
[image: image1.png]OASIS)

Electronic Business Service Oriented Architecture

Basic Service Pattern
Document identifier:

ebsoa-BasicServicePattern
Location:

http://www.oasis-open.org/committees/ebsoa

Editors:

Matthew MacKenzie, Adobe Systems <mattm@adobe.com>

Contributors:
Duane Nickull, Adobe Systems < duane@nickull.net >

Kathryn Breininger, Boeing

Tim Mathews, LMI

Ron Schuldt, Lockheed Martin

Abstract:

This pattern is part of a service oriented architecture specification. Together with the specification document, a catalog of specification and other specifications, it constitutes the OASIS Electronic Business Service Oriented Architecture.
Status:

This document is in DRAFT status.
Committee members should submit comments to the ebsoa@lists.oasis-open.org list.

Others should submit comments by filling out the form at http://www.oasis-open.org/committees/comments/form.php?wg_abbrev=ebsoa
Table of Contents

21.1
Document Structure

31.2
Terminology

42
Basic Service Pattern

42.1
Name

42.2
Also known As (optional)

42.3
Business Problem (Story)

42.4
Context

52.5
Derived Requirements

52.5.1
Forces and Constrains

62.6
Generalized Solution

62.7
Static Structure

72.8
Dynamic Behavior

72.9
Implementation

82.10
Business Problem (Story) Resolved

92.11
Specializations

92.12
Known Uses

92.13
Consequences

102.14
References

11Appendix A. Acknowledgments

12Appendix B. Revision History

13Appendix C. Notices

1.1 Document Structure

This specification is comprised of several inter-related components. This document is an instance of a pattern and is referenced via the Pattern Catalogue. This pattern is a stand alone document and is structured in the format specified in the eb SOA Specification, in the section on Patterns Meta Model.
[image: image2.png]Spelcation

Catalog of Pattems

Pattern

Pattem

While care has been taken not to create dependencies between patterns, some implementers may find that dependencies exist for their specific application.

The status of each Pattern may change throughout its’ approval lifecycle (example: draft, committee draft, candidate recommendation, approved specification).

1.2 Terminology

The key words must, must not, required, shall, shall not, should, should not, recommended, may, and optional in this document, and the patterns themselves, are to be interpreted as described in Error! Reference source not found..

2 Basic Service Pattern

2.1 Name

Basic Service Pattern (fn: ebSOA-BasicSevicePattern)

2.2 Also known As (optional)

No aliases known. Relevance to WS-I Basic Service Profile.
2.3 Business Problem (Story)

A supplier of sheet metal supplying several major mechanical industries recognizes several of their customers have migrated their business models to a just-in-time (JIT) inventory management system. Because the customers manufacture items like airplanes and automobiles which require thousands of parts, they must carefully coordinate inventory delivery to correspond with manufacturing requirements. Part of the coordination relies on the manufacturers being able to determine inventory availability for the sheet metal. Because the manufacturer relies on thousands of parts being delivered just in time, the queries for inventory visibility are often numerous, repetitive and labor intensive from the standpoint of the sheet metal manufacturer. This results in about 25 queries of possible inventory ordering and delivery before an actual order is placed.

The sheet metal manufacturer decides to automate the inventory visibility process and offer the inventory visibility as a web based service to their customers. Since the information is also potentially dangerous if it falls into the hands of the sheet metal manufacturer’s competitors, they want to implement some sort of safety mechanism to prevent access to the web service by their competitors.

This pattern shows the implementation view of a basic service. The view incorporates both the outward facing interface (Web Service), the Service Consumer and the back end connection to an application and/or source of the services functionality, coupled by connection rules. The view is agnostic to the actual functionality of the service deployment.

2.4 Context

Any situation surrounding businesses extending functionality of their enterprise and offering web based services to their customers / collaborators.

2.5 Derived Requirements

The service that is exposed must be carefully implemented in order to access the business tier (a persistent data store of sheet metal availability) yet only allow specific types of read only requests to pass through the firewall to the business tier. The service offered by the sheet metal manufacturer must be reused by many customers so it is preferable to utilize industry standards where applicable for protocols like HTTP, XML etc.

Access to any source application, like the persistent data store, provided by the service provider must be carefully constrained in accordance with the Service Provider’s policy and intent. This incorporates a notion called “Connection Rules” which are declared to constrain such access by applications. Typically, this tier only permits communications by authorized and authenticated Service Consumer Agents.

[image: image3.png]Service Consumer

Servica
Roquest
Application

Figure 1.0

The communications between the service consumer and the service providers proxy must be stateless in nature. Communications between the service provider’s proxy and the business tier may be cached in order to facilitate performance improvements over stateless type architecture.

2.5.1 Forces and Constrains
In general, the constraints for a solution are:

1. No specific programming language or platform constraints can be imposed upon the service consumers.

2. The service invocation must be based on non-proprietary, open standards (ie. more than one software vendor can supply a compliant product).

3. The service interface must be cleanly abstracted from the underlying technology tier that drives the business services functionality. Example - if the back end technology changes, it should not affect the service interface directly.

4. A security model and connection rules must be in place to constrain access to the service based on the service provider’s business intent(s) and policy(s).

2.6 Generalized Solution

The functionality provided in the Secure Zone is abstracted to the functionality in the web service. A web service is implemented inside a standardized container for taking care of many lower level technical functions, common referred to as an application server. Applications servers are themselves specific to platform and programming technologies like Microsoft’s C# or Sun’s J2EE.

While communicating with the applications inside a company’s firewall may be accomplished by specific Application Protocol Interfaces (API’s), dependent on one platform or language, the web services tier, running inside the application server container, is abstracted and allows binding via the Simple Object Access Protocol (SOAP) and uses XML to pass parameters back and forth. The use of common standards for integration with an abstracted service lowers the technology barriers for the service consumers.

2.7 Static Structure

Some services only require a simple event to invoke them. The event may be a simple method such as an Hyper-text Transfer Protocol (HTTP) post(). The actual service being invoked may offer a only a static method in that it returns nothing and simply performs some action, devoid of any variable parameters being required.

This type of service is very simple and does not require as much integration as other variably configurable services.

There are three basic components of the simple service model. The first is the Service Provider – the service provider supplied some critical business function such as showInventoryAvailability(item items). The second is the Service Consumer – the component that requests the service to be invoked.

Since the service provided will be in a proprietary format and the service provider’s owner will want to offer the service to a wide audience who may use a different set of technologies internally, the service is abstracted via the third component – the Service Provider Proxy. The Service Provider Proxy will take a service such as looking at a specific set of rows and tables within an enterprises database and turn it into a more generalized type of service whereby the service consumer can request the functionality by sending some XML instance data over an HTTP Post(). This is a critical part of the service interface functionality since it would be highly inefficient to force service consumers to make service requests in specific native formats.

The static view of the solution is a simple set of interactions between these three components.

[image: image4.png]Component A Service Component B
Provider

Uses service Proxy Offers service

The communication between the service consumer and the service provider proxy are likely to be stateless and may be either synchronous or asynchronous in nature.

2.8 Dynamic Behavior
A Service Consumer sends a request to the service in the format required by the service provider proxy to start the invocation of a specific service. The Service Provider proxy then un-marshals the service request and turns it into a service request in the native environment used by the service provider.

[image: image5.png]Senvia Invocation

H {OR)

e

If a transport level error is detected upon the initial request between the Service Consumer and the Service Provider Proxy, the Service Provider Proxy SHOULD send back an error message. Such error messages SHOULD be in validated with the specific transport bindings used (example -> SOAP fault for SOAP errors, ebXML messaging errors, etc.). As most transport bindings are layered, nested exception handling is STRONGLY RECOMMENDED.

2.9 Implementation

To implement the service, SOAP is used as a binding to connect to the service provider proxy. Several parameters are required in order to determine if inventory is available. These include the part number, the quantity of requested parts, the shipping date and a company identifier. The return is a response to the message indicating confirmation or denial of the inventory. Optionally, HTTP/S is used to ensure secure communications between the service requestor and the service provider in situations where it is necessary to encrypt the message to prevent viewing while the message is in transit.

In order to pass parameters with the least chance of error, the eXtensible Markup Language (XML) is used to serialize the information being passed both to and from the service provider. In order that both parties understand the constraints imposed upon the parameters, an XML Schema or other constraint language is used to declare the rules and cardinality of the data parameters.

The service provider proxy is an application that accepts the incoming service request message, un marshal’s it, and serializes it into a request that can interact directly with a native application to fulfill the business function required. In this case, the information of inventory availability resides in a persistent data store. The incoming XML message payload is un-marshaled and serialized into query language in the native format for the persistent data store. Example: if the persistent data store is a relational data base, the query may be stated in the Structured Query Language 92 (SQL 92) database query language.

The native statements are then executed against the data store with a shell with the appropriate permissions to execute the statements.

[image: image6.png]Service
Service Consumer [XML / SOAP- Provider XML / SOAP-
Proxy

XML to SQL /
SQL to XML

Figure 2.0

The return from the data store is interpreted and transformed back into XML, then sent as a return message to the service consumer as depicted in Figure 2.0 above.

2.10 Business Problem (Story) Resolved

By allowing it’s customers access to it’s inventory system via a basic web service, the sheet metal manufacturer has helped them transform their business to use a just in time inventory strategy. Each customer for the sheet metal manufacturer’s products can execute inventory visibility requests and find out if the inventory they require is available in the quantity and timeframe required to facilitate their manufacturing requirements.

2.11 Specializations

There are several specializations that may be employed in order to meet the business requirements of both the sheet metal supplier and its’ customers.

One problem that may arise is when a service consumer makes multiple requests within a short timeframe using an asynchronous transport method. The service consumer may experience receiving several responses and may have trouble aligning the response messages with the original requests made. This problem may be experienced if using SOAP as a transport protocol to bind to the service. The solution for this scenario may be to add a parameter of a request tracking number to each message being sent and transmit that request back with each response as a parameter. This would allow the service consumer to track each request-response thread.

An alternative to solve this problem may be to use the ebXML Messaging Service (ebXML MS). The ebXML MS employs a special attribute called a Conversation ID with a stated purpose for declaring a unique identifier for all message instances within a specific thread of a business process.

A second problem may occur with respect to security surrounding access. The sheet metal suppliers’ competitors may use the same basic service to find out what physical inventory the sheet metal supplier is capable of delivering. Such information may give its’ competitors an unfair competitive advantage.

In order to mitigate the access problem using SOAP, the service provider may require than each service request message sent include a special token that references a Service Level Agreement (SLA), which contains a set of business policy rules stating what type of access the service consumer is permitted. This token may be included as a mandatory XML parameter in each service request message.

Alternatively, by using the ebXML messaging service (ebXML MS), the service provider could rely on a special required attribute called the Collaboration ID, a unique value that lets the service provider know how to access a set of rules constraining access to the service.

2.12 Known Uses

The Web Service Interoperability organization (WS-I) has published a basic service profile [reference]. This profile is useful for organizations wishing to deploy basic services in a consistent, interoperable manner.

2.13 Consequences

There may be negative consequences or potential impacts to deploying a service as described above. Such a service is susceptible to denial of service type attacks. If a hacker or other actor intent on hurting or preventing the business activities of either the sheet metal supplier or its’ customers desired, they could launch a brute force type attack against the service provider. If the service provider experienced too many incoming requests, the service may become unavailable. Since items like automobiles and airplanes require thousands of parts to build, a well coordinated attack against several tier one suppliers could effectively shut down the manufacturing capabilities of large consumers of the suppliers products.

While such an attack may be premeditated, there is also the possibility that the service providers system

2.14 References

WS-I Basic Profile

ebXML Messaging Service

XML

XML Schema

SOAP

HTTP/S

Appendix A. Acknowledgments

The following individuals were members of the committee during the development of this specification:

In addition, the following people made contributions to this specification:
Massimiliano Bigatti max@bigatti.it
Appendix B. Revision History

[This appendix is optional, but helpful. It should be removed for specifications that are at OASIS Standard level.]

	Rev
	Date
	By Whom
	What

	
	
	
	

	
	
	
	

	
	
	
	

Appendix C. Notices

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to implement this specification. Please address the information to the OASIS Executive Director.

Copyright © OASIS Open 2002. All Rights Reserved.
This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself does not be modified in any way, such as by removing the copyright notice or references to OASIS, except as needed for the purpose of developing OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an “AS IS” basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright © 2002 OASIS. All rights reserved.

Page 1 of 13
2
wd-ebsoa-045

20 August 2004

Copyright © OASIS Open 2004. All Rights Reserved.

Page 1 of 13

