Towards an XML Format for Time-Stamps

Karel Wouters'*, Bart Preneel!, Ana Isabel Gonzélez-Tablas?, and
Arturo Ribagorda?

! Katholieke Universiteit Leuven,

Department Electrical Engineering - ESAT, COSIC,
Kasteelpark Arenberg 10, B-3001 Heverlee-Leuven, Belgium
http://www.esat.kuleuven.ac.be/cosic
karel.wouters@esat.kuleuven.ac.be

2 Carlos III University of Madrid
Computer Science Department - GSTI
Avda. de la Universidad 30, 28911 Leganés, Spain

aigonzal@inf.uc3m.es

Abstract. XML has become a well-established format for information
exchange. Several formats have been defined to secure XML data, such
as XML Digital Signatures, XML Encryption and XKMS. In recent work
by ETSI on XML digital signatures conforming to European legislation,
time-stamps play a key role for qualified digital signatures. Some ASN.1-
based formats for time-stamp protocols have been defined within IETF
and ISO/IEC. In this paper, we investigate how the wide range of time-
stamping protocols in the literature can be embedded into a single XML
format; our work is based on existing standardisation efforts. We present
our ideas in the form of a concrete XML structure, which can be used
as the starting point to develop a mature XML-based time-stamping
protocol.

1 Introduction

Digital time-stamping is a set of techniques that enables us to determine if
a certain digital document has been created or signed before a given time.
In most practical applications, the time-stamping service is performed by
a trusted third party — a Time-Stamping Authority (TSA) — that creates
time-stamps. These time-stamps are the digital assertions that a given
document was presented to the TSA at a given time. There also exist
some distributed time-stamp techniques in which a group of users/TSAs
collaborates to compute a time-stamp.

Apart from obvious applications, time-stamping also plays an impor-
tant role in the classical Public Key Infrastructure (PKI). In this context,

* The author was partially supported by the GOA project MEFISTO 2000/6 of the
Flemish Government

it can be used to extend the lifetime of digital signatures: a time-stamp
on a digital signature can prove that the signature was generated before
the signature key-pair expired or was revoked. Even if the underlying
mathematics or the hash algorithm is broken, the signature can still re-
main valid if the time-stamping algorithm is sufficiently strong. This is
clearly taken into account in the relatively new European standards on
advanced electronic signatures [17]. Note that this may not be necessary
for low-value electronic signatures.

Throughout the past few years, a significant amount of research has
been done on the time-stamping problem. In Section 2, we classify existing
time-stamping schemes. Section 3 gives an overview of the standards that
we studied to construct our time-stamping format. In Section 4, we specify
our format and we apply it to some existing schemes. We conclude with
an overview of our work and some open issues.

2 Classification of time-stamping schemes

We classify time-stamping schemes into three sections: simple schemes,
linking schemes and distributed schemes.

2.1 Simple Schemes

Simple schemes generate time-stamp tokens that are independent; they
do not include information of other time-stamps. A classical example of
this scheme is the digital signature of a TSA on a pair (time,document),
which is proposed by Adams et al. [6] and in ISO/IEC FDIS 18014-2 [2].
The main limitation of these schemes is that they assume a rather high
level of trust in the issuing party, the TSA. Furthermore, nobody can
detect possible fraudulent behaviour of the TSA. All of these time-stamps
offer so-called absolute temporal authentication; they include the time at
which the time-stamp was made and so they can be situated into a small
accuracy interval, if the TSA does not cheat.

2.2 Linking Schemes

Linking schemes try to lower the required trust in the TSA by linking
time-stamps. Data from other time-stamps is included into the compu-
tation of the issued time-stamp, such that they depend on each other.
Linking happens in three phases:

Aggregation: in the first step, all documents received by the TSA within

a small time interval — the aggregation round — are being considered si-
multaneous. The output of the aggregation round is a binary string that
securely depends on all the documents submitted in that round. Users re-
ceive information on how to compute the aggregation output, using their
submitted document. The purpose of aggregation is to lower the load on
the TSA, if the linking operation is expensive.
Linking: the output of the aggregation round is taken, and linked to
previous aggregation round values, where the output of the linking ope-
ration cannot be computed without previous aggregation round values.
This establishes a one-way order between aggregation round values, such
that so-called relative temporal authentication is obtained: time-stamps
of different aggregation rounds can be compared. This implies also that
a time value is not necessary in linking schemes.
Publication: from time to time (e.g., each week), the TSA publishes the
most recent time-stamp in a widely witnessed medium, such as a newspa-
per. By doing this, the TSA commits itself to all of the previously issued
time-stamps. The published values are used for verifying time-stamps and
they enable other parties to check if the T'SA is behaving properly.
Examples of linking can be found in Bayer et al. [8], Benaloh et al. [9]
and Buldas et al. [13]. In these cases, the linking can be visualised by
a graph and optimised in time-stamp size. In Benaloh et al. [10] and
Merkle [24], some aggregation schemes are proposed. These can be based
on hash functions in graph-like structures or on number-theoretic pro-
blems.

2.3 Distributed Schemes

Another way of lowering the required level of trust in the TSA is to
distribute the trust. In that approach, multiple users/TSAs cooperate to
generate a time-stamp, possibly using a secure distribution of secret data
necessary to generate a time-stamp. In this way, forgery of a time-stamp
requires the collusion of a predetermined (high) number of parties, which
is considered to be very unlikely. Example of such protocols can be found
in Benaloh et al. [9,10] and Ansper et al. [7]. They can be extensions
of the schemes described above, and as such provide relative temporal
authentication or absolute temporal authentication.

2.4 Other schemes

Not all existing time-stamping schemes can be classified into these three
sections. For example, the scheme of Haber et al. [18] includes the time

value in a digitally signed document that contains linking information.
This linking information has to be checked “as far as necessary to convince
the most suspicious verifier.” Obviously, this also includes no checking at
all, although the scheme suggest to follow at least one link.

It has to be noticed that not all of these time-stamping schemes are
equally secure, see Just [22] for some remarks on that. Some of them have
their security goals strictly set, others have not. For a security classifica-
tion of some recent schemes, we refer to Une [27].

3 Standards for XML and time-stamping

In this section, we briefly describe some standards upon which we would
like to build.

3.1 XMLDSig and XAdES

The mission of the joint W3C and IETF XML Signature working group [14]
was to develop an XML compliant syntax used for representing a digital
signature of Web resources and portions of protocol messages (anything
referencable by a URI), and procedures for computing and verifying such
signatures. The resulting document, XML Signature Syntax and Pro-
cessing (XMLDSig, [14]), specifies the XML digital signature processing
rules and syntax. XML Signatures provide integrity, message authentica-
tion, and/or signer authentication services for data of any type, whether
located within the XML that includes the signature or elsewhere.

ETSI TS 101 903 [16,17] (better known as XAdES , XML Advanced
Electronic Signatures) was built on top of XMLDSig. It defines XML
formats for advanced electronic signatures that remain valid over longer
periods, are compliant to the Europeans Directive on a community frame-
work for Electronic Signatures [25], and incorporate additional useful in-
formation in common use cases.

Obviously, XMLDSig and XAdES play an important role in the con-
text of this paper. Not only do they provide us with useful tools for the
definition of our XML time-stamp format, they also provide an interesting
application to use time-stamps for the extension of digital signatures.
(XAdES explicitely assumes the existence of a TSA).

3.2 IETF Standards

The IETF PKIX Working Group [23] was established in the Fall of 1995
with the intent of developing Internet standards needed to support an

X.509-based PKI. The PKIX Time-Stamp Protocol, (PKIX-TSP, RFC
3161 [6]), describes the format of a request sent to a TSA and of the
response that is returned. It also establishes several security-relevant re-
quirements for TSA operation, with regard to processing requests to gen-
erate responses. This standard describes a simple scheme: time-stamps
are digital signatures by the TSA on the submission time and the value
of a digital document’s message digest.

Another IETF Working Group, S/MIME Mail Security [20], developed
the Cryptographic Message Syntax (SMIME-CMS, [21]). This syntax is
used to digitally sign, digest, authenticate, or encrypt arbitrary messages.
Although we did not base our format directly on this document, it is
referenced by PKIX-TSP for the signature functionality. PKIX-TSP and
SMIME-CMS are based on ASN.1 [4] and imply DER/BER-encoding [5]
of the defined objects.

3.3 ISO Standards

In 1999, the ISO/IEC JTC1/SC27 on security techniques started a project
on time-stamping services (ISO/IEC 18014). In this project, three work
items have been defined until now:

— A time-stamping services framework [1]. In this item, a gene-
ral framework for time stamping services was built. Communications
between the TSA and the client are discussed. The time stamping
formats themselves are defined in the following documents.

— Mechanisms producing independent tokens [2]. The group of
experts decided to integrate the existing IETEF PKIX-TSP in this work
item. Apart from that, they defined two other time-stamp formats:
one where Message Authentication Codes (MACs) replace the digital
signatures, and one where the submitted information is archived by
the TSA, together with the time of submission (in this case the TSA
has to be trusted completely). All of these tokens have the property
that they can be verified without access to other tokens. These time-
stamp tokens are situated in the simple schemes described above.

— Mechanisms producing linked tokens [3]. This document de-
scribes time-stamp tokens of a linking scheme. It is still in development
and at the time of writing it provides a generic framework that should
support several types of aggregation, linking and publication.

As far as we could understand, none of these work items aim to define a
distributed time-stamping scheme.

3.4 XER

The ITU-T X.693 Recommendation/International Standard [28] defines
two sets of encoding rules that may be applied to values of ASN.1 types
and that use XML. These encoding rules are called the XML Encoding
Rules (XER) for ASN.1, and both produce an XML document compliant
to W3C XML 1.0. The first set is called the Basic XML Encoding Rules.
The second set is called the Canonical XML Encoding Rules because
there is only one way of encoding an ASN.1 value using these encoding
rules. At first sight, it would appear to be interesting to translate the
IETF or ISO standards directly into XML using these encoding rules, but
that proved to be impossible, because both standards explicitly assume
DER-encoding of the time-stamp information. Furthermore, it would be
a missed opportunity to ignore the existing rich framework of XMLDSig
and XAdES.

Note that, at the time of writing, a complete ASN.1/XML solution for
CMS is being defined in the American Bankers Association X9F3 working
group [31]. X9.96 XML Cryptographic Message Syntax (XCMS, [30]) will
use a single ASN.1 schema for CMS to provide both compact binary
encodings using BER/DER, and an XML markup solution using XER.
Using this solution, combined with a XER-translation of the IETF or
ISO/IEC standards will result in a XML time-stamp format. This may
be something to explore in the future. The same group is also working on
a Trusted Time-Stamp format (X9.95, [29]), which appears to be based
on the ISO/IEC work.

4 Protocol and Syntax

4.1 Overview
The main structures of a time-stamping scheme are:

— A TimeStampRequest, the message a user sends to the TSA(s), re-
questing a time-stamp of type X of some data. The core component of
this request is a digest value that should be time-stamped. Optionally,
the user can specify other elements, such as the preferred TSA policy,
a nonce to thwart replay attacks and in the PKI case an indication
if the user wants to receive additional certificate information in the
response. The replay attack occurs when a middleman is replaying
legitimate T'SA responses. It may also be desirable to send multiple
digest values (using a different hash function) of the same document
to protect against —unknown— attacks on a single hash function, see

for example the TIMESEC project [26]. In the request there should
be no information that could reveal the content of the document to
be time-stamped. There is one exception to this rule: the user might
want the TSA to act as a notary authority, so the document is sent
(over an authenticated encrypted channel) to be stored by the TSA.

— A TimeStampResponse, the response message generated by the TSA,
should contain a field indicating the response status and, if the time-
stamp could be generated, the time-stamp itself. Note that this may
be a partial time-stamp in the case of a distributed scheme.

— A VerifyRequest and a VerifyResponse, in the case where the explicit
cooperation of the TSA is required to verify a time-stamp.

In the next sections, we elaborate the main structures. Note that if
XAdES or XMLDSig elements were fit to do the job, we adopted them
in our scheme. From here on, elements borrowed from XMLDSig will be
prefixed with “ds:”; elements from XAdES will be prefixed by “xades:”.
Our scheme has been written in W3C’s Schema language [19]; schema
elements shall be prefixed with “xs:”, and our newly defined elements
will be prefixed by “tsp:”. For presenting our ideas, we will work with
simplified structures; the full schema can be found in the appendix A.

4.2 Common syntax

The tsp:TimeStampRequest element is sent to the TSA when a client
wants have a document time-stamped. Normally, the request will contain
the digest value of the document to be time-stamped. It has the following
structure:

<tsp:TimeStampRequest Type? CertReq?>
<tsp:MessageImprints Id?>
(<xades:SignaturePolicyIdentifier>)?
(<tsp:Nonce>)?
(<ds:0bject>)?
</tsp:TimeStampRequest>

— The tsp:TimeStampRequest element has an attribute Type that in-
dicates the requested time-stamp type, and a CertReq attribute to
indicate if detailed certificate information is required if the T'SA uses
digital signatures.

— tsp:MessageImprints contains the digest values to be time-stamped.
This element is described further on.

— xades:SignaturePolicyIdentifier identifies the signature policy
that the user wants the TSA to apply. A default policy will be applied
if none is specified in the request.

— tsp:Nonce contains a random value to prevent replay attacks. It
should be copied into the response of the TSA.

— ds:0bject will contain the documents to be time-stamped in the case
of a notary authority.

When a user submits a tsp:TimeStampRequest, the TSA responds with
a tsp:TimeStampResponse. This element is structured as follows:

<tsp:TimeStampResponse>
<tsp:Status>
<tsp:MajorStatus Code>
(<tsp:FailInfo Code>)?
</tsp:Status>
(<tsp:TimeStampToken Id7>)?
</tsp:TimeStampResponse>

The Status element contains information about how the request was
handled. Its children contain machine-readable information in the at-
tribute Code and human-readable information in their (textnode) chil-
dren. MajorStatus indicates general information, such as “Time-stamp
granted”, while FailInfo can indicate the reason why a request failed.
The tsp:TimeStampToken contains the time-stamp itself. Its structure is
as follows:

<tsp:TimeStampToken Id7>
(<tsp:References>
[(<ds:Reference>)+ OR <tsp:XadesTSTLink Idref>]
</tsp:References>)?
(<tsp:MessageImprints Id?>
(<tsp:DigestAlgValue Id7>)+
</tsp:MessageImprints>)?
<tsp:TSTInfo Id7?>
(<xades:SignaturePolicyIdentifier>)?
(<tsp:SerialNumber>)?
(<tsp:GenTime MilliSeconds? MicroSeconds?>)7
(<tsp:Accuracy>
(<Seconds>)? (<MilliSeconds>)? (<MicroSeconds>)?
</tsp:Accuracy>)?
(<tsp:0rdering />)7?
(<tsp:Nonce>)?
(<tsp:TSA URI?>)?
(<tsp:Id Name>)?
</tsp:TSTInfo>
(<ds:Signature>)?
(<tsp:BindingInfo Algorithm Id?>)7?
</tsp:TimeStampToken>

— The tsp:References element contains references to time-stamped
content. It is a set of digest values that are used as input of a hash func-
tion that will produce the digest values in the tsp:MessageImprints
element. Or, it can contain a tsp:XadesTSTLink, a link to XAdES
time-stamp information (a xades:HashDataInfo element) that speci-
fies the octet stream to be time-stamped, again used as input for the
tsp:MessageImprints element. The tsp:References element can
contain several references to the same content, but digested with dif-
ferent hash functions. Note that this element is added by the user
after receiving the time-stamp response.

— tsp:MessageImprints contains the digest values and the algorithms
to produce those values from the concatenated digest values or the
octet stream above. This construction allows for several ‘imprints’
with different hash functions.

— The tsp:TSTInfo element contains TSA-specific time-stamp informa-
tion; we expect it to be present in each type of time-stamp. Its format
is almost the same as the TSTInfo element in PKIX-TSP. Note that
<tsp:GenTime> is an extension of xs:dateTime.

— ds:Signature. Depending on the time-stamping scheme, this ele-
ment is included to sign tsp:MessageImprints, tsp:TSTInfo and/or
tsp:BindingInfo.

— tsp:BindingInfo. This element contains the binding information for
linked time-stamps.

With these elements every time-stamp token of the simple and linked
schemes can be constructed.

4.3 Simple schemes

For signed time-stamps or time-stamps computed with a MAC algorithm,
the TSAs response will contain a tsp:MessageImprints, a tsp:TSTInfo
(including a time), and a ds:Signature element. The references in the
signature will point to the tsp:MessageImprints and the tsp:TSTInfo
element. It is preferable that Exclusive Canonicalization (exc-C14N, [11])
is used, as well for the references in the signature, as for the C14N of
the ds:SignedInfo in the signature. This is because, more than likely,
the time-stamp is going to be embedded into another XML document,
which will corrupt the signature if the enveloping document introduces
additional namespaces, and if ordinary C14N is applied.

For archiving time-stamp schemes, the tsp:MessageImprints and
tsp:TSTInfo elements are required. Of course, the document to be archived

should be protected. This can be obtained by using a secure connec-
tion such that the entire communication is confidential and authenticated
(client and server), or by using XML Encryption [15] to encrypt the do-
cument only, combined with an authentication mechanism.

4.4 Linking schemes

A linking scheme takes a digest value as input. If a tsp:TSTInfo element
is present in the response, it can also be taken into account in the digest
value that is presented to the linking scheme. The response of the TSA was
described above, and the tsp:BindingInfo has the following structure:

<tsp:BindingInfo Algorithm Id?>
<tsp:DigestAlgValue Idrefs? Id?>
(<tsp:AggregationInfo Algorithm? Id?>)7?
<tsp:LinkingInfo Algorithm?>
(<tsp:Head Id?>)?
(<tsp:Tail Id?>)7?
(<ds:0bject>)?
</tsp:LinkingInfo>
(<tsp:PublishedInfo Id? Location?>)?
</tsp:BindingInfo>

— tsp:DigestAlgValue contains the digest value that is passed on to
the linking scheme. This is the result of selecting the nodes referred to
by the attribute Idrefs, and use their concatenation as the input of
the specified hash function. The attribute can point to digest values
within tsp:MessageImprints and to the tsp:TSTInfo element. In
the last case, the output of exc-C14N of that element is taken.

— tsp:AggregationInfo: if present, this element specifies the aggrega-
tion algorithm and the necessary data to compute the output of the
aggregation round with the tsp:DigestAlgValue element.

— tsp:LinkingInfo contains the algorithm and data to compute the
value of the linking round, given the output of the aggregation round.
If no aggregation is specified, the value from the tsp:DigestAlgValue
element is taken. tsp:Head contains linking information from time-
stamps, issued before this one. tsp:Tail contains information from
time-stamps after this one, which is transmitted by the TSA at the end
of the linking round. ds:0bject contains information that we thought
was ‘unnatural’ to include directly into tsp:Head or tsp:Tail. It can
be referenced from within these elements.

— tsp:PublishedInfo: contains round values for linking rounds, plus
the location where they can be retrieved or verified.

tsp:AggregationInfo, tsp:Head, tsp:Tail and tsp:PublishedInfo are
all of the same type tsp:ChainingType. This is structured as follows:

<xs:complexType name="ChainType">
<Xs:sequence>
<xs:element name="Node" type="tsp:NodeType" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="Id" type="xs:ID" use="optional"/>
</xs:complexType>

<xs:complexType name="NodeType">
<xs:choice>
<xs:sequence>
<xs:element ref="ds:DigestMethod" minOccurs="0"/>
<xs:element ref="ds:DigestValue" minOccurs="0"/>
</xs:sequence>
<xs:element name="BinaryContent" type="xs:base64Binary"/>
</xs:choice>
<xs:attribute name="Id" type="xs:ID" use="optional"/>
<xs:attribute name="Reference" type="xs:IDREF" use="optional"/>
<xs:attribute name="Alignment" type="xs:string" use="optional"/>
</xs:complexType>

— An element of type tsp:ChainType consists of a series of tsp:Nodes,
following the ideas of Buldas et al. [12].

— We chose tsp:Node to be a multi-functional basis element; it oc-
curs in different contexts, depending on the linking, aggregation or
publishing algorithm. As many linking schemes are based on hash
functions, the tsp:Node should be able to hold a digest value. The
tsp:BinaryContent element is provided to specify other binary in-
formation, such as the result of a modular exponentiation in the ag-
gregation scheme of Benaloh et al. [10].

— The attribute Reference of the tsp:Node is included to avoid over-
definition of the tsp:NodeType. This can be used to refer to structured
data, embedded in the ds:0bject element in the linking information.
Alignment is included to provide location information in Merkle trees,
used for aggregation.

4.5 Application to some time-stamping schemes

This section illustrates our XML time-stamping format by applying it to
some recent/used time-stamping schemes.

Scenario: let a user A send a TimeStampRequest of some type containing
a digested value X,, (X_n) to the TSA. Suppose that the TSA is able to
issue the time-stamp and that he/she sends to A a TimeStampResp with

the time-stamp contained in the TimeStampToken element. This element
will be different for each of the schemes applied, and it is this element that
will be illustrated in the following examples. Note that some descendant
elements of ds:Signature were omitted to save space. Exc-C14N should
be included for all references and the C14N algorithm in ds:SignedInfo.

Linear linking (Haber et al. [18], Sect. 5.1) For the details of this
scheme and the meaning of L_n, see the cited paper. This example is a
time-stamp for the variant on the basic scheme, with k = 2.

<TimeStampToken xmlns="our-timestamp-URI">
<MessageImprints Id="messageImprintsID">
<DigestAlgValue Id="digestvaluel">
<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#shal"/>
<DigestValue> X_n </DigestVa1ue>
</DigestAlgValue>
</MessageImprints>
<TSTInfo Id="TSTInfoID">
<SerialNumber>n</SerialNumber>
<GenTime>2002-11-22712:00:00:00</GenTime>
<ID Name="ID-of-A"/>
</TSTInfo>
<ds:Signature>
<ds:SignedInfo>
<ds:Reference URI="#messageImprintsID"/>
<ds:Reference URI="#TSTInfoID"/>
<ds:Reference URI="#BindingInfoID"/>
</ds:SignedInfo>
<ds:SignatureValue>msbOAt...NwdrSJX9fcL6=</ds:SignatureValue>
</ds:Signature>
<BindingInfo Algorithm="LinearLinking-URI-HS91" Id="BindingInfoID">
<DigestAlgValue Idrefs="digestvaluel TSTInfoID">
<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#shal"/>
<DigestValue>dQ8Nx7zFrCmyiCQ9vYkON2N88MI=</DigestValue>
</DigestAlgValue>
<LinkingInfo Algorithm="LinearLinking-k2">
<Head>
<Node Id="hash(L_(n-1))"> <DigestValue>H(L_(n-1))</DigestValue> </Node>
<Node Reference="tstinfo-n-1"/>
<Node Reference="imprint-n-1"/>
<Node Id="hash(L_(n-2))"> <DigestValue>H(L_(n-2))</DigestValue> </Node>
<Node Reference="tstinfo-n-2"/>
<Node Reference="imprint-n-2"/>
</Head>
<Tail>
<Node Reference="tstinfo-n+1"/> <Node Reference="tstinfo-n+2"/>
</Tail>
<ds:0bject>

<TSTInfo Id="tstinfo-n-1">...</TSTInfo>
<MessageImprints Id="imprint-n-1">...</MessageImprints>
<TSTInfo Id="tstinfo-n-2">...</TSTInfo>
<MessageImprints Id="imprint-n-2">...</MessageImprints>
<TSTInfo Id="tstinfo-n+1"><Id Name="ID-of-n+1"/></TSTInfo>
<TSTInfo Id="tstinfo-n+2"><Id Name="ID-of-n+2"/></TSTInfo>
</ds:0bject>
</LinkingInfo>
</BindingInfo>
</TimeStampToken>

Binary Linking (Buldas et al. [12], Sect. 5) For the details of this
scheme and meaning of the symbols, see the cited paper.

<TimeStampToken xmlns="our-timestamp-URI">
<MessageImprints Id="MessageImprintsID">
<DigestAlgValue Id="digestvaluel">
<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#shal"/>
<DigestValue> X_n </DigestValue>
</DigestAlgValue>
</MessageImprints>
<TSTInfo Id="TSTInfoID"><SeriallNumber> n </SerialNumber></TSTInfo>
<ds:Signature>
<ds:SignedInfo>
<ds:Reference URI="#TSTInfoID"/>
<ds:Reference URI="#BindingInfoID"/>
</ds:SignedInfo>
</ds:Signature>
<BindingInfo Id="BindingInfoID" Algorithm="BinaryLinking-URI-BLLV98">

<DigestAlgValue Idrefs="TSTInfoID digestvaluel"> ... </DigestAlgValue>
<LinkingInfo Algorithm="m-value">
<Head>

<Node Id="L_n"> <DigestValue> L_n </DigestValue> </Node>
<Node Id="L_n_1"> <DigestValue> L_n_1 </DigestValue> </Node>

<Node Id="L_n_q"> <DigestValue> L_n_q </DigestValue> </Node>
<Node Reference="prev-round"/>
</Head>
</LinkingInfo>
<PublishedInfo>
<Node Id="prev-round"> <DigestValue>L_(eps_(r-1))</DigestValue> </Node>
</PublishedInfo>
</BindingInfo>
</TimeStampToken>

The full time-stamp, including the tail, will be sent when the current
linking round finishes.

5

Conclusion and Open Issues

The purpose of this paper was to study existing time-stamping schemes
and standards, and, based on that study, to propose ideas for an XML for-
mat for time-stamps. We note that there are many different time-stamp
protocols with widely varying data structures. Therefore, it was not an
easy task to provide one single structure that covers them all. The re-
sulting format can be a basis for the definition of a mature time-stamp
protocol. We focused on the time-stamp token format, so there remain
some gaps to be filled:

— We did not define a protocol for verifying time-stamps. This is neces-

sary if the cooperation of the TSA is required or wanted for verifica-
tion.

For processing rules, TSA behaviour and polices, we refer to the ETSI
and ISO documents covering this subject. Also, in PKIX-TSP, some
requirements for the TSA can be found, for simple schemes based on
digital signatures.

We studied some of the proposals for distributed time-stamps. In most
of them, the TSAs return a partial time-stamp that can be used to
compute the full token. We believe that these types of time-stamps can
be fitted in our structures. If there exist time-stamping schemes based
on distributed computations, or a real splitting of secret information
among the TSAs, we might run into problems. A possible solution
would be to introduce a proxy that performs the distribution and
recombination tasks for the user.

— The identifiers for the algorithms are not yet defined.

References

1.

ISO/IEC 18014-1. Information technology — Security techniques — Time-stamping
services — Part 1: Framework. Draft available at http://oberon.postech.ac.kr/
kiisc-sis/timestamp/, 2002.

. ISO/IEC FDIS 18014-2. Information technology — Security techniques — Time-

stamping services — Part 2: Mechanisms producing independent tokens. Draft
available at http://oberon.postech.ac.kr/kiisc-sis/timestamp/, 2002.
ISO/TEC WD 18014-3. Information technology — Security techniques — Time
Stamping Services — Part 3: Mechanisms producing linked tokens. Draft available
at http://oberon.postech.ac.kr/kiisc-sis/timestamp/, 2002 (working draft).
ISO/IEC 8824-1. Information Technology — Abstract Syntax Notation One
(ASN.1): Specification of Basic Notation, 1998.

ISO/IEC 8825-1. Information Technology — ASN.1 Encoding Rules: Specification of
Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished
Encoding Rules (DER), 1998.

6.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

C. Adams, P. Cain, D. Pinkas, and R. Zuccherato. Internet X.509 Public Key
Infrastructure Time-Stamp Protocol (TSP). Available at http://wuw.ietf.org/
html.charters/pkix-charter.html, April 2002, work in progress.

Arne Ansper, Ahto Buldas, Mért Saarepera, and Jan Willemson. Improving the
availability of time-stamping services. In The 6th Australasian Conference on In-
formation Security and Privacy - ACISP’2001, Lecture Notes in Computer Science,
pages 360-375, Sydney, Australia, July 2001. Springer-Verlag.

Dave Bayer, Stuart Haber, and W. Scott Stornetta. Improving the Efficiency and
Reliability of Digital Time-Stamping. In R. Capocelli, A. De Santis, and U. Vac-
caro, editors, Sequences II: Methods in Communication, Security and Computer
Science, pages 329-334. Springer-Verlag, 1993. Available at http://www.surety.
com/solutions/DN/presentation.html.

J. Benaloh and M. de Mare. Efficient Broadcast Time-Stamping. Technical Report
TR-MCS-91-1, Clarkson University, Department of Mathematics and Computer
Science, April 1991.

J. Benaloh and M. de Mare. One-way Accumulators: A Decentralized Alternative
to Digital Signatures. In T. Helleseth, editor, Advances in Cryptology - Proceedings
of EuroCrypt ‘93, volume 765 of Lecture Notes in Computer Science, pages 274—
285, Lofthus, Norway, May 1993. Springer-Verlag.

J. Boyer, D. Eastlake III, and J. Reagle. Exclusive XML Canonicalization Version
1.0 (EXC-C14N). http://www.w3.org/TR/xml-exc-cl14n/, Juli 2002.

Ahto Buldas, Peeter Laud, Helger Lipmaa, and Jan Villemson. Time-Stamping
with Binary Linking Schemes. In Hugo Krawczyk, editor, Advances on Cryptology -
CRYPTO ’98, volume 1462 of Lecture Notes in Computer Science, pages 486-501,
Santa Barbara, USA, August 1998. Springer-Verlag.

Ahto Buldas, Helger Lipmaa, and Berry Schoenmakers. Optimally Efficient Ac-
countable Time-Stamping. In Public Key Cryptography - PKC’2000, Lecture Notes
in Computer Science, pages 293-305, Melbourne, Australia, 2000. Springer-Verlag.
D. Eastlake, J. Reagle, and D. Solo. XML-Signature Syntax and Processing. http:
//www.w3.org/Signature/, February 2002.

Donald Eastlake and Joseph Reagle (eds). XML Encryption Syntax and Proces-
sing. http://wuw.w3.org/Encryption, August 2002.

ETSI. European Telecommunications Standards Institute, Security Technical
Committee(ETSI-SEC). http://www.etsi.org/sec.

ETSI-SEC-ESI. XML Advanced Electronic Signatures (XAdES), ETSI TS 101
903. Available at http://portal.etsi.org/sec/el-sign.asp, February 2002.

S. Haber and W. S. Stornetta. How to Time-Stamp a Digital Document. Journal of
Cryptology, 3(2):99-111, 1991. Available at http://www.surety.com/solutions/
DN/presentation.html.

Dave Hollander and C. M. Sperberg-McQueen (chairs). XML Schema Working
Group. http://www.w3.org/XML/Schema.

R. Housley. S/MIME Mail Security (smime), IETF Working Group. http://www.
ietf.org/html.charters/pkix-charter.html.

R. Housley. Cryptographic Message Syntax. Available at http://www.ietf.org/
html.charters/smime-charter.html, April 2002, work in progress.

Michael Just. Some timestamping protocol failures. In Proceedings of the Sym-
posium on Network and Distributed Security (NDSS 98), pages 89-96, San Diego,
CA, USA, March 1998.

S. Kent and T. Polk (chairs). Public-Key Infrastructure(X.509)(pkix), IETF Work-
ing Group. http://www.ietf.org/html.charters/pkix-charter.html.

0~ O T W N

[R R N R R e el e el e e ol e
DU R WNHH O OO Uk WwNn e~ O ©

24.

25.

26.

27.

28.

29.
30.
31.

A

Ralph C. Merkle. Protocols for public key cryptosystems. In Proceedings of the
IEEE Symposium on Security and Privacy, pages 122-134, 1980.

European Parliament. Directive 1999/93/EC of the European Parliament and
of the Council of 13 December 1999 on a Community framework for electronic
signatures. Available at http://europa.eu.int/information_society/topics/
ebusiness/ecommerce/3in%formation/law&ecommerce/legal/digital/index_
en.htm, Januari 2000.

Bart Preneel, Bart Van Rompay, Jean-Jacques Quisquater, Henri Massias, and
J. Serret Avila. Specification and Implementation of a Timestamping System.
Technical Report TIMESEC WP4, Université Caltholique de Louvain, 1999.
Masashi Une. The Security Evaluation of Time Stamping Schemes: The Present
Situation and Studies, IMES Discussion Paper Series. Technical Report 2001-E-
18, Institute for Monetary and Economic Studies, Japan, December 2001. http:
//wuw.imes.boj.or.jp/english/publication.html.

ITU-T X.693. Information technology — ASN.1 encoding rules: XML encod-
ing rules (XER). Available at http://www.itu.int/ITU-T/studygroups/coml7/
languages/, December 2001.

BSR X9.95-200x. Trusted Timestamp. to be published.

BSR X9.96-200x. XML Cryptographic Message Syntax (XCMS). to be published.
X9F3. Data and Information Security — Protocols. http://www.x9.org/.

Timestamp Schema

<?xml version="1.0" encoding="utf-8"7>
<!DOCTYPE schema PUBLIC "-//W3C//DTD XMLSchema 200102//EN"
"http://www.w3.org/2001/XMLSchema.dtd" [
<!ATTLIST schema
xmlns:tsp CDATA #FIXED "http://www.cosic.be/2002/08/xmltsp#"
xmlns:ds CDATA #FIXED "http://www.w3.org/2000/09/xmldsig#"
xmlns:xades CDATA #FIXED "http://uri.etsi.org/01903/vi.1.1#"> 1>
<xs:schema targetNamespace="http://www.cosic.be/2002/08/xmltsp#"
xmlns:xades="http://uri.etsi.org/01903/v1.1.1#"
xmlns:ds="http://wuw.w3.0rg/2000/09/xmldsig#"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:tsp="http://www.cosic.be/2002/08/xmltsp#"

elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:import namespace="http://www.w3.0rg/2000/09/xmldsig#"
schemaLlocation="xmldsig-core-schema.xsd"/>

<xs:import namespace="http://uri.etsi.org/01903/v1.1.1#"
schemaLocation="XAdES.xsd"/>

<xs:element name="TimeStampRequest'>
<xs:complexType>
<xs:sequence>
<xs:element ref="tsp:MessageImprints"/>

<xs:element ref='"xades:SignaturePolicyIdentifier" minOccurs="0"/>

<xs:element name="Nonce" type="xs:int" minOccurs="0"/>
<xs:element ref="ds:0Object" minOccurs="0"/>
</xs:sequence>

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

<xs:attribute name="CertReq" type="xs:boolean" use="optional"/>
<xs:attribute name="Type" type="xs:anyURI" use="optional"/>
</xs:complexType>
</xs:element>

<xs:element name="MessageImprints">
<xs:complexType>
<xs:sequence>
<xs:element name="DigestAlgValue" type="tsp:DigestAlgValueType"
max0ccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="Id" type="xs:ID" use="optional"/>
</xs:complexType>
</xs:element>

<xs:complexType name="DigestAlgValueType">
<xs:complexContent>
<xs:extension base='"xades:DigestAlgAndValueType">
<xs:attribute name="Id" type="xs:ID" use="optional"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>

<xs:element name="TimeStampResponse">
<xs:complexType>
<xs:sequence>
<xs:element name="Status">
<xs:complexType>
<Xxs:sequence>
<xs:element name="MajorStatus">
<xs:complexType> <xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="Code" type="xs:int"
use="required"/>
</xs:extension>
</xs:simpleContent> </xs:complexType>
</xs:element>
<xs:element name="FailCode" minOccurs="0">
<xs:complexType> <xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="Code" type="xs:int"
use="required"/>
</xs:extension>
</xs:simpleContent> </xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="TimeStampToken" type="tsp:TimeStampTokenType"

76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

minOccurs="0"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:complexType

name="TimeStampTokenType">

<xs:complexContent>
<xs:restriction base='"ds:SignatureType">
<Xs:sequence>
<xs:element ref="tsp:References" minOccurs="0"/>
<xs:element ref="tsp:MessageImprints" minOccurs="0"/>
<xs:element name="TSTInfo" type="tsp:TSTInfoType"/>
<xs:element ref="ds:Signature" minOccurs="0"/>
<xs:element ref="tsp:BindingInfo" minOccurs="0"/>
</xs:sequence>
</xs:restriction>

</xs:complexContent>
</xs:complexType>

<xs:element name="References">

<xs:complexType> <xs:choice>
<xs:element ref="ds:Reference" maxOccurs="unbounded"/>
<xs:element name="XADESInfoLink">
<xs:complexType>
<xs:attribute name="idref" type="xs:IDREF" use="required"/>
</xs:complexType>
</xs:element>
</xs:choice> </xs:complexType>

</xs:element>

<xs:complexType
<xs:sequence>
<xs:element
<xs:element
<xs:element
<xs:element

name="TSTInfoType">

ref="xades:SignaturePolicyIdentifier" minOccurs="0"/>
name="SerialNumber" type="xs:integer" minOccurs="0"/>
name="GenTime" type="tsp:ExtendedDateTimeType" minOccurs="0"/>
name="Accuracy" minOccurs="0">

<xs:complexType>
<Xxs:sequence>
<xs:element name="Seconds" type="xs:int"/>
<xs:element name="MilliSeconds" minOccurs="0">

<xs:

simpleType> <xs:restriction base="xs:short">
<xs:minInclusive value="0"/> <xs:maxInclusive value="999"/>

</xs:restriction> </xs:simpleType>
</xs:element>

<xs:element name="MicroSeconds" minOccurs="0">

<xs:

simpleType> <xs:restriction base="xs:short">
<xs:minInclusive value="0"/> <xs:maxInclusive value="999"/>

</xs:restriction> </xs:simpleType>
</xs:element>

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="Ordering" type="xs:boolean" minOccurs="0"/>
<xs:element name="Nonce" type="xs:int" minOccurs="0"/>
<xs:element name="TSA" minOccurs="0">
<xs:complexType> <xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="URI" type="xs:anyURI" use="optional"/>
</xs:extension>
</xs:simpleContent> </xs:complexType>
</xs:element>
<xs:element name="Id" minOccurs="0">
<xs:complexType>
<xs:attribute name="Name" type="xs:string" use="required"/>
</xs:complexType>
</xs:element>
</xs:sequence>
<xs:attribute name="Id" type="xs:ID" use="optional"/>
</xs:complexType>

<xs:complexType name="ExtendedDateTimeType'">
<xs:simpleContent>
<xs:extension base="xs:dateTime">
<xs:attribute name="MilliSeconds" use="optional">
<xs:simpleType> <xs:restriction base="xs:short">
<xs:pattern value="[0-9]{3}"/>
</xs:restriction> </xs:simpleType>
</xs:attribute>
<xs:attribute name="MicroSeconds" use="optional">
<xs:simpleType> <xs:restriction base="xs:short">
<xs:pattern value="[0-9]{3}"/>
</xs:restriction> </xs:simpleType>
</xs:attribute>
</xs:extension>
</xs:simpleContent>
</xs:complexType>

<xs:element name="BindingInfo">
<xs:complexType>
<xs:sequence>
<xs:element name="DigestAlgValue">
<xs:complexType> <xs:complexContent>
<xs:extension base="tsp:DigestAlgValueType">

<xs:attribute name="IdRefs" type="xs:IDREFS" use="optional"/>

</xs:extension>
</xs:complexContent> </xs:complexType>
</xs:element>
<xs:element name="AggregationInfo" minOccurs="0">

174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222

<xs:complexType> <xs:complexContent>
<xs:extension base="tsp:ChainType">

<xs:attribute name="Algorithm" type="xs:anyURI" use="optional"/>

</xs:extension>
</xs:complexContent> </xs:complexType>
</xs:element>
<xs:element name="LinkingInfo">
<xs:complexType>
<Xs:sequence>
<xs:element name="Head" type="tsp:ChainType" minOccurs="0"/>
<xs:element name="Tail" type="tsp:ChainType" minOccurs="0"/>
<xs:element ref="ds:0bject" minOccurs="0"/>
</xs:sequence>

<xs:attribute name="Algorithm" type="xs:anyURI" use="optional"/>

</xs:complexType>
</xs:element>
<xs:element name="PublishedInfo" minOccurs="0">
<xs:complexType> <xs:complexContent>
<xs:extension base="tsp:ChainType">

<xs:attribute name="Location" type="xs:anyURI" use="optional"/>

</xs:extension>
</xs:complexContent> </xs:complexType>
</xs:element>
</xs:sequence>
<xs:attribute name="Id" type="xs:ID" use="optional"/>
<xs:attribute name="Algorithm" type="xs:anyURI" use="required"/>
</xs:complexType>
</xs:element>

<xs:complexType name="ChainType">
<xs:sequence>
<xs:element name="Node" type='"tsp:NodeType" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="Id" type="xs:ID" use="optional"/>
</xs:complexType>

<xs:complexType name="NodeType">
<xs:choice>
<xs:sequence>
<xs:element ref="ds:DigestMethod" minOccurs="0"/>
<xs:element ref="ds:DigestValue" minOccurs="0"/>
</xs:sequence>
<xs:element name="BinaryContent" type="xs:base64Binary"/>
</xs:choice>
<xs:attribute name="Id" type="xs:ID" use="optional"/>
<xs:attribute name="Reference" type="xs:IDREF" use="optional"/>
<xs:attribute name="Alignment" type="xs:string" use="optional"/>
</xs:complexType>
</xs:schema>

