SignResponse of the Third Party. In case of success, the SignResponse
MUST contain the element <dss:SignatureObject>.

In case of success, the response MUST contain the electronic signature or signed document as
requested, as defined by the [DSSCore] specification, Section 3.2, based on the input document and
the <dss:SignatureObject> from the SignResponse of the Third Party.

5.4.1.2 Level 2

The conformance profile states the same capabilities a level 1 and the server is capable acting upon
a response code.

The request MUST contain the element <localsig:ResponseCode>.

The SignResponse from the Third Party MUST contain an element <localsig:ResponseCode> with
the value that has been entered by the user.

When the server receives the SignResponse from the Third Party, the SignResponse MUST contain the
element <localsig:ResponseCode>. The electronic signature or signed document MUST ONLY be
created if and only if the value of the element <localsig:ResponseCode>, obtained from the Third
Party, is the same as the value of the element <localsig:ResponseCode>, obtained from the client.

5.4.2 Conformance Target: Client
The subject of the conformance test is the client of the Digital Signature Service.
5.4.2.1 Level 1

The conformance profile states that the client is capable of creating a challenge code and presenting
the challenge code to the user.

The client MUST create a random value, the challenge code, that can easily be read and entered by
a person.

The client MUST present the challenge code to the user. Information MUST be displayed to the user
about the use of the code: the user has to compare the presented code with the code that is received
from the Third Party. If the codes do not match, the user must cancel the operation.

The request MUST contain the element <localsig:ChallengeCode> with the challenge code.

The client MUST be able to create a request and process a response, as defined by the [DSSCore]
specification.

5.4.2.2 Level 2

The conformance profile states the same capabilities a level 1 and the client is capable of creating a
response code.

The client MUST create a random value, the response code, that can easily be read and entered by
a person.

localsig-v1.0-csprd04 22 February 2018
Standards Track Work Product Copyright © OASIS Open 2018. All Rights Reserved. Page 56 of 69

The client MUST present the response code to the user. Information MUST be displayed to the user
about the use of the code: the user has to enter the code into the application of the Third Party.

The request MUST contain the element <localsig:ResponseCode> with the response code.

5.5 Conformance Profile E - Chip Gateway

This conformance level only applies to the Chip Gateway approach; see Section 1.7.3.4, “Introduction
of a ChipGateway”.

5.5.1 Conformance Target: Server

The subject of the conformance test is the server that implements the Digital Signature Service.
5.5.1.1 Level 1

The conformance profile states that

5.5.1.2 Level 2

The conformance profile states that

5.5.2 Conformance Target: Client

The subject of the conformance test is the client of the Digital Signature Service.
5.5.2.1 Level 1

The conformance profile states that

5.5.2.2 Level 2

The conformance profile states that

localsig-v1.0-csprd04 22 February 2018
Standards Track Work Product Copyright © OASIS Open 2018. All Rights Reserved. Page 57 of 69

Appendix A XML Schema Definition (Non-
Normative)

A.1 Schema

The structures described in this specification are contained in the schema file which is part of
[LocalSigXSD]. The xml schema definitions present within this document are copy of the XML schema
file and must be considered as informative text, and that in case of discrepancy, definitions within the
XML schema prevail.

<?xml version="1.0" encoding="UTF-8"?>

<!l--
XSD for "DSS Extension for Local Signature Computation Version 1.0"
Committee Specification Draft 03 / Public Review Draft 03
13 February 2017
Copyright (c) OASIS Open 2017. All Rights Reserved.

-——>

<xs:schema
xmlns:localsig="http://docs.oasis-open.org/dss-x/ns/localsig"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#"
xmlns:dss="urn:oasis:names:tc:dss:1.0:core:schema"
targetNamespace="http://docs.oasis-open.org/dss-x/ns/localsig"
elementFormDefault="qualified" attributeFormDefault="unqualified">
<xs:annotation>

<xs:documentation>

XSD for "DSS Extension for Local Signature Computation Version 1.0"

Committee Specification Draft 03 / Public Review Draft 03

13 February 2017

Copyright (c) OASIS Open 2017. All Rights Reserved.

Declared XML Namespace:
http://docs.oasis-open.org/dss-x/ns/localsig

XSD Schema Location:
http://docs.oasis-open.org/dss-x/localsig/v1.0/csprd03/schemas/localsig-v1.0.xsd
</xs:documentation>
</xs:annotation>
<xs:import namespace="http://www.w3.0rg/2000/09/xmldsig#"
schemal.ocation=
"http://www.w3.0rg/TR/xmldsig-core/xmldsig-core-schema.xsd" />
<xs:import namespace="urn:oasis:names:tc:dss:1l.0:core:schema"
schemal.ocation=
"http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-schema-vl.0-os.xsd"/>
<xs:element name="RequestDocumentHash">
<xs:annotation>
<xs:documentation>
This element is part of the Two-Step approach
in a SignRequest (as part of the OptionalInputs).
</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element

localsig-v1.0-csprd04 22 February 2018
Standards Track Work Product Copyright © OASIS Open 2018. All Rights Reserved. Page 58 of 69

minOccurs="0"
maxOccurs="1"
ref="ds:DigestMethod" />
</xs:sequence>
<xs:attribute
name="MaintainRequestState"
use="optional"
type="xs:boolean" />
</xs:complexType>
</xs:element>
<xs:element name="CorrelationID" type="xs:NCName">
<xs:annotation>
<xs:documentation>
This element is part of the Two-Step approach.
The CorrelationID is obtained in the first step, from
a SignResponse (as part of the OptionalOutputs)
and is provided in the second step, in a SignRequest
(as part of the OptionallInputs).
</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="ChallengeCode" type="xs:NCName">
<xs:annotation>
<xs:documentation>
This element is part of the Third-Party approach
in a SignRequest (as part of the OptionalInputs).
</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="ResponseCode" type="xs:NCName">
<xs:annotation>
<xs:documentation>
This element is part of the Third-Party approach
in a SignRequest (as part of the OptionalInputs).
</xs:documentation>
</xs:annotation>
</xs:element>
<!l--
The element <dss:DocumentHash> as defined by the
DSS-core xml schema definition (see corresponding import).
The element is part of the Two-Step approach in the
first step, in a SignResponse (as part of the OptionalOutputs).
-—>
<!-—-
The element <dss:SignatureObject> as defined by the
DSS-core xml schema definition (see corresponding import).
The element is part of the Two-Step approach in the
second step, in a SignRequest (as part of the OptionallInputs).
-—>
</xs:schema>

localsig-v1.0-csprd04 22 February 2018
Standards Track Work Product Copyright © OASIS Open 2018. All Rights Reserved. Page 59 of 69

Appendix B Sample Application (Non-
Normative)

Figure B.1, “elD DSS Signature Pipeline” shows the design of a digital signature service that uses the
Belgian elD card as client signing token.

Figure B.1. elD DSS Signature Pipeline

€lD Applet

v

EID Applet Servi

SignatureService
proxy

Y

O*"rcnocnl Serwce_bjocumem Serwue_’ Check supported _h)ocument Service » Document Service » Protocal Service: _’o

Y

Parse request check document Browser plugins fisualize documen Sign document Response generatior
T T Services T T T
Manager

Protocol Protocol Document Document
Context Service Service Context

An end user enters the DSS signature pipeline via some protocol. First of all the appropriate protocol
service parses the request. At this step the mime type of the incoming document is determined. Via
the mime type the appropriate document service can be selected. The document service will first check
the incoming document (syntax,...). Next the web browser capabilities are being queried in order for
the document service to be able to correctly visualize the received document. After the user's consent
the document service will orchestrate the document signing process using a web browser Java applet
component. Finally the signed document is returned via the protocol service that also handled the
incoming protocol request.

The advantage of such a generic signature pipeline architecture is that one can easily add new document
formats by providing a new document service implementation. Because the protocol handling is also
isolated in protocol services, one can also easily add new DSS protocols to the platform. Another
advantage of such a signature pipeline is that every Relying Party (RP), in the role of a DSS client, that
uses the platform is guaranteed that the user followed a certain signature ceremony and is fully aware
of the content of the signed document. This guarantee can be interesting from a legal point of view.

A sample protocol flow is shown in Figure B.2, “Sequence diagram of a simple protocol flow”.

localsig-v1.0-csprd04 22 February 2018
Standards Track Work Product Copyright © OASIS Open 2018. All Rights Reserved. Page 60 of 69

Figure B.2. Sequence diagram of a simple protocol flow

Token| |Client Browser RP DSS

e
Crea
document

<signing request

<__signing response
T

Here the client navigates via a web browser to the web application of the relying party. As part of the
business work flow, the client fills in a web form. The relying party's web application converts the received
form data into a document that needs to be signed by the client. Now the relying party's web application
redirects the client web browser to the DSS web application. The DSS web application takes care of the
signing ceremony using Java applet technology to connect to the client's token. Finally the DSS web
application redirects the client's web browser back to the relying party. The relying party can now further
process the signed document as part of the implemented business work flow.

In such scenarios it is difficult to use the existing OASIS DSS protocol messages as is, because the
OASIS DSS protocol does not provide the security mechanisms required to secure the communication
between relying parties and the DSS in the context of web browsers. Various MITM attacks are possible
at different points during the signature ceremony. Similar to the OASIS SAML Browser POST profile,
we need to define additional wrapper messages to be able to guarantee secure transportation of the
DSS requests and responses via web browsers.

A disadvantage of the simple protocol shown is that the entire document is being transferred between
relying party and DSS (and back) using the client's web browser. Given the upload limitation of most
client's internet connection, this might result in a bad end user experience when trying to sign a large
document. So additionally we should define some form of artifact binding. Here the relying party sends
the to be signed document via a SOAP DSS web service to the DSS. The DSS stores the document
in some temporary document repository. The relying party receives back a document identifier which
it passes as parameter when redirecting the client's web browser towards the DSS. At the end of the
protocol flow, the relying party can fetch the signed document from the DSS web service using the
document identifier.

localsig-v1.0-csprd04 22 February 2018
Standards Track Work Product Copyright © OASIS Open 2018. All Rights Reserved. Page 61 of 69

Appendix C Examples (Non-Normative)

C.1 User Agent
C.1.1 Web Form of the SignRequest

The client sends a request to the Digital Signature Service via the HTTP agent (a web browser) by

means of a HTML form.

<html>
<head>SignRequest</head>
<body>
<form
id="dss-request-form"
method="post"

action="http://localsig.digitalsignatureservice.co.uk">

<input type="hidden" name="signrequest"
value=
"JVBERiO0xXLJjYNJeLjz9MNCjI4IDAgb2JgDTw8LOZpbHR1cid
ZW5ndGggMTY1L.04gMi9UeXB1lL09ialNObT4+c3RyZWFt
14GBiYFBiYEZTDKBSUZGRr1JUHEgR72YAQz+/wcAlBAG
eHJ1Zgo3NjAOMQolJUVPRgo="/>
<input type="hidden" name="clienturl"

value="http://localsig.digid.nl/654528644274424/" />

</form>
<script type="text/javascript">
document.getElementById('dss-request-form').submit();
</script>
</body>
</html>

C.1.2 Web Form of the SignResponse

The Digital Signature Service sends the result back to the client, via the HTTP agent (a web browser, by
using the URL of the client http://localsig.digid.nl1/654528644274424/ in the HTML form.

The URL was provided in the request by the attribute clienturl.

<html>
<head>SignResponse</head>
<body>
<form

id="dss-response-form"
method="post"
action="http://localsig.digid.nl/654528644274424/">
<input type="hidden" name="signresponse"
value=
"eHJ1Zgo3NjAOMQolJUVPRgoDAgb2JgDTw8L0ZpbHR1cid
i4GBiYFBiYEZTDKBSUZGRr1JUHEgR72YAQz+/wcAlBAG
ZW5ndGggMTY1L.04gMi9UeXB1L.09ialNObT4+c3RyZWFt
JVBERiOXLjYNJeLjz9MNCII4I="/>
</form>
<script type="text/javascript">
document.getElementById('dss-response-form').submit();

localsig-v1.0-csprd04
Standards Track Work Product Copyright © OASIS Open 2018. All Rights Reserved.

22 February 2018
Page 62 of 69

</script>
</body>
</html>

C.2 Two-Step Approach
C.2.1 FIRST Request/Response

The client application initiates a <dss : SignRequest> to request the digest of the document.

<?xml version="1.0" encoding="utf-8"?>
<dss:SignRequest
xmlns:dss="urn:oasis:names:tc:dss:1.0:core:schema"
xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#"
xmlns:localsig="http://docs.oasis-open.org/dss-x/ns/localsig"
RequestID="examplel-initial-request"
Profile="http://docs.oasis-open.org/dss-x/ns/localsig">
<dss:OptionalInputs>
<dss:ServicePolicy>
http://docs.oasis-open.org/dss-x/ns/localsig/two-step-approach
</dss:ServicePolicy>
<localsig:RequestDocumentHash MaintainRequestState="true">
<ds:DigestMethod
Algorithm="http://www.w3.0rg/2001/04/xmlenc#sha256" />
</localsig:RequestDocumentHash>
</dss:0OptionalInputs>
<dss:InputDocuments>
<dss:Document>
<dss:Base64Data MimeType="application/pdf">
JVBER1i0xL3jYNJeLjz9MNCJI4IDAgb2JgD
[.--]
eHJ1Zg03NjA0MQo1JUVPRgO=
</dss:Base64Data>
</dss:Document>
</dss:InputDocuments>
</dss:SignRequest>

The <dss:SignResponse> contains the <localsig:CorrelationID> to be used in the
subsequent <dss:SignRequest>.

<?xml version="1.0" encoding="utf-8"?>
<dss:SignResponse
xmlns:dss="urn:oasis:names:tc:dss:1.0:core:schema"
xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#"
xmlns:localsig="http://docs.oasis-open.org/dss-x/ns/localsig"
RequestID="examplel-initial-request"
Profile="http://docs.oasis-open.org/dss-x/ns/localsig">
<dss:Result>
<dss:ResultMajor>
urn:oasis:names:tc:dss:1.0:resultmajor:Success
</dss:ResultMajor>
<dss:ResultMinor>
urn:oasis:names:tc:dss:1.0:resultminor:documentHash
</dss:ResultMinor>

localsig-v1.0-csprd04 22 February 2018
Standards Track Work Product Copyright © OASIS Open 2018. All Rights Reserved. Page 63 of 69

</dss:Result>
<dss:0OptionalOutputs>
<localsig:CorrelationID>
82962C67-F8D6-4480-A130-9280AB1F11A7
</localsig:CorrelationID>
<dss:DocumentHash>
<dss:DocumentHash>
<ds:DigestMethod
Algorithm="http://www.w3.0rg/2001/04/xmlenc#sha256" />
<ds:DigestValue>
In6GUzH+gMFR5g4WpUTyPa+lb4ds=
</ds:DigestValue>
</dss:DocumentHash>
</dss:DocumentHash>
</dss:0OptionalOutputs>
</dss:SignResponse>

The client application uses the digest for the (secure) signature-creation device to obtain the signature.

C.2.2 SECOND Request/Response

The client application initiates a <dss : SignRequest> to provide the Digital Signature Service with the
signed digest (a <dss:SignatureObject> element) and request for the final document.

<?xml version="1.0" encoding="utf-8"?>
<dss:SignRequest
xmlns:dss="urn:oasis:names:tc:dss:1.0:core:schema"
xmlns:localsig="http://docs.oasis-open.org/dss-x/ns/localsig"
RequestID="examplel-final-request"
Profile="http://docs.oasis-open.org/dss-x/ns/localsig">
<dss:OptionalInputs>
<dss:ServicePolicy>
http://docs.oasis-open.org/dss-x/ns/localsig/two-step-approach
</dss:ServicePolicy>
<localsig:CorrelationID>
82962C67-F8D6-4480-A130-9280AB1F11A7
</localsig:CorrelationID>
<dss:SignatureObject>
<dss:Base64Signature>
MIAGCSgGSIb3DQEHAQCAMITIRAQIBATE
DQEHAaCCD74wggWAMIIEaKADAgECAg
[---1
DQEBAQUABEA3YkuiPSDVaAhaAza49UT
DZWtCGVcOLCc50R1BOc54ZrVGp6AA==
</dss:Base64Signature>
</dss:SignatureObject>
</dss:0ptionalInputs>
</dss:SignRequest>

The final <dss: SignResponse> contains the signed document.

<?xml version="1.0" encoding="UTF-8"?>
<dss:SignResponse
xmlns:dss="urn:oasis:names:tc:dss:1.0:core:schema"
RequestID="examplel-final-request"

localsig-v1.0-csprd04 22 February 2018
Standards Track Work Product Copyright © OASIS Open 2018. All Rights Reserved. Page 64 of 69

Profile="http://docs.oasis-open.org/dss-x/ns/localsig" >
<dss:Result>
<dss:ResultMajor>
urn:oasis:names:tc:dss:1.0:resultmajor:Success
</dss:ResultMajor>
<dss:ResultMinor>

urn:oasis:names:tc:dss:1.0:resultminor:valid:signature:OnAllDocuments

</dss:ResultMinor>
<dss:ResultMessage lang="en-us"/>
</dss:Result>
<dss:0OptionalOutputs>
<dss:DocumentWithSignature>
<dss:Document>
<dss:Base64Data MimeType="application/pdf">
JVBERi0xLjYNJeLjz9MNCjI4IDAgb2JgDTw
[---1
gmMAg///AYYzCwcKZW5kc3RyZWFtCmVCg==
</dss:Base64Data>
</dss:Document>
</dss:DocumentWithSignature>
</dss:0OptionalOutputs>
</dss:SignResponse>

localsig-v1.0-csprd04
Standards Track Work Product Copyright © OASIS Open 2018. All Rights Reserved.

22 February 2018
Page 65 of 69

Appendix D Chipgateway Algorithms

The following table specifies the list of possible values for the Algorithm parameter according to JCA
(cf. [JCA-Names]) together with its mapping to PKCS#11 (cf. [PKCS#11-CM]) and corresponding URIs
(cf. [XML-Algs] and [RFC 6931]).

D.1 Chipgateway Signature Algorithms

Table D.1.

Algorithm PKCS#11-Mechanism URI for Cardinfo

NONEwithRSA CKM_RSA_PKCS http://ws.openecard.org/alg/rsa

SHA1withRSA CKM_SHA1_RSA_PKCS http://www.w3.0rg/2000/09/

xmldsig#rsa-shat

SHA256withRSA CKM_SHA256_RSA_PKCS http://www.w3.0rg/2001/04/

xmldsig-more#rsa-sha256

SHA384withRSA CKM_SHA384_RSA_PKCS http://www.w3.0rg/2001/04/

xmldsig-more#rsa-sha384

NONEwithRSAandMGF1 CKM_xxx_RSA_PKCS_PSS http://ws.openecard.org/alg/rsa-
with MGF1
CK_RSA_PKCS_PSS_PARAMS
indicating the hash algorithm
xxx and MGF1, whereas the
hash algorithm xxx (e.g. SHA1,

SHA256 or SHA384) is implied
by the length of the transmitted
message.

SHA1withRSAandMGF1 CKM_SHA1_RSA_PKCS_PSS |http://www.w3.0rg/2007/05/
with xmldsig-more#shat-rsa-MGF1
CK_RSA_PKCS_PSS_PARAMS
indicating SHA1 and MGF1.

SHA256withRSAandMGF1 CKM_SHA256_RSA_PKCS_PSShttp://www.w3.0rg/2007/05/
with xmldsig-more#sha256-rsa-
CK_RSA_PKCS_PSS_PARAMS|MGF1
indicating SHA256 and MGF1.

SHA384withRSAandMGF1 CKM_SHA384_RSA_PKCS_PSShttp://www.w3.0rg/2007/05/
with xmldsig-more#sha384-rsa-
CK_RSA_PKCS_PSS_PARAMS|MGF1
indicating SHA384 and MGF1.

NONEwithECDSA CKM_ECDSA http://ws.openecard.org/alg/

ecdsa

SHA1withECDSA CKM_SHA1_ECDSA http://www.w3.0rg/2001/04/

xmldsig-more#ecdsa-sha1l

SHA256withECDSA CKM_SHA256_ECDSA http://www.w3.0rg/2001/04/

xmldsig-more#ecdsa-sha256

SHA384withECDSA CKM_SHA384_ECDSA http://www.w3.0rg/2001/04/

xmldsig-more#ecdsa-sha384

localsig-v1.0-csprd04
Standards Track Work Product

Copyright © OASIS Open 2018. All Rights Reserved.

22 February 2018
Page 66 of 69

D.2 ChipGateway Cipher Algorithms

Table D.2.

Algorithm PKCS#11-Mechanism URI for Cardinfo

RSA/NONE/PKCS1Padding CKM_RSA_PKCS http://www.w3.0rg/2001/04/
xmlenc#rsa-1_5

RSA/NONE/OAEPWIithSHA1 CKM_RSA_PKCS_OAEP http://www.w3.0rg/2009/

AndMGF1Padding with CK_RSA_PKCS_OAEP_ |xmlenc11#mgfishail

PARAMS indicating SHA1 and
MGF1

RSA/NONE/OAEPWIithSHA256
AndMGF1Padding

CKM_RSA_PKCS_OAEP
with CK_RSA_PKCS_OAEP_
PARAMS indicating SHA256
and MGF1

http://www.w3.0rg/2009/
xmlenc11#mgf1sha256

RSA/NONE/OAEPWIithSHA384
AndMGF1Padding

CKM_RSA_PKCS_OAEP
with CK_RSA_PKCS_OAEP_
PARAMS indicating SHA384
and MGF1

http://www.w3.0rg/2009/
xmlenc11#mgf1sha384

localsig-v1.0-csprd04
Standards Track Work Product

Copyright © OASIS Open 2018. All Rights Reserved.

22 February 2018
Page 67 of 69

Appendix E Acknowledgements (Non-
Normative)

The following persons have participated in the creation of this specification and are gratefully
acknowledged (in alphabetical order):

Andreas Kuehne, Individual.

Daniel Nemmert, ecsec GmbH.

Detlef Hihnlein, ecsec GmbH.

Ernst Jan van Nigtevecht, Sonnenglanz Consulting BV.
Ezer Farhi, ARX

Frank Cornelis, Fedict

Juan Carlos Cruellas, Departamento de Arquitectura de Computadores, Univ Politecnica de
Cataluna.

Oscar Burgos, CATCert-Agencia Catalana de Certificacio.
Pim van der Eijk, Sonnenglanz Consulting BV.

Stefan Hagen, Individual.

localsig-v1.0-csprd04 22 February 2018
Standards Track Work Product Copyright © OASIS Open 2018. All Rights Reserved. Page 68 of 69

Appendix F Revision History (Non-Normative)

Revision 0.1 18 Januari 2014 E.J. Van Nigtevecht
Creation of the CSPRD 01 based on the CSD 01.
Revision 0.2 30 June 2014 E.J. Van Nigtevecht

Processed the comments on CSD 01; see '"https://www.oasis-open.org/committees
document.php?document_id=53473&wg_abbrev=dss-x". Renamed localsig:ReturnDocumentHash
into localsig:RequestDocumentHash (in Section 3.2.1.1.2 in the code).

Revision 0.3 13 October 2016 E.J. Van Nigtevecht
Corrected url in Section 1.3 under [LocalSigXSD].
Revision 0.4 13 October 2016 E.J. Van Nigtevecht

Corrected the XSD that was published under CS01: changed element ReturnDocumentHash into
element RequestDocumentHash. Updated comments in the XSD and the import statement for http:/
www.w3.0rg/2000/09/xmldsig#.

Revision 0.5 13 October 2016 E.J. Van Nigtevecht

Added a description/indication for the use of the element AdditionalProfile in Section 3.1.1, Section
3.2.1 and Section 3.3.1.

Revision 0.6 13 February 2017 E.J. Van Nigtevecht
Editorial updates for CSPRDO3.

Revision 0.7 20 February 2017 E.J. Van Nigtevecht
Editorial updates for CSPRDO03 into CS02.

Revision 0.8 22 February 2018 D. Hihnlein

Added draft of ChipGateway mechanism.

localsig-v1.0-csprd04 22 February 2018
Standards Track Work Product Copyright © OASIS Open 2018. All Rights Reserved. Page 69 of 69

