Implementation Architecture for ebXML
Draft Position Paper

[image: image1.png]ch@gy

[image: image2.png]

Draft

Towards an Implementation Architecture for ebXML

Tony Fletcher

(tony.fletcher@choreology.com)

Disclaimer

This document represents my current thinking, but is a draft for initial comments and feedback prior to generating a more complete proposal. It is a personnel contribution to the ongoing work on ebXML. It has not been discussed within Choreology, and should not be considered to be a company proposal at this stage. We very much welcome any comments on this document. Please mail them to tony.fletcher@choreology.com or give me a call.

Limited Copyright Release

Choreology Ltd gives permission for the making and distributing of copies of this document solely for the purpose of furthering discussion on an implementation architecture for ebXML.
Table of Contents

1Disclaimer

Summary
2
Why an implementation architecture?
2
Overall ebXML Architecture
3
Current non-normative implementation architecture
3
Issues
4
BSI
5
Conclusions
5
References
5

Figures

3Figure 1
An informal view of the ebXML architecture (with BTP included)

Figure 2
The current overall ebXML implementation architecture (+BTP)
4
Figure 3
Proposed basis of a normative ebXML implementation architecture (+BTP)
4

Summary

The current ebXML architecture [1] only has a short section on an implementation architecture and this is currently non-normative. E-mail discussions (at least) have shown that there is not unanimity on exactly what such an implementation would consist of and look like. People are implementing the business process aspects of ebXML, which means they are making their own assumptions about implementation.

The main the purpose of this paper is to make a plea for the development of a clearly specified implementation architecture for ebXML.

The current ebXML architecture document does describe many of the ebXML components in terms of classes of things and their theoretical arrangement. However to translate this into implementation terms does mean making various assumptions – inevitably different people will make different assumptions unless they are clearly documented. Also some of the components, such as BCP, the BSI and the role of the business application are not well covered at all at present.

Why an implementation architecture?

If one is just interested in claiming or testing conformance to a single specification then one does not need an implementation architecture. Likewise if one is only interested in interoperability between implementations of a single specification, but this time there is the proviso that other aspects of the system have to be compatible or the systems will not interoperate.

However, as hinted at in the previous sentence, if one is interested in the conformance of a set of specifications being used together, or the interoperability of systems implementing a set of specifications being used together then the precise relationship between each specification is important. ebXML is very much in this latter situation of being a set of specifications intended to be used together in a number of different ways, even though it is also a basic premise that each of the specifications should be useful and usable on its own.

Overall ebXML Architecture

Figure 1 shows an informal representation of the ebXML architecture (with BTP – or other transaction manager - added where I conceive it to be). This diagram just shows the relationship of the specifications as documents. What it does not show is the relationships of the components specified in those documents.

[image: image3.wmf]UMM

BCP

BCP&MC

BEL

CC

CCS

CCR

BP Cat

BPIMES

UML2XML

Reg

/Rep

IIC

MSG

CPA

BPSS 2

BPSS 3

BTP

Figure 1
An informal view of the ebXML architecture (with BTP included)1TC “Figure
An informal view of the ebXML architecture (with BTP included)” \f F \l 2

Current non-normative implementation architecture

Figure 2 shows the current (non-normative) implementation diagram (with a proposed modification to include BTP). Note that the BTP component could be replaced by a generic ‘Transaction Manager’ component. It is omitted altogether in the actual current diagram.

[image: image4.wmf]Business Collaboration

Rules

Business Process

Schema Specification

Instance

Trading Partner

Agreements

Business Collaboration

Manager

Business Process

Execution Engine

Messaging Service

BTP

I / O

XML structured

configuration information

Example

implementation stack

Figure 2
The current overall ebXML implementation architecture (+BTP)2TC “Figure
The current overall ebXML implementation architecture (+BTP)” \f F \l 2

Unfortunately several of the components in this architecture diagram are not well described in the current architecture document (version 0.5). These components are: Business Collaboration rules, Business Collaboration Manager, and the Business process Execution Engine. Furthermore there is no specification effort currently underway for any of these components as identified in this diagram (figure 2).

Figure 3 shows an alternative basis for an implementation architecture that I would like to suggest.

[image: image5.wmf]Business Process

Schema Specification

Instance

Trading Partner

Agreements

Business

Collaboration

Protocol

Messaging Service

I / O

XML structured

configuration information

Example

implementation stack

Business

Application

Business Objects

and business data

API 1

API 2

BTP

Figure 3
Proposed basis of a normative ebXML implementation architecture (+BTP)3TC “Figure
Proposed basis of a normative ebXML implementation architecture (+BTP)” \f F \l 2

Issues

1. Need to show how Business Entities Types and instances (or Business Information Objects) fit into this architecture practically (as well as theoretically).

2. Some explanations of the Business Process aspects of ebXML mention engines executing BPSS and do not mention BCP at all. Is BCP redundant?

3. Is BPSS configuration information for BCP?

4. Should a separate business application be shown in the implementation architecture? Or does the Business Collaboration Manager embody what one might think of the as the Business application and all its business rules and logic?

5. I would argue that the implementation architecture should identify the location of interoperable interfaces and (potential) key internal (to a system) APIs. However, there is an issue as to whether either UN/CEFACT or OASIS would be the appropriate bodies to specify any identified APIs – perhaps better left to the JCP (for Java), Microsoft (for .NET and C#), etc.

6. Some of the ebXML documents mention a BSI (Business Service Interface). However, there is no specification available or under development. Should the concept exist, or be removed from ebXML? Is it a name for API 1 shown on figure 3 (or perhaps API 2), where the BSI concept represents all the interactions across this interface. Or is the BSI concept incompatible with BCP and does it demand a different implementation architecture diagram?

BSI

The BSI (Business Service Interface) is mentioned in some of the ebXML documents (for instance the UMM [2] and more expansively in the BPSS [3]). However, there is not unanimity about exactly what the BSI is and in particular whether a specification for it should be produced. There has been discussion on the ebXML e-mail lists on this topic.
A possible resolution is to identify the BSI as the name for the full API 1 shown on figure 3. By this I mean it is not just the API calls expressed in some programming language dependent or independent manner, but also their meaning and permitted sequencing. It is therefore a concept that is realised by the concrete specification of the API plus the specification of BCP [4] and its configuration for a particular instance of use.
Conclusions

An implementation architecture should be developed which would specify for implementers how all the implementable components of ebXML work together.
References

[1]
UN/CEFACT – Electronic Business Architecture (UEB Architecture), Revision 0.50
[2]
UN/CEFACT's Modelling Methodology (N090), http://www.gefeg.com/tmwg/n090r10.htm
[3]
ebXML Business Process Specification Schema, UN/CEFACT

[4]
ebXML Business Collaboration Protocol, UN/CEFACT

� 	Choreology Ltd. 13, Austin Friars, LONDON EC2N 2JX Tel: +44 (0) 20 7670 1679

Page 2 of 5
Copyright © 2002 Choreology Ltd

Choreology Ltd gives permission for the making and distributing of copies of this document solely for the purpose of furthering discussion on an implementation architecture for ebXML.

_1089544845.bin

_1089545081.bin

