Draft Proposal for Changes Related to Security in CPPA Version 1.1

(Many issues indicated below. Will wait awhile for input and after that, propose resolutions.)

For version 1.1 of the CPPA schema, several changes may improve the CPPA’s treatment of security capabilities and requirements. Many changes being suggested here have been previously suggested in the ebXML Security Risks whitepaper [ref]. This proposal begins by discussing schema centered changes and will advance to textual descriptions, once the schema changes seem stable, and have gathered some initial approval.

The first proposal is to augment the CertificateRef element by a SecurityRef element. Like the CertificateRef, SecurityRef would be an IDREF pointing to an element, but in this case a SecurityDetails element.

The SecurityDetails element would be a new grouping of security related details that can include the following elements: TrustAnchor, SecurityPolicy, AuthenticationCredential.

[AuthenticationCredential and SecurityPolicy still under review. These elements would themselves have “content-models” consisting of additional elements, though the detailed discussion of what is needed here will be deferred to the next version of this proposal

[Issue Section

1: Should the Appendix C profiles in the 1.1 Oasis Messaging specification form the basis for profile registration?

2.Should this be just one “type” of profile specification (so that we add a type attribute, put in an API for Messaging, and allow extensions in that manner).

3. Should there be a built-in enumeration and type attribute for CPPA defined SecurityPolicies?

4. What PKI related standards group might have defined policies or policy elements that could be used for the SecurityPolicy element’s values?

5. For AuthenticationCredential, what standards bodies have defined ranges of security credential mechanisms that we could just take over?

6. Should we have built-ins, types, as for SecurityPolicy?

]

The SecurityRef element could occur where CertificateRef currently is found. The current proposal is to modify the1.0 CPPA schema so that it will be possible to have the current locations changed to have content models consisting of an alternation over the elements. In addition, The cardinality should be opened up to allowed repetition, of at least two. So the schema modification would involve replacing what is currently present at locations where the element CertificateRef currently can occur by the following complexType:

 <complexType>

 <sequence>

 <choice minOccurs=”0” maxOccurs="unbounded" >

 <element ref="CertificateRef" minOccurs="0" >

<attribute name="certId" type="IDREF" use="required"/>
 </element>

 <element ref="SecurityRef" minOccurs="0">

<attribute name="securityId" type="IDREF" use="required"/>
 </element>

 </choice>

 </sequence>

 </complexType>

The additional elements would be:

<element name=”SecurityRef”>

<attribute name= “securityId” type=”IDREF” use=”required”>

</attribute>

</element>

An additional attribute, “keypairUsage,” would be added to CertificateRef. CertificateRef could be used as it currently is, to indicate the key to use for Digital Enveloping KeyExchange (when in the receiving role), to indicate the key used for Digital Signatures for support of Authentication(when sending signed stuff), NonRepudiationofOrigin, or NonRepudiationofReceipt, and the keys used at the transport level for server or client side authentication. The enumerated values, and extension mechanism, for this attribute are TBD.

Here are the updated Schema elements:

<element name=”CertificateRef”>

<attribute name= “certId” type=”IDREF” use=”required”>

<attribute name= “keypairUsage” type=”IDREF” use=”optional”>

</element>

[Structural Organization Issue:

I might be able to be talked out of putting the “keypairUsage” attribute under the CertificateRef element. However, the idea here is that a given certificate may be referenced multiple times, and in each location of reference, a different primary usage may be relevant. While I think this makes sense, I am open to other organizations and conventions. See below for more information about keypairUsage attributes. Also, do we need to worry about multiple usages at a CertificateRef location? If so,should there be a shift from attribute to element, and the addition of a content model under the CertificateRef element?]

The SecurityDetails element is to be introduced to contain information recommended by the Security Risk Whitepaper of ebXML 1.0. It is an optional element. When present it will permit more detailed evaluation of whether rich security interoperability can be attained as well as to provide more details in actual agreements about security. The TrustAnchor subelement is used to indicate the TrustedRoots used in checking certificate chain validity. So, whenever a collaboration participant is performing a checking function, it would be appropriate to document the TrustAnchors accepted by that party. The actual chain to be used in signing would still be found in the ds:KeyInfo element referenced by means of the CertificateRef/@certId attribute.

<element name=”SecurityDetails”>

<complexType>

<sequence>

<element ref=”TrustAnchor” minOccurs=”0” maxOccurs=”unbounded”>

 < -- attribute for a CertId goes here goes here ?-- >

</element>

<element ref=”SecurityPolicy” minOccurs=”0” maxOccurs=”unbounded”>

</element>

<element ref=”AuthenticationCredential” minOccurs=”0” maxOccurs=”unbounded”>

[Nomenclature Issue :

Would AuthorizationCredential be a better name?

Pro: Usually these credentials are used in gaining access to a process, so some kind of authorization is involved.

Con: Authentication usually involves being authenticated with some associated naming identifiers and/or role or “attribute”. Any authorization is done by seeing if this identity/role/attribute has requisite permissions for resource utililzation.

Recommendation: leave as AuthenticationCredential because ties to roles and permission systems (ACL) and protected resources are not captured and are too complicated for 1.1.

]

[Future Alignment Issue:

Will SAML or similar approaches be captured appropriately?

 Does both basic auth and digest auth fit here.

Is unbounded needed really.

All these TBD.

]

</element>

</sequence>

</complexType>

</element>

<element name=”TrustAnchor”>

</element>

<element name=”SecurityPolicy”>

</element>

(other subelements here)

<element name=”AuthenticationCredential”>

</element>

Discussion: A place is needed to mark usages of keypairs associated with Certificates. Though it would be possible to dig into the ds:KeyInfo structures to find the DER encoded attributes governing usage, it is probably useful to ease the implementation burden by pulling out key usage values. Currently the built-in values needed are: CA, Signing, KeyExchange, ServerSide, ClientSide. In practice, these values can be combined. For example, a self-signed certificate may be associated with all these usages. This favors treating the usages as Boolean attributes. To signal the relevant usages of a key in a context, putting these attributes on a CertificateRef seems appropriate, as was suggested above. It may also be useful to have an attribute indicating whether the entire certificate chain is included under the ds:KeyInfo element.

The potential sites where a SecurityRef element would occur would then be:

Under TransportSecurity (for SSL and TLS eventually). A TransportSecurity element needs to be added somewhere under the SendingProtocol element to allow the ClientSide usage of a Certificate within TLS or SSL to be indicated. The ds:KeyInfo element can (should?) contain an entire certificate chain for this ClientSide Certificate. SecurityDetails/TrustAnchors, for the SendingProtocol SSL case, would be used to indicate the trusted roots used in validating the ServerSide certificates. SecurityDetails/TrustAnchors, for the ReceivingProtocol/Transport/TransportSecurity would indicate trusted roots for client side certificate validation.

Under Party. This Certificate is not yet clearly linked to an implementation function such as signing, digital enveloping, or transport. It is currently tied to the PartyId’s CollaborationRole and may indicate (1) either the signer of the

CPP or CPA (though this could be in the Signature element also) or (2) to certificate usages above the MSH level when preparing application-level signed or enveloped payloads to submit to the MSH. In either case, unlike other CertificateRef locations, the link to the cryptographic function is fuzzy. I believe originally it was intended to mark the primary DN and certificate associated with the CollaborationRole of the Party. But that information is less tied to a cryptographic function. Should it stay? Can people use this value to determine whether something is signed/enveloped for the application layer rather than for the ebXML layer?

Under //ebXMLBinding/NonRepudiation or under //ebXMLBinding/DigitalEnvelope. These elements currently have CertificateRefs. The meaning of SecurityDetails/TrustAnchors in this case would be to indicate what is currently configured as trusted roots when checking certificate validity in a signing context. For KeyExchange, it is not obvious that TrustedRoots have a use, but if they do, it would presumably be used on the enveloping side, to indicate what is used to check recipient certificate validity when encrypting the session key for the recipient.

Under //Transport/TransportSecurity (for support of indicating the ServerSide certificate and/or CertificateChain

We should consider augmenting these locations to include the following:

Under Packaging, to indicate the Certificate or SecurityDetails needed for Digital envelope sealing or opening.

Under Packaging, to indicate either the Certificate or SecurityDetails needed for making or checking detached or standard pkcs7 signatures.

Under Packaging, to indicate the Certificate or SecurityDetails needed for XMLDsig signing or checking by the ebXML Messaging (MSH) software.

Under ebXMLBinding, to indicate the Certificate or SecurityDetails needed for ebXML XMLDsig (see also under packaging).

The reason for these additions is that the security risk assessment document found it unclear how the CertificateRefs under ebXMLBinding related to the detailed realization of non repudiation of receipt or of DigitalEnvelope. In general, there is a diffused distribution of information under the ebXMLBinding element and under Packaging that might benefit from being tied together for easier comprehension and processing. This reworking may fall into the version 2.0 phase.

[Appendix A]

Example from the Security Risk document. I am breaking out TrustAnchors out of Security Policy. The WillUse and WillAccept elements could be used in a CPA and CPP respectively. Is this the best way to capture a Required key strength, for example? Should there be wildcard ways of listing? What forms of listing are to be adopted?

 <SecurityPolicy>

<TrustAnchors>

 <!-a set of <ds:KeyInfo> elements. -->

 <!- I think it will be preferable to have

 CertificateRefs here and not KeyInfo here.

Possibly move Certificates out to the level of Packaging. Why do they need to be under PartyInfo? -->

 <ds:KeyInfo ID='foo'>...</ds:KeyInfo>

 <ds:KeyInfo ID='bar'>...</ds:KeyInfo>

 <ds:KeyInfo ID='chumley'>...</ds:KeyInfo>

</TrustAnchors>

<Profiles>

 <!-- A set of "Profile" elements. Each profile

 identifies a profile, and then the anchors

 used in that profile. -->

 <Profile ID="pf1" URN="urn" ANCHORS="foo bar"/>

</Profiles>

<WillUse>

 <-- A set of profiles the party will use. -->

 <ProfileRef>pf1</ProfileRef>

</WillUse>

<WillAccept>

 <-- A set of profiles the party will accept. -->

 <ProfileRef>pf1</ProfileRef>

</WillAccept>

 </SecurityPolicy>
Remaining untouched issues:

1. Should specific requirements that are being insisted upon (mandated high key strengths for SSL, for example) be marked within a SecurityPolicy element? How?

