Project Editor’s Draft ISO/IEC 15414 ITU-T X.911)

	[image: image1.png]

	ISO/IEC JTC1/SC7/WG17 W17N0213

ITU‑T X.911 ISO/IEC 15414
 Date: 03-06-08

Proposed New Version

Montreal 2003 Output

8 June 2003

ISO/IEC JTC 1/SC 7

Software Engineering

Secretariat: Canada (SCC)

Doc Type:

Title:
Information Technology—Open Distributed Processing—

Reference Model—Enterprise Language

ISO/IEC 15414 | ITU‑T Recommendation X.911

Source:
Project Editor
Project:
1.07.77

Status:
English-language proposed new edition; output from 2003 Montreal meeting

Action:
For ballot
Distribution:
SC 7 and ITU
Medium:
E
Number of Pages:
47
Version:
123
Address reply to:
 miller@joaquin.net
ISO/IEC JTC1/SC7 Secretariat
École de technologie supérieure
1100, rue Notre-Dame Ouest
Montréal, Québec
Canada H3C 1K3

Tel. +1 514 396 8632
Fax. +1 514 396 8684
INTERNATIONAL STANDARD

ISO/IEC 15414 : Committee Draft

ITU-T Rec. X.911 (Committee Draft)

ITU-T RECOMMENDATION

	[image: image2.wmf]
	INTERNATIONAL TELECOMMUNICATION UNION

	ITU-T
	X.911

	TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU
	(Proposed Draft New Edition 6/03)

COMMON TEXT DRAFT PUBLICATION

Information Technology—
Open Distributed Processing—Reference Model—
Enterprise Language

Proposed new edition

ITU-T Recommendation X.911

Version 110

	International Standard ISO/IEC 15414
ITU-T Recommendation X.911

Information technology – Open distributed processing –
Reference model – Enterprise language

	Summary

This Recommendation | International Standard provides:

a)
a language (the enterprise language) comprising concepts, structures, and rules for developing, representing, and reasoning about a specification of an Open Distributed Processing (ODP) system from the enterprise viewpoint (as defined in ITU-T Rec. X.903 | ISO/IEC 10746-3);

b)
rules which establish correspondences between the enterprise language and the other viewpoint languages (defined in ITU-T Rec. X.903 | ISO/IEC 10746-3) to ensure the overall consistency of a specification.

Contents

v0
Introduction

v0.1
RM‑ODP

v0.2
Overview and motivation

21
Scope

22
Normative references

23
Definitions

23.1
Definitions from ODP standards

43.2
Definitions from ODP standards extended in this Specification

44
Abbreviations

45
Conventions

56
Concepts

56.1
System concepts

56.2
Community concepts

56.3
Behaviour concepts

56.4
Policy concepts

66.5
Accountability concepts

67
Structuring rules

67.1
Overall structure of an enterprise specification

77.2
Contents of an enterprise specification

87.3
Community rules

97.4
Enterprise object rules

107.5
Common community types

107.6
Lifecycle of a community

117.7
Objective rules

117.8
Behaviour rules

137.9
Policy rules

167.10
Accountability rules

178
Compliance, completeness and field of application

178.1
Compliance

178.2
Completeness

178.3
Field of application

189
Enterprise language compliance

1810
Conformance and reference points

1811
Consistency rules

1811.1
Viewpoint correspondences

1911.2
Enterprise and information specification correspondences

2011.3
Enterprise and computational specification correspondences

2011.4
Enterprise and engineering specification correspondences

A
Annex – Meta-model of the enterprise language
22

B
Annex – Explanations and examples
25

Index
41

0
Introduction

The rapid growth of distributed processing has led to the adoption of the Reference Model of Open Distributed Processing (RM‑ODP). This Reference Model provides a co-ordinating framework for the standardization of open distributed processing (ODP). It creates an architecture within which support of distribution, interworking, and portability can be integrated. This architecture provides a framework for the specification of ODP systems.

The Reference Model of Open Distributed Processing is based on precise concepts derived from current distributed processing developments and, as far as possible, on the use of formal description techniques for specification of the architecture.

This Recommendation | International Standard refines and extends the definition of how ODP systems are specified from the enterprise viewpoint, and is intended for the development or use of enterprise specifications of ODP systems.

0.1
RM‑ODP

The RM‑ODP consists of:

–
Part 1: ITU‑T Rec. X.901 | ISO/IEC 10746‑1: Overview: which contains a motivational overview of ODP, giving scoping, justification and explanation of key concepts, and an outline of the ODP architecture. It contains explanatory material on how the RM‑ODP is to be interpreted and applied by its users, who may include standards writers and architects of ODP systems. It also contains a categorization of required areas of standardization expressed in terms of the reference points for conformance identified in ITU‑T Rec. X.903 | ISO/IEC 10746‑3. This part is not normative.

–
Part 2: ITU‑T Rec. X.902 | ISO/IEC 10746‑2: Foundations: which contains the definition of the concepts and analytical framework for normalized description of (arbitrary) distributed processing systems. It introduces the principles of conformance to ODP standards and the way in which they are applied. This is only to a level of detail sufficient to support ITU‑T Rec. X.903 | ISO/IEC 10746‑3 and to establish requirements for new specification techniques. This part is normative.

–
Part 3: ITU‑T Rec. X.903 | ISO/IEC 10746‑3: Architecture: which contains the specification of the required characteristics that qualify distributed processing as open. These are the constraints to which ODP standards must conform. It uses the descriptive techniques from ITU‑T Rec. X.902 | ISO/IEC 10746‑2. This part is normative.

–
Part 4: ITU‑T Rec. X.904 | ISO/IEC 10746‑4: Architectural semantics: which contains a formalization of the ODP modelling concepts defined in ITU‑T Rec. X.902 | ISO/IEC 10746‑2 clauses 8 and 9. The formalization is achieved by interpreting each concept in terms of the constructs of one or more of the different standardized formal description techniques. This part is normative.

–
ITU‑T Rec. X.911 | ISO/IEC 15414: Enterprise language: this Recommendation | International Standard.

0.2
Overview and motivation

Part 3 of the Reference Model, ITU-T Rec. X.903 | ISO/IEC 10746-3, defines a framework for the specification of ODP systems comprising:

1)
five viewpoints, called enterprise, information, computational, engineering and technology, which provide a basis for the specification of ODP systems;

2)
a viewpoint language for each viewpoint, defining concepts and rules for specifying ODP systems from the corresponding viewpoint.

The purpose of this Recommendation | International Standard is to:

–
Refine and extend the enterprise language defined in ITU-T Rec. X.903 |ISO/IEC 10746-3 to enable full enterprise viewpoint specification of an ODP system;

–
Explain the correspondences of an enterprise viewpoint specification of an ODP system to other viewpoint specifications of that system; and

–
Ensure that the enterprise language when used together with the other viewpoint languages is suitable for the specification of a concrete application architecture to fill a specific business need.

This Recommendation | International Standard uses concepts taken from ITU‑T Recommendations X.902 and X.903 | ISO/IEC 10746‑2 and 10746‑3 and structuring rules taken from clause 5 of ITU‑T Rec. X.903 | ISO/IEC 10746‑3; it introduces refinements of those concepts, additional viewpoint‑specific concepts, and prescriptive structuring rules for enterprise viewpoint specifications. The additional viewpoint‑specific concepts are defined using concepts from ITU‑T Recommendations X.902 and X.903 | ISO/IEC 10746‑2 and 10746‑3.

The purpose of this Recommendation | International Standard is to provide a common language (set of terms and structuring rules) to be used in the preparation of an enterprise specification capturing the purpose, scope and policies for an ODP system. An enterprise specification is a part of the specification of an ODP system using viewpoints defined by ITU-T Recommendation X.903 | ISO/IEC 10746-3. The specification of the ODP system can describe any or all of:

– an existing system within its environment;

– an anticipated future structure or behaviour of that existing system within the same or an anticipated future environment;

– a system to be created within some environment.

The primary audience for this Recommendation | International Standard is those who prepare and use such specifications. The audience includes …

Editor’s note – National Bodies are requested to suggest role names descriptive of the primary audience for this Recommendation | International Standard.

The motivation for the enterprise language is to support standardised techniques for specification. This improves communication and helps create consistent specifications.

The preparation of specifications often falls into the category referred to as analysis or requirement specification. There are many approaches used for understanding, agreeing and specifying systems in the context of the organisations of which they form a part. The approaches can provide useful insights into both the organisation under consideration and the requirements for systems to support it, but they generally lack the rigour, consistency and completeness needed for thorough specification. The audiences of the specifications also vary. For agreement between the potential users of an ODP system and the provider of that system, it may be necessary to have different presentations of the same system—one in terms understood by clients, and one in terms directly related to system realization.

The use of enterprise specifications can be wider than the early phases of software engineering process. A current trend is to integrate existing systems into global networks, where the functionality of interest spans multiple organisations. The enterprise language provides a means to specify the joint agreement of common behaviour of the ODP systems within and between these organisations. The enterprise specification can also be used at other phases of the system life cycle. The specification can, for example, be used at system run-time to control agreements between the system and its users, and to establish new agreements according to the same contract structure. Enterprise viewpoint specifications may contain rules for inter-organisational behaviour.

This standard also provides a framework for development of software engineering methodologies and tools exploiting ODP viewpoint languages, and a set of concepts for development of enterprise viewpoint specification languages. For these purposes this standard provides rules for the information content of specifications and the grouping of that information. Further requirements on the relationships between enterprise language concepts and concepts in other viewpoints are specific to the methodologies, tools or specification languages to be developed.

An enterprise specification defines the purpose, scope, and policies of an ODP system and it provides a statement of conformance for system implementations. The purpose of the system is defined by the specified behaviour of the system while policies capture further restriction of the behaviour between the system and its environment or within the system itself related to the business decisions of the system owners.

An enterprise specification also allows the specification of an ODP system that spans multiple domains and is not owned by a single party, and specification of the collective behaviour of a system that is divided into independently specified and independently working subsystems.

Annex A present parts of a meta-model of the enterprise language, illustrating the concepts of the enterprise language and their relationships. Annex B explains concepts and structuring rules of the enterprise language and provides examples of how they may be used. These annexes are not normative.
INTERNATIONAL STANDARD

ITU-T RECOMMENDATION

Information technology – Open distributed processing –
Reference model – Enterprise language

1
Scope

This Recommendation | International Standard provides:

a)
a language (the enterprise language) comprising concepts, structures, and rules for developing, representing, and reasoning about a specification of an ODP system from the enterprise viewpoint (as defined in ITU-T Rec. X.903 | ISO/IEC 10746-3);

b)
rules which establish correspondences between the enterprise language and the other viewpoint languages (defined in ITU-T Rec. X.903 | ISO/IEC 10746-3) to ensure the overall consistency of a specification.

The language is specified to a level of detail sufficient to enable the determination of the compliance of any modelling language to this Recommendation | International Standard and to establish requirements for new specification techniques.

This Recommendation | International Standard is a refinement and extension of ITU‑T Rec. X.903 | ISO/IEC 10746‑3, clauses 5 and 10, but does not replace them.

This Recommendation | International Standard is intended for use in preparing enterprise viewpoint specifications of ODP systems, and in developing notations and tools to support such specifications.

As specified in clause 5 of ITU‑T Rec. X.903 | ISO/IEC 10746‑3, an enterprise viewpoint specification defines the purpose, scope and policies of an ODP system. [see also 3‑5.0]

2
Normative references

The following Recommendations and International Standards contain provisions which, through reference in this text, constitute provisions of this Recommendation | International Standard. At the time of publication, the editions indicated were valid. All Recommendations and Standards are subject to revision, and parties to agreements based on this Recommendation | International Standard are encouraged to investigate the possibility of applying the most recent edition of the Recommendations and Standards listed below. Members of IEC and ISO maintain registers of currently valid International Standards. The Telecommunication Standardization Bureau of the ITU maintains a list of the currently valid ITU‑T Recommendations.

Identical ITU‑T Recommendations | International Standards

–
ITU‑T Recommendation X.902 (1995) | ISO/IEC 10746‑2:1996, Information technology – Open Distributed Processing – Reference Model – Foundations.

–
ITU‑T Recommendation X.903 (1995) | ISO/IEC 10746‑3:1996, Information technology – Open Distributed Processing – Reference Model – Architecture.

–
ITU‑T Recommendation X.904 (1997) | ISO/IEC 10746‑4:1998, Information technology – Open Distributed Processing – Reference Model – Architectural semantics.

3
Definitions

3.1
Definitions from ODP standards

3.1.1
Modelling concept definitions

This Recommendation | International Standard makes use of the following terms as defined in ITU‑T Rec. X.902 | ISO/IEC 10746‑2.

–
action XE "action" \b;

–
behaviour (of an object);

–
composite object XE "composite object" \b;

–
composition XE "composition" \b;

–
configuration (of objects) XE "configuration (of objects)" \b;

–
conformance XE "conformance" \b;

–
conformance point XE "conformance point" \b;

–
contract XE "contract" \b;

–
<X> domain XE "<X> domain" \b;

–
entity XE "entity" \b;

–
environment contract XE "environment contract" \b;

–
environment (of an object) XE "environment (of an object)" \b;

–
epoch XE "epoch" \b;

–
establishing behaviour XE "establishing behaviour" \b;

–
instance (of a type) XE "instance (of a type)" \b;

–
instantiation (of an <X> template) XE "instantiation (of an <X> template)" \b;

–
interface XE "interface" \b;

–
internal action XE "internal action" \b;

–
invariant XE "invariant" \b;

–
liaison XE "liaison" \b;

–
location in time XE "location in time" \b;

–
object XE "object" \b;

–
name XE "object" \b;

–
obligation XE "obligation" \b;

–
ODP standards XE "ODP standards" \b;

–
ODP system XE "ODP system" \b;

–
permission XE "permission" \b;

–
prohibition XE "prohibition" \b;

–
proposition XE "proposition" \b;

–
reference point XE "reference point" \b;

–
refinement XE "refinement" \b;

–
role XE "role" \b;

–
state (of an object) XE "state (of an object)" \b;

–
subsystem [2-6.5] XE "system" \b;

–
subtype XE "subtype" \b;

–
system XE "system" \b;

–
<X> template XE "<X> template" \b;

–
terminating behaviour;

–
type (of an <X>) XE "type (of an <X>)" \b;

–
viewpoint (on a system) XE "viewpoint (on a system)" \b.

3.1.2
Viewpoint language definitions

This Recommendation | International Standard makes use of the following terms as defined in ITU‑T Rec. X.903 | ISO/IEC 10746‑3.

–
binder;

–
channel;

–
community XE "community" \b;

–
computational behaviour;

–
computational binding object;

–
computational object;

–
computational interface XE "computational interface" \b;

–
computational viewpoint;

–
correspondence;

–
dynamic schema XE "dynamic schema" \b;

–
engineering viewpoint;

–
enterprise viewpoint;

–
<X> federation XE "<X> federation" \b;

–
information object;

–
information viewpoint;

–
interceptor;

–
invariant schema XE "invariant schema" \b;

–
node;

–
protocol object;

–
static schema XE "static schema" \b;

–
stub;

–
technology viewpoint;

–
<viewpoint> language.

3.2
Definitions from ODP standards extended in this Specification

This Recommendation | International Standard extends the definition of the following term originally defined in ITU‑T Rec. X.902 | ISO/IEC 10746‑2. [2-11.2.7]:

–
policy.

The extended definition is in clause 6.

4
Abbreviations

For the purposes of this Recommendation | International Standard, the following abbreviations apply.

ODP
Open distributed processing

RM‑ODP
Reference Model of Open Distributed Processing

(ITU‑T Recommendations X.901 to X.904 | ISO/IEC 10746 Parts 1-4)

5
Conventions

This Recommendation | International Standard contains references to the normative text of this Recommendation | International Standard and of Parts 2 and 3 of the RM-ODP. Each reference is of one of these forms:

 [2-n.n] — a reference to clause n.n of RM-ODP Part 2: Foundations, X.902 | IS 10746-2;

 [3-n.n] — a reference to clause n.n of RM-ODP Part 3: Architecture, X.903 | IS 10746-3.

 [n.n] — a reference to clause n.n of this Recommendation | International Standard;

For example, [2-9.4] is a reference to Part 2 of the reference model, (ITU‑T Rec. X.902 | ISO/IEC 10746‑2), subclause 9.4 and [6.5] is a reference to clause 6.5 of this Recommendation | International Standard. These references are for the convenience of the reader.
This Recommendation | International Standard also contains some text which is a modification of text from Part 3 of the reference model, ITU‑T Rec. X.903 | ISO/IEC 10746‑3. Such text is marked by a reference like this: [see also 3‑5.n]. The modifications are authoritative with respect to the enterprise language.

6
Concepts

The concepts of the enterprise language defined in this Recommendation | International Standard comprise:

–
the concepts identified in 3.1.1 and 3.1.2 as they are defined in ITU-T Rec. X.902 | ISO/IEC 10746-2 and in ITU-T X.903 | ISO/IEC 10746-3;

–
the concepts defined in this clause.

This clause defines new concepts and refines the definition of policy from ITU-T Rec. X.902 | ISO/IEC 10746-2. [2‑11.2.7] The grouping into subclauses and the headings of the subclauses of this clause are not normative.

6.1
System concepts

6.1.1
scope XE "scope" \b (of a system)

: The behaviour that system XE "system" is expected to exhibit.

6.1.2
field of application (of a specification)
: The properties the environment of the ODP system must have for the specification of that system to be used.

6.2
Community concepts

6.2.1
objective (of an <X>) XE "objective (of an <X>)" \b
: Practical advantage or intended effect, expressed as preferences about future states.

NOTE 1 – Some objectives are ongoing, some are achieved once met.

NOTE 2 – In the text of ITU‑T Rec. X.903 | ISO/IEC 10746‑3 [3-5] the terms, purpose and objective, are synonymous. The enterprise language emphasizes the term, objective, and emphasizes the need of expressing an objective in measurable terms.

6.2.2
community object XE "community object" \b
: A composite enterprise object that represents a community. Components of a community object are objects of the community represented.

6.3
Behaviour concepts

6.3.1
actor XE "actor" \b (with respect to an action)
: A role in which the enterprise object fulfilling the role participates in the action. That object may be called an actor.
NOTE – It may be of interest to specify which actor initiates that action.

6.3.2
artefact XE "artefact" \b (with respect to an action): A role in which the enterprise object fulfilling the role is referenced in the action. That object may be called an artefact XE "action" .

NOTE – An enterprise object that is an artefact in one action can be an actor in another action.

6.3.3
resource XE "resource" \b
: A role in which the enterprise object fulfilling the role is essential to the action and requires allocation or may become unavailable.
 That object may be called a resource.
NOTE 1 – Allocation of a resource object may constrain other behaviours for which that resource is essential.

NOTE 2 – A consumable resource object may become unavailable after some amount of use. Any resource object may become unavailable after some amount of time (for example, in case a duration or expiry has been specified for the resource).

6.3.4
interface role XE "interface role" \b
: A role in a community, identifying behaviour XE "behaviour" which takes place with the participation of objects that are not members of that community.

6.3.5
process XE "process" \b
: A collection of steps taking place in a prescribed manner and leading to an objective.

NOTE 1 – A process may have multiple starting points and multiple end points.

NOTE 2 – The prescribed manner may be a partially ordered sequence.

NOTE 3 – A process specification can be a workflow specification.

NOTE 4 – The activity structure XE "activity structure" \b concepts provided in subclause 13.1 of ITU‑T Rec. X.902 | ISO/IEC 10746‑2 may be used, after substitution of 'step' for 'action XE "action" ' and 'process' for 'activity XE "activity" \b', to specify the structure of a process.

NOTE 5 – An enterprise specification may define types of processes and may define process templates XE "templates" \b.

6.3.6
step XE "step" \b
: An abstraction of an action, used in a process XE "process" \b, that may leave unspecified objects that participate in that action.

6.4
Policy concepts

6.4.1
policy XE "policy" \b
: A set of rules related to a particular purpose. A rule can be expressed as an obligation XE "obligation" , an authorisation XE "authorisation" \b, a permission XE "permission" or a prohibition XE "prohibition" .
 [see also 2-11.2.7]
NOTE 1 – Not every policy is a constraint. Some policies represent an empowerment.

NOTE 2 – This definition refines subclause 11.2.7 ITU‑T Rec. X.902 | ISO/IEC 10746‑2, by adding authorization.
6.4.2
authorization XE "authorization" \b
: A prescription that a particular behaviour XE "behaviour" b\ must not be prevented.

NOTE – Unlike a permission XE "permission" \b, an authorization is an empowerment.
6.4.3
violation XE "violation" \b
: An action XE "action" or inaction contrary to a rule XE "rule" \b.

NOTE 1 – The absence of a behaviour required by an obligation is an inaction contrary to a rule.

NOTE 2 – A rule or policy may provide behaviour to occur upon violation of that or some other rule or policy.

6.5
Accountability concepts

6.5.1
party XE "party" \b
: An enterprise object modelling a natural person or any other entity XE "entity" considered to have some of the rights, powers and duties of a natural person.

NOTE 1 – Examples of parties include enterprise objects representing natural persons, legal entities, governments and their parts, and other associations or groups of natural persons.

NOTE 2 – Parties are responsible for their actions and the actions of their agents.

The following concepts are used to identify actions which involve the accountability of a party.

6.5.2
commitment XE "commitment" \b
: An action XE "action" resulting in an obligation XE "obligation" by one or more of the participants in the act to comply with a rule XE "rule" or perform a contract XE "contract" .

NOTE – The enterprise object(s) participating in an action of commitment may be parties or agents acting on behalf of a party or parties. In the case of an action of commitment by an agent, the principal becomes obligated.

6.5.3
declaration XE "declaration" \b
: An action XE "action" that establishes a state of affairs in the environment of the object making the declaration.

NOTE – The essence of a declaration is that, by virtue of the act of declaration itself and the authority of the object or its principal, it causes a state of affairs to come into existence outside the object making the declaration.

6.5.4
delegation XE "delegation" \b
: The action XE "action" that assigns authority, responsibility or a function to another object.

NOTE – A delegation, once made, may later be withdrawn.

6.5.5
evaluation
: An action XE "action" that assesses the value of something.

NOTE 1 – For example, the act by which an ODP system assigns a relative status to some thing, according to estimation by the system.

NOTE 2 – Value can be considered in terms of usefulness, importance, preference, acceptability, etc.; the evaluated target may be, for example, a credit rating, a system state, a potential behaviour, etc.

6.5.6
prescription XE "prescription" \b
: An action that establishes a rule XE "rule" .

6.5.7
agent XE "agent" \b
: An enterprise object that has been delegated (authority, responsibility, a function, etc.) by and acts for a party (in exercising the authority, carrying out the responsibility, performing the function, etc.).

NOTE 1 – An agent may be a party XE "party" \b or may be the ODP system or one of its components. Another system in the environment of the ODP system may also be an agent XE "agent" of some party.

NOTE 2 – The delegation may have been direct, by a party XE "party" \b, or indirect, by an agent XE "agent" \b of the party having authorization from the party to so delegate XE "delegate" \b.

6.5.8
principal XE "principal" \b
: A party XE "party" \b that has delegated (authority XE "authority" \b, a function, etc.) to another.

6.5.9
contracting party XE "contracting party" \b (with respect to a contract)
: A party that agrees to that contract.

7
Structuring rules

This clause refines and extends the structuring rules defined in subclause 5.2 of ITU-T Rec. X.903 | ISO/IEC 10746-3, as they apply to the concepts of community, enterprise object, objective, behaviour and policy. It defines structuring rules for the accountability concepts defined in 6.5. It uses the concepts defined in ITU-T Rec. X.902 | ISO/IEC 10746-2, in subclause 5.1 of ITU-T Rec. X.903 | ISO/IEC 10746-3 and in clause 6.

7.1
Overall structure of an enterprise specification

An enterprise specification of an ODP system is a description of that system and relevant parts of its environment. The enterprise specification focuses on the scope and purpose of that system and the policies that apply to it in the context of its environment.

NOTE 1 – The environment of an ODP system and the ODP system itself may span multiple organizations. More than one party may own the ODP system.

NOTE 2 – An enterprise specification may specify the collective behaviour of separately specified and inter‑working subsystems of the ODP system.

A fundamental structuring concept for enterprise specifications is that of community. A community is a configuration of enterprise objects that describes a collection of entities (e.g. human beings, information processing systems, resources of various kinds and collections of these) that is formed to meet an objective. These entities are subject to an agreement governing their collective behaviour. The assignment of actions to the enterprise objects that comprise a community is defined in terms of roles. (See 7.8.1 and 7.8.2.)

The enterprise specification describes, within the areas of interest of the specification users:

–
roles fulfilled by the ODP system and enterprise objects in its environment;

–
steps within processes in which the ODP system and enterprise objects in its environment participate;

–
policies for the ODP system, including those of environment contracts.

An enterprise specification of an ODP system includes at least the community in which that system may be represented as a single enterprise object interacting with its environment. Whether the specification actually includes that level of abstraction is left for the specifier to decide.

NOTE 2 – This minimal enterprise specification describes the objective and scope of the ODP system; this description is necessary for completeness of the enterprise specification.

Where necessary for clarity or completeness of description of the behaviour of the ODP system, the enterprise specification can include any other communities of which the ODP system or its components are members, and other communities of which enterprise objects in the environment of the ODP system are members.

NOTE 3 – The set of communities in an enterprise specification may include, for example, communities at both more abstract and more detailed levels than the minimal enterprise specification, as well as communities relating to functional decomposition of the ODP system and to ownership of the ODP system and its parts.

The enterprise specification can also be structured in terms of a number of communities interacting with each other.

NOTE 4 – This may be, for example, a federation.

The interaction of communities may be represented in several ways:

–
The communities concerned may be viewed as composite objects (community-objects), and a new community formed of those composite objects. That community may be described explicitly or may be left implicit.

–
A new community may be formed of one or more objects of each community, with roles in the new community specifying interactions of the communities.

–
A new community may be formed of one or more objects of each community, by an assignment of roles in different communities to the same object, and a correspondence of each of those roles to a role in the new community.

–
Interface objects of the communities may interact, forming a new community.

The scope of the system is defined in terms of its intended behaviour; in the enterprise language this is expressed in terms of roles or processes or both, policies, and the relationships of these.

NOTE 5 – It may be meaningful to discuss the intended, delivered or expected scope of a system in various phases of planning, development or deployment. When so, the term ''scope'' should be appropriately qualified.

A complete ODP system specification indicates rules for internal consistency in terms of relationships between various viewpoint specifications and a complete enterprise specification contains conformance rules that define the required behaviour of the described ODP system

This clause defines how the concepts identified in clause 3 or defined in clause 6 are used in an enterprise specification.

7.2
Contents of an enterprise specification

An enterprise specification is structured in terms of the elements explained in 7.1 and the other concepts identified in clause 6, as well as the relationships between them.

For each of these elements, depending on the specifier's choice and desired level of detail, the enterprise specification provides:

–
the characteristics of the element; or

–
the type or types of the element; or

–
a template for the element.

An enterprise specification provides a pattern for realization of an ODP system in its environment. As such it may be realized once, never, or many times, depending upon the objective of the specifier. This means that the behaviour defined may also be observable any number of times, depending on when and where the specification is realized. It is therefore necessary to take care of the context when interpreting statements about the occurrence of the concepts in an enterprise specification.

In particular, when distinguishing type and occurrence in a specification, the objective is normally to distinguish between multiple occurrences of a single type within the specification, and not to imply a constraint on how often the specification can be realized in the world. The definitions in this Recommendation | International Standard should be interpreted in the context of specification, without constraining when and where the specification should be realized.

The enterprise language makes no prescription about the specification process nor about the level of abstraction to be used in an enterprise specification.

NOTE 1 – No recommendations are made about the relative merits of modelling from top-down or bottom-up. Nor is there a recommended sequencing of the development of viewpoint specifications.

NOTE 2 – It is a design choice whether a specification deals with a specific implementation by, for example, identifying individual enterprise objects, or deals with a more flexible architecture by identifying types and rules for assigning enterprise objects to roles.

NOTE 3 – A specification may be partitioned because of readability, reuse of specification fragments in other specifications or interoperability of enterprise objects.

NOTE 4 – Roles and communities, as well as types and templates, can be private to a specification and development environment, or they can be stored in a repository that can be shared by a wider audience of several development environments and groups.

7.3
Community rules

7.3.1
Community

An enterprise specification states the objective of a community, how it is structured, what it does, and what objects comprise it. The objective of the community is expressed in a contract that specifies how the objective can be met. This contract:

–
states the objective for which the community exists;

–
governs the structure, the behaviour and the policies of the community;

–
constrains the behaviour of the members of the community;

–
states the rules for the assignment of enterprise objects to roles.

The contract for the community specifies constraints that govern the existence or behaviour of the collection of entities described by the community. When a collection of entities is represented as a community, there may already be some implicit or explicit agreement about those entities. Terms of that agreement may appear in the community contract. An enterprise specification may include all or part of that agreement by reference. Such references relate the elements of the specification to terms of that agreement. In particular, commitments of enterprise objects may be subject to that agreement.

The behaviour of the community is such that meets its objective. The enterprise objects of a community are constrained by the rules of the community contract.

The contract can be put in place by a defined behaviour carried out by enterprise objects or the contract may be prescribed to exist by the enterprise specification.

The collective behaviour of the community is specified in terms of one or more of the following elements:

–
the roles of the community (including those roles which define how a community interacts with its environment);

–
the processes that take place in the community;

–
the assignment of roles to steps in processes;

–
policies that apply to the roles and processes; and

–
identification of those actions for which parties are accountable.

This collective behaviour is constrained by the policies associated with roles and processes and by the community contract.

The behaviours of objects in a community are subject to the contract of that community and to the constraints specified in relationships between those objects.

The community is further defined in terms of the following elements:

–
roles;

–
policies for assignment of enterprise objects to roles;

–
relationships between roles;

–
relationships of roles to processes;

–
policies that apply to roles and to relationships between roles;

–
policies that apply to relationships between enterprise objects in the community;

–
behaviour that changes the structure or the members of the community during the lifetime of that community.

NOTE 1 – Types of communities or a community template may be used in the specification of a community.

NOTE 2 – Types of communities may be related by refinement.

NOTE 3 – A family of related contracts may be generated from a contract template. Some aspects of the contract (e.g. membership) may only apply to particular instantiations of the contract template, while other aspects may apply to all instantiations of the contract template. For example, assignment rules and policies can be considered as parameters in a contract template. The style of contract specification determines the method of community establishment, as well as other aspects of the community life-cycle.

7.3.2
Relationships between communities

An enterprise specification can include one or more communities. Interactions between enterprise objects fulfilling appropriate roles within different communities can be considered as interactions between those communities.

Communities may interact in the following ways:

–
a community object fulfils one or more roles in other communities;

–
two or more community objects interact in fulfilling roles in some other community;

–
the enterprise specification requires the same object to fulfil specific roles in more than one community;

–
an object, in fulfilling a role of one community, interacts with an object fulfilling a role in another community

–
a community includes behaviour for creating new communities.

NOTE 1 – For example, federation establishment means creation of a new community, which involves putting in place the community contract, including the structure and policies for that community.

NOTE 2 – For interactions involving community objects and the communities they represent see 7.8.3 – Interface roles and interactions between communities.

For each of these ways of interacting there is an invariant that determines the constraints on the collective behaviour of the communities concerned.

These invariants include:

–
where a community object fulfils one or more roles in another community, the community that the community object represents is governed by the policies of the other community;

–
where two or more community objects interact in fulfilling roles in some other community, the communities that the community objects represent are related by those interactions;

–
where the same object is required to fill specific roles in more than one community, an invariant specifies how the actions of that object affect those communities;

–
where the same object is required to fill specific roles in more than one community, that object becomes governed by the policies of all those communities;

–
where two or more communities interact, there is a set of policies common to those communities.

NOTE 3 – Where two communities interact, an implicit community may be considered, such that the community objects representing both communities are members of and are governed by the policies of that community. The element of shared objective and the common set of policies can be formed either at design time and included in the specifications of the communities or left for run-time negotiation or testing of acceptability during community population.

NOTE 4 – The communities involved may have differing policy rules to all of which the enterprise object should be able to conform.

7.4
Enterprise object rules

An enterprise specification will include enterprise objects; an enterprise object is any object in an enterprise specification. Any enterprise objects and the entities they model are those felt to be necessary or desirable to specify the system from the enterprise viewpoint or to understand the enterprise specification.

NOTE 1 – An enterprise object may be a model of a human being, a legal entity, an information processing system, a resource or a collection or part of any of these.

An enterprise object may be refined as a community at a greater level of detail. Such an object is then a community object.

All enterprise objects in an enterprise specification fulfil at least one role in at least one community. In fulfilling their roles, enterprise objects participate in actions, some of which are interactions with other enterprise objects. The behaviour of an enterprise object is restricted by the roles to which it is assigned.

An enterprise object may be a member of a community because:

–
by design the community includes the object;

–
the object becomes a member of the community at the time of creation of that community; or

–
the object becomes a member of the community as a result of dynamic changes in the configuration of the community.

NOTE 2 – The community contract includes rules for the assignment of enterprise objects to roles; thus, to establish a community it is not necessary to identify the enterprise objects of that community.

NOTE 3 – The community contract can include rules that change the community structure (for example, the number of roles).

7.5
Common community types

Two common community types are:

–
<X>-domain.

–
<X>-federation.

Communities of these types can be specified so that they overlap totally or partially. These basic community types do not imply any hierarchical relationships. A specification may choose to use some or none of these community types.

7.5.1
<X>-domain community type

An <X>-domain community comprises an <X>-domain of enterprise objects in the roles of controlled objects and an enterprise object in the role of controlling object for the <X>-domain. The <X>-domain community establishes the characterizing relationship <X> between the enterprise objects in the roles of controlled objects and the enterprise object in the role of controlling object.

7.5.2
<X>-federation community type

An <X>‑federation community contains two or more <X>‑federation member roles which are filled by <X>‑domain communities. The objective of an <X>‑federation is to enable the characterizing relationship, <X>, between controlled objects and controlling object in each <X>-domain community to be shared with the controlling objects of the other <X>-domain communities. The specific manner in which the characterizing relationship, <X>, is shared requires further refinement of the federation community type. Controlling objects are subject to the policies of the contract of the <X>‑federation community and may commit their respective <X>-domain communities to some contract, but may prescribe policies for each other's <X>-domain community only as provided in the contract of the <X>-federation community.

NOTE – At the level of abstraction at which federation is agreed, the federation members must be <X>-domain communities having the same characterizing relationship, <X>. However, each <X>‑domain community may actually be an instance of one or more refined <X>-domain community types.

Editor’s Note – National Bodies and experts are invited to contribute text that provides further discussion of federation.

7.6
Lifecycle of a community

7.6.1
Establishing a community

An enterprise specification can include establishing behaviour for a community.

The establishing behaviour may be implicit or explicit, but it establishes the required structures and responsibilities to maintain and control the community, for example, the community contract, the policies for the community, and the objects in the community. Objects of the community may need to be instantiated as a part of the establishing behaviour.

7.6.2
Assignment policy

The establishing behaviour by which a community is established includes the assignment of enterprise objects to roles. The community contract specifies an assignment policy, rules for choosing enterprise objects to fulfill the specified roles. The enabled behaviour is consistent with the roles.

NOTE 1 – The role/object relationship is not a type/instance relationship.

NOTE 2 – The assignment process can be late and dynamic, i.e. a role can be fulfilled by an enterprise object through a match-making process that considers, with respect to the requirements stated for the role, the interfaces and behaviour of that object, and, in the case of a community object, the policies of the community it represents.

Members of the community may be selected on demand according to the assignment policy for that community.

The rules of the assignment policy can directly identify the objects, or may use a supporting mechanism with more complex assignment rules. The rules may be based on object identifiers, relationships between objects, object capabilities, technologies, preceding commitments, object behaviour, etc.

7.6.3
Changes in a community

Changes in the structure or behaviour of a community can occur only if an enterprise specification includes behaviour that can cause such changes.

The changes to be considered here include:

–
introduction of new rules within the existing policies; or changing the existing rules; and

–
introduction of new roles into the community.

The enterprise objects assigned to roles in the community can be dynamically changed during the lifetime of the community. As a consequence, a role can, subject to other constraints, have no enterprise object assigned to it. Still, the community is continuously responsible for the obligations placed on that role.

If an enterprise object ceases to fulfil the assignment rule associated to it, it violates the community contract.

7.6.4
Terminating a community

An enterprise specification can include terminating behaviour for a community; it must do so if it includes establishing behaviour for that community.

NOTE 1 – For example, a community contract may provide for termination when the objective is achieved. A violation may be associated with a recovery behaviour, which may be the termination of the community.

NOTE 2 – Some communities are permanent and never terminate.

7.7
Objective rules

Every community has exactly one objective. The objective is expressed in a contract which specifies how the objective can be met. An objective can be a composition of sub-objectives.

An enterprise specification may decompose the objective of a community into sub-objectives. A sub-objective may be assigned to a collection of roles; in that case, the behaviour of the collection of roles is specified to meet the sub-objective and the sub-objective is met by the collection of objects performing the actions of the collection of roles.

A sub-objective may be assigned to a process; in that case, the process is specified to meet the sub-objective and the sub-objective is met by the actions of objects performing the process. In this case, the sub-objective defines the state in which the process terminates.

The policies of a community restrict the community behaviour in such a way that it is possible to meet the objective. Such policies result in behaviour that suits the objective of the community.

When a community‑object fulfils a role in another community, the objective of the community of which the community‑object is an abstraction is consistent with any sub-objectives assigned to that role in the other community.

NOTE – An enterprise specification may provide for detection of conflicts in objectives and for resolution of those conflicts.

7.8
Behaviour rules

7.8.1
Roles and processes

The behaviour of a community is a collective behaviour consisting of the actions in which the objects of the community participate in fulfilling the roles of the community, together with a set of constraints on when these actions may occur.

NOTE 1 – There are many specification styles for expressing when actions may occur (e.g. sequencing, pre-conditions, partial ordering, etc.). The modelling language chosen for expressing an enterprise specification may impose certain styles.

The assignment of actions to the enterprise objects that comprise a community is defined in terms of roles. A role identifies an abstraction of the community behaviour. All of the actions of that role are associated with the same enterprise object in the community. Each action of the community is either part of a single role behaviour or is an interaction that is part of more than one role behaviour. Each of these abstractions is labelled as a role. The behaviour identified by that role is subject to the constraints specified in the contract and structure of the community. In contrast to the specification of actions and their ordering in terms of processes (see below), the emphasis is on the enterprise objects that participate in the particular behaviour.

Roles are used to decompose the behaviour of the community into parts that can each be performed by an enterprise object in the community. The enterprise object that performs the behaviour of a role is said to fulfil that role within the community or is said to be assigned to that role within the community.

Each action will be part of at least one role, but can be part of many roles (when the action involves an interaction).

The actions and their ordering can be defined in terms of processes. A process identifies an abstraction of the community behaviour that includes only those actions that are related to achieving some particular result, purpose, or sub-objective within the community. Each abstraction is labelled with a process name. In contrast to the specification of actions as related to roles (see above), the emphasis is on what the behaviour achieves.

Processes decompose the behaviour of the community into steps.

NOTE 2 – The choice of using a role-based or process-based modelling approach will depend on the modelling method used and the aim of modelling. It may be necessary to use a combination of the two approaches.

7.8.2
Role rules

In a community contract, each role stands as a placeholder for some enterprise object that exhibits the behaviour identified by the role. For each role there is an assignment rule that sets requirements for objects that may fulfil that role.

An enterprise object may fulfil several roles in one community, and may fulfil roles in several communities. An object fulfilling several roles becomes constrained simultaneously by all the behaviours identified by those roles and by the policies that apply to those roles.

NOTE 1 – If the term '<X> object' is used in an enterprise specification, where <X> is a role, it should be interpreted as meaning 'an enterprise object fulfilling the role, <X>'. Where an enterprise object fulfils multiple roles, the names can be concatenated.

At any location in time at most one enterprise object fulfils each role. The constraints of the behaviour identified by the role become constraints on the object fulfilling the role. A role may be fulfilled by different objects at different times or be unfulfilled, provided that the specification of the community so permits.

An enterprise specification may include a number of roles of the same type each fulfilled by distinct enterprise objects, possibly with a constraint on the number of roles of that type that can occur.

NOTE 2 – Examples are modelling the members of a committee and modelling the customers of a service.

An enterprise object assigned to a role must be of a type behaviourally compatible with that role, unless the specification includes mechanisms to determine and resolve any incompatibilities. [2-9.4]

NOTE 3 – Enterprise specifications may refer to existing mechanisms for determining and resolving incompatibilities between types of objects and requirements set by roles, thus enlarging the set of objects acceptable for a given role.

An enterprise specification may allow roles and relationships between roles to be created or deleted during the lifetime of the community. The role lifetime is contained within the community lifetime, and the period for which a particular enterprise object fulfils a given role is contained within the lifetime of that role.

NOTE 4 – The constraints of the community should be satisfied throughout its lifetime. However, these invariants may change; this may determine different epochs in this lifetime. Such changes may lead to changes in the sets of roles and in the sets of relationships between roles of the community.

An assignment policy is a set of rules of a community which govern the selection of an enterprise object to fulfil a role.

NOTE 5 – The rules define what the object to fulfil a role must be capable of doing and not restricted from doing by earlier commitments, and what relationships to other objects are required or prohibited.

7.8.3
Interface roles and interactions between communities

One or more roles in a community may identify behaviour that includes interactions with objects outside that community; these are interface roles.

In such a case a community may be specified at two different levels of abstraction:

–
as a configuration of enterprise objects, where some of these objects fulfil interface roles; and

–
as a community object that is an abstraction of the community. Interactions in which the community object can participate as part of some other community are identified by the interface roles of the community that community object represents.
The behaviour identified by an interface role may include internal actions.

7.8.4
Enterprise objects and actions

A way of categorizing the involvement of an enterprise object is:

–
The object can participate in carrying out the action; in this case it is said to be an actor with respect to that action.

–
The object can be mentioned in the action; in this case it is said to be an artefact with respect to that action.

–
The object can both be essential for the action and require allocation or possibly become unavailable; in this case it is said to be a resource with respect to that action.

NOTE 1 – For every action there is at least one participating enterprise object. Where two or more enterprise objects participate in an action, it is an interaction. When only one enterprise object participates in an action, it may be an interaction, if the object interacts with itself. [2-8.3]

NOTE 2 – The specification of a role states the behaviour associated with the role, the policies applying to the role, the responsibilities associated with the role, and the relationships between roles. For example, for each role that specification includes descriptions of all actions and, for each action, identification of all the artefacts mentioned in the action and the resources used.

An actor in an action can also be an artefact with respect to that action. Likewise, an actor in an action can also be a resource with respect to that action (if it itself is used in the action).

When a resource is essential for some action, the action is constrained by the availability of that resource.

7.8.5
Process rules

In an enterprise specification, a process is an abstraction of the behaviour of some configuration of objects in which the identities of objects have been hidden as a result of the abstraction.

A process is a collection of steps taking place in a prescribed manner and leading to an objective. Each step need not be an abstraction of the behaviour of the same configuration of objects in the community.

If processes are part of a community, each step must be associated with an actor. A step may be associated with multiple roles.

The process specification must include specification of how it is initiated and how it terminates.

The collective behaviour of a community may be represented as a set of processes. This set can be seen as a more abstract process performed by a single role fulfilled by a community-object. Also, a step of a process can be further refined as a more detailed process.

7.9
Policy rules

7.9.1
The specification of a policy

A policy identifies the specification of a behaviour, or constraints on a behaviour, that can be changed during the lifetime of the ODP system or that can be changed to tailor a single specification to apply to a range of different ODP systems. Changes in the policies of a community during its lifetime can occur only if an enterprise specification includes behaviour that can cause such changes.

Policies may apply to a community as a whole, to enterprise objects (regardless of role), to roles (for all actions named by a role or set of roles), or to an action type or set of action types named by a role or set of roles. They may also apply to the collective behaviour of a set of enterprise objects.

The specification of policy may cover the degree to which, and the circumstances in which, there can be delegation to one enterprise object by another.

NOTE 1 – A policy is a named placeholder for a piece of behaviour used to parameterise a specification in order to facilitate response to later changes in circumstances. The behaviour of systems satisfying the specification can be modified by changing the policy value, subject to constraints associated with the policy in the original specification. In these terms, a policy is an aspect of the specification that can be changed, and a policy value is the choice in force at any particular instant. Thus one might speak of a scheduling policy with a FIFO policy value.

NOTE 2 – Policy may, for example, be used to configure generic objects to apply them in some specific situation, or to express a pervasive decision that affects many objects.

NOTE 3 – Policies may cover, for example, rules about:

-- behaviour (for example, processes);

-- qualities of service;

-- the names or types of objects with which a given object may interact;

-- the technology by means of which interactions may be performed;

NOTE 4 – Policies for a community may be composed from other policies; other communities may be subject to the same policies; policies may be specified in a community template; the template may include parameters used in establishing policies.

NOTE 5 – Policies for a community may form part of a hierarchy of policies. This may position the community within a larger environment, for example, with respect to some organizations.

NOTE 6 – Policies for a community are established when the community is specified or when it is established according to the specified establishing behaviour. The establishing behaviour may involve already established other communities or the controlling objects of <X> domain communities.

An enterprise object must conform to all policies in each community in which it participates.

When an enterprise object of a community fulfills a role in another community, the policies of the two communities that apply to that object might conflict. Where an enterprise object is subject to policies of more than one community, the enterprise specification shall ensure that policy conflicts do not exist, or specify how policy conflicts are to be prevented or discovered and resolved, or state that policy conflicts are allowed to cause failures.

NOTE 7–Examples of how an enterprise specification may specify how conflict is to be prevented or resolved include specification of a policy governing the assignment of roles to objects where such conflict may arise, specification of a policy prescribing modification of behaviour, and specification of a mechanism for modification of conflicting policies.

Establishing an <X> federation community involves establishing a set of policies for that community. An enterprise object in the <X> federation community must conform both to the policies of the <X> domain community to which it belongs and to the policies of the <X> federation community.

NOTE 8–In an inter-organisational environment, the policies for each domain community and for the federation community may have separate lifecycles.

NOTE 9– The mechanisms for conflict management may be supported by the specification language or the runtime environment of the systems involved, and thus not necessarily explicitly be visible in the enterprise specification.

NOTE 10– Examples of policy conflict cases are:

a. (Specification-time assurance) The specifications of the federation communities are compared and any conflicts are resolved in the specifications.

b. (Run-time prevention) Forming federations with policy conflicts is prevented by checking consistency of policies while assigning objects to roles in the federation community.

c. (Run-time discovery and resolution) The federation community is specified to resolve the conflict by a policy modifying behaviour included in the specification. A new federation is formed if the policies change.

d. (Failure handling) The specification of the federation community provides sanctions or alternative behaviour for cases where behaviour has failed because of policy conflicts.

The specification of a policy includes:

–
the name of the policy;

–
the rules, expressed as obligations, permissions, prohibitions and authorizations;

–
the elements of the enterprise specification affected by the policy;

–
behaviour for changing the policy.

The behaviour for changing the policy may include behaviour that changes the rules of that policy and behaviour that replaces that policy with a named different policy.

NOTE 11 – The behaviour may include constraints on changing that policy.

NOTE 12 – There may be no behaviour for changing the policy (that is, the policy is not changed during the lifetime of the community).

NOTE 13 – Behaviour to negotiate and change policies may be necessary to enable formation of an <X> federation
7.9.2
The specification of obligations, permissions, prohibitions and authorizations

The following subclauses provide a way of specifying policies:

7.9.2.1
Obligation

An obligation is defined by:

–
an authority that controls the obligation;

–
an identified behaviour that is subject to that authority;

–
a role or roles involved in that behaviour that are subject to the authority;

–
a subset of that behaviour that is required to occur;

–
optionally, an object or objects that may fulfil the roles involved.

When the obligation applies, the enterprise objects fulfilling the roles that are subject to the authority must engage in the required behaviour.

A standing obligation is an obligation that always applies.

7.9.2.2
Permission

A permission is defined by:

–
an authority that controls the permission;

–
an identified behaviour that is subject to that authority;

–
a role or roles involved in that behaviour that are subject to the authority;

–
a subset of that behaviour that is allowed to occur;

–
optionally, an object or objects that may fulfil the roles involved.

When the permission applies, the enterprise objects fulfilling the roles that are subject to the authority are allowed to engage in the allowed behaviour.

NOTE 1 – There is, however, no guarantee that the action succeeds. For example, the action may have participants in other domains in which the action is prohibited.

An enterprise specification may specify that interactions between enterprise objects of a community may occur only when permission for the interaction exists. Such permissions may apply either to a particular role in the interaction or to the interaction as a whole.

NOTE 2 – In such cases, if permission required for an interaction is missing, that interaction fails and therefore the enterprise objects may fail to fulfil their roles.

7.9.2.3
Prohibition
A prohibition is defined by:

–
an authority that controls the prohibition;

–
an identified behaviour that is subject to that authority;

–
a role or roles involved in that behaviour that are subject to the authority;

–
a subset of that behaviour that must not occur.

When the prohibition applies, the enterprise objects fulfilling the roles that are subject to the authority must not engage in the prohibited behaviour.

NOTE – An enterprise specification may specify a behaviour by means of which the prohibited behaviour is prevented.

7.9.2.4
Authorization

An authorization is defined by:

–
an authority that controls the authorization;

–
an identified behaviour that is subject to that authority;

–
a role or roles involved in that behaviour that are subject to the authority;

–
a subset of that behaviour that is allowed to occur;

–
optionally, an object or objects that may fulfil the roles involved.

When the authorization applies, the enterprise objects fulfilling the roles that are subject to the authority must not be prevented from engaging in the authorized behaviour.

Authorizations will not necessarily be effective outside the domain controlled by the authority. In federations the effect of authorizations is determined by the contract of the federation.

7.9.3
Policy violations

Some violations are the result of defective specification or implementation of behaviour. Others are caused by inconsistent assumptions of communicating parties about policies.

NOTE – These may arise, for example, in a federation where there is not full control of the interacting objects or in other situations where an action is not considered to be essential enough to be specified with policies in detail for all possible participants of an interaction.

An enterprise specification can provide mechanisms for detecting violations and for appropriate recovery or sanction mechanisms.

A way of specifying policies is as policed and enforced, or unpoliced.

If policies are specified as policed and enforced this can be specified to be by optimistic or pessimistic means.

Pessimistic enforcement is preventative and requires the specification of mechanisms to ensure that the obligated actions occur, prohibited actions do not occur, and authorized actions are not prevented. Pessimistic enforcement is specified when trust is low (i.e. when non-compliance is expected) and the damage caused by non-compliance is potentially high, and when viable preventative mechanisms can be created and/or effective sanctions can be applied after non-compliance occurs.

Optimistic enforcement is not preventative. It requires the specification of mechanisms to detect and report or correct non‑compliance. Optimistic enforcement is specified when trust is high and the potential damage due to non-compliance is low, and when viable preventative mechanisms do not exist.

7.10
Accountability rules

An enterprise specification identifies those actions that involve accountability of a party.

Parties can have intentions and are accountable for their actions. The concepts of subclause 6.4 are used to model an action that involves accountability of a party .

The enterprise specification identifies the actions of parties that an ODP system is prepared to participate in, respond to or record.

7.10.1
Delegation rules

An enterprise specification identifies the actions that any enterprise object that is not a party is prepared to participate in as an agent of a party. An enterprise specification describes the authority delegated to an enterprise object in terms of:

–
the parties that have delegated authority to the system;

–
the authority that each party has delegated;

–
the duration and conditions of the delegation;

–
provisions for additional delegation and withdrawal of delegation during the operation of the system.

By each such delegation, that enterprise object becomes an agent of the parties delegating, and the parties (collectively) become principal of the system. A principal is responsible for the acts of an object acting as its agent.

Insofar as provided in delegation by a party, an enterprise specification may specify further delegation, by an agent to another enterprise object.

7.10.2
Authority rules

For each authority delegated, an enterprise specification states the actions in which an agent XE "agent" may participate in exercising that authority. The authority delegated may be:

–
to make a commitment XE "commitment" ; this binds the principal XE "principal" ;

–
to issue a declaration XE "declaration"; this establishes the truth of some proposition just as if the principal had made the declaration;

–
to make a prescription XE "prescription" that establishes a rule XE "rule" ; such a rule has the same force as if the principal XE "principal" had made the prescription;

–
to further delegate an authority; this causes the agent delegated to have the authority.

7.10.3
Commitment rules

An enterprise specification identifies, for every commitment XE "commitment" , the obligation XE "obligation" created. It identifies, for every commitment made by an agent XE "agent" \b, the principal XE "principal" \b(s) obligated.

Establishing behaviour in an enterprise specification includes commitments by the objects participating in the establishing behaviour. If the establishing behaviour is implicit, it includes prescriptions that apply to the objects in the resulting liaison XE "liaison" .

7.10.4
Declaration rules

A declaration identifies the changes that take place in the environment of an object as the result of an internal action of that object. An enterprise specification defines the conditions required for a particular declaration to be effective.

NOTE – A declaration may not be effective (cause the change in the environment of the object) until some interaction of the object such as, for example, a publication.

7.10.5
Prescription rules

An action of an enterprise object will be a prescription only when:

–
that object is a party that by its nature may establish rules;

–
that object is an agent of such a party, delegated authority to establish rules on behalf of that party;

–
the specification explicitly provides for those actions of that object that will be prescriptions; or

–
that object is, in a previous epoch, specified to establish rules.

An important special case of delegation is where the authorized action is a prescription; that is, when the delegation enables an enterprise object to make a prescription.

8
Compliance, completeness and field of application

8.1
Compliance

This Recommendation | International Standard uses the term, compliance, to describe the relationship between two standards. One standard complies with another if it makes correct use of the ideas, vocabulary or framework defined there. This implies that, if a specification is compliant, directly or indirectly, with some other specifications, then the propositions which are true in those specifications are also true in a conformant implementation of the specification.

The term conformance is used for the relationship between some product or artefact and the specification from which it is produced. Conformance can be tested by inspecting the product produced to confirm the claim that its properties or behaviour are as required by the standard.

In ODP specifications, there is a need for the specifier to declare those points at which tests are to be performed and for the implementer to identify those points when offering the product for test. Large specifications are frequently organized into a specification framework populated by more detailed component specifications. The framework identifies a wide range of points at which observations can, in principle be made. These points are called reference points. The subset of reference points where tests of an implementation are required by the more detailed specifications are called the conformance points for that specification.

ODP systems are specified in terms of a number of viewpoints, and this gives rise to an accompanying requirement for consistency between the different viewpoint specifications. The key to consistency is the idea of correspondences between specifications; i.e. a statement that some terms or structures in one specification correspond to other terms and structures in a second specification.

8.2
Completeness

Specifications can be produced as a prelude to implementation, and generally change during implementation or to support system evolution. Specifications can also be produced to capture the properties of existing systems or components in order to facilitate their reuse. The references to the process of specification in this clause are intended to cover both these situations.

When a set of viewpoint specifications and correspondences is created for an ODP system, a succession of design choices is made, gradually reducing the number of conceivable implementations that would be consistent with the specification. This process is never absolutely complete, since there are always implementation choices and changes in circumstances in the environment that affect the system's behaviour, but there is some point in the design process when the specifier judges that the specification is sufficiently complete to reflect their purpose. At this point, the specification is said to have reached the viable stage. This is the stage in the specification process where it would be possible to produce some worthwhile implementation. This statement does not imply that the specification is, in any way, frozen.

The viable stage depends on the purpose of the specification, because there may be significant differences in the degree of completeness expected in, for example, an accounting policy applied to a range of independent machines or to an inter-organizational workflow. The viable stage will not be assessed to be the same for all possible applications of any particular specification notation.

8.3
Field of application

An enterprise specification includes a statement of the field of application that specifies the properties the environment must have for the specification to be applicable.

The field of application determines whether a specification is appropriate in a given situation, and must be satisfied before it makes sense to make observations of the real world and compare these with specified observable properties to test conformance to the specification.

NOTE – The provision of an accurate statement of the field of application is particularly important if reuse of the enterprise specification is expected. It allows the specifier who might incorporate the existing specification fragments to ask ''is this specification for me?'' before they begin to ask ''what must the system and its environment do?''

9
Enterprise language compliance

An enterprise specification compliant with this Recommendation | International Standard shall use the concepts defined in clause 6 and those in subclause 5.1 of ITU-T Rec. X.903 | ISO/IEC 10746-3, as well as the concepts defined in ITU-T Rec. X.902 | ISO/IEC 10746-2, subject to the rules of clause 7 and those in ITU-T Rec. X.903 | ISO/IEC 10746-3 subclause 5.2.

Concepts from other modelling languages may also be employed. Where such concepts are employed, the specification concerned shall include or refer to definitions of each such concept, in terms of the concepts defined in clause 6, in ITU‑T Rec. X.902 | ISO/IEC 10746‑2, or in clause 5.1 of ITU‑T Rec. X.903 | ISO/IEC 10746‑3, and explanations of the relationships between such concepts and those defined in clause 6.

10
Conformance and reference points

This Specification defines the Enterprise Language, which provides a framework for a variety of notations to be used in specification. As such it creates a formal system that does not itself involve conformance, any more than, say, a programming language grammar involves conformance. However, specific notations derived from this standard will be supported by (generally automated) tools and design processes that produce and maintain enterprise specifications for systems, and the conformance of these tools and processes can be tested. This includes the generation of specifications that conform to the structural or grammatical rules of the language, and the construction of systems which, in operation, perform in a way consistent with the semantics of the language.

In general, such tools and processes manipulate not only the enterprise viewpoint specification but also manage correspondences with other viewpoint specifications, and so wider issues of conformance to complete sets of ODP specifications need to be considered.

NOTE – There are correspondences between each possible pair of viewpoint specifications, but the conformance issues involved are particularly important in this Specification because the policies expressed in the enterprise specification are reflected in all the other viewpoints.

In claiming conformance to an enterprise specification, the system provider must state what observable reference points in the system are conformance points, and how observations at these points can be interpreted to correspond to enterprise concepts. With this information, a tester of the system is in a position to determine by observation whether the system behaves correctly. In ODP, conformance is based on the declaration of Engineering Viewpoint reference points (in clauses 5-7 of ITU-T Rec. X.903 | ISO/IEC 10746-3), and the implementer of an Enterprise Specification must state correspondences to the engineering viewpoint in order to relate observations at the engineering reference points to enterprise concepts.

11
Consistency rules

This clause extends clause 10 of ITU-T X.903 | ISO/IEC 10746-3 by defining enterprise specification correspondences.

11.1
Viewpoint correspondences

The underlying rationale in identifying correspondences between different viewpoint specifications of the same ODP system is that there are some entities that are represented in an enterprise viewpoint specification, which are also represented in another viewpoint specification. The requirement for consistency between viewpoint specifications is driven by, and only by, the fact that what is specified in one viewpoint specification about an entity needs to be consistent with what is said about the same entity in any other viewpoint specification. This includes the consistency of that entity's properties, structure and behaviour.

The specifications produced in different ODP viewpoints are each complete statements in their respective languages, with their own locally significant names, and so cannot be related without additional information in the form of correspondence statements. What is needed is a set of statements that make clear how constraints from different viewpoints apply to particular elements of a single system to determine its overall behaviour. The correspondence statements are statements that relate the various different viewpoint specifications, but do not form part of any one of the five basic viewpoints. The correspondences can be established in two ways:

–
by declaring correspondences between terms in two different viewpoint languages, stating how their meanings relate. This implies that the two languages are expressed in such a way that they have a common, or at least a related, set of foundation concepts and structuring rules. Such correspondences between languages necessarily imply and entail correspondences relating to all things of interest which the languages are used to model (e.g. things modelled by objects or actions);

–
by considering the extension of terms in each language, and asserting that particular entities being modelled in the two specifications are in fact the same entity. This relates the specifications by identifying which observations need to be interpretable in both specifications.

There are two kinds of standardization requirements relating to correspondences:

–
Some correspondences are required in all ODP specifications; these are called required correspondences. If the correspondence is not valid in all instances in which the concepts related occur, the specification simply is not a valid ODP specification.

–
In other cases, there is a requirement that the specifier provides a list of items in two specifications that correspond, but the content of this list is the result of a design choice; these are called required correspondence statements.

The minimum requirement for consistency in a set of specifications for an ODP system is that they should exhibit the correspondences defined in the Reference Model (part 3 clause 10), those defined in this Specification, and those defined within the specification itself.

NOTE – An enterprise specification may include objects that are not part of the ODP system being specified and may include the behaviour of such objects. Where this is the case, there may be no instances of concepts in other viewpoints that correspond to these objects or their behaviour.
11.2
Enterprise and information specification correspondences

11.2.1
Concepts related by correspondences

The enterprise concepts related are:

–
community;

–
enterprise object;

–
enterprise action;

–
role;

–
policy.

The information concepts related are:

–
information object;

–
dynamic schema;

–
static schema;

–
invariant schema.

11.2.2
Required correspondences

There are no required correspondences.

11.2.3
Required correspondence statements

The specifier shall provide:

–
for each enterprise object in the enterprise specification, a list of those information objects (if any) that describe part or all of its state;

–
for each role in each community in the enterprise specification, a list of those information object types (if any) that describe part or all of the state of the object fulfilling that role;

–
for each policy in the enterprise specification, a list of the invariant, static and dynamic schemata of information objects (if any) modified by the policy; an information object is included if it corresponds to the enterprise community that is subject to that policy;

–
for each action in the enterprise specification, the information objects (if any) that have a dynamic schema constraining actions in the information specification corresponding to that action;

–
for each relationship between enterprise objects, the invariant schema (if any) that represents it.

11.3
Enterprise and computational specification correspondences

11.3.1
Concepts related by correspondences

The enterprise concepts related are:

–
enterprise object;

–
role;

–
enterprise interaction;

–
policy.

The computational concepts related are:

–
computational object;

–
computational behaviour;

–
computational interface;

–
operation;

–
stream;

–
computational binding object.

11.3.2
Required correspondences

There are no required correspondences.

11.3.3
Required correspondence statements

The specifier shall provide:

–
for each enterprise object in the enterprise specification, that configuration of computational objects (if any) that realizes the required behaviour;

–
for each interaction in the enterprise specification, a list of those computational interfaces and operations or streams (if any) that correspond to the enterprise interaction, together with a statement of whether this correspondence applies to all occurrences of the interaction, or is qualified by a predicate;

–
for each role affected by a policy in the enterprise specification, a list of the computational object types (if any) that exhibit choices in the computational behaviour that are modified by the policy;

–
for each interaction between roles in the enterprise specification, a list of computational binding object types (if any) that are constrained by the enterprise interaction;

–
for each enterprise interaction type, a list of computational behaviour types (if any) capable of representing (i.e. acting as a carrier for) the enterprise interaction type.

11.4
Enterprise and engineering specification correspondences

11.4.1
Concepts related by correspondences

The enterprise concepts related are:

– enterprise object;

– role;

– behaviour;

– interaction;

– policy;

– nucleus;

– capsule;

– cluster.
The engineering concepts related are:

–
node;

–
stub;

–
binder;

–
protocol object;

–
channel;

–
interceptor.

11.4.2
Required correspondences

There are no required correspondences.

11.4.3
Required correspondence statements

The specifier shall provide:

–
for each enterprise object in the enterprise specification, the set of those engineering nodes (if any) with their nuclei, capsules, and clusters, all of which support some or all of its behaviour;

–
for each interaction between roles in the enterprise specification, a list of engineering channel types and stubs, binders, protocol objects or interceptors (if any) that are constrained by the enterprise interaction.

NOTE 1 – The engineering nodes may result from rules about assigning support for the behaviour of enterprise objects to nodes. These rules may capture policies from the enterprise specification.

NOTE 2 – The engineering channel types and stubs, binders or protocol objects may be constrained by enterprise policies.

11.5
Enterprise and technology specification correspondence

In accordance with clause 15.5 of ITU-T Rec. X.903 | ISO/IEC 10746-3 and clause 5.3 of ITU-T Rec. X.903 | ISO/IEC 10746-3, an implementor provides, as part of the claim of conformance, the chain of interpretations that permits observation at conformance points to be interpreted in terms of Enterprise concepts. While there may well be specific correspondences between Enterprise policies and particular technology constraints to require the use of those technologies, there should be neither mandatory correspondences nor mandatory correspondence statements in any particular Enterprise Specification.

NOTE – Although there are no mandatory viewpoint correspondences between enterprise viewpoint and technology viewpoint specifications, there may be cases where part of enterprise viewpoint specification has a direct relationship with technology viewpoint specification or choice of technology. Such examples include enterprise policy covering performance (e.g. response time), reliability, and security.

Annex A
Meta-model of the enterprise language

Editor’s note – National Bodies are encouraged to contribute to the development of these diagrams with ballot comments that suggest additions and changes to the diagrams, with comments that propose additional information to be added to the annex to improve the model, and with proposals for other approaches.

This annex presents part of a meta-model of the enterprise language. This meta-model illustrates the concepts used in an enterprise specification and some of the relationships between instances of those concepts.

Editor’s note – Is this a meta-model of the enterprise language? Or is it a model of the enterprise language (and perhaps a meta-model for or of models using the enterprise language)?

This annex is not normative.

NOTE 1 – These diagrams do not attempt to represent a complete model; they are an informal guide for the understanding of the enterprise viewpoint.

NOTE 2 – Some associations with concepts of RM-ODP Part 2 are not included in this model (e.g. that a role is an identifier for a behaviour).

NOTE 3 – The notation used in this model is UML (ISO/IEC DIS 19501-1, Information Technology – Unified Modelling Language (UML) - Part 1: Specification).

The diagrams representing this model are presented below under five broad headings:

– General concepts – representing relationships between the key enterprise language concepts and certain Part 2 concepts.

– System concepts – representing relationships between the system concepts [6.1] of the enterprise language.

– Community concepts – representing relationships between the main concepts used in modelling a community, particularly the community [6.2] and behaviour [6.3] concepts.

– Policy concepts – representing relationships between the policy concepts [6.4] of the enterprise language.

– Accountability concepts – representing relationships between the Accountability concepts [6.5] of the enterprise language.

Editor’s note: National bodies are invited to expand or amend the above categorizations.

Editor’s note – National Bodies are encouraged to contribute to the development of these diagrams with ballot comments that suggest additions and changes to the diagrams, and with comments that propose other approaches.

[image: image3.wmf]

Figure A.1 General Concepts

[image: image4.wmf]System

Field of Application

Enterprise Specification

Scope (of a system)

has

of

1

1

describes

described by

1

1

has

describes usability properties of

1..*

1

System

Field of Application

Enterprise Specification

Scope (of a system)

has

of

1

1

describes

described by

1

1

has

describes usability properties of

1..*

1

Figure A.2 System Concepts

[image: image5.wmf]

performed by

Interface Role

1..*

Role

Action

Community Object

Behaviour

Enterprise Object

Community

Artefact

Contract

Objective

Step

Process

Policy

resource for

*

actor for

1..*

artefact for

*

refers to

essential to

Resource

Actor

*

requires

1..*

1..*

participates in

1..*

*

referenced in

of

*

specified in

*

1..*

specifies

1

specifies

1

specifies

represents

0..1

*

fulfils

refines

1

configuration of

member of

*

*

1

specified in

specifies

sub

-

objective

meets

1

1

specified in

*

1

graph of

met by

*

leads to

1

1

identified by

0..1

1..*

met by

*

identifies

specified by

collection of

part of

1

part of

1..*

1..*

abstraction of

abstracted as

0..1

1..*

performed by

Interface Role

1..*

Role

Action

Community Object

Behaviour

Enterprise Object

Community

Artefact

Contract

Objective

Step

Process

Policy

resource for

*

actor for

1..*

artefact for

*

refers to

essential to

Resource

Actor

*

requires

1..*

1..*

participates in

1..*

*

referenced in

of

*

specified in

*

1..*

specifies

1

specifies

1

specifies

represents

0..1

*

fulfils

refines

1

configuration of

member of

*

*

1

specified in

specifies

sub

-

objective

meets

1

1

specified in

*

1

graph of

met by

*

leads to

1

1

identified by

0..1

1..*

met by

*

identifies

specified by

collection of

part of

1

part of

1..*

1..*

abstraction of

abstracted as

0..1

1..*

Figure A.3 Community Concepts

[image: image6.wmf]

Action

Commitment

Declaration

Delegation

Evaluation

Principal

Prescription

Agent

Party

Contracting Party

Enterprise Object

Accountable Action

action of delegation

1..*

delegates authority to

1..*

has delegated authority of

*

<<comment>>

Where Cardinalities are unspecified it means that there is not y

et agreement on

what those cardinalities should be

has role

role of

accountability involved in

involves accountability of

1..*

*

1

1

*

role of

*

has role

1

has role

role of

*

Action

Commitment

Declaration

Delegation

Evaluation

Principal

Prescription

Agent

Party

Contracting Party

Enterprise Object

Accountable Action

action of delegation

1..*

delegates authority to

1..*

has delegated authority of

*

<<comment>>

Where Cardinalities are unspecified it means that there is not y

et agreement on

what those cardinalities should be

has role

role of

accountability involved in

involves accountability of

1..*

*

1

1

*

role of

*

has role

1

has role

role of

*

Figure A.4 Accountability Concepts

[image: image7.wmf]

Policy

Authorisation

Permission

Prohibition

Obligation

Action

Violation

Behaviour

Enterprise Object

Role

Assignment Policy

Contract

Process

Rule

<<comment>>

NB Comments are invited suggesting

names for the role ends, and

cardinalities of the N

-

ary betweeen

Enterprise

Objec

, Role and Assignment

Policy

<<comment>>

Where

Cardinalities are

unspecified it

means that there

is not yet

agreement on

what those

cardinalities

should be.

specifies

constrained by

*

subject to

subject to

*

fulfils

*

of

*

1

specifies/ constrains

*

specified/ constrained by

*

collection of

part of

1..*

*

may be

changes

specified in

*

applies to

*

*

applies to

*

1..*

constrains

*

*

may be

contrary to

1..*

*

set of

member

prohibits

changed by

0..1

0..1

expressed by

expressed by

expressed by

expresses

expresses

expresses

0..1

0..1

0..1

1

1

expressed by

0..1

expresses

1

Policy

Authorisation

Permission

Prohibition

Obligation

Action

Violation

Behaviour

Enterprise Object

Role

Assignment Policy

Contract

Process

Rule

<<comment>>

NB Comments are invited suggesting

names for the role ends, and

cardinalities of the N

-

ary betweeen

Enterprise

Objec

, Role and Assignment

Policy

<<comment>>

Where

Cardinalities are

unspecified it

means that there

is not yet

agreement on

what those

cardinalities

should be.

specifies

constrained by

*

subject to

subject to

*

fulfils

*

of

*

1

specifies/ constrains

*

specified/ constrained by

*

collection of

part of

1..*

*

may be

changes

specified in

*

applies to

*

*

applies to

*

1..*

constrains

*

*

may be

contrary to

1..*

*

set of

member

prohibits

changed by

0..1

0..1

expressed by

expressed by

expressed by

expresses

expresses

expresses

0..1

0..1

0..1

1

1

expressed by

0..1

expresses

1

Figure A.5 Policy Concepts

Annex B
Explanations and examples

This annex explains the concepts and structuring rules of the enterprise language and provides examples of how they may be used. This annex is not normative.

Each of the two parts of this annex includes a running example. The two examples illustrate (somewhat different) uses of the concepts and structuring rules to specify an ODP system from the enterprise viewpoint. [3-4.1.1.1]

TEMPORARY NOTE - National Bodies are requested to consider whether this annex provides an accurate and thorough discussion of the concepts and structuring rules of the enterprise language.

TEMPORARY NOTE - National Bodies are invited to propose additional subjects for discussion in this annex and additional text.

The concepts explained are:

Enterprise specification concepts including the specification itself, the field of application of the specification, the system, and its scope;

Community concepts including, community, enterprise object, objective, and contract of the community;

Behaviour concepts including action, behaviour, role, process and step, and interface role;

Policy concepts including rule, policy, authorization, obligation, permission, prohibition, and violation;

Accountability concepts including accountability, party, commitment, declaration, delegation and authority, agent and principal, evaluation, and prescription;

More about communities, including lifecycle of a community, assignment policy, relationship between communities, domains, and federation.

NOTE – In this annex, terms that refer to concepts that belong to the specification language, the RM‑ODP enterprise language, are in italic, terms that refer to concepts that belong to universe of discourse (that is, what is being specified) [2-6], are in the usual roman typeface, and names used in an ODP specification are in sans serif roman. In some cases, a term, which refers to a concept that belongs to the enterprise language, is also occasionally used in this annex with its ordinary sense. When such a term is used in its ordinary sense, it is in the usual roman typeface, not in italic.

EDITOR’S NOTE – The editor has taken special care to follow the conventions explained in the preceding note. National Bodies are request to check carefully to see that the conventions have indeed been followed. There are certainly cases of editorial error in applying the conventions. However, in cases where it appears that the conventions have not been followed, kindly consider carefully the application of the conventions to the particular context, in particular the convention stated in the last sentence of the preceding note.

B.1 First Example – Specification of an e-commerce system

An ODP specification comprises one or more viewpoint specifications of an ODP system and its environment. An enterprise viewpoint specification is expressed in the enterprise language. [3-4] The enterprise language uses concepts taken from ITU-T Rec. X.902 | ISO/IEC 10746-2, and introduces refinements of those concepts, prescriptive rules and additional concepts defined using concepts from ITU-T Rec. X.902 | ISO/IEC 10746-2. [3-4.2.2] The additional concepts are those of Clause 5 of ITU-T Rec. X.903 | ISO/IEC 10746-3 and those in this Recommendation | International Standard.

This running example illustrates the use of the concepts and structuring rules to specify an ODP system from the enterprise viewpoint. [3-4.1.1.1]

Example — Our example is a specification of an e‑commerce system operated by e.com, a seller of widgets. This specification is made from the enterprise viewpoint.

B.1.1 Enterprise Specification

B.1.1.1 Specification [3-4.2.2]
An enterprise specification of an ODP system focuses on the purpose and scope of that system and the policies for that system. That enterprise specification includes enterprise objects and actions of those objects.

An enterprise object is a model of, and represents, something (an entity [2-6.1]) in the world of the ODP system being specified. This may be, for example, a person or organization as well as a computer system and the software it supports.

An action of an enterprise object is a model of something that happens in the world of the ODP system being specified; the entity represented by that object participates in what happens. Th​is may be, for example, something done by a person or by a computer system or one of its parts. Several objects may participate in the same action.

Example — A person places an order for a purple widget with the e.com e‑commerce system. That person and the e.com e‑commerce system are represented in our specification as objects. Placing that order for a purple widget is represented as an action. Those objects participate in that action.

An action may be a composition. Several objects participate in the action fulfilling the order for a purple widget. Each of those objects participates in some of the actions in a decomposition of that action.

B.1.1.2 Field of application (of a specification) [6.1.2]
To enable reuse, an enterprise specification will include the properties the environment of the ODP system must have in order for that specification to be suitable for use in that environment.

B.1.1.3 System [2-6.5]
A system is something that is of interest both as a whole and as composed of parts. Some of the parts of a system may themselves be systems; these may be called subsystems.

Example – The e‑commerce system, represented by an object, e‑system, includes a purchasing subsystem, a shipping subsystem, and an administration subsystem. These are represented in the specification by three systems, purchasingSubsystem, shippingSubsystem, and administrationSubsystem
An ODP system may be an automatic information processing systems, or may be any other kind of system, in the general sense. Often the ODP system will include some parts which are computers, others which are other kinds of machinery, and parts in which people play a part.

Example — The e.com e‑commerce system comprises a part that is a computer and parts that are e.com employees. The computer part handles most orders automatically, but refers some for decision-making by the e.com employees.

B.1.1.4 Scope [6.1.1]
An enterprise specification states the scope of the ODP system. The scope specifies what the system does, while suppressing details of how that is done. In any community in which the ODP system is represented as a single object, that object fulfils certain roles in that community; the behaviour identified by the roles fulfilled by that object is the scope of the ODP system for that community.

Example – The scope of e‑system in our e‑commerceCommunity includes providing a list of available kinds of widgets and the price of each, providing representations about the merchantability and fitness for use of each kind of widget, accepting orders and payments, keeping track of inventory, and so on.

B.1.2 Community

B.1.2.1 Community [3-5.1.1]
A community is a configuration of objects formed to meet an objective. That objective is expressed in a contract that specifies how the objective can be met. The interactions of objects fulfilling the roles of that community serve the objective of the community.

The community contract includes policies. These policies prescribe the behaviour of the objects of the community in situations when there are choices in behaviour. The same type of community can be used in different situations by setting policies suitable for the particular situation.

An enterprise specification may specify some or all of the objects of a community, or may specify or refer to supportive mechanisms that introduce objects into a community at the creation or introduction of that community or at other times during its lifetime. The community contract may provide for adding or removing objects, roles, or policies of the community.
In an enterprise specification, at some level of description, the ODP system is represented as an enterprise object in a community. That object may be called the ODP system object or, simply, the system. The other objects in that community are the environment of that system.

Example – In our example, the e.com e‑commerce system interacts with people and with other automated systems. When the operation of that e‑commerce system is specified from the enterprise viewpoint, that system and the context in which it operates are represented as a community. We will call this, e‑commerceCommunity.

In the enterprise viewpoint specification of the ODP system, the e.com e‑commerce system is represented as an object in e‑commerceCommunity. That object, the e‑commerce system object, we call e‑system.

People and automated systems are also represented as objects in e‑commerceCommunity.

The parts of the ODP system will be specified; these are also represented as objects. In some cases these parts will be under separate control or have different owners.

The e‑commerce system is composed of parts. To show the interactions of the parts, our specification also shows e‑commerceCommunity in more detail, with the e-commerce system shown as several objects representing parts of the e‑commerce system.

The enterprise specification may include other communities. The objects of these communities will be both the parts of e‑system and objects in the environment of e‑system
In our specification there are also other communities that include e‑system or some of its parts. Each of these communities has its own objective. We will see examples later in this annex.

B.1.2.2 Enterprise object [3-4.2.2]
An enterprise object is an object subject to the provisions of the enterprise language. [7.4]

B.1.2.3 Objective [6.2.1]
The objective of a community specifies the practical advantage or intended effect of the formation of that community, captured as preferences about future states of the objects of that community.

Example – People, firms, and automated systems interact with our example system in order to exchange goods and money. The objective of the e‑commerceCommunity is to enable this exchange. (This objective may, of course, be specified in more detail.) This is captured in our enterprise specification as a preference that, in the future, goods will have been exchanged and everyone will be satisfied with the exchanges.

NOTE - The words ‘objective’ and ‘purpose’ are synonyms. The enterprise language gives a specific meaning to ‘objective,’ prescribes how an objective is to be specified, and uses that concept throughout.

B.1.2.4 Contract [2-11.2.1]
The community contract specifies how the objective of the community can be met. That contract governs the collective behaviour of the community. The contract includes policies (sets of rules related to a particular purpose) that prescribe what the objects of the community may and may not do.

Example – The contract of our e‑commerceCommunity include policies about privacy of customers, representations about the goods, placing of orders, means of payment, procedures in case of dissatisfaction and so on. The policies about means of payment will prescribe what methods of payment are permitted, how information about a method of payment will be transmitted, and the like.

This community contract also refers to a legal agreement between e.com and its customers. Some of the provisions of that agreement are represented in our specification as a policy (a set of rules for the purpose of ensuring that the e‑commerce system complies with that legal agreement).

Editor’s note – The two immediately previous subclauses, B.1.2.3 and B.1.2.4 say that the objective is captured as preferences and then that the objective is expressed as a contract.

Essential aspects of a community contract are:

-- the behaviour identified by the roles of the community;

-- policies governing the behaviour of objects of the community;

-- policies for changing the community (its roles, policies, and so on); and

-- rules for deciding when there is a violation of the community contract and what actions are then taken.

B.1.3 Behaviour

B.1.3.1 Action [2-8.3]
An action in an enterprise specification represents something that happens in the system or its environment. An interaction takes place with the participation of more than one object.

Example – Actions in the e‑commerceCommunity include internal actions of e‑system, such as changing an inventory record and comparing the count of an item in inventory to the reorder limit for that item, and interactions between e‑system and objects in its environment, such as requesting a price, adding a line item to an order, and requesting a payment.

B.1.3.2 Behaviour [2-8.6]
Example – Behaviours of the e‑commerceCommunity include placing an order, shipping a widget, and collecting a payment; these all involve several interactions between e‑system and objects in the environment. Internal behaviours include keeping track of inventory and making decisions about replenishing inventory.

B.1.3.3 Role [2-9.14]

A role provides the means to refer to a behaviour, without specifying the object that is associated with that behaviour. When the behaviour identified by a role is associated with a particular object, we say the object fulfils that role.

Thus a specification may state the behaviour of a system in terms of roles. Roles are used in the specification of a community to identify the behaviour of the objects of the community.

Example – The roles of our e‑commerceCommunity include roles for objects representing the e-commerce system, customers, widget suppliers, supplier systems, and e.com managers which are enterprise objects in the e‑commerceCommunity. The roles of e‑system in our e‑commerceCommunity include catalogueServer and orderTaker. Our specification states that the role, catalogueServer, includes displaying a welcome page, displaying catalogue pages, searching for kinds of widgets that meet a need described by a customer, and so on. This is one of the roles of e‑system in our e‑commerceCommunity.

A community specification may include policies for assigning objects to roles, which are called assignment policies (see B.1.6.2).

An object may fulfil several roles in the same community. On the other hand, the community contract may, for example, prohibit the same object from fulfilling both of two particular roles.

Example – Our specification includes the roles, customer and e.comManager. Because e.com is pleased to have its employees as customers, the same object, representing a manager of e.com, may fulfil both roles, customer and e.comManager.

Our specification also includes the role, auditor. As a matter of company policy, employees acting as auditors are not allowed to use the system as customers. So, our specification states that an object fulfilling the role, auditor, may not fulfil the role, customer.

In an enterprise specification the term, ‘<x> object’, where ‘<x>’ is a role, is interpreted as meaning: an enterprise object fulfilling the role, <x>.

Example – ‘customer object’ means an object fulfilling the role, customer.

B.1.3.4 Interface Role [6.3.4 and 7.8.3]
An interface role identifies the behaviour of an object of a community that is responsible for an interaction of that community with objects that do not belong to that community.

Example – In the specification, e‑system is a composite object. Some of the components of e‑system fulfill roles in the inventoryMaintenance community. This community interacts with supplierSystem objects (objects fulfilling the role, supplierSystem) outside the inventoryMaintenance community. The inventoryMaintenance community includes interface roles. The objects of this community that interact with supplierSystem objects fulfil interface roles.

B.1.3.5 Process [6.3.5]
A process is composed of steps. A step is an action that may leave unspecified the objects that participate in that action.

Each step in a process is associated with a role or roles. Together, objects fulfilling the roles of a process participate in all the steps of that process.

Example – The specification of the inventoryMaintenance community includes the specification of a reorderProcess. This process includes the objects, orderPlacer, receiver and inventoryKeeper and the role, supplier. One step in this process is the action in which the orderPlacer places an order. The process of placing an order proceeds in the same way for any supplierSystem fulfilling the role, supplier.

Part 2 of the Reference Model provides concepts for use in specifying an activity. These concepts may also be used to specify the structure of a process. [2-13.1]

Example – For handling goods as they are received, the specification of the inventoryMaintenance community includes the specification of a receivingProcess. This process includes a forking action. Following the fork, in one chain the inventoryKeeper adjusts the inventory; in the other chain, the orderPlacer adjusts outstanding orders. The steps of these two chains are followed by joining action; this is followed by steps completing the receivingProcess.

B.1.3.6 Enterprise objects and actions [7.8.4]
An enterprise object, when fulfilling a role, can be involved in an action in different ways: as an actor (if it participates in the action), as an artefact (if it is referenced in the action), or as a resource (if it is essential to the action and may become unavailable or used up).

Example – In the action of customer buying a purple widget, e‑system object and the customer object are actors, the object representing a purple widget is an artefact, and shippingSubsystem is both an actor and a resource (represented in the action by a community object (a composition of the parts of that subsystem), which will be in charge of delivering the product at a later stage.)

B.1.4 Policy

B.1.4.1 Policy [2-11.2.7, 6.4]
A policy is a set of rules related to a particular purpose; a rule may be expressed as an authorization, an obligation, a permission, or a prohibition.

An enterprise specification may include policies, and may specify that policies (and rules) can be prescribed during the operation of the ODP system.

A policy may specify which of some collection of policies is to be applied in certain circumstances.
An enterprise specification may include a mechanism enabling change, from time to time, of which of some collection of policies is to be applied in certain circumstances, or a mechanism for determining which policy to use in different cases of a similar situation.

Example – The specification of the e-commerce system provides for that system to follow two policies governing backorders. One policy is used with favoured suppliers and includes a rule that allows items on an order to be backordered by a supplier. This policy includes other rules governing the handling of backorders. The alternate policy is used with all other suppliers and includes a rule prohibiting backorders: if the supplier cannot fill the entire order, the order is cancelled.
B.1.4.2 Authorization [6.4.2. 7.9.2.4]
An authorization is a rule that a particular behaviour must not be prevented. An authorization is fulfilled so long as the authorized behaviour is not prevented. Prevention of that behaviour is a violation.

Example – The enterprise specification of the e-commerce system includes a rule, which prescribes that an auditor object (that is, a party fulfilling the role, auditor) is authorized to examine any record in the system. Another rule prescribes that a databaseAdministrator object is authorized to display records when testing the operation of the dataManagementSubsystem.

B.1.4.3 Obligation [2-11.2.4]
An obligation is a rule that a particular behaviour is required. An obligation is fulfilled by the occurrence of the prescribed behaviour. If that behaviour does not occur as prescribed, that inaction is a violation. Some obligations are continuing: the behaviour is required to be ongoing.

Example – The enterprise specification includes a rule which prescribes, for any order accepted before 4 PM, to schedule shipment on the same day of all ordered widgets in stock and not already scheduled for shipment at the time of acceptance of that order. This rule is represented as an obligation of the shippingSubsystem.

B.1.4.4 Permission [2-11.2.5]

A permission is a rule that a particular behaviour is allowed to occur.

Example – The enterprise specification includes rules that certain subsystems may establish communication with objects outside the e.com security domain. These rules are permissions.

A permission for a behaviour is equivalent to there being no prohibition of that behaviour. Thus, a rule that applies to one object, that participation in a particular type of interaction is allowed, is not inconsistent with a rule that applies to another object, that an interaction of that type must not occur. The latter rules out interactions of that type between those two objects, but the first object may participate in interactions of that type with some third object.

Example – The enterprise specification provides that objects in the role, orderPlacer, have permission to establish communication with objects outside the e.com security domain. An orderPlacer object attempts communication with an object representing a particular supplier system. securitySubsystem prevents that communication because of a temporary specific prohibition on communication with that supplierSystem object, which currently appears to be a zombie in a denial of service attack on e.com. This is not a violation of the permission of that orderPlacer object.
B.1.4.5 Prohibition [2-11.2.6]

A prohibition is a prescription that a particular behaviour must not occur. A prohibition is equivalent to there being an obligation for the behaviour not to occur. Occurrence of that behaviour is a violation.
Example – The enterprise specification of the e-commerce system includes a rule, which prescribes that a salary record may be displayed only for a salary administrator, an auditor, or a manager of that employee. This rule is specified using the roles, salaryAdministrator, auditor, manager, and employee, the record type, salaryRecord, and the action type, recordDisplay.
Another rule prescribes that no subsystem may establish communication with a system outside the e-com administrative domain without a permission included in that specification or granted by securitySubsystem. Any such communication in the absence of a permission is a violation.

B.1.4.6 Violation [6.4.3 and 7.9.3]

A violation is an action or inaction contrary to a rule. A violation of a rule that is part of a contract is a failure. [2-13.5.1]
Example – An action of securitySubsystem, which prevents an auditor object from examining a certain record, is a violation the rule, mentioned above, that a party in the role of auditor is authorized to examine any record in the e-commerce system. An action by a program executed by a databaseAdministrator object, which displays an employee salary, is a violation of the rule, mentioned above, that prohibits display of a salary record except for objects fulfilling certain roles.

An enterprise specification may include a rule prescribing certain types of actions to be taken by an object in the event of certain types of violations. That rule is an obligation, which applies to that object. Failure to take the prescribed actions is an inaction, and a violation of that rule.

Example – When an order is accepted before 4 PM, but ordered widgets, which are in stock and not already scheduled for shipment at the time of acceptance of that order, are not scheduled for shipment the same day, this is inaction by shippingSubsystem. This is a violation of the rule, mentioned above, that obliges shippingSubsystem to schedule such shipments on the same day.

B.1.5 Accountability

B.1.5.1 Accountability [6.5 and 7.10]
An action of an object is a model of something that happens in the world of the ODP system. Things that happen include things done by people and organizations and by computer systems. They include thing that happen with the participation of more than one person, organization, or computer system. In most cases people and organizations may be held accountable for what they do. The owner or operator of a computer system should be held accountable for what that system does. This Reference Model provides concepts for the specification of accountability for actions. [6.4]

To say an organisation does something is to use a convenient shorthand which means that some person or persons or some automated system does something, and that this is regarded for certain purposes as having been done by the organisation. Accountability concepts of the enterprise language allow for the specification to provide for the determination of the persons or organizations to be held accountable for certain actions. This is represented in that specification as accountability of the objects representing those persons or organizations.

Example — If a customer makes a purchase from an e‑commerce system, this is represented in the enterprise specification as an action of the object representing that customer.

If the purchasing agent of e.com makes a purchase (in her capacity as purchasing agent), this may be represented as an action of the object representing e.com, an action of the object representing the person (the purchasing agent), or both. The choice depends on the purposes of the specifier or owner of the system.

If a person or organization causes a computer system to do something on its behalf, then the person or organization is accountable for what that system does. When the computer system does something, that has the same force as if the person or organization that caused the computer system to be in operation or allowed it to continue in operation had done that thing. For this reason, an action in an enterprise specification that represents something done by a computer system acting for a person may be an action for which that person is accountable. This is represented by a specification that the object representing that person is accountable.

Example — If a firm’s computer system sends an order to the e‑commerce system (and has been delegated authority to do so) this is represented as an action for which the object representing that firm is accountable.

This Reference Model provides rules for the specification of an ODP system in terms of the accountability for something that system does. When the ODP system is acting on behalf of a person or organization, accountability for any thing the system does is determined by delegation by that person or organization to the system. This is represented in the specification by a delegation by an object representing that person or organization to the object representing that system.

B.1.5.2 Party [6.5.1 and 7.10.4]
An ODP system operates in a world that includes computer systems (that is, computers and the software they execute) and other automated systems. That world also includes natural persons, groups of natural persons and other entities considered to have some of the rights, powers and duties of a natural person (for example, corporations, governments, and other organizations). Parties are models of these entities. In some cases, these persons or other entities may cause that ODP system to do something on their behalf. The enterprise language provides concepts and structuring rules for specifying the effect in the world when this happens.

Examples — The objects representing people and the objects representing e.com and other firms are parties.

B.1.5.3 Commitment [6.5.2 and 7.10]

An action may result in an obligation by one or more of the participants in that action to comply with a rule or perform a contract. Such an action is a commitment. In an enterprise specification the enterprise object(s) participating in a commitment may be parties or agents acting on behalf of a party or parties. In the case of an action of commitment by an agent, the principal becomes obligated. (See B1.5.5 and B.1.5.6 below.)

Example — A firm may operate a computer system which sends an order to the e‑commerce system The sending of the order by that computer system commits that firm to pay for the goods when timely delivered. (For example, e.com may have a contract with that firm which provides that, or this may the result of the operation of commercial law.) The sending of that order is represented as a commitment.

B.1.5.4 Declaration [6.5.3and 7.10]

Sometimes, when some person says something, the very fact of saying that causes a change in the world. The act of making such a statement may be represented as a declaration. The essence of a declaration is that, by virtue of the action of declaration itself and the authority of the object or its principal, it causes a state of affairs to come into existence outside the object making the declaration. An ODP system may be delegated by a party to participate in some action that is a declaration.

Example – e.com has agreements with its customers, which provide that, when an order is cancelled within twenty-four hours of the scheduled shipping data, e.com has the option to make a restocking charge of 5% of the invoice amount for the cancelled order. The e-commerce system is programmed to automatically make that charge in the case of a customer that has accounts receivable by e.com which are more than sixty days late in payment. The cancellation of an order by a firm, F, is represented in the specification as an action, cancel, by an object, firmF, referring to another object, order. An action of e‑system invoking the restocking charge when an order is cancelled by firmF is a declaration. That action establishes a state of affairs in the environment of e‑system: firm F is obliged to pay that charge to e.com.

B.1.5.5 Delegation and Authority [6.5.4 and 7.10.1, 7.10.2]

In an enterprise specification of an ODP system, that system is represented as an object. The specification describes the authority delegated to that object.

Example – The specification provides that e‑system may be delegated the authority to cancel a contract with a supplier or customer of e.com (subject to the terms of that contract). Sending a message to the counterparty cancelling a contract is represented as a declaration: the communication of that message causes the contract to be cancelled. This will be the case, for example, when the e-commerce system automatically cancels an order.

Subclauses 7.10.1 and 7.10.2 prescribe rules for specification of delegation and authority

B.1.5.6 Agent and Principal [6.5.7, 6.5.8, and 7.10]

By each delegation, that system becomes an agent of the party delegating, and the party becomes a principal of the system.

Examples:

1 – In our enterprise specification, e.com is represented as an object, e.com. The person acting as chief financial officer (CFO) of e.com causes the e-commerce system to serve offered prices to the computer systems of customers (including web browsers and purchasing systems), which prices are determined by the CFO and entered into the e-commerce system.

This setting of offered prices is represented as an action of the party, CFO, representing the CFO. The CFO may delegate to the e-commerce system the authority to set prices during evenings and weekends. The CFO may also delegate authority to that system to further delegate this authority to an independent but federated pricing service in certain cases. e-system is the agent of CFO and CFO is the principal of e-system. If delegated by e-system pursuant to that authority, pricingServiceP (representing a federated pricing service) becomes the agent of CFO and the CFO is the principal of pricingServiceP.

In a different enterprise specification, it may instead be e.com that delegates to e-system the authority to set prices during evenings and weekends. e.com may also delegate authority to the e-system to further delegate this authority to pricingServiceP. e-system is the agent of e.com and e.com is the principal of e-system. If that authority is delegated by e-system to pricingServiceP, then pricingServiceP is the agent of e.com and e.com is the principal of pricingServiceP.
2- Another ODP system provides an e‑commerce service, which an application service provider offers to many firms. Each firm using that system is represented in the specification of that system by an object in the role, firm.

The enterprise specification of that e‑commerce service provides a means for firm to delegate the authority to set prices. If e.com uses that service, during the operation of that system, the object, e.com, fulfilling the role, firm, may delegate the authority to set prices to its pricingManager (a role for an object representing the person in the firm with authority to set prices). In the matter of setting prices, pricingManager is the agent of e.com.

Actions of the object representing an ODP system that are an exercise of delegated authority are actions that result in accountability. These actions represent something the ODP system does, which causes a state of affairs in that part of the universe of discourse represented by the parties in the environment of that object. The accountability concepts [6.4] are used to specify which kinds of states of affairs the thing represented by the action causes.

Example — If pricingService changes an offeringPrice, this action is a model of something that happens in the world of e‑commerce. What happens is that there is a new state of affairs: e.com is now offering to sell at the changed price.

In a fully automatic e‑commerce system, the enterprise specification will provide that the posting of a changed price object by an agent of e.com (for example, the pricingService) constitutes an offer by e.com to sell at the price indicated by that price. In that case, the effect of the action by the pricingService to change that price is this: e.com has made an offer and is committed to sell at the price indicated by price to any customer accepting the offer before it is withdrawn. (This is the representation in the specification of the situation in the world, and exactly represents that situation: The effect of the posting by the federated pricing service of the changed price is this: e.com has made an offer and is committed to sell at the price indicated by the posted price to any customer accepting the offer before it is withdrawn.)

This offer (the posting of the changed price object) is an action of an agent of e.com, for which e.com is accountable. In this case the action is a commitment, as e.com is obligated to sell at that price if the offer is accepted.

Since the e-commerce system is a fully automatic system operating over the internet, an acceptance of an offer to sell will be transmitted to the e‑commerce system by software connected to the internet, perhaps a web browser. In an enterprise specification that includes customers and their systems, a webBrowser is the agent of an object in the role, customer and acts for the customer (the web browser acts for the customer by sending the order message when the customer clicks the Buy button).

The parts of an ODP system may be specified in this same way.

Example — Within the pricingService, the object, priceSelector, may delegate current market analysis to one or another marketAnalysisSubsystem depending on the type of product.

Some actions represent things that persons or organizations do, for which they are held accountable. Delegation has the effect of assigning responsibility to the entity represented by an agent, while not removing the accountability of the entity represented by the principal.

B.1.5. 7 Evaluation [6.5.5 and 7.10]

An action that assesses the value of something is an evaluation. In an evaluation, the ODP system assigns a relative status to some thing, according to estimation by the system of usefulness, importance, preference, acceptability, etc.

Example — In order to replenish inventory, the e-commerce system prepares requests for bids and transmits them to widget suppliers. When bids are received, the e-com purchasing agent determines which bid or bids to accept. The decision considers estimation of the value of each bid, which the e-commerce system prepares. The e-commerce system assigns a relative status to each bid, according to some algorithm that produces an estimate of the value of that bid, using, not only the price, but the delivery terms offered, records of the previous on-time performance of that supplier, and records of receiving inspection reports on the quality of widgets from that supplier. This assignment of status is an evaluation by e‑system of the bids.

Other examples of automated evaluation are credit scores and insurance underwriting ratings.

B.1.5. 8 Prescription [6.5.6 and 7.10]

Any action that sets a new rule or changes or removes an existing rule is a prescription. This includes a prescription that an existing policy is to be applied in a certain type of circumstance. Prescriptions may be made by a party with authority to do so, or by another object, as agent of that party.

Example — The CFO of e.com from time to time sets rules of the policy governing the granting of credit by the e-commerce system to established customers. The e-commerce system also includes a credit history evaluation subsystem, which is delegated authority by the CFO to change some rules of the credit policy. Such actions by CFO and creditHistoryEvaluationSubsystem are prescriptions.

B.1.6 More about community

B.1.6.1 Establishing a community [7.6.1]

A community may be established during the operation of an ODP system. The specification of that system will include establishing behaviour, which puts in place the contract of a community. [13.2.1]

Example – The specification of our e‑commerceCommunity includes behaviour to establish a community of type, just‑in‑timeCommunity, with a supplier object representing a widget supplier who agrees to maintain inventory of widgets sold by e.com, and deliver them to e.com warehouses as directed by the inventoryMaintenance object. When a supplier agrees to do so, a new community is established, including the supplier object and the inventoryMaintenance object.

B.1.6.2 Assignment policy [7.6.2]

A community may include rules for choosing the objects that fulfil roles in that community. These rules may be called the assignment policy. An assignment rule prescribes, for some role, some characteristic that an object must have to fulfil that role, or some characteristic that an object may not have if it is to fulfil that role. These rules specify the way in which objects are introduced and fulfill roles in that community.

Examples – The assignment policy of our e‑commerceCommunity includes a rule providing that for an object to fulfil the customer role it must be an authenticated object. (Our specification includes the specification of a securitySubsystem, which provides an authentication function for objects connecting to the e‑commerce system.)

The specification includes rules for assigning parties to the role, widgetSupplier. When e.com agrees to purchase from a new supplier, a new party object is created in e‑system to represent that supplier and that party object fulfils the role, widgetSupplier. The specification includes rules for introducing new objects. When e.com agrees to purchase from a new supplier, an object representing that suppliers system are introduced and fulfil the role supplierSystem.

The specification includes rules for assigning existing employee objects to the role, manager.

The assignment of a role in a community to a particular object may result in a conflict between the policies of that community applying to that role and the policies applying to some other role (in that community or some other community) which is already assigned to that object. An assignment policy may include rules for handling such conflicts. [7.9.1]

TEMPORARY NOTE - The editor is instructed to draft an example based on the clause 7 discussion of possible role and policy conflicts during assignment of roles to objects.
B.1.6.3 Relationship between communities [7.3.2, 7.8.3]
A community may interact with other communities in several ways:
1) An object representing a community (a community object) may fulfil a certain role in another community, interacting with other objects in that other community.
Example – e‑system is a configuration of objects, including a purchasing subsystem, a shipping subsystem, and an administration subsystem. The enterprise specification includes a community, e‑systemCommunity; the objects of that community interact to realize the objective of that community. e‑system is a composite object, a composition of the objects of e‑systemCommunity. The enterprise specification also includes supplyCommunity. The objects of that community are e‑system, objects representing the sales systems of companies that supply e.com, and objects representing systems of other companies that are also customers of the supplying companies. When e‑system participates in supplyCommunity, this is an interaction of supplyCommunity and e‑systemCommunity.

2) Two or more community objects may interact in fulfilling roles in another community;

Example – The enterprise specification includes a community corresponding to each of the subsystems of e-system, each with its own objective, policies, etc. So there are purchasingCommunity, shippingCommunity, warehouseCommunity, and accountingCommunity. Each of these subsystems is also a configuration of objects (the parts of that subsystem); each of these objects fulfils one or more roles in the corresponding community. When object acting in a role in warehouseCommunity, the inventoryMaintenance object, interacts with an object fulfilling a role in the purchasingCommunity, the role, supplyPlanning, by providing information for use in purchasing widgets to restock inventory, this is an interaction between warehouseCommunity and purchasingCommunity.

3) The same object may fulfil a role in two communities, thus introducing implicit interaction between those communities because of the shared object.

Example – When object acting in a role in warehouseCommunity, the role, inventoryMaintenance object, also fulfils a role in the accountingCommunity, the role, assetReporter, by providing information for use in daily asset accounting, this is an interaction between warehouseCommunity and accountingCommunity.

4) An object in a community may fulfil an interface role, through which the community interacts with objects in its environment, which environment includes an object fulfilling an interface role in another communiy;

Example – e‑system may contain an object dedicated to monitor the business activities performed in e‑commerceCommunity. This object may process the data it gathers and produce reports of preferred supplier ranking and active buyer ranking. There is also a ratingServiceCommunity. These two communities are operated independently, but exchange information. For that purpose, e‑commerceCommunity specifies an interface role, fulfilled by the object, monitor, that provides local ranking information and receives nation-wide ranking information. The ratingServiceCommunity specifies an interface role, fulfilled by an object in that community, which receives company specific ranking data and provides nation-wide ranking information. These two interface roles enable interaction between the communities.

For each of above cases, when object(s) are involved in interaction between communities, an enterprise specification will include policies such as the following:
In case 1) the community object is subject to the policies of the community in which it fulfils a role.

Example – e‑system (a community object) is subject to the policies of supplyCommunity.

In case 2) the object that is fulfilling a role in both communities is subject to the policies of both communities. Other objects may be subject only to the policies of one of those communities.
Example – The object fulfiling both of the roles, inventoryMaintenance and assetReporting is subject to the policies of two different communities at the same time, warehouseCommunity and accountingCommunity. Other objects in warehouseCommunity may be subject only to the policies of warehouseCommunity .

In case 3) the object(s) fulfilling an interface role for each community may themselves form a community with a policy specified for their interactions. Those objects are each subject to the policies of the community in which they fulfil an interface role and to the policy specified for their interactions.
Example – The object, monitor, is subject to the policies of e‑commerceCommunity and to the policies of the information exchange community composed of monitor and the object in the interface role of ratingServiceCommunity.
A fourth case of community interaction involves creation of a community. [7.3.2] Once a new community is created, the relationship between the newly created community and other communities will become one of the above three, and one of these policy-community relationships will apply.
Example – In addition to a closed business-to-business supply chain community, the e-commerce system may make use of the web services infrastructure, by registering its services to an open registry, in order to find new potential customers. And, when the needs for customers are satisfied, e-commerce system may un-register the services from the open registry. Registration with the open registry is represented as establishing behaviour, and the open registry, the e-commerce system, and the potential customers using web services are represented as a newly created community.
B.1.6.4 Domain [2-10.3]

A domain is a set of objects that are in some way controlled by another object, the controlling object of that domain. For each domain in an enterprise specification, that specification identifies the controlling object of that domain, the controlled objects, and the relationship between the controlling object and the controlled objects, which characterizes that domain.

Example – The parts of the e-commerce system are all under control of e.com. Other domains in that system include:

-- a security domain, comprising objects providing data access and communication services, subject to policies set by a security authority object, securitySubsystem.

-- a naming domain, with named objects, which obtain their names from a naming service object.

-- an audited domain, comprised of objects which are audited by a certain auditor object.

B.1.6.5 Federation [3-5.1.2]

A federation is a community that includes objects that are in different domains. Because such objects are controlled in some way by different objects, there are concerns to be taken into account in forming a federation that are in addition to those that arise in forming a community of objects all in the same domains.

Example – The automated systems in our example are not all under common control. The e-commerce system is under control of e.com. It must interact with, for example, another automated system controlled by a customer. We have many administrative domains our specification; these include the domain of automated systems controlled by e.com, as well as a domain controlled by each customer. The e-commerce system also interacts with people; each person is, ultimately, controlled only by herself or himself. (Although, we might, if it is useful in our specification, consider objects representing employees to be members of domains controlled by objects representing their employers.)

The objective of a federation is often to join two or more <X>‑domains into a larger, integrated domain, that is, an <X>‑federation. The notion of <X>‑domain expresses a community managed by a single authority with respect to the characterizing relationship, X. [2-10.3]
Example – The objects of e‑commerceCommunity are not all under common control. The supplier systems are under administrative control of each of the suppliers. the There are several immediately visible "domains", for example, the e.com domain(s?), and the customer IT system domain. Within the e-system itself, there are also domains under separate control. All objects in the e-system are in a single securityDomain, with characterizing relationship, subjectToSecurityPolicySetBy and controlling object, securitySubsystem. But the objects of purchasingSubsystem and shippingSubsystem are in a policy domain, with characterizing relationship, setsPoliciesFor, with controlling object, fulfillmentDivisionExecutive, while the objects of securitySubsystem are in a different policy domain, with controlling object, CIO.

An enterprise viewpoint specification might specify a number of separate federations, such as document management federations, billing management federations, customer management federations and so on. Or it might take a unified approach, in which all these aspects are captured into a single federation community. This federation community might also include a mechanism for incorporatin additional functionality, to achieve a new, shared objective.

Editor's Note – National bodies and experts are invited to provide additional discussion and examples of federation.

B.2 Second Example – Specification of a Library

This is another example to illustrate the use of the enterprise language concepts and structuring rules to specify an ODP system.

The example is based on a University Library, especially on the regulations that rule the borrowing process of the Library items. Instead of a general and abstract system, this example is loosely based on the regulations defined at the Templeman Library at the University of Kent at Canterbury, a system that has been previously used by different authors for illustrating some of the ODP concepts. The rules that govern the borrowing process of that library system are as follows:

1.
Borrowing rights are given to all academic staff, and to postgraduate and undergraduate students of the University.

2.
There are prescribed periods of loan and limits on the number of items allowed on loan to a borrower at any one time. These limits are detailed below.

-- Undergraduates may borrow eight books. They may not borrow periodicals. Books may be borrowed for four weeks.

-- Postgraduates may borrow 16 books or periodicals. Periodicals may be borrowed for one week. Books may be borrowed for one month.

-- Teaching staff may borrow 24 books or periodicals. Periodicals may be borrowed for one week. Books may be borrowed for up to one year.

3.
Items borrowed must be returned by the due date and time.

4.
Borrowers who fail to return an item when it is due will become liable to a charge at the rates prescribed until the book or periodical is returned to the library.

5.
Failure to pay charges may result in suspension by the Librarian of borrowing facilities.

In this section we will provide an enterprise specification of the Library, describing all the elements that comprise it. This is an example of an enterprise specification of a business system, which shows how RM-ODP specifications (in particular, those from the enterprise viewpoint) can be used to specify more than computer systems.

NOTE - Unless otherwise stated, all references in this Annex to the Library community will refer to the community representing the Templeman Library and its environment, whose borrowing regulations have been described above. Other communities will also be mentioned in this Annex, such as the University community that represents the University that the library serves, or a banking community representing the use by the library of services offered by banks. Some variations of the Templeman Library community will also be introduced for illustration purposes. For instance, for illustrating the accountability concepts of the enterprise viewpoint language, we will introduce another Library that uses a computerized system to keep track of the borrowers and their outstanding loans.

B.2.1 Enterprise Specification

The enterprise viewpoint focuses on the purpose (i.e., objective), scope and policies for the system and its environment. It describes the business requirements and how to meet them, but without having to worry about other system considerations, such as particular details of its software architecture, or the technology used to implement it.

Four key concepts of enterprise language are: system, scope, enterprise specification, and field of application. The following points in this section (B.2.1) describe these four concepts. Sections B.2.2 to B.2.4 focus on the elements that constitute the enterprise specification of the system: communities, behaviour, and policies. Section B.2.5 concentrates on the accountability concepts. Finally, Section B.2.6 discusses further issues related to communities, such as their lifecycle and their interactions.

B.2.1.1 System

In our example, the system we want to specify is a University Library, in particular (a reduced and simplified version of) the Templeman Library at the University of Kent at Canterbury, whose borrowing regulations have been given above. This system (hereinafter called the ‘Library System’, or ‘LS’ for short) and its scope are described by an enterprise specification.

B.2.1.2 Scope [6.1.1]
The scope of a system is defined in terms of its intended behaviour; which is expressed in the enterprise language in terms of roles (see B.2.3.2) or processes (B.2.3.5) or both, policies (B.2.4.2), and the relationships of these. All these elements will be described below.

The scope of the LS describes its expected behaviour, i.e., the way it is supposed to work.

B.2.1.3 Enterprise specification [3-4.2.2]
An enterprise specification of an ODP system describes it from the enterprise viewpoint, and is composed of the specifications of the following elements: communities (B.2.2.1), roles (B.2.3.2), processes (B.2.3.5), policies (B.2.4.2), and their relationships.

In our example, the LS and the environment in which it operates are represented as one community, the “Library” community. The enterprise specification will state the objective of that community, how it is structured, what it does, and what objects comprise it.

B.2.1.4 Field of application

The field of application of an enterprise specification describes the properties that the environment of the ODP system must have for the specification to be used.

The library in the example is the library of a University, and therefore assumes the existence of some structures and roles typical of those organizations. It may not make sense if we try to use this specification for a library in the Army, where no such concepts as academic staff or students can be easily applied.

B.2.2 Community

B.2.2.1 Community [3-5.1.1]
A community is a configuration of objects modelling a collection of entities (e.g. human beings, information processing systems, resources of various kinds, and collections of these) that are subject to some implicit or explicit contract (B.2.2.3) governing their collective behaviour (B.2.3.1), and that has been formed for a particular objective (B.2.2.2).

In the specification of the Library System, the Library is considered as a single community, whose structure is depicted in Figure B.2-1, and whose behaviour is given by the roles, processes, and polices described in the following sections.

B.2.2.2 Objective [6.2.1]
An enterprise specification states the objective of each of the communities that comprise it.

The LS maintains a collection of books, periodicals, and other items, that may be borrowed by its members. The LS comes into being with the establishment of its collection, with the primary objective of “sharing this collection amongst the University members”.

B.2.2.3 Contract [2-11.2.1]
The contract of a community specifies the objective of that community and how this objective can be met. The contract is a template with the different roles that objects may fulfil in the community (i.e., its structure and behaviour) and the policies that govern the behaviour of these objects while fulfilling roles in the community.

Please notice the importance of this concept within a community specification, since the contract contains all the information about the structure of a community, its behaviour, and the way it operates.

B.2.3 Behaviour

B.2.3.1 Behaviour

In the enterprise language, behaviour is specified using roles, processes, or both, policies, and the relationships among these.

Roles identify abstractions of the community behaviour, and are fulfilled by objects in the community. Processes describe the community behaviour by means of (partially ordered) sets of steps, which are related to achieving some particular sub-objective within the community. A step is an abstraction of an action, which hides (some of the) objects participating in that action.

[image: image8.wmf]<<Community>>

Library

<<role>>

Library

+loanPeriods

+maxLoans

<<role>>

Borrower

+borrowedItems : int

+fines : Money

+suspended : boolean

<<role>>

Postgrad

<<role>>

Undergrad

<<role>>

Item

+free : boolean

<<role>>

Periodical

<<relationship>>

Loan

+dueDate : Date

+issueDate : Date

<<role>>

Book

<<role>>

Calendar

+date : Date

<<role>>

Academic

<<role>>

Librarian

*

1..*

*

1

1

*

*

0..1

1

Figure B-1 The structure of the LibraryCommunity (its roles and the relationships among them).

B.2.3.2 Role [2-9.14]

From the regulations of the Templeman Library, three main roles can be identified in our LS, namely borrower, library item, and librarian. There are three special kinds of borrowers (academic, undergrad, and postgrad), and two kinds of items (book and periodical). There is also a possible loan relationship between borrowers and items.

In addition, a library role that is fulfilled by the community when considered as a composite object (i.e. a community object, see B.2.6.3), and a calendar role that is fulfilled by an enterprise object that deals with the passage of time (e.g. a wall clock).

Figure B-2.1 shows a possible UML class diagram with the structure of our community.

B.2.3.3 Enterprise object

In general, ODP systems are modelled in terms of objects. An object is a model of an entity. Enterprise objects model the entities defined in an enterprise specification.

The LibraryCommunity can be seen as composed by objects fulfilling the roles identified above. Thus, in this specification objects represent people (teachers, students, persons working as librarians…), books, periodicals, clocks, etc. Please notice that an object may fulfill more than one role, as it happen for instance when a person can be both a librarian and a student of the University (if the University regulations allow this to happen).

A library can also be represented as an object; for example, it may be abstracted as a community object that may fulfil a role in another community (see B.2.6.3).

B.2.3.4 Action

The following actions can be identified from the regulations in the example:

NOTE – In the following, the use of the name of a role should be taken as a reference to the enterprise object fulfilling that role.

(a) A borrower borrows an item with permission of the librarian,

(b) A borrower returns a borrowed item to the librarian,

(c) A librarian fines a borrower,

(d) A fined borrower pays his/her fines to the librarian, and

(e) The librarian suspends a borrower for being late in paying his/her fines.

B.2.3.5 Process and step [6.3.5]
Processes may also be defined in an enterprise specification for describing behaviour.

A process is “a collection of steps taking place in a prescribed manner and leading to an objective” [6.3.5].

In the Library System, the process that defines the normal way of operation of users has two steps:
(1) a borrower borrows an item, and (2) a borrower returns the borrowed item before its due date.

This process specifies the order in which the steps should occur, and leads to the LS’s objective: “to share the collection of items amongst the University members”.

Please notice how each step in this process is an abstraction of an action, where some of the participants in that action can be left unspecified (e.g. the librarian).

B.2.3.6 Enterprise object and action

For every action, there is at least one participating object fulfilling at least one role in some community.

The involvement of an object depends on the kind of role.

In the LibraryCommunity, borrowers and librarians are actors in all actions specified for that community. Items are resources. Calendar is an artefact in the action of fining a borrower (c), since it is only referenced, but does not participate in that action.

B.2.4 Policy [2-11.2.7 and 6.4]

A policy is a set of rules that constrains the behaviour and membership of communities in order to make them achieve their objectives. The rules can be expressed as obligations, authorizations, permissions, or prohibitions. Actions and inactions contrary to rules are violations.

The basic policies that govern the behaviour of the libraryCommunity were defined by the regulations at the beginning of this example.

Examples of membership policies are those that establish that there should be exactly one object fulfilling borrower in a loan relationship, and at least one object fulfilling librarian in the library. (These two policies are obligations.) Other membership rules (although they may not apply in this example) may establish, for example, that a suspended borrower cannot work as a librarian (a prohibition).

Examples of enterprise policies that govern the behaviour of the system can be extracted from the Library regulations:

(1) Any borrower is permitted to borrow an item if the number of his/her borrowed items is less than his/her allowance (as provided in the regulations: eight items for undergraduates, etc.).

(2) An Undergraduate is prohibited from borrowing a periodical item.

(3) Any borrower is permitted to borrow an item for a given period of time. The loan period depends on the kind of borrower and the kind of the item being borrowed.

(4) Any borrower is obliged to return his/her borrowed items before their due date.

(5) A librarian is authorized to fine a borrower who violates the previous rule, i.e., who does not return an item before its due date.

(6) Any fined borrower is obliged to pay his/her fines.

(7) A violation of the previous rule may result in a suspension action to the borrower by the librarian, that is, the librarian is authorized to suspend a borrower who does not pay his/her fines.

Note that in these policies there are some details left unspecified, for example, when the actions after a policy violation are executed (expressed by “may result in” in policy 7), or the precise amount of the fines.

Likewise, most policies say what needs to happen when an action occurs, but not the reasons or circumstances that triggered that action in the first place. For instance, policy 7 permits a librarian to suspend a late-payer, but it does not specify when, or even allows the librarian not to suspend him at all (the suspension action can be delayed forever). It may be a matter for further refinements to this specification to clarify all these open details.

It is important to notice that in most systems there are some rules that govern the behaviour of the system and which are not made explicit anywhere; yet they need to be explicitly stated in the enterprise specification.

Examples of such rules are the common sense rules: for instance, a borrower cannot return an item she has not previously borrowed.

Normally, the act of writing an enterprise specification helps uncovering many of these implicit rules. However, special care should be taken with these rules, since it is easy to under-specify, over-specify, or make wrong assumptions about them (“common sense is quite uncommon”).

B.2.5 Accountability [6.5 and 7.10]

An enterprise specification identifies those actions that involve accountability of a party, where a party represents a natural person or any other entity considered to have some of the rights, powers and duties of a natural person. Parties have intentions, and are accountable for their actions (or inactions).

For example, a borrower is accountable for the return of a book he has previously borrowed. He is not accountable, however, for the return of a book he has not borrowed. Likewise, the librarian is accountable for suspending those fined borrowers that do not pay their fines.

Authority or functions can be delegated. Principal parties are responsible for the actions of any parties acting as their delegated agents, including their possible commitments, prescriptions, evaluations, declarations, and further delegations.

For instance, a borrower may instruct a friend to return one of his borrowed books if he is unable to return it before its due date (e.g. if he is going to be out of town when the loan expires). In this case, the borrower is still accountable for his original commitment to return the book, independently from the fact that he has delegated his commitment to his friend. If the friend forgets and fails to return the book on time, the borrower will still be liable for a charge for returning the book late.

B.2.5.1 Party [6.5.1 and 7.10]
In the Library example, the objects representing people and the objects representing organizations (for example, the Library) are parties. The objects representing computer systems or machines (e.g. the clock object fulfilling calendar) are not parties.

An enterprise object that is not a party cannot be accountable for its actions; it always operates on behalf of a party.

Suppose another library Z has Library Support System (or LSS for short), that is, a computer system (not modelled in this specification) in charge of keeping track of the collections of items owned by the Library Z, the outstanding loans, and the borrowers. Suppose that the LSS has an internet front-end for consulting whether a book is free or on loan, the status of a given borrower, etc. Then, the LSS (which is not a party) acts on behalf of its librarian (a party) when automatically answering the queries via its web interface. In this scenario, the librarian of Library Z is accountable for all the information provided by the LSS.

Certain kinds of action involve accountability. These include commitment, declaration, delegation and prescription.

B.2.5.2 Commitment [6.5.2 and 7.10.3]
Commitments are actions resulting in an obligation by one or more participants in the action to comply with a rule or perform a contract.

The action of borrowing a book is an example of commitment, since the borrower commits to return the book before its due date.

B.2.5.4 Declaration [6.5.3 and 7.10.4]

The librarian has the authority to suspend users who do not pay their fines. The act of declaring that a borrower is suspended is a declaration, and it calls for a set of actions, such as including him in the list of suspended users, writing a letter notifying this fact, sending the letter to the borrower, etc.

B.2.5.5 Delegation and authority [6.5.4 and 7.10.1]
A borrower may delegate the responsibility of returning a borrowed book to another person.

For providing an example of delegating authority, suppose that the librarian of Library Z could delegate to the previously mentioned Library Support System (LSS) his authority to suspend borrowers who do not pay their fines. Thus, that librarian could, for example, instruct the LSS to automatically suspend borrowers with pending fines greater than 20 pounds, if their debt is older than 1 month. Once the Library Support System detects a borrower in these circumstances, it will automatically declare him as suspended.

Of course, once the user is declared as suspended the LSS will accomplish all the actions that the declaration calls for, but please notice that these subsequent actions are the result of the delegation. It is also worth pointing out that in this case, the party liable for all the actions carried out by the LSS is the librarian.

B.2.5.7 Agent and principal

In case of a borrower delegating the responsibility of returning a book before its due date to another person X, that person becomes an agent of the borrower, who is the party delegating, and becomes a principal of X.

In case of a librarian object delegating his authority to suspend users to the Library Support System of Library Z, the Library Support System on behalf of the librarian will make the declaration. The System becomes then an agent of the librarian, who is the party delegating, and the party becomes a principal of the Library Support System.

B.2.5.6 Prescription [6.5.6 and 7.10.5]
Prescriptions are actions that establish rules. It is important to note that prescriptions may only happen if they are specified.

In the regulations of the Templeman Library example nothing is mentioned about the possibility of establishing or changing rules, and therefore they are forbidden.

In another LibraryCommunity (say W), the regulations may establish that the librarian of Library W may change the loan periods during the Summer time, or the number of items that a borrower is allowed to simultaneously have on loan. The action of declaring the new loan periods and item limits is a prescription

Other regulations of Library W may also allow to add new rules to those governing the borrowing process of items, if they: (a) do not conflict the existing ones; (b) are proposed by a Library member; and (c) are adopted at the Library’s annual meeting by the majority of the Library members. The action of adopting a new rule is a prescription.

B.2.6 More About community [7.3.2]
B.2.6.1 Lifecycle of a community [7.6]
 A community is created by instantiating the corresponding contract template. Instantiation of a contract involves the assignment of objects to roles.

The libraryCommunity comes into being with the establishment of its collection of items.

A community may include behaviour for creating new communities. Establishment of a federation creates a new community involving determining the configuration of that community and the community contract, including policies for that community.
This is the case if a federation of university libraries is established to allow a wider exchange of books. In this new community (the federation), libraries from different universities can share books or borrowers, and books can be returned in libraries different to the one they were originally borrowed.

B.2.6.2 Assignment rules [7.6.2]
A community may include rules for choosing the objects that fulfil roles in that community. These rules may be called the assignment rules. An assignment rule prescribes, for some role, some characteristic that an object must have to fulfil that role, or some characteristic that an object may not have if it is to fulfil that role.

In our case, an assignment policy may state that for an object to fulfil librarian the person that object represents should have a contract with the University that allows that person to work in a position of that category, and in case he can be a valid borrower of that community, that he is not currently suspended. Likewise, for an object to fulfil borrower, the person represented by that object should be in possession of valid credentials as academic staff.

In general, an object may fulfil many roles, in any number of communities.

For example, a member of the university staff may fulfil a teacher role in an educational community and also fulfil borrower with respect to the university library. Alternatively, a single role may be fulfilled by more than one object: a library has many borrowers.

B.2.6.3 Relationship between communities

A complete enterprise specification may consist of a number of related community specifications. Communities may interact in several ways.

Case 1 – Interaction between communities happens when a community object fulfils a role in another community.

The community object composed of the libraryCommunity fulfills a borrower role in another library community. This may be the case when there are agreements between libraries of different universities for inter-library loan of books. Thus, if a borrower of libraryCommunity wants a book that is not currently available at the library, the specification may provide that the libraryCommunity community object may borrow the book from another library where the book is available.

Case 2. Two community objects interact in fulfilling roles in another community.

For instance, suppose that libraries can buy and sell books through any book broker system. In this case, if two library communities are involved in a transaction, they both fulfil roles (buyer and seller) in a book-brokering community.

Case 3. An object fulfills roles in two communities.

So far, we have considered the library in isolation, but it is, of course, closely related to the University that it serves. In a University community we find roles such as student, researcher, teacher, headOfDepartment, supportStaffMember, etc. These roles are fulfilled by objects representing people, which may at some point also fulfil the role of borrower in the libraryCommunity. Thus, the same enterprise object (in this case, representing a person) may fulfil roles in different communities. In order to relate the university community to the libraryCommunity, we need to identify, among others: the role, academic, which is fulfilled by all research and teaching staff of the university; and the role, student, which is fulfilled by all people in undergraduate or postgraduate degree programs.

In all kinds of interactions of communities it is critical to consider the invariants that determine the constraints on the collective behaviour of the communities concerned, and the objectives and policies that rule the different communities. The communities involved in an interaction may have differing policy rules, to all of which the objects should be able to conform.

For instance, where a community object fulfils one or more roles in other community (interaction case 2), the community that the community object represents should be governed by the policies of the other community.

This happens when a library acts as a borrower in another library, and then lends the book to a borrower of its own community. The policies that apply to this loan should respect the policies of both libraries.

In the case of an interaction between communities where the same object is required to fill specific roles in more than one community (case #1), an invariant should specify how the actions of that object affect those communities.

For example, since the Templeman Library interacts with the University community, some of the University rules apply, such as etiquette and manners for dressing and behaving in public, holiday periods, etc. Likewise, the laws and customs of the country where the Library is based do need to apply as well, forcing borrowers to pay fines in sterling pounds, speak in English to a librarian, etc.

Please note how in this case the composition of communities introduces the composition of policies. If we consider a university library in an Polish-speaking country, the assignment rules for librarian will probably indicate that the object fulfilling that role should, in addition to complying with all the university and library regulations, be fluent in Polish.

When composing communities, there will be a set of policies common to those communities. These policies must be consistent, although unspecified behaviour in the composite community may allow room for (mutually inconsistent) behaviour in each individual community.

For instance, one library specialized in particular topics may not allow borrowers to be under 18, while other library whose items are toys and books for children does not allow their borrowers to be over 12. There is no problem when federating these two libraries if there is no regulation in the federation about minimum age of borrowers, hence allowing the communities to co-exist without conflicts.

B.2.6.4 Interface role

Finally, the enterprise language introduces the concept of interface role, a role of a community identifying behaviour that takes place with the participation of objects that are not members of that community.

In the library, this is for instance the case of a librarian object, which periodically needs to call the Support Centre of the University to set the time of the clock, hence interacting with objects external to the libraryCommunity.

INDEX

<X> domain, 3
<X> federation, 4
<X> template, 3
action, 2, 5, 6

activity, 5
activity structure, 5
actor, 5
agent, 6, 16

artefact, 5
authorisation, 5
authority, 6
authorization, 6
behaviour, 5, 6

commitment, 6, 16

community, 3
community object, 5
composite object, 3
composition, 3
computational interface, 4
configuration (of objects), 3
conformance, 3
conformance point, 3
contract, 3, 6

contracting party, 6
declaration, 6, 16

delegate, 6
delegation, 6
dynamic schema, 4
entity, 3, 6

environment (of an object), 3
environment contract, 3
epoch, 3
establishing behaviour, 3
instance (of a type), 3
instantiation (of an <X> template), 3
interface, 3
interface role, 5
internal action, 3
invariant, 3
invariant schema, 4
liaison, 3, 16

location in time, 3
object, 3
objective (of an <X>), 5
obligation, 3, 5, 6, 16

ODP standards, 3
ODP system, 3
party, 6
permission, 3, 5, 6
policy, 5
prescription, 6, 16

principal, 6, 16

process, 5
prohibition, 3, 5

proposition, 3
reference point, 3
refinement, 3
resource, 5
role, 3
rule, 6, 16

scope, 5
state (of an object), 3
static schema, 4
step, 5
subtype, 3
system, 3, 5

templates, 5
type (of an <X>), 3
viewpoint (on a system), 3
violation, 6

�PAGE \# "'Page: '#'�'" �Page: 5���T: 6.1.1 scope (of a system)

�PAGE \# "'Page: '#'�'" �Page: 5���T: 6.1.1 scope (of a system)

�PAGE \# "'Page: '#'�'" �Page: 5���D: The behaviour�XE '' behaviour''� that system�XE ''system''� is expected to exhibit.

�PAGE \# "'Page: '#'�'" �Page: 5���T: 6.1.2 field of application (of a specification)

�PAGE \# "'Page: '#'�'" �Page: 5���D: The properties the environment of the ODP system must have for the specification of that system to be used.

�PAGE \# "'Page: '#'�'" �Page: 5���T: 6.2.1	objective

�PAGE \# "'Page: '#'�'" �Page: 5���D: Practical advantage or intended effect, expressed as preferences about future states.

�PAGE \# "'Page: '#'�'" �Page: 5���T: 6.2.2	community object

�PAGE \# "'Page: '#'�'" �Page: 5���D: A composite enterprise object that represents a community. Components of a community object are objects of the community represented.

�PAGE \# "'Page: '#'�'" �Page: 5���T: 6.3.1 actor (with respect to an action)

�PAGE \# "'Page: '#'�'" �Page: 5���D: An enterprise object that participates in the action�XE ''action''�.

NOTE - It may be of interest to specify which actor initiate that action.

�PAGE \# "'Page: '#'�'" �Page: 5���D: An enterprise object that is referenced in the action.

�PAGE \# "'Page: '#'�'" �Page: 5���T: 6.3.3 resource

�PAGE \# "'Page: '#'�'" �Page: 5���D: An enterprise object which is essential to some behaviour�XE ''behaviour''� and which requires allocation or may become unavailable.

�PAGE \# "'Page: '#'�'" �Page: 5���T: 6.3.4 interface role

�PAGE \# "'Page: '#'�'" �Page: 5���D: A role of a community identifying behaviour which takes place with the participation of objects that are not a members of that community.

�PAGE \# "'Page: '#'�'" �Page: 5���T: 6.3.5 process

�PAGE \# "'Page: '#'�'" �Page: 5���D: A collection of steps�XE ''step''� taking place in a prescribed manner and leading to an objective.

�PAGE \# "'Page: '#'�'" �Page: 5���T: 6.3.6 step

�PAGE \# "'Page: '#'�'" �Page: 5���D: An abstraction of an action, used in a process�XE ''process''�, that may leave unspecified objects that participate in that action.

�PAGE \# "'Page: '#'�'" �Page: 6���T: 6.4.1 policy

�PAGE \# "'Page: '#'�'" �Page: 6���D: A set of rules�XE ''rule''� related to a particular purpose. A rule can be expressed as an obligation�XE ''obligation''�, an authorization�XE ''authorisation''�, a permission�XE ''permission''� or a prohibition�XE ''prohibition''�.

�PAGE \# "'Page: '#'�'" �Page: 6���T: 6.4.2 authorization

�PAGE \# "'Page: '#'�'" �Page: 6���D: A prescription that a particular behaviour�XE ''behaviour''� must not be prevented.

�PAGE \# "'Page: '#'�'" �Page: 6���T: 6.4.3 violation

�PAGE \# "'Page: '#'�'" �Page: 6���D: An action�XE ''action''� contrary to a rule�XE ''rule''�.

�PAGE \# "'Page: '#'�'" �Page: 6���T: 6.5.1 party

�PAGE \# "'Page: '#'�'" �Page: 6���D: An enterprise object modelling a natural person or any other entity�XE ''entity''� considered to have some of the rights, powers and duties of a natural person.

�PAGE \# "'Page: '#'�'" �Page: 6���T: 6.5.2 commitment

�PAGE \# "'Page: '#'�'" �Page: 6���D: An action�XE ''action''� resulting in an obligation�XE ''obligation''� by one or more of the participants in the act to comply with a rule�XE ''rule''� or perform a contract�XE ''contract''�.

�PAGE \# "'Page: '#'�'" �Page: 6���T: 6.5.3 declaration

�PAGE \# "'Page: '#'�'" �Page: 6���D: An action�XE ''action''� that establishes a state of affairs in the environment of the object making the declaration.

�PAGE \# "'Page: '#'�'" �Page: 6���T: 6.5.4 delegation

�PAGE \# "'Page: '#'�'" �Page: 6���D: The action�XE ''action''� that assigns authority, responsibility or a function to another object.

�PAGE \# "'Page: '#'�'" �Page: 6���T: 6.5.5 Evaluation

�PAGE \# "'Page: '#'�'" �Page: 6���D: An action�XE ''action''� that assesses the value of something.

�PAGE \# "'Page: '#'�'" �Page: 6���T: 6.5.6 prescription

�PAGE \# "'Page: '#'�'" �Page: 6���D: An act�XE ''action''� that establishes a rule�XE ''policy''�.

�PAGE \# "'Page: '#'�'" �Page: 6���T: 6.5.7 agent

�PAGE \# "'Page: '#'�'" �Page: 6���D: An enterprise object that has been delegated (authority, responsibility, a function, etc.) by and acts for another enterprise object (in exercising the authority, carrying out the responsibility, performing the function, etc.).

�PAGE \# "'Page: '#'�'" �Page: 6���T: 6.5.8 principal

�PAGE \# "'Page: '#'�'" �Page: 6���D: A party�XE ''party''� that has delegated�XE ''delegation''� (authority�XE ''authority''�, a function, etc.) to another.

�PAGE \# "'Page: '#'�'" �Page: 6���T: 6.5.9 contracting party (with respect to a contract)

�PAGE \# "'Page: '#'�'" �Page: 6���D: A party that agrees to that contract.

vi
v

