Business Collaborations, Business Transactions, Services & Actions

1 Introduction

This paper attempts to summarize the current issues and problems around mapping Business Collaborations, Business Transactions from the ebXML BPSS specification with Services and Actions from ebXML MS specification.

The author is not as expert ebXML BPSS when compared with ebXML MS and therefore apologizes in advance for any inaccuracies.

The paper contains:

· A high-level description of a three-step Business Collaboration use-case for creating a purchase order

· Alternative ways in which this Business Collaboration could be mapped to Services and Actions for use with ebXML MS including

· A description of some of the problems/issues that arise, together with suggested solutions to the problems

There is no doubt that there are other alternatives – this paper is meant to be used as a basis of discussion.

2 Business Collaboration Use Case

This use case is illustrated by the diagram below.

[image: image1.wmf]Order Management

Business Process Collaboration

ABC Co

Buyer

Auth Role

XYZ Inc

Supplier

Auth Role

Change

Order

Responding

Activity

Change

Order

Requesting

Activity

Fix

Price

Requesting

Activity

Fix

Price

Responding

Activity

Create

Order

Responding

Activity

Create

Order

Requesting

Activity

Change Order

Business Transaction

Change Order

Document

Change Order Response

Document

Create Order

Business Transaction

Purchase Order

Document

PO Acknowledgment

Document

Fix Price

Business Transaction

Price Check Request

Document

Price Check Response

Document

1

2

Figure 2‑1 Order Management Business Process Collaboration

The Order Management Business Process Collaboration involves the following:

· An Optional Fix Price Business Transaction that can be used to "fix" the price of a product prior to ordering, followed by ...

· A required Create Order Business Transaction that creates an order that optionally references (in the Purchase Order document) a price obtained by the Price Check BT, followed by ...

· Zero or more Change Order Business Transactions that modify the order after it has been created by the Buyer but before it is shipped by the supplier.

Note that the Fix Price Business Transaction is used in other Business Process Collaborations including:

· Product Information Gathering - an overnight batch process that gathers price information for critical products for use in a data mining application

· Price Query - a Query that allows a user to obtain a price in real time for comparison purposes with no price fixing since no order is placed

3 Alternative Approaches

3.1 Set Service to the Business Process Collaboration

The ebXML MS spec (version 1.0 lines 762-4) states:

"Note: In the context of an ebXML business process model, an action equates to the lowest possible role based activity in the [ebBPSS] (requesting or responding role) and a service is a set of related actions for an authorized role within a party."

This suggests that the ebXML MS "Action" should be set to the ebBPSS activity but is unclear what service should be set to.

One option for setting "Service" is to set it to the value Business Process Collaboration name.

This would lead to message contents for Message 1 and 2 above as something like:

· Message 1:

<MessageHeader>

 <From><PartyId>ABCco</PartyId></From>

 <To><PartyId>XYZinc</PartyId></To>

 <CPAId>ABC-XYZ-CPA</CPAId>

 <ConversationId>5678</ConversationId

 <Service>OrderManagement</Service>

 <Action>PriceCheck</Action>

 <MessageData>

 <MessageId>79465</MessageId>

 ...

 </MessageData>

 ...

</MessageHeader>

· Message 2:

<MessageHeader>

 <From><PartyId>XYZinc</PartyId></From>

 <To><PartyId>ABCco</PartyId></To>

 <CPAId>ABC-XYZ-CPA</CPAId>

 <ConversationId>5678</ConversationId

 <Service>OrderManagement</Service>

 <Action>PriceCheck</Action>

 <MessageData>

 <MessageId>56723</MessageId>

 <RefToMessageId>79465</RefToMessageId>

 ...

 </MessageData>

 ...

</MessageHeader>

If ABCco and XYZInc both support the same "Price Check" there is a problem since from looking at Service and Action you can't distinguish which message is the request and which the response.

Approaches to solving this problem include:

· Include the Sending or Destination Role in the Service or Action

· Make the document name the Action

These are discussed below.

3.2 Include Role as well as Business Collaboration in the Service

If we do this then adding the Destination Role to the Service would result in the following as typical messages:

· Message 1:

<MessageHeader>

 <From><PartyId>ABCco</PartyId></From>

 <To><PartyId>XYZinc</PartyId></To>

 <CPAId>ABC-XYZ-CPA</CPAId>

 <ConversationId>5678</ConversationId

 <Service>SupplierOrderManagement</Service>

 <Action>PriceCheck</Action>

 <MessageData>

 <MessageId>79465</MessageId>

 ...

 </MessageData>

 ...

</MessageHeader>

· Message 2:

<MessageHeader>

 <From><PartyId>XYZinc</PartyId></From>

 <To><PartyId>ABCco</PartyId></To>

 <CPAId>ABC-XYZ-CPA</CPAId>

 <ConversationId>5678</ConversationId

 <Service>BuyerOrderManagement</Service>

 <Action>PriceCheck</Action>

 <MessageData>

 <MessageId>56723</MessageId>

 <RefToMessageId>79465</RefToMessageId>

 ...

 </MessageData>

 ...

</MessageHeader>

This seems to fix the problem.

Alternatively, if adding Destination Role to the action would result in the following as typical messages:

· Message 1:

<MessageHeader>

 <From><PartyId>ABCco</PartyId></From>

 <To><PartyId>XYZinc</PartyId></To>

 <CPAId>ABC-XYZ-CPA</CPAId>

 <ConversationId>5678</ConversationId

 <Service>OrderManagement</Service>

 <Action>SupplierPriceCheck</Action>

 <MessageData>

 <MessageId>79465</MessageId>

 ...

 </MessageData>

 ...

</MessageHeader>

· Message 2:

<MessageHeader>

 <From><PartyId>XYZinc</PartyId></From>

 <To><PartyId>ABCco</PartyId></To>

 <CPAId>ABC-XYZ-CPA</CPAId>

 <ConversationId>5678</ConversationId

 <Service>OrderManagement</Service>

 <Action>BuyerPriceCheck</Action>

 <MessageData>

 <MessageId>56723</MessageId>

 <RefToMessageId>79465</RefToMessageId>

 ...

 </MessageData>

 ...

</MessageHeader>

This also seems to fix the problem.

3.3 Make the Document Name the Action

Another alternative is to make the Document Name the action. This would give messages that looked like:

· Message 1:

<MessageHeader>

 <From><PartyId>ABCco</PartyId></From>

 <To><PartyId>XYZinc</PartyId></To>

 <CPAId>ABC-XYZ-CPA</CPAId>

 <ConversationId>5678</ConversationId

 <Service>OrderManagement</Service>

 <Action>PriceCheckRequest</Action>

 <MessageData>

 <MessageId>79465</MessageId>

 ...

 </MessageData>

 ...

</MessageHeader>

· Message 2:

<MessageHeader>

 <From><PartyId>XYZinc</PartyId></From>

 <To><PartyId>ABCco</PartyId></To>

 <CPAId>ABC-XYZ-CPA</CPAId>

 <ConversationId>5678</ConversationId

 <Service>OrderManagement</Service>

 <Action>PriceCheckResponse</Action>

 <MessageData>

 <MessageId>56723</MessageId>

 <RefToMessageId>79465</RefToMessageId>

 ...

 </MessageData>

 ...

</MessageHeader>

This seems more intuitive. For example, you could "read" the message header of message 1 as follows:

Q. What service do you want to access?
A. The OrderManagement service

Q. What do you want to do with the Order Management service?
A. I want to request a PriceCheck

For message 2, the equivalent would be:

Q. What service do you want to access?
A. The OrderManagement service

Q. What do you want to do with the Order Management service?
A. I want to respond to a PriceCheck

This approach also solves the problem but means that the action is based on the document name rather than the business activity.

4 Service and Action

So what does Service and Action really mean? In ebXML MS, the historic reason for inventing Service and Action was to "mirror" Object Classes and Methods, where the Service was the Object Class and the Action the Method so that they could be used when routing a message to identify which application to send a message to.

This implies that you do not send a message directly to a Business Activity, but instead to a Service that supports a Business Activity. Diagrammatically, this is illustrated by the diagram below.

[image: image2.wmf]Order Management

Business Process Collaboration

ABC Co

Buyer

Role

XYZ Inc

Supplier

Role

Change

Order

Responding

Activity

Change

Order

Requesting

Activity

Fix

Price

Requesting

Activity

Fix

Price

Responding

Activity

Create

Order

Responding

Activity

Create

Order

Requesting

Activity

Supplier

Order

Manage

-

ment

Service

Buyer

Order

Manage

-

ment

Service

Change Order

Business Transaction

Change Order

Document

Change Order Response

Document

Create Order

Business Transaction

Create Order

Document

Create Order Response

Document

Fix Price

Business Transaction

Price Check Request

Document

Price Check Response

Document

1

2

Figure 4‑1 Business Process, Business Transactions, Services and Actions

Again, this seems to work.

5 The Common Service Problem

The business use case described earlier stated that the Price Check Business Transaction is used in three different ways:

· Product Price Fixing – the requirement to fix a price prior to submitting an order

· Product Information Gathering - an overnight batch process that gathers price information for critical products for use in a data mining application, and

· Online Price Check - a Query that allows a user to obtain a price in real time for comparison purposes with no order placement

The first example is illustrated by the diagrams above. The last two are illustrated by the diagrams below:

[image: image3.wmf]Product Information

Business Process Collaboration

ABC Co

Info Requester

Auth Role

XYZ Inc

Info Provider

Auth Role

Catalog

Info

Requesting

Activity

Fix

Price

Responding

Activity

Catalog Info

Business Transaction

Catalog Data Request

Document

Catalog Data Response

Document

Price

Info

Requesting

Activity

Price

Info

Responding

Activity

Price Info

Business Transaction

Price Check Request

Document

Price Check Response

Document

1

2

Delivery

Info

Requesting

Activity

Delivery

Info

Responding

Activity

Delivery Info

Business Transaction

Delivery Info Request

Document

Delivery Info Response

Document

Product Information

Business Process Collaboration

ABC Co

Info Requester

Auth Role

XYZ Inc

Info Provider

Auth Role

Catalog

Info

Requesting

Activity

Fix

Price

Responding

Activity

Catalog Info

Business Transaction

Catalog Data Request

Document

Catalog Data Response

Document

Price

Info

Requesting

Activity

Price

Info

Responding

Activity

Price Info

Business Transaction

Price Check Request

Document

Price Check Response

Document

1

2

Delivery

Info

Requesting

Activity

Delivery

Info

Responding

Activity

Delivery Info

Business Transaction

Delivery Info Request

Document

Delivery Info Response

Document

Figure 5‑1 Supplier Information Business Process Collaboration

[image: image4.wmf]Price Query

Business Process Collaboration

ABC Co

Purchaser

Auth Role

XYZ Inc

Supplier

Auth Role

Price

Query

Requesting

Activity

Price

Query

Responding

Activity

Price Query

Business Transaction

Price Check Request

Document

Price Check Response

Document

1

2

Figure 5‑2 Price Query Business Process Collaboration

Following previous conventions, the Service is derived from the Business Collaboration. For example if we consider the Supplier Information Collaboration then the messages 1 and 2 could look like:

· Message 1:

<MessageHeader>

 <From><PartyId>ABCco</PartyId></From>

 <To><PartyId>XYZinc</PartyId></To>

 <CPAId>ABC-XYZ-CPA</CPAId>

 <ConversationId>5678</ConversationId

 <Service>ProductInfo</Service>

 <Action>PriceCheckRequest</Action>

 <MessageData>

 <MessageId>79465</MessageId>

 ...

 </MessageData>

 ...

</MessageHeader>

· Message 2:

<MessageHeader>

 <From><PartyId>XYZinc</PartyId></From>

 <To><PartyId>ABCco</PartyId></To>

 <CPAId>ABC-XYZ-CPA</CPAId>

 <ConversationId>5678</ConversationId

 <Service>ProductInfo</Service>

 <Action>PriceCheckResponse</Action>

 <MessageData>

 <MessageId>56723</MessageId>

 <RefToMessageId>79465</RefToMessageId>

 ...

 </MessageData>

 ...

</MessageHeader>

5.1 Buyer and Supplier Perspectives

From a Buyer perspective, there are three distinct business processes going on for different reasons:

· Product Price Fix

· Product Information Gathering

· Price Query

... but from the Supplier perspective, there is just one process which is a Price Check Query. The supplier probably does not care why his customers are asking about the current prices of her products. She is just pleased that they are, as the queries are likely to increase the chances of making a sale.

However, with the current method of specifying Service and Action based on the business process collaboration, there are a number of problems:

1) The Supplier needs to distinguish between the different reasons why their customer is making a price check query

2) Before the Customer can use the price check query for a new reason they need to provide the supplier with details of the new business process

3) The customer, by providing information about a new business process, is potentially providing confidential information to the supplier that they don't want to give away.

I think these represent a barrier to adoption.

5.2 Some Ideas for a Solution

In this section, I put forward some ideas for a solution to these problems. Note these are just ideas, comments and discussion are welcomed.

The basic idea is to treat the destination for a message as a Service rather than a business activity

If necessary, the business transaction and business collaboration that is occurring could be separately recorded along the lines of a RosettaNet PIP Id.

The diagrams below illustrate this for the Order Management and Price Check Business Collaborations:

[image: image5.wmf]Order Management

Business Process Collaboration

ABC Co

Buyer

Role

XYZ Inc

Supplier

Role

Change

Order

Responding

Activity

Change

Order

Requesting

Activity

Fix

Price

Requesting

Activity

(Fix

Price

Responding

Activity)

Create

Order

Responding

Activity

Create

Order

Requesting

Activity

Supplier

Order

Manage

-

ment

Service

Buyer

Order

Manage

-

ment

Service

Change Order

Business Transaction

Change Order

Document

Change Order Response

Document

Create Order

Business Transaction

Create Order

Document

Create Order Response

Document

Fix Price

Business Transaction

Price Check Request

Document

Price Check Response

Document

1

2

Price

Check

Service

Although the Supplier is

carrying out a Fix Price

Responding Activity, he

is not aware of this. He

is thinks he is just

providing a Price Check

Service

Figure 5‑3 Price Check Common Service in Order Management

[image: image6.wmf]Price Query

Business Process Collaboration

ABC Co

Purchaser

Role

XYZ Inc

Supplier

Role

Price

Query

Requesting

Activity

(Price

Query

Responding

Activity)

Price

Query

Service

Price Query

Business Transaction

Price Check Request

Document

Price Check Response

Document

1

2

Price

Check

Service

Although the Supplier is

carrying out a Price

Query Responding

Activity, he is not aware

of this. He is thinks he is

just providing a Price

Check Service

Figure 5‑4 Price Check Common Service in Price Query

In messages, this could look like:

· Message 1:

<MessageHeader>

 <From><PartyId>ABCco</PartyId></From>

 <To><PartyId>XYZinc</PartyId></To>

 <CPAId>ABC-XYZ-CPA</CPAId>

 <ProcessType>FixPrice</ProcessType>

 <ConversationId>5678</ConversationId

 <Service>PriceCheck</Service>

 <Action>PriceCheckRequest</Action>

 <MessageData>

 <MessageId>79465</MessageId>

 ...

 </MessageData>

 ...

</MessageHeader>

· Message 2:

<MessageHeader>

 <From><PartyId>XYZinc</PartyId></From>

 <To><PartyId>ABCco</PartyId></To>

 <CPAId>ABC-XYZ-CPA</CPAId>

 <ProcessType>FixPrice</ProcessType>

 <ConversationId>5678</ConversationId

 <Service>PriceCheck</Service>

 <Action>PriceCheckResponse</Action>

 <MessageData>

 <MessageId>56723</MessageId>

 <RefToMessageId>79465</RefToMessageId>

 ...

 </MessageData>

 ...

</MessageHeader>

Note that a new line has been added to identify the type of business process that is being used:

 <ProcessType>FixPrice</ProcessType>

This would need to vary depending on the business process. For example in order management it could be:

 <ProcessType>OrderManagement</ProcessType>

Also note that the supplier followed the rule "Include the ProcessType from the message received in the message returned."

6 The Return Path Problem

If the same service can be requested by two different applications then there is a problem with knowing how to route a message back to the correct application. This is illustrated by the diagram below:

[image: image7.wmf]XYZ Inc

ABC Co

Price

Query

Business

Process

Collaboration

Order

Management

Business

Process

Collaboration

Buyer

Order

Management

Service

Price

Query

Service

Price Check Request

Document

Price Check Response

Document

Price

Check

Service

ABC

Mailroom

MSH

Order

Management

MSH

Customer

Refund

MSH

Price

Check

MSH

XYZ

Mailroom

MSH

1

2

Figure 6‑1 The Return Path Problem

In the diagram above, the outbound message (dotted red line) is sent to the Price Check Service operated by XYZ Inc. This results in a Price Check Response being sent back to ABC Co. To keep agreements (and implementations) simple, ABC Co has implemented a mailroom MSH that is used to accept all external messages. This mailroom MSH needs to determine which Business Process or Service to send the message to. How does it do this? Currently the ebXML Messaging Spec would require the message to look something like this:

<MessageHeader>

 <From><PartyId>XYZinc</PartyId></From>

 <To><PartyId>ABCco</PartyId></To>

 <CPAId>ABC-XYZ-CPA</CPAId>

 <ConversationId>5678</ConversationId

 <Service>PriceCheck</Service>

 <Action>PriceCheckResponse</Action>

 <MessageData>

 <MessageId>56723</MessageId>

 <RefToMessageId>79465</RefToMessageId>

 ...

 </MessageData>

 ...

</MessageHeader>

There is no information in this message that indicates which business process collaboration or service should receive the response.

One way to fix this problem is to include the ProcessType, for example:

<MessageHeader>

 <From><PartyId>XYZinc</PartyId></From>

 <To><PartyId>ABCco</PartyId></To>

 <CPAId>ABC-XYZ-CPA</CPAId>

 <ProcessType>FixPrice</ProcessType>

 <ConversationId>5678</ConversationId

 <Service>PriceCheck</Service>

 <Action>PriceCheckResponse</Action>

 <MessageData>

 <MessageId>56723</MessageId>

 <RefToMessageId>79465</RefToMessageId>

 ...

 </MessageData>

 ...

</MessageHeader>

The ProcessType could then be mapped to application/service in order to determine where to send a message to, but would require a look up.

The other alternative is to include the From Service and From Action in the message. For example:

· Message 1:

<MessageHeader>

 <From><PartyId>ABCco</PartyId></From>

 <FromService>BuyerOrderManagement</FromService>

 <FromAction>FixPriceResponse</FromAction>

 <To><PartyId>XYZinc</PartyId></To>

 <CPAId>ABC-XYZ-CPA</CPAId>

 <ConversationId>5678</ConversationId

 <Service>PriceCheck</Service>

 <Action>PriceCheckRequest</Action>

 <MessageData>

 <MessageId>79465</MessageId>

 ...

 </MessageData>

 ...

</MessageHeader>

· Message 2:

<MessageHeader>

 <From><PartyId>XYZinc</PartyId></From>

 <To><PartyId>ABCco</PartyId></To>

 <FromService>PriceCheck</FromService>

 <FromAction>PriceCheckResponse</FromAction>

 <CPAId>ABC-XYZ-CPA</CPAId>

 <ConversationId>5678</ConversationId

 <Service>BuyerOrderManagement</Service>

 <Action>FixPriceResponse</Action>

 <MessageData>

 <MessageId>56723</MessageId>

 <RefToMessageId>79465</RefToMessageId>

 ...

 </MessageData>

 ...

</MessageHeader>

In this case the FromService and FromAction are included in Message 1. These are then used to populate the Service and Action elements in the response. This means that the Mailroom MSH at ABC Co can use this information to determine which Application/Service should receive the message.

7 The Delivery Receipt, ErrorMessage, etc. Problem

This problem is associated with routing delivery receipts, error messages, message statues Requests & Responses, and MSH Pings/Pongs etc, back to the correct destination.

Consider the previous example where you have two different applications both making a Price Check request on a supplier, only in this instance, there a delivery receipt is requested and so the Receiving MSH at XYZ Inc needs to return a Delivery Receipt (in addition to any other message).

This is illustrated by the following diagram:

[image: image8.wmf]XYZ Inc

ABC Co

Price

Query

Business

Process

Collaboration

Order

Management

Business

Process

Collaboration

Buyer

Order

Management

Service

Price

Query

Service

Price Check Request

Document

(Messaging) Delivery

Receipt

Document

Price

Check

Service

ABC

Mailroom

MSH

Order

Management

MSH

Customer

Refund

MSH

Price

Check

MSH

XYZ

Mailroom

MSH

Figure 7‑1 The Delivery Receipt Problem

In this case, the ABC Mailroom MSH would probably need to notify the correct Business Process Collaboration or Service that the message was received. However, it can't easily do this. Consider the following example that describes what the current messaging specification would require that the Delivery Receipt looked like:

· Message 1:

<MessageHeader>

 <From><PartyId>ABCco</PartyId></From>

 <To><PartyId>XYZinc</PartyId></To>

 <CPAId>ABC-XYZ-CPA</CPAId>

 <ConversationId>5678</ConversationId

 <Service>OrderManagement</Service>

 <Action>PriceCheck</Action>

 <MessageData>

 <MessageId>79465</MessageId>

 ...

 </MessageData>

 ...

</MessageHeader>

· Message 2:

<MessageHeader>

 <From><PartyId>XYZinc</PartyId></From>

 <To><PartyId>ABCco</PartyId></To>

 <CPAId>ABC-XYZ-CPA</CPAId>

 <ConversationId>5678</ConversationId

 <Service>uri:www.ebxml.org/messageService/</Service>

 <Action>DeliveryReceipt</Action>

 <MessageData>

 <MessageId>56723</MessageId>

 <RefToMessageId>79465</RefToMessageId>

 ...

 </MessageData>

 ...

</MessageHeader>

There is no information in message 2 that can be used directly by the ABC MSH to determine which application/service should receive the message.

The only way that the author can think of that would work using the current specification, is for the ABC MSH, when it sends the message, to note which service sent the message and save the MessageId. Then when the error message comes back, it could correlate the RefToMessageId in the Delivery Receipt with the original message to work out which service/application to notify.

The problem with this is that the sending MSH will have to remember the MessageId and sending application of EVERY message sent, even if the message is being sent unreliably.

Another approach is to adopt a variation of the approach described in section 6 as illustrated in the following examples:

· Message 1:

<MessageHeader>

 <From><PartyId>ABCco</PartyId></From>

 <FromService>BuyerOrderManagement</FromService>

 <FromAction>FixPriceResponse</FromAction>

 <To><PartyId>XYZinc</PartyId></To>

 <CPAId>ABC-XYZ-CPA</CPAId>

 <ConversationId>5678</ConversationId

 <Service>PriceCheck</Service>

 <Action>PriceCheckRequest</Action>

 <MessageData>

 <MessageId>79465</MessageId>

 ...

 </MessageData>

 ...

</MessageHeader>

· Message 2:

<MessageHeader>

 <From><PartyId>XYZinc</PartyId></From>

 <To><PartyId>ABCco</PartyId></To>

 <FromService>PriceCheck</FromService>

 <FromAction>PriceCheckResponse</FromAction>

 <CPAId>ABC-XYZ-CPA</CPAId>

 <ConversationId>5678</ConversationId

 <Service>BuyerOrderManagement</Service>

 <Action>uri:www.ebxml.org/messageService/DeliverReceipt</Action>

 <MessageData>

 <MessageId>56723</MessageId>

 <RefToMessageId>79465</RefToMessageId>

 ...

 </MessageData>

 ...

</MessageHeader>

In this example, the From Service is used to identify the Service that needs to be notified and the Action alone identifies that it is a DeliveryReceipt. This would make it easy for the ABC Co Mailroom MSH to work out which Service or Application to notify that the message had been delivered.

This solution should also solve the similar problems for error messages, Message Status Responses and MSH Pings/Pongs.

David Burdett

Solution Strategy, Commerce One

4400 Rosewood Drive, Pleasanton, CA 94588, USA

Tel/VMail: +1 (925) 520 4422; Cell: +1 (925) 216 7704

mailto:david.burdett@commerceone.com; Web: http://www.commerceone.com

PAGE
14

