
[image: image1.png]OASIS)

Electronic Business Service Oriented Architecture

Working Draft 047, 20 August 2004

Document identifier:

wd-ebsoa-047
Location:

http://www.oasis-open.org/committees/ebsoa

Editors:

Matthew MacKenzie, Adobe Systems <mattm@adobe.com>

Sally St. Amand, Individual

Contributors:
Duane Nickull, Adobe Systems

Sally Fuger, AIAG

Joseph M. Chiusano, Booz Allen Hamilton
Jeff Turpin, Cyclone Commerce

Ian Jones, British Telecom

Kathryn Breininger, Boeing

John Aerts, LA County

Neelakantan Kartha, Sterling Commerce

Tim Mathews, LMI

Ed Chase, Adobe Systems

John Yunker, Amazon.com

Ron Schuldt, Lockheed Martin

John Hardin, General Motors

Abstract:

The goal of this electronic business service oriented architecture (ebSOA) specification is to describe a high level architecture blueprint (reference model for Architecture) and a set of accompanying patterns to describe an infrastructure to facilitate electronic business on a global scale in a secure, reliable and consistent manner. Both the blueprints and the patterns capture the lexicon of a service oriented architecture. The main benefit of this approach is a consistent approach to describing and solving recurring patterns. Patterns documenting solutions to recurring problems may be shared, independent of any specific technology.
Rather than contain the level of detail sufficient for implementation, component functions are described at a higher (abstract) level. Implementers will need to rely on secondary specifications and protocols in order to implement many aspects of this architecture.

Status:

This document is updated periodically on no particular schedule. Send comments to the editor.
Committee members should submit comments to the ebsoa@lists.oasis-open.org list.

Others should submit comments by filling out the form at http://www.oasis-open.org/committees/comments/form.php?wg_abbrev=ebsoa
Table of Contents

41
1.0 Introduction

41.1
Audience

51.2
Scope

51.3
Document Structure

61.4
Terminology

71.5
Glossary

92
Service Oriented Architecture

152.1
Summary of Characteristics of Service Oriented Architectures

162.2
Conceptual View

172.3
Business Requirements View

192.4
Technology Model View

202.5
Data Model View

223
SOA Architectural Patterns: What, Why & How

223.1
Introduction

233.2
OASIS eBusiness SOA TC Pattern Meta Model (UML)

243.3
The eb SOA Pattern Notation

253.3.1
Pattern Presentation

283.3.2
Implementation

283.3.3
Business Problem (Story?) Resolved

283.3.4
Specializations

283.3.5
Known Uses

283.3.6
Consequences

283.3.7
References

283.3.8
Pattern Meta Model Summary

294
Pattern Catalogue

305
References

305.1
Normative

31Appendix A. Acknowledgments

32Appendix B. Revision History

33Appendix C. Notices

1 1.0 Introduction

This architecture takes into account work done in several standards development organizations including OASIS (Organization for the Advancement of Structured Information Systems), the W3C (World Wide Web Consortium), ISO (International Standards Organization, UN/CEFACT (United Nations Centre for Facilitation of Commerce and Trade), Web Services Interoperability (WS-I), Electronic Business XML (ebXML) and others. It is meant to be illustrative, not prescriptive in nature.

The goal of this electronic business Service Oriented Architecture specification (ebSOA) is to provide a service oriented architecture (SOA) blueprint and a catalogue of normative patterns. The ubiquitous use of these normative patterns will help to achieve global interoperability for electronic business transactions. Each pattern describes a recurring business problem, an abstraction into derived requirements and a reference model for a service oriented solution(s).

This architectural blueprints are illustrated in a series of logical views that provide a clear and concise overview of the service development (throughout its’ lifecycle) and the critical components of each phase. This service development overview is important because services that are implemented in a vacuum without a secure, robust, and highly available architecture MAY not be interoperable. Thus, such services MAY not be easy to reuse and business entities will not achieve the full benefits of developing a service oriented architecture.
Patterns

A pattern describes a business problem, the context of the problem and the solution to resolve this problem at the minimum level required for consistency and interoperability across process boundaries. It is important to note that the number normative patterns MAY be large. The focus of this specification is to capture a number of critical services common to most business entities and their customizations.

This specification is not dependent on ebXML, Web Services or other specific standards. Therefore, this specification will may be used in conjunction with other service implementation standards. All patterns are agnostic to actual implementation detail with regard to specific technologies and no presumptions are made with regards to a bias towards any specific protocols or standards.

1.1 Audience

The audience for this specification is the multiple roles required to envision and deliver an electronic business solution. A solution that crosses domains of control, is non-proprietary, agile, interoperable, has high utility and enables commerce using new technology. The specific roles include:

· the business analyst
· the systems analyst
· the developer
The specification provides a framework for the decision-maker to view the business from a different perspective as consideration for reengineering processes. Additionally, to collaborate with partners to build applications that will create relationships with service consumers and/or providers that enable electronic commerce as an alternative to the current modalities of the telephone, faxes, governmental postal services, etc.

The specification is intended to facilitate the requirements gathering by the business analyst, including prompting another perspective, i.e. looking externally to interoperate. The specification's blueprint should guide the systems analyst in defining the boundaries of participation and providing assistance in leveraging current assets.

In conjunction with the other roles using the specification as a blueprint to produce their deliverables, developers will have a global model and the needed details to implement an operational solution that will enable dynamic electronic commerce.

1.2 Scope

The scope of this specification is to provide a comprehensive service oriented architecture blueprint and corresponding catalogue of normative patterns (that describe service implementations) within the context of global electronic business.

Specific XML or non XML language used to build or constrain business message instances are excluded from this specification.

This architecture does not address domain vertical specific problems (example – how to fill in and submit an electronic health insurance form). Rather, it remains at a higher level (example – how to fill in and submit an electronic form).

1.3 Document Structure

This specification is comprised of several inter-related components. This document is the overarching specification and references several normative patterns via a Pattern Catalogue. It also contains the logical views required to convey the relationships between the views and components.

Each normative pattern exists remotely and may be reference via a catalogue published at
[image: image2.png]Catalog of Pattems

Pattern

Patiern

Patiem

While care has been taken not to create dependencies between patterns, some implementers may find that dependencies exist for their specific application.

The status of each Pattern may change throughout its’ approval lifecycle (example: draft, committee draft, candidate recommendation, approved specification).

1.4 Terminology

The key words must, must not, required, shall, shall not, should, should not, recommended, may, and optional in this document, and the patterns themselves, are to be interpreted as described in [RFC2119].

1.5 Glossary

Several terms are used within this architecture that are also used within related specifications. This glossary locally scopes the semantics of those terms where ambiguity exists.

Collaboration – an association, partnership, or agreement between two legal entities to conduct business. A collaboration likely results in at least one business process being implied between entities.
Legal entity / Entity – an individual, organization, government agency, corporation (or division thereof) or any other creature with stature that is able to conduct business with other bodies.

Intent – The vision of an entity, generally broad in scope, which drives goals and strategic direction. The overall broad purpose or mission that describes the purpose of the organization. An example may be to “be profitable by supplying sheet metal to the aerospace industry)
Policy – the governing directives and regulations that guide the processes and business of the entity and its transactions with other entities

Constraint – a rule that places restrictions on actions and thus limits a system or relationship.

Goal – the desired or needed result to be achieved by an entity over the long term. Goals support the entity mission (or intent). They generally define how the mission will be carried out.

Task – a specific piece of work that must be accomplished to meet a stated goal or objective. Tasks may contain procedures and steps required to accomplish the desired end result.

Action – the performance of specific tasks that put a desired end result into effect.

Context – the facts or circumstances that surround a situation or event. The complete environment, including its relationships and influences at play.

Service provider proxy – a service that abstracts and presents a service by translating it into a standard format more easily callable by the service consumer and forwarding the service calls to the service provider in a native format. It may reverse this operations for the return from the call.
Pattern – Patterns identify recurring concepts, abstracted them away from a specific problem-solution pairs. The approach is to distill out common factors from several related problem-solution pairs and document those in a pattern instance. The patterns approach uses a set of layered assets, each level increasing on the granularity of detail over the last layer. Within this architecture, all patterns are constrained by the eBusiness SOA TC Patterns Meta model.
Process – a particular course of action intended to achieve a result. A systematic sequence of steps, tasks or actions that is designed to gather input and produces an output. By definition, a process has several key characteristics: it has specific standards which determine if it´s done correctly, and which let it be repeated by others; it consumes resources such as time, money or energy; and it responds to quality control mechanisms that can help the process be done more efficiently.

Business message payload – the packet contents considered as data, other than headers and control information that is passed from one entity to another in an electronic transaction.

2 Service Oriented Architecture

Service Oriented is an architectural paradigm (model). It is simply a way of architecting interactions between components of an organized system.

Service oriented architectures provide flexibility and agility for implementers to adapt to change as business processes and/or technologies change. A legacy exists with an abundance of non-web services that are not easily adapted for use on the web. Another advantage is that service oriented architectures allow enterprises to extend the functionality and reach of their existing legacy systems outside of their domain as “services”. The services can often be accessed by incorporating standards designed to work over the internet.

Business Drivers

Information Technology (IT) executives often face the challenge of lowering IT costs while increasing the level and complexity of services an enterprise makes available to its’ business partners. The changes are costly due to the mapping costs of a heterogeneous mix of eBusiness interfaces.

If properly executed, SOA eliminates the complexity of navigating, maintaining and implementing connections to and from a multitude of proprietary interfaces. This is often done by using a service provider proxy pattern to abstract specific proprietary system interfaces from the service consumers. A standards-based approach to service abstraction will allow for standardization of service implementation between business entities.
Example: instead of requiring a service consumer to configure their service client software to talk specifically to an Customer Relationship Management (CRM) system, an Enterprise Resource Planning (ERP) system and a Semantic Content Management (SCM) system, if each of these systems provided services accessible via common standards via a service provider proxy, consumers can use the same service proxy pattern to connect to any of the services.

[image: image3.png]SERVICE

CONSUMER

som

Internet—

ERP

LDAp.

Figure 2.1 – A cost and labour intensive methodology for extending business services
In the figure above each service consumer may be required to obtain highly customized software to connect to each system. This model is not likely to scale well.

[image: image4.png]SERVICE
CONSUMER

SERVICE
PROVIDER PROXY

Figure 2.2 – a better model for exposing services to consumers
In the figure above, a service provider proxy is used to abstract the specific interfaces to use standards (like XML over HTTP(S)) to extend core business processes outside the enterprise.

By maintaining a higher level interface to grant access to a business process, the service provider can cleanly decouple the service consumer from the intricacies of specialized integration. The service consumers can re-use the same tools (eg – SOAP + XML) among many services and not incur costs for hundreds of specialized service clients.

Components like access control, security, non-repudiation and more can be handled by a variety of open standards. Adopting one standard for the same pattern over many services saves time and money for the implementer.

Technology Evolution

SOA’s are a natural progression in the evolution that began with the advent of Object Oriented methodology (OO), then XML and the emergence of Web Services. At a basic level, two components may interact using a simple messaging mechanism as shown below. One component offers some form of a service and a second component makes use of that service. The figure below is abstract of any specific communication protocol, policy, security or other functionality.

[image: image5.png]Component A Component B

Synchronous /
‘Asynchronous

Uses service Offers service

Figure 2.3 – simple service oriented architecture pattern

Some basic terminology used within such an architectural paradigm is a Service Provider (the component that offers the service) and the Service Consumer (the component that invokes the service.

This basic pattern illustrates some important key principles of any service oriented architecture. Such a system is Event Based by nature. A service is in an evocable state until an event happens to trigger the service. Such an event may come from an outside component or from within the component itself.

In order to invoke or use a service, the Service Consumer may need to know many optional details such as the protocol used to communicate with the Service Provider, the authentication tokens it may be expected to produce, the nature and scope of the service being invoked, the parameters it must provide to the service at the time it invokes it (including perhaps the semantics of the parameter metadata) and the output or return of the service if either successfully or unsuccessfully invoked. All of these subjects are covered in greater detail in the catalogue of normative patterns.

Proxies used as Service Providers

In a service oriented architecture environment, each service is typically invoked as a proxy. A Service Provider Proxy abstracts the service from any specific programming language of other environment and offers the API to the service using generally accepted standards such as HTTP(S), XML (for passing parameters) and other layered protocols to provide specific functionality.

[image: image6.png]Component A

Service Component B

Synchronous /| 5

. ‘Asynchronous
Uses service

Proxy Offers service

Figure 2.4 – basic service oriented pattern with proxy for service provider

Services for Discovery
In order to facilitate environments where multiple services exists and complex details may be required to invoke the services, a Registry system may be deployed to help locate and bind to the services. While the use of a registry/directory/repository mechanism may facilitate ad hoc connections between components, it is also highly useful for management of integration points between components, especially if components are configured to make use of artifacts available via a registry/repository/directory to configure themselves to use services.

The basic pattern for registry interaction is a “publish” and “discover” pattern.

[image: image7.png]Discover Senvico Detais Publish Service Detalls

Use Service —— .|

Figure 2.5 – publishing and discovery of services

In this figure, a component called a Registry/Repository or Directory is used to enable service providers to publish all the details necessary for others to understand how to request a service invocation.

The Registry/Repository/Directory relationship is explored in greater detail in several of the patterns. Several other key artifacts may be published to aid interactions between the service provider and the service consumer. These include process models, collaboration details, artifacts to reconcile semantics, profiles, policy statements, intent, references and possibly information required to maintain state over the course of long running processes or collaborations.

A conceptual view of all the basic components of service oriented architecture adds in specific components to the simple service-publish-describe scenario above.

[image: image8.png]CONTRACT

Discover

REGISTRY

CONTRACT

Register / Publish

CONTRACT

Figure 2.6 – elaborated SOA concepts
A contract is a specification of the way a consumer of a service will interact with the service provider. It specifies the format of the request and response from the service. A service contract may require a set of preconditions and post conditions. The preconditions and post conditions specify the state that the service must be in to execute a particular function. The contract may also specify quality of service (QoS) levels, specifications for the nonfunctional aspects of the service.

A service description is an artifact that elaborates the details of the service. Many industry standards exist for this and they range from a simple set of information about how to technically bind to the service and the structure of the parameters you may pass to the service to more specialized service descriptions that bind a service to a specific business process and convey many additional details needed to constraint the behavior of the service with the intentions of the electronic business participants.

A profile is a snapshot of the service provider and/or optionally any other actor within the ecosystem. The profile may convey other aspects of the service provider necessary to understand the exact nature of an electronic business service interaction.

By using both the contract and the profile, a service provider is able to convey the semantics of what using the service means. For example, if the service is a service to order widgets, using the service and receiving an acknowledgement may create a state that the service consumer is now monetarily indebted to the service provider for the aggregate cost(s) of the widgets ordered. Specific technical terms need to be present in these artifacts to specific what technical impacts may mean to the state of the process. For example, if a service is used to place an order, the service provider may want to specify that it MUST be by using synchronous communication and if the service provider closes his side of the connection before an aggregate amount of time since the first signal was sent (example T=30 seconds), the order is still deemed to be placed and the service consumer may be indebted to the service provider for the aggregate cost(s) of the widgets ordered.

2.1.1 Reference Model for Architecture

This specification described aspects of service oriented architectures using a combination of architectural views and patterns as shown in the diagram below. The balance of normative patterns that define the application of Service Oriented Architecture to electronic business are part of the catalogue of SOA patterns.

[image: image9.png]Business

Requirements
eq Provides

rsquurements

Core Architecture

Basic SOA
Patterns

Specialized
Patterns (Idioms)

Catalogue of Pattems

Electronic
Business
Patterns

Patterns
Metamodel

model for

provides meta ,/

Figure 2.7 – Reference Model for this architecture

2.2 Summary of Core Characteristics of Service Oriented Architectures

This section is an executive summary of service oriented architectures. By definition, modern service oriented architectures that make use of the internet are:

1. Event driven

2. Loosely coupled

3. Location transparent

4. Component based

5. Protocol independent

The requirements of a networked environment and a set of additional requirements centric to electronic business adds other facets to an SOA:

6. Registry Centric – an architecturally neutral component to aid discovery, integration and maintenance of integration over time.

7. Process oriented – in order to enable business process management and business collaboration, an SOA should have a mechanism for maintaining state over the course of long running business processes and collaborations. Individual services and transactions are all part of process instances.
There are no specific compliance tests to determine if a specific architecture qualifies as a Service Oriented Architecture. Such is outside the scope of this specification.

Interoperability amongst service providers and service consumers is also outside of the scope of this document. It is HIGHLY RECOMMENDED that anyone interested in maintaining conformance and interoperability between services contact either the Web Services Interoperability (WS-I), the ebXML Implementation, Interoperability and Conformance (IIC) Technical Committee or other conformance organization.

2.3 Conceptual View

In many architectures, pure architectural views such as a component views, object models, layer diagrams (stacks) do not completely capture the relationships between components of an architecture. A Conceptual View mixes and matches components from varying aspects of an architecture in order to supplement the other views. Accordingly, this eBusiness service oriented architecture contains a conceptual view in order to convey the relationships between different aspects of the architecture.

[image: image10.png]

Figure 2.8 – eb SOA Conceptual View
This conceptual view reconciles the aspects of real world objects, data model components and technology view components.

The conceptual view may be further decomposed to understand specific relationship necessary between Business Processes and Business Web Services.

2.4 Business Requirements View

The purpose of the business requirements view is to document the activities and needs for businesses, independent of any technology. Specific business requirements models may be specialized for industry verticals. Several generalized technologies exist to aid businesses in capturing their lexicons in a technology neutral manner including the UN/CEFACT modelling methodology (UMM) and IBM’s Rose Unified Process (RUP).

[image: image11.png]

Figure 2.8 – Business Requirements View

A legal entity may be an instance of a company or a division within a company, a government agency or any other creature of stature. The legal entity has both intent (vision) and a policy or set of policies.

The intent is a high level vision that encompasses the legal entities objectives. An example of intent is to “be profitable by selling sheet metal”.

A legal entity will likely enter into collaborations with other legal entities or themselves in order to fulfill their goals towards their vision. An illustrative example is the company selling sheet metal enters into a collaboration with steel wholesalers (to distribute its’ sheet metal) and a steel supplier (to buy raw materials).

Collaborations occur within a business context. The context may be comprised of several individual contextual classifications (such as industry, geographical classification or legislative requirements).

A collaboration is comprised of one or more tasks. An example of a task could be to “sell large orders of OEM sheet metal to aerospace companies”. This results in an action to execute the task such as writing a sales invoice. This results in the goal being achieved. The legal entities overall intent (vision) is driven by achieving goals.

The scenarios laid out in the business requirements view are further illustrated in several patterns from the patterns catalogue.

2.5 Technology Model View

The purpose of the technology view is to capture the technology components and their relationships both within an enterprise as well as shared components. Not all aspects of this technology view are mandatory.

[image: image12.png]Consumers|

Transport

Collaboration

Business Process Management

Wordon
ngraton

Payosd

Enterprise Data Services

User Interface]

Rogistry/ Directory / Repository Services

Platform Services

(Logang) (Management)

(Fororing | (seeuny |

Other

Figure 2.9 – eb SOA Technology View
The technology view incorporates both owned and shared (extrinsic) technology components.

A legal entity or their agent may deploy technology on one or more platforms. The platform provides common services such as logging, security, reporting and management.

Registry, Repository and Directory services are available as a set of extended platform services. The services provided by the Registry, Repository and Directory services are extensible and help support integration, ad hoc configuration, maintenance and other dynamic behavior.

Enterprise data services enable integration instance data. Semantic content management allows reconciliation of instance data with transactions. Archiving facilitates storage, indexing and retrieval of enterprise transactions and other data instances.

Notes:

Transformation: Data reconciliation is design phase aspect of transformation (create map(); mapData();)

The components laid out in the technology view are further illustrated in several patterns in the patterns catalogue.

2.6 Data Model View

The purpose of the data model view is to depict the data components and the relationships between them devoid of technology components.

[image: image13.png]nnnnnnnnn

mmmmmmmmm

Figure 2.9 – eb SOA Data Model View
A collaboration in this context is a bilateral agreement, either implicit or explicit. One or more business processes may be present in order to fulfill the intent of a collaboration. An illustrative example of the two is the collaboration is an agreement that Company “A” can purchase sheet metal from Company “B”, using the “Purchase Order Process”.

A process will have several transactions. Each transaction may carry a business message payload. The payload may be constrained by metadata, comprised of an aggregation of individual data elements. The data element metadata may be contextually constrained during design time.

The components laid out in the data model view are further illustrated in several patterns in the patterns catalogue.

3 SOA Architectural Patterns: What, Why & How

3.1 Introduction

Architectural Patterns, in the context of syntax, are part of a family of languages generally referred to as Architectural Description Languages (ADL’s). Many ADL’s are in their infancy yet the Patterns Syntax seems to be gaining popularity in use.

The pattern language embraces object-oriented methodologies in that it promotes modularity, scalability and reusability while offering the regimented structure of a true engineering discipline, yet has the ability to render both object oriented and non object oriented systems.

There are several advantages offered by the Patterns syntax including:

1. Reuse of Pattern’s – patterns can be reused for numerous problems in varying contexts.

2. Neutrality – patterns are not tied to any specific data type, programming philosophy or paradigm, programming language, methodology or other constraint.

3. Ability to render technical and material concepts at abstract levels.

4. Ability to define detail using layered approach of clarity.

5. Efficient at capturing ideas, methodology’s for requirements, business, application, design, runtime and implementation views of the static or dynamic behavior of systems.

The Architectural Patterns approach is a methodology whereby a pattern abstracts away from a specific problem-solution pair. The approach is to distill out common factors from several related problem-solution pairs and document those in a pattern instance. The patterns approach uses a set of layered assets, each level increasing on the granularity of detail over the last layer. Patterns may use other patterns within their structure.

Christopher Alexander first conceived the term “pattern” in an architectural context in his book “The Timeless Way of Building”. The specific text is as follows:

“As an element in the world, each pattern is a relationship between a certain context, a certain system of forces which occur repeatedly in that context, and a certain spatial configuration which allows these forces to resolve themselves.

As an element of language, a pattern is an instruction, which shows how this spatial configuration can be used, over and over again, to resolve the given system of forces, wherever the context makes it relevant.

The pattern [is] at the same time an [object] which happens in the world and the rule which tells us how to create that [object] and when we must create it. It is both a process and a thing [syntax]; both a description of a thing which is alive and a description of the process which will generate that thing.”

3.2 OASIS eBusiness SOA TC Pattern Meta Model (UML)

3.2.1 A Reference Model for Service Oriented Architecture
This meta model constrains all patterns contained within the accompanying Catalogue of Patterns and is expressed in UML (figure 3.1 – below). Specific patterns may extend the base model in order to facilitate functionality required within a certain context. This meta model is a specialization of the basic architectural patterns used by many software developers in order to facilitate conveyance of concepts to the target audience of this specification.
[image: image14.png]|Business Problem (Story)|

[DerivedRequirement | 4 . 1 Pattem
ConstanT e
forces o scoKnownis (@ ot
otorancss | ¢ -
0
o | GeneralizedSolution

Consequence }————{Spocilzedsolution

7~

ofiess

Implementation StaticStructure DynamicBehavior KnownUse

i
|
|
|
|
I
h

Figure 3.1 – eb SOA Pattern Meta Model (UML)

A pattern may be decomposed into three main components – the Context, the Business Problem and the Generalized Solution. All three parts of a pattern are intrinsically inter-related.

Context

The context is the area or situation(s) in which the business problem occurs. A context may be highly generalized in order to ensure maximum applicability of the pattern or it may be highly specialized.

The context should not be considered an exhaustive set of contexts for which a problem may occur. It is highly unlikely that a pattern developer could or would bother to envision ever single conceivable context in which a specific problems occurs and document them. A more pragmatic approach is to list all known situations where a problem addressed by the pattern occurs.

Business Problem

The problem is a documentation of the problem(s) that arise repeatedly within the context(s) and is augmented with a series of forces. A generalized description of the problem (detailed according to requirements) must be present. A set of secondary artifacts may also be documented – the requirements, constraints and desirable properties for a solution.

The use of different viewpoints to can be employed in order to facilitate greater comprehension of a specific problem

Generalized Solution

The solution specifically resolves the recurring business problem and/or how to balance the constraints and forces of the problem. The static structure of the generalized solution contains concrete classes (objects) and relationships and is expressed using Unified Modelling Language (UML) class view diagrams.

The dynamic behavior of the generalized solution documents how classes (objects or components) collaborate between each other and captures the dependencies and relationships between them. UML sequence diagrams are used to depict the dynamic behavior of the solution.

3.3 The eb SOA Pattern Notation

This section describes the OASIS eBusiness SOA TC Pattern metamodel in greater detail. All patterns are self-contained and may be used collectively to form the foundation for a subsystem of an entire system, in conjunction with the blueprints expressed in section two.
Individual patterns may be generally classified in the following manner:

1. Architectural Patterns – a fundamental structural organizational schema for software systems. It provides a set of predefined subsystems specifies their responsibilities and includes rules and guidelines for organizing the relationships between them.

2. Design Patterns - provide a scheme for refining the subsystems or components of a software system, o the relationships between them. It describes a commonly recurring structure of communicating components that solves a general design problem within a [specific] context.1
3. Idioms – Idioms are the lowest level patterns and may be specific to a programming language. An idiom guides implementation aspects of components and the relationships between them using features specific to a given language or environment.

Note to readers: Idioms that are specific to a programming language or specific standard are not used within this document in order to maintain neutrality. Idioms will be documented in an accompanying “best practices” document.

3.3.1 Pattern Presentation

Within this architecture, patterns will be presented as normative artifacts referenced from the Patterns Catalogue, in order to build a cohesive architecture. Each pattern will be comprised of the following text and graphic components.

3.3.1.1 Name

The Pattern name is a unique name accompanied by a short descriptive summary of the pattern.

3.3.1.2 Also known As (optional)

Alternative names for the pattern if any are known. See also “see also” later in this section.

3.3.1.3 Business Problem (Story)

The Business Problem is a specific, illustrative example of the problem to document the need for the pattern. This is similar to the architectural concept of “Story”. There can be more than one story per pattern. The story also helps speak to the business user to identify that a specific pattern may be relevant to their situation.

3.3.1.4 Context

The context is the situation or set of unique situations in which the pattern may apply. The context captures a specific context or a set of contexts in which the problem occurs. The higher the degree of generality, the higher the likelihood the pattern may be reusable and vice versa.

3.3.1.5 Derived Requirements

The derived requirements are a summary of the Business Problem (Story). While the Business Problem is often specific, the derived requirements are a generalized extrapolation of the general concepts. A description of the problem including a list of any constraints associated with this problem. Unlike the story component, the Derived Requirements specifically describe the problem in detail.

3.3.1.6 Generalized Solution

The generalized solution for the problem as it occurs within the context. The solution can be further subdivided into two different components – the overall structure of the solution as a static diagram and its’ dynamic behavior.

3.3.1.7 Static Structure

This section is a generalized description of the static components and their relationships.

An example of a class view diagram is depicted in Figure 3.1 – the UML class view diagram used to express a view of the Patterns Metamodel.

UML Class view diagrams show the classes, complete with their attributes and operations, and are also capable of expressing the complexities of the relationships between classes. While the lines are blurred between data objects and executable application logic, the context of each class view diagram is important to capture.

[image: image15.png]<<abstract>>
User

userlD:Integer
name:String

+setUssIDQ:void
+getUserlD(Ineger

Figure 3.2 – single class UML class view diagram

Figure 3.2 (above) shows a simple UML class view diagram. The stereotype is a generalization of the type of the class, in this case an <<abstract>> class. The class has two attributes in the second section, a userID and a name. Each attribute also has an optional datatype. The third portion of the class is the operations of the class, in this case two public operations exist to set or get a userID.

[image: image16.png]Directory0fUsers <<abstract>>

User

4.0 |usetDinteger
name:Sting

+setUssIDQ:void
*getUseriD(Ineger

BasicUser [Admiristrativetiser] PartnerCompanyer] Conpany
userProflecint priviegesLis <oadinosting |] companyNames:Stiing
priviegesLis.] 1

vorsate(yvoid
+delete(rvoid

Figure 3.3 – UML Class diagram

In the above figure, there are several classes on one class view diagram. The lines that connect the classes declare the relationships between them. Numbers indicate cardinality. For example, a user may belong to any number of directories between zero and infinity, as declared by the asterisk (*). A DirectoryOfUsers has one to infinity users as declared by the “1..*” (without at least one user, it may be debatable if it is a directory). The arrow shows that the DirectoryOfUsers is dependent upon Users. BasicUser, AdministrativeUser and PartnerCompanyUser all inherit from the abstract user class and are deemed specializations of user. The base abstract user class is considered a “generalization” of the other specific types of users.

3.3.1.8 Dynamic Behavior
The dynamic behavior aspect of any pattern describes the runtime interactions, sequences and behavior of the pattern’s solution. The use of the UML Sequence diagram syntax is used to depict these views. UML Sequence diagrams are a part of the Object Meta Group’s Unified Modelling Language (UML) version 2.0 specification and considered a standard notation for specifying dynamic behavior among concurrently-operating objects and processes of hardware components.

Within this architecture specification, we use UML Sequence diagrams to illustrate the relationships between components of the pattern during runtime.

[image: image17.png]Inner Object Call

") I Obiect Return

Figure 3.4 – UML Sequence Diagram example

The UML sequence diagram in figure 3.4 shows two objects. The reader should interpret the sequence diagrams starting from the top left hand corner. Object1 makes a call to Object2, Object2 does some internal process then either sends a return or error back to Object1.
For more on UML Sequence or Class view diagrams, please visit http://www.uml.org.

3.3.2 Implementation

Each implementation section contains guidelines for implementing the pattern. Within this specification, care is taken not to constrain this to any specific platform or programming language or specific standard or protocol. The implementation section of each pattern is therefore somewhat more vague than some patterns (specifically Idioms) viewers may be used to.

In general, the implementation section is considered a non-normative suggestion, not an immutable rule or requirement. In terms of RFC 2119 interpretation, the implementation is of RECOMMENDED or MAY status.

3.3.3 Business Problem (Story?) Resolved

This section of the pattern contains reconciliation between the solution and the business problem (story) of the pattern. This section may contain additional details not yet covered by the solution and implementation sections and their subsections.

3.3.4 Specializations

Specializations are specific or customized instances of the generalized solution. An example could be to outline two specializations to building user interfaces. Such may be implemented as a non-web based GUI (such as using the Microsoft Foundation Classes (MFC) in the implementation section. The other specialization could alert readers to the fact that a web interface could also be build to achieve the same end using Java Server Pages or a similar technology.

3.3.5 Known Uses

The known uses are references to examples of the specializations of the pattern in use. For example – the pattern could be the condition of an artifact that is used to capture the details of how to bind to a specific web service. There could be three known uses – a Universal Description Discovery Interface (UDDI) registry service binding method, a Web Services Description Language (WSDL) instance or an ebXML Collaboration Profile Protocol (CPP) instance. The exact difference of each known use may vary and may be discussed lightly in this section to guide implementers.

3.3.6 Consequences

The benefits the pattern provides and any potential liabilities or caveats. This is an analysis of the consequences imposed by the Generalized Solution. Consequences of specialized solutions may also be discussed herein.
3.3.7 References

A set of reference to other patterns or information relevant to the problem, context and solution.

3.3.8 Pattern Meta Model Summary

The metamodel for patterns has been adopted from a variety of industry definitions of patterns. Its’ goal is to facilitate the capture and sharing of concepts and relationships between components of this eBusiness Service Oriented Architecture.
4 Pattern Catalogue

Rather than place all patterns inline within this specification, this document relies on an external catalog of patterns and the patterns themselves.
The patterns catalog may be referenced from the technical committee’s home page at http://www.oasis-open.org/committees/comments/form.php?wg_abbrev=ebsoa.

5 References

5.1 Normative

[RFC2119]
S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997.

Appendix A. Acknowledgments

The following individuals were members of the committee during the development of this specification:

In addition, the following people made contributions to this specification:
Massimiliano Bigatti max@bigatti.it
Appendix B. Revision History

[This appendix is optional, but helpful. It should be removed for specifications that are at OASIS Standard level.]

	Rev
	Date
	By Whom
	What

	
	
	
	

	
	
	
	

	
	
	
	

Appendix C. Notices

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to implement this specification. Please address the information to the OASIS Executive Director.

Copyright © OASIS Open 2002. All Rights Reserved.
This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself does not be modified in any way, such as by removing the copyright notice or references to OASIS, except as needed for the purpose of developing OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an “AS IS” basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

� “Pattern-Oriented Software Architecture” Buschmann, Meunier, Rohnert, Sommerlad and Stal – ISBN 0 471 95869 7

Copyright © 2002 OASIS. All rights reserved.

Page 1 of 33
2
wd-ebsoa-045

20 August 2004

Copyright © OASIS Open 2004. All Rights Reserved.

Page 26 of 33

