Abstract Conformance Test Suite File: ebXML Messaging Services 2.0

List of non-CPA parameters that we may pre-define for the MS conf test suite, and that will be referred to with the $ notation:

MessageId

RefToMessageId

ConversationId

MIMEMessageContent-Type

MIMEMessageType

MIMEMessageStart

MessagePackageContent-Type

MessagePackageCharset

MessagePackageContent-ID

MessagePackageContentLocation

PayloadContent-Type1

PayloadCharset1

PayloadCID1

TimeToLive

ExpiredTimeToLive

RetryCount

[MIKE] – WILL ADD THIS in narrative “PROLOG” paragraph description in the Conformance Document
	Test Object
	ID
	Description
	Test Driver Action
	Test Material
	Test Service Action

	Test Suite
	
	
	
	
	

	Test Case
	testcase_2
	SOAP message must be in root part of MIME message
	I am not sure we need this column in an abstract test suite: these “actions” rally belong to a Test Service [occasionally] associated with the test driver, and we should abstract this in such an abstract test suite.

[MIKE- - Agreed, will remove this.. not really appropriate since there is no “Action” on the Test Driver side.. however, I will experiment with keeping the column as simply “Test Driver” and the other (target) column as “Test Service”… or “Candidate MSH”

[JD2] if you keep this column, then we could use it to explicitly state what the T.Driver does at each step, like”send message”, “receive message”, and get rid of the picture-text in “Test Meterial” column, in each TestStep row. See below:
	The text element in all the “TestStep” rows (and this column) below, is a picture. We should replace them by regular text: I did it for the first one. We may have to do this manually.

By doing so, we can also shrink this column, as shown here.

[MIKE] – I will experiment with text or a smaller arrow to see what would looks best here
	

	TestStep

	1
	
	
	Send message to the candidate MSH.

(NOTE: the candidate is the MSH, not the ebXML application.)

[MIKE] – OK , I’ll add that here
	

	
	
	Send basic message header
	[JD2] Send message to the candidate MSH
	Message Header: [JD2] ne need to say “sent” if stated in TestDriver action.
(ConversationId=$ConversationId and CPAId=' mshc_1' and MessageId=$MessageId)

Payload Message: empty [MIKE] - I am not sure why we need to say that here, since no explicit declaration of a payload is stated in the message declaration. Then we would have to state that for every test message, especially since the majority of tests do not use payloads anyway. Comments?
[JD2] agree, as long as it is clearly stated somewhere else what the payload is, if any. When there is payload material to mention, (usually showing as a SetPaylod or GetPayload in the concrete suite), I think we need “Payload Header”
	Dummy

	TestStep

	2
	
	
	
	

	
	
	Correlate returned message
	[JD2] Receive message from the candidate MSH
	[JD2]Message Header: [MIKE] – Perhaps better to define a “Correlate” function with the following argument.. like you do below with “Verification”[JD2] I would prefer not to introduce “correlate” function in the abstract suite: just these expressions seem fine as they are, with “Message Header” or “Message Payload” tags?
(//eb:MessageHeader[eb:Action='Mute' and eb:CPAId='mshc_1' and eb:Conversationid=$ConversationId and eb:MessageData/eb:RefToMessageId=$RefToMessageId]])
	Dummy

	Assertion
	
	Verify that an SOAP Message is found in the root part of the MIME message
	
	Verification (on Received Message): [MIKE] – I’ll add that
(/mime:Message[mime:MessageContainer[1]/soap:Envelop)
	

	Test Case
	testcase_3
	All MIME parts must have a CID or Content-Location
	
	
	

	TestStep

	1
	
	
	
	

	
	
	Send basic message header with manifest reference to payload
	[JD2] Send message to the candidate MSH
	NOTE: the expressions for sending messages, should be of the same format as for receiving message, i.e. a logical expression (with ‘and’ added in between the equations, seen here as logical expressions rather than assignements.). That would be less ambiguous. We discuss that before and decided not to do it in the normative (concrete) test suite doc, but it is OK for the abstract doc, and more intuitive. Will be interpreted as: “the message you send must satisfy the following condition”.

[MIKE] – Agreed and done

Header Sent Message: [MIKE] – As above, may be better to have a “MessageDeclaration” function, with the following as an argument [JD2] would prefer to remain “abstract” here, as long as we are precise enough.
(ConversationId=$ConversationId and CPAId=' mshc_1' and MessageId=$MessageId)
Payload Sent Message:
(Content-Id = 'cid:payload_1' and FileURI = 'file:payload_1')
	Reflector

	TestStep
	2
	
	
	
	

	
	
	Correlate returned message
	[JD2] Receive message from the candidate MSH
	Header Received Message:
(//eb:MessageHeader[eb:Action='Mute' and eb:CPAId='mshc_1' and eb:Conversationid=$ConversationId and eb:MessageData/eb:RefToMessageId=$RefToMessageId]])
	Reflector

	Precondition
	
	Check if MIME Content-type is multipart/mime or not text/xml
	[JD2] Filters received message
	Verification (on Received Message):

(/mime:Message[@Content-Type = 'multipart/mime' or @Content-Type != 'text/xml'])
	

	Assertion
	
	Verify that CID or Content-Location exists for both Message Package MIME part
	[JD2] Verifies received message
	Verification (on Received Message):

(/mime:Message[mime:MessageContainer[1] and (@Content-Location or @contentId)])
	

	Assertion
	
	Verify that CID or Content-Location exists for Payload MIME part
	[JD2] Verifies received message
	Verification (on Received Message):

(/mime:Message [mime:MessageContainer[2] and (@Content-Location or @contentId)])
	

