Modeling SW-Architectures using
UML-RT/UML 2.0

Ingolf H. Krueger

ikrueger@ucsd.edu

Department of Computer Science & Engineering California Institute for Telecommunications
University of California, San Diego and Information Technologies
La Jolla, CA 92093-0114, USA La Jolla, CA 92093-0405, USA

e C (g

Overview

e UML: Good Enough for Specifying Architectures?
e UML-RT/UML 2.0

— Overview

— Capsules

— Ports and Connectors
— Protocols

— Behavior Description
— Evaluation

o Example: Autononomous Transport System
e Summary and Outlook

February 4, 2003 © Ingolf H. Krueger CSE/CAL(IT)?

Is the UML Good Enough?

e The UML offers a plethora of description techniques for many aspects
of software architectures

e The UML has, however, also significant deficits especially when it
comes to modeling complex, service-oriented systems!
e In particular, we miss:
— An adequate notation for services
— A non-technical component notion
— Clear concepts for hierarchy
— Strong concepts and description techniques for
 |ogical component distribution
e non-technical interfaces

— Formal means for behavior descriptions with respect to interfaces

February 4, 2003 © Ingolf H. Krueger CSE/CAL-(IT)? 3

Overview

e UML: Good Enough for Specifying Architectures?
e UML-RT/UML 2.0

— Overview

— Capsules

— Ports and Connectors
— Protocols

— Behavior Description
— Evaluation

o Example: Autononomous Transport System
e Summary and Outlook

February 4, 2003 © Ingolf H. Krueger CSE/CAL(IT)?

What is UML-RT?

o Examples of “profiles” of the UML:
— embedded real-time systems ("UML-RT")
— automotive
— web applications

Read: UML with
» Origin: ROOM [SGW94] + UML | Component notion

e Focus of UML-RT/ROOM:

— component-oriented development

— all components are potentially active units
— signal-/message-oriented communication
— time concept

— quality of service (in preparation)

February 4, 2003 © Ingolf H. Krueger CSE/CAL(IT)?

The Component Model of UML-RT

Description Techniques of UML-RT for
Structure and Behavior

TN

capsules UML-statecharts
‘ ’ ——————— ~
ports { MSCs)
‘ S . _ -
connectors
structure behavior

February 4, 2003 © Ingolf H. Krueger CSE/CAL(IT)?

Hierarchical Composition in UML-RT

Port

e concrete realization of an
interface by means of an object

e equipped with a protocol
¢ list of incoming/outgoing
messages/signals
e (signal flow)

e the aid for “encapsulation” and
“separation of concerns”

«capsule»
:CommandSource

T

u
«capsule»

:CLS

«capsule»

Capsule
e active object or “passive”
container
e communication with the
environment
¢ signal-based
(asynchronous message
exchange)
¢ exclusively via interface
objects (ports)

e supports hierarchical

composition
:CommalidHandIer \/
«capsule» «capsule» «capsule»
bl

Im:Motor :MotorControl im:Motor

Connector

e communication link between ports

e “drives” protocol
February 4, 2003 © Ingolf H. Krueger CSE/CAL-(IT)? 7

Example: UML-statecharts

|.ready/r.down

h.Iock/I.dfél wid I > wrd r.ready/h.done
o)

r.ready/h.done—| wru [wiu h.unlock/l.up
l.ready/r.up

Ih

'l «capsule» L'
N N
: MotorControl

February 4, 2003 © Ingolf H. Krueger CSE/CAL(IT)?

Signhal-Based Communication

e (Capsules receive and send signals via their ports

e Signals, which cannot be processed immediately, are
stored in a queue

ock unlock lock

«capsule»
:CLS

«capsule»
:CommandHandler

I

«capsule»
:MotorControl

—1 H—

February 4, 2003 © Ingolf H. Krueger CSE/CAL(IT)?

Overview

e UML-RT/UML 2.0

— QOverview
— Capsules

— Protocols

— Evaluation

— Ports and Connectors

— Behavior Description

e UML: Good Enough for Specifying Architectures?

o Example: Autononomous Transport System
e Summary and Outlook

February 4, 2003

© Ingolf H. Krueger

CSE/CAL-(IT)?

10

Capsules

e Every capsule represents a potentially active object

e Communication between capsule and environment:
exclusively via ports
— no public data
— no public methods

e Hierarchical decomposition into sub-capsules

e Every capsule has (at most) one state automaton
describing the capsule’s behavior
—> capsule is “controller” for its sub-capsules
—> see architectural pattern “recursive control”

February 4, 2003 © Ingolf H. Krueger CSE/CAL-(IT)? 11

Capsules

e Upon its instantiation a capsule builds its internal
structure (sub-capsules)

e The capsule can change its internal structure over time
—> Architectural integrity

Name of Capsule

/\ <<Capsu|e>> J

Capsule CLS «——
ports
Port Name cp : CommandHandler

mp[2] : Initiator Protocol Role

February 4, 2003 © Ingolf H. Krueger CSE/CAL-(IT)? 12

Overview

e UML-RT/UML 2.0

— Overview
— Capsules

— Protocols

— Evaluation

— Ports and Connectors

— Behavior Description

e UML: Good Enough for Specifying Architectures?

o Example: Autononomous Transport System
e Summary and Outlook

February 4, 2003

© Ingolf H. Krueger

CSE/CAL-(IT)?

13

Ports and Connectors

e Port

— belongs to precisely one capsule
(the capsule creates and destroys its ports)

— has identity and state
— has behavior
— implements the role of its capsule in a protocol

e Kinds of ports
— Relay-Ports
e relay signals between capsules and their sub-capsules
e controlled interface export
— End-Ports
¢ relay signals between capsules and their state automata
e have queues for signals already received, but not yet processed

February 4, 2003 © Ingolf H. Krueger CSE/CAL-(IT)? 14

Ports and Connectors

Port Name

Simplified Representation

«capsule»
CLS

L ports
cp : CommandProtocol.Handler;

mp[2] : MotorlirotocoI.Initiator;

\ Protocol-Role

(qualified with protocol name)

February 4, 2003

© Ingolf H. Krueger

CSE/CAL-(IT)?

15

Ports and Connectors

Simplified Representation in Collaboration Diagrams

«capsule»

:CommandSource
]
Port Symbol
cp:CommandProtocol.Handler
L
«capsule» n «capsule» B «capsule»
Im:Motor :CLS rm:Motor

mp[1]: mp[2]:
Wrotocol.lnitiator MotorProtocol.Initiator

Port Name and Protocol-Role

February 4, 2003 © Ingolf H. Krueger CSE/CAL-(IT)? 16

Ports and Connectors

End-Port

Relay-Port
Relay-Port /\ Y

«capsule»
L :CLS
@_. «capsule»

:CommandHandler

I

Im:Motor :MotorControl rm:Motor

« » « » « »
capsuIeLJlj = 18 capsule —m +capsu|e

February 4, 2003 © Ingolf H. Krueger CSE/CAL-(IT)? 17

Overview

e UML-RT/UML 2.0

— Overview
— Capsules

— Protocols

— Evaluation

— Ports and Connectors

— Behavior Description

e UML: Good Enough for Specifying Architectures?

o Example: Autononomous Transport System
e Summary and Outlook

February 4, 2003

© Ingolf H. Krueger

CSE/CAL-(IT)?

18

Protocols

Example: Simple Communication Protocol

«protocolRole»
SenderRole

incoming

ack_start
ack data
ack_end

«protocolRole»
ReceiverRole

SenderRole ReceiverRole

outgoing
req_start

data
reg_end

j—reg start >;
|< ack start |
|

|
| data
1€ ack data
|
|

data)
|
|< ack data

| reg_end 9:

I¢ ack end |

incoming
req_start

data
reg_end

outgoing
ack_start

ack data
ack_end

February 4, 2003

© Ingolf H. Krueger

CSE/CAL-(IT)?

19

Protocols

Example

«protocolRole»
SenderRole

incoming

ack_start
ack data
ack_end

outgoing
req_start

data
reg_end

: Simple Communication Protocol

«protocolRole»
ReceiverRole

— incoming

req_start
data
req_end

_ outgoing
ack_start
ack _data
ack_end

__—7

“Conjugated” sender role

February 4, 2003

© Ingolf H. Krueger CSE/CAL*(IT)?

20

Protocols

Simplification for Point-to-Point Protocols

«protocol»
Transmission

Base Role for Protocol
(Sender View)

incoming
ack_start

ack data
ack_end

Base Role

sp:
Transmission

outgoing
req_start

data
reg_end

<<capsu|e>>. o «capsule»
| - .

Sender Receijver

rp:

Transmission~

-

Conjugated (Inverse) Role

February 4, 2003

© Ingolf H. Krueger CSE/CAL*(IT)?

21

Overview

e UML-RT/UML 2.0

— Overview
— Capsules

— Protocols

— Evaluation

— Ports and Connectors

— Behavior Description

e UML: Good Enough for Specifying Architectures?

o Example: Autononomous Transport System
e Summary and Outlook

February 4, 2003

© Ingolf H. Krueger

CSE/CAL-(IT)?

22

Behavior Description in UML-RT

e Every capsule that has its own behavior is associated
with a UML-statechart

e Max one statechart per capsule

e Hierarchical composition:
— every sub-capsule can have its own statechart

February 4, 2003 © Ingolf H. Krueger CSE/CAL(IT)?

Behavior Description in UML-RT

Doing without AND-states
e Concurrency via separate capsules
e Synchronization via explicit communication

e Result: stronger decoupling

February 4, 2003 © Ingolf H. Krueger CSE/CAL-(IT)?

24

Behavior Description in UML-RT

Encapsulation on the Level of States

Chain State

/ \ / entry/ae\

el/al
(L2 ()L

\exit/ax / \ /

e States become exchangeable entities

e Helps avoid “stub states”

February 4, 2003 © Ingolf H. Krueger CSE/CAL-(IT)? 25

Overview

e UML-RT/UML 2.0

— Overview
— Capsules

— Protocols

— Evaluation

— Ports and Connectors

— Behavior Description

e UML: Good Enough for Specifying Architectures?

o Example: Autononomous Transport System
e Summary and Outlook

February 4, 2003

© Ingolf H. Krueger

CSE/CAL-(IT)?

26

Evaluation

UML-RT is much better suited for the specification of software
architectures and services than “pure” UML:

— hierarchic component model,
precise behavior descriptions

— interface concept

— protocols and connectors
Potentials for improvement (among others):

— m2m communication instead of p2p

— association of interaction patterns with ports/connectors

— methodological guidelines for iterative service development
Future:

— (methodological!) treatment of Quality-of-Service aspects

February 4, 2003 © Ingolf H. Krueger CSE/CAL-(IT)? 27

Overview

e UML-RT/UML 2.0

— Overview
— Capsules

— Protocols

— Evaluation

— Ports and Connectors

— Behavior Description

e UML: Good Enough for Specifying Architectures?

o Example: Autononomous Transport System
e Summary and Outlook

February 4, 2003

© Ingolf H. Krueger

CSE/CAL-(IT)?

28

Systematic Construction of Reliable SW-Systems

1. Develop/Refine domain model

2. Capture interaction patterns

3. Derive interface specification

e messages/signals, types

e behavior

4. Decompose components hierarchically

February 4, 2003 © Ingolf H. Krueger CSE/CAL(IT)?

Example Application: Autonomous Transport System

MachineTools

process workpieces

Holons

post jobs to be
processed (“deliver

 negotiate with OutStorage and MachineTools for jobs workpiece”)

e carry workpieces between source and destination

e hold internal database representing the system’s status negotiate with
— Holons via

broadcasting

InStorage OutStorage

e holds workpieces yet to be processed ¢ holds workpieces after processing

¢ holds “production plan/program”
(number/kind of workpieces to be processed per day)

February 4, 2003 © Ingolf H. Krueger CSE/CAL-(IT)? 30

Example Application: Autonomous Transport System

Architectural Aspects:

1]
w ﬁ

e components e p2p communication
e interfaces/behavior e broadcasting
e hierarchy/decomposition

February 4, 2003 © Ingolf H. Krueger CSE/CAL(IT)? 31

Domain Model

'3
Status Database L
1 |>|<

Workpiece |«

1| |*
0..1 1] . 0..1
| MachineTool | Job [| HTS
X 0.1 1) * 1
2
Location

0.1 0..1 1

“~ Storage T71| ProdProg

j ZL A 1

InStorage OutStorage

1 1

L CommunicationSystem |

February 4, 2003 © Ingolf H. Krueger CSE/CAL-(IT)?

Architectural Pattern for Broadcasting

HTS
Bl Database W SingleJobControl -
*

Prodsy .

| i
HTS L+—m

s —

February 4, 2003 © Ingolf H. Krueger CSE/CAL-(IT)?

33

Sequence Charts for Broadcasting

component axis ‘

time

m:MachineTool

requestWP()

h:HTS

drive to
location 1

releaseWP()

$ jTransporting(jobno)

local action ‘

[:HTS

<i signal exchange

N/

broadcasting

update
JobStatus()

update
<—' JobStatus()

February 4, 2003

© Ingolf H. Krueger

CSE/CAL-(IT)? 34

Sequence Charts for Broadcasting

state label # h:HTS I:HTS
jOrder(jobno)
compute bid compute bid
jBid(Gjobno, h) | |
. jBid(jobno, |)
A jEndOfNegotiation(jobno !
store job
waiting waiting

February 4, 2003

© Ingolf H. Krueger

CSE/CAL-(IT)? 35

Derivation of Component Structure

Captured scenarios & domain model indicate:

e active vs. passive components

e Point-to-point communication requirements

broadcasting requirements

ProdSys

InStorage

OutStorage

n n
HTS [——] MachineTool

February 4, 2003

© Ingolf H. Krueger CSE/CAL*(IT)?

36

Derivation of Interface Behavior

Captured scenarios indicate also:

e names and types of signals

e ordering of signal flow

I m:MachineTool h:HTS I:HTS
m:MachineTool h:HTS I:HTS
waiting waiting
jOrder(jobno)
jT!
compute bid compute bid
iBid(jobno, h) |
jBid(jobno, 1)
jEndOfNegotiation(jobno
store job

S~—

HTS []

\/ i

February 4, 2003

© Ingolf H. Krueger

CSE/CAL-(IT)?

37

Overview

e UML-RT/UML 2.0

— Overview
— Capsules

— Protocols

— Evaluation

— Ports and Connectors

— Behavior Description

e UML: Good Enough for Specifying Architectures?

o Example: Autononomous Transport System
e Summary and Outlook

February 4, 2003

© Ingolf H. Krueger

CSE/CAL-(IT)?

38

Summary and Outlook

Modeling “in the real world”:

often — if at all — done using UML/UML-RT/UML 2.0

UML-RT/UML 2.0 better equipped for modeling software

architectures than UML versions < 2.0

Starting point for component- and service-oriented

development: domain model, interaction scenarios

How to avoid over-modeling and over-engineering?

February 4, 2003 © Ingolf H. Krueger CSE/CAL(IT)?

39

	Modeling SW-Architectures using UML-RT/UML 2.0
	Overview
	Is the UML Good Enough?
	Overview
	What is UML-RT?
	The Component Model of UML-RT
	Hierarchical Composition in UML-RT
	Example: UML-statecharts
	Signal-Based Communication
	Overview
	Capsules
	Capsules
	Overview
	Ports and Connectors
	Ports and Connectors
	Ports and Connectors
	Ports and Connectors
	Overview
	Protocols
	Protocols
	Protocols
	Overview
	Behavior Description in UML-RT
	Behavior Description in UML-RT
	Behavior Description in UML-RT
	Overview
	Evaluation
	Overview
	Systematic Construction of Reliable SW-Systems
	Example Application: Autonomous Transport System
	Example Application: Autonomous Transport System
	Domain Model
	Architectural Pattern for Broadcasting
	Sequence Charts for Broadcasting
	Sequence Charts for Broadcasting
	Derivation of Component Structure
	Derivation of Interface Behavior
	Overview
	Summary and Outlook

