© ©o©

10

Creating A Single Global Electronic Market

flola

ebXML Test Framework
Committee Specification Version 1.1 DRAFT

OASIS ebXML Implementation, Interoperability and
Conformance Technical Committee

14 July, 2004

Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS]
April 2002. All Rights Reserved.

47

49
50

Document identifier:

ebxml-iic-test-framework-11

Location:

http://www.oasis-open.org/committees/documents.php?wg_abbrev=ebxml-iic

Authors/Editors:

Michael Kass, NIST <michael.kass@nist.gov>

Contributors:

Steven Yung, Sun Microsystems <steven.yung@sun.com>
Prakash Sinha, IONA <prakash.sinha@iona.com>

Matthew MacKenzie, Individual <matt@mac-kenzie.net>

Hatem El Sebaaly, IPNet Solutions <hatem@ipnetsolutions.com>
Monica Martin, Sun Microsystems <monica.martin@sun.com>
Jacques Durand, Fujitsu <jdurand@fsw.fujitsu.com>

Christopher Frank < C.Frank@seeburger.de>

Eric VanLydegraf, Kinzan <ericv@kinzan.com>

Jeff Turpin, CycloneCommerce <jturpin@cyclonecommerce.com>
Serm Kulvatunyou, NIST <serm@nist.gov>

Tim Sakach, Drake Certivo, Inc. tsakach@certivo.net

Hyunbo Cho, Postech hcho@postech.ac.kr

Han Kim Ngo, NIST <han.ngo@pnist.gov>

Abstract:

Status:

This document specifies ebXML interoperability testing specification for the eBusiness
community.

This document has been approved as a committee specification, and is updated periodically on
no particular schedule.

Committee members should send comments on this specification to the ebxml-iic@lists.oasis-
open.org list. Others should subscribe to and send comments to the ebxml-iic-
comment@lists.oasis-open.org list. To subscribe, send an email message to ebxml-iic-comment-
request@lists.oasis-open.org with the word "subscribe" as the body of the message.

For more information about this work, including any errata and related efforts by this committee,
please refer to our home page at http://www.oasis-open.org/committees/ebxml-iic.

Errata to this version:

None

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 2 of 185

51

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

Table of Contents

1 10T [T o) o SRR 5
1.1 Summary of Contents of this DOCUMENT ... 5
1.2 Do Te10] T=Y o1 7] 0 1Y/=1 4 o]0 - SRS 5
1.3 0 Lo 1 =Y o o= SR 5
14 Caveats and ASSUMPLIONSciiii e e e e e e e e e e e e e et abe e e e e e e e senrereees 6
1.5 Related DOCUMENTSttt e e e e e et e e e e e e e e s e e e e e e e e e e e annrnneeeaeens 6
1.6 Minimal Requirements for ConfOrManCeeoiiiiiiiiiiiiieiii e 6

2 Principles and Methodology Of Operationsooiiiiiiiiiiiii s 8
21 GENETAl ODJECHVESoiiieiiiiiiie ettt e e st e e e e st e e s e nb e e e e e nees 8
2.2 LET=Y LT = I =1 1 oTo o] oo | SRS RS 9

3 The Test Framework COMPONENTS........oii ettt e e e e e e e e e e e e e e e neneees 11
3.1 THE TESE DFIVET ..ottt et ettt e e ettt e e e s bt e e e ante e e e e anbeeeeeanbeeeeeannneeaen 11

B Tt 0t O o U T o) 3SR 11
3.1.2 Using the Test Driver in Connection MOdeccooiiiiiiiiieii e 13
3.1.3 Using the Test Driver in Service MOGE..........cooiuiiiiiiiiee e 14
3.2 LI ST = S AR (o = PSSR 16
3.2.1 Functions and INtEractionscooiiiiiiiiiiiie e 16
3.2.2 Modes of Operation of the Test ServiCe...... .o 18
3.2.3 Configuration Parameters of the Test Serviceccooovvvieiiiicciiiee e, 19
3.2.4 The Messaging Actions of the Messaging Services Test Serviceccocvevviieeeeiciieeeeee 20
3.2.5 Interfaces for Test Driver and TeSt SErVICe........cooviiiiiiiiiie e 23
3.3 EXECULING TOST CASES .. .uiiiiiiiiiie ittt sttt ettt e e sttt e e et e e e e st e e e ansteeeeennteeeeenreeeeenees 30
3.3.1 A Typical EXECULION SCENAIIO.......cciiiiiiiiiiiiie ettt 30
3.3.2 TestCase as a Workflow of TRreadscoooiiiiiiiiiiii i 31
3.3.3 Related Message Data and Declarations............cccooiiiiiiiiiiiiiiiiie e 32
3.3.4 Related Testing Configuration Datacooiiiiiiiiiiii e 32

Part [l: Test Suite RePreSENtationooiiiiiiiiiiiiiieee e e e e e e e e eaeaaees 34

4 LIS 00101 (= SRR 35
4.1 Conformance vs. Interoperability Test SUIte............eeeiiiiiiiiii e 35
4.2 The Test Suite DOCUMENT e ee e e e e e e e e e e e e e e eans 36

421 Test Suite Metadatac..vviiiiiii e 38
N N N s 1= 070)q) o[0T r= o T T €1 o 1H o TSR 39
4.2.3 The TestServiceConfigurator Operationoocuieiiiiiiiiii e 44

5 TESt REQUITEMENTSottt e e e e e e e e e e e e e e e e e satstaeeeaaeessanasntaeeeaaeeesannsnsenes 46
51 PUrpoSe and SEIUCLUIE ... et e e e e e s e e e e e e e e e 46
5.2 The Test Requirements DOCUMENT.............uiiiiiiii i e et e e e e e e e 46

ST OSSPSR 47
5.3 SPECIfICAtION COVEIAGEcoi ittt et e s e e e e rnbe e e e e e 49
5.4 Test Requirements Coverage (or Test Run-Time COVErage)cccuvveeieiieeeeiiiieeeeiiieeeesniieeeens 50

6 IS5 0 (0] 1= SRS 52
6.1 The Test Profile DOCUMENT.........ooiiiie et e e s e e e sraeeeeans 52
6.2 Relationships between Profiles, Requirements and Test Cases........cccccceveeiiiiiiiieee e, 53

ebxml-iic-test-framework-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 3 of 185

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

120
121

122
123
124
125
126
127
128
129
130
131
132
133
134

7 LIS 0= T SRR 55
71 Structure Of @ TSt Case.... . e e e e e e e 55
400 Tt O I = I 11 == T £SO 58
7.1.2 Thread OPEratiONScooiiiii it e e e e e e e e e et e e e e e e e e e eaaraeeeeaeeas 60
7.1.3 Message Store SChemMao e 81
7.3 Test Service Configurator, Initiator, and Notification Message Formats..............cccccvveeeenn. 85
7.4 TesSt REPOIt SCREMAooiiiii et e e e e e e e e e e e nnneneeeaaens 91
8 LIS 1Y = =T - SR URRSTRRRR 93
8.1.1 Testing Profile DOCUMENTccuiiiiiiiie e e e e e et e e e 93
8.1.2 Test Requirements DOCUMENT..........c.uiiiiiiiiii e 93
8.1.3 TeSt SUItE DOCUMENT.......c ittt e e e et e e e e st e e e e e nnteeeeenees 93
S Tt I S |V [F = (o] o [0 T o1 4 1= | SO 94
S T IR T O SR SPRPR 94
9 Test Material EXamPIES ... 95
9.1 Example Test REQUIFEMENTSuiiiiii e e 95
9.1.1 Conformance Test REQUIFEMENTEScc.uviiiiiiiiiiicee e 95
9.1.2 Interoperability Test Requirements ... 97
9.2 EXample TeSt ProfileS.........uuiiiiiiii e a e e e 98
9.2.1 Conformance Test Profile EXample.............oiiii e 98
9.2.3 Interoperability TeSt Profile...........oo i 99
9.3 EXAmMPIE TESE SUIIES ...ttt e e e e e e e e e e aaareees 99
9.3.1 Conformance TeSt SUITE.......oii e e e e e e e e e e ennreeeeeaee s 99
9.3.2 Interoperability TESt SUILE.......c.uviiiiiiee e 101
9.3.3 A sample Mutator XSL DOCUMENT ... e eeeeee e e 103
Appendix A (Normative) The ebXML Test Profile Schema...........cccvevviiiiiiic e, 104
Appendix B (Normative) The ebXML Test Requirements Schemacccccceeviiiiiicee e 106
Appendix C (Normative) The ebXML Test Suite Message Declaration Schema and Supporting
ST U] o T 1= o 4= 1RSSR 110
Appendix D (Normative) The ebXML Message Store Schema (and supporting sub-schemas) 137
Appendix E (Normative) The Test Report SChema ... 158
Appendix F (Normative) ebXML Test Service Message Schema............cocccvviiiieeieiiciiiiieeeee e, 168
Appendix G WSDL Definitions for TESt SEIVICE.........ooiuuiiiiiiie e 174
YY) o L= aTo 1> I =T o 001 [Y] oo) PR 178
APPENAIX | REFEBIENCES ...ttt e e e e e e e e e e e e e et e e e e e e e e e se st s beeeeeaesesnansraneeeaeas 181
1.1 NOrmative REfEIENCESooii et e e e e e e e e e e e e e e e e nneees 181
1.2 NON-NOrmMative REFEIENCEScciiiiiii it e et e e s sbe e e e e sreeeeeans 182
AppendiX J ACKNOWIEAGMENTS et e et e e e e e e st e e e e e e e e s nneeeeeeeaeas 183
J. T HIC CommMIttEE MEMDEIS et e e et e e e e e e st e e e e e e e e snnrneneeeeeas 183
AppendixX K ReVISION HISTOMY ... et e e e e e e e e e eeeeae s 184
Y o] 01T Lo [5G I N (o] 1 = S 185
ebxml-iic-test-framework-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 4 of 185

135
136

137

138
139
140

141

142
143
144
145

146

147
148
149
150

151
152
153

154
155

156
157

158
159
160

161
162
163
164

165
166
167
168
169
170
171

172

173
174

175
176

1 Introduction

1.1 Summary of Contents of this Document

This specification defines a test suite for ebXML Messaging basic interoperability. The testing procedure
design and naming conventions follow the format specified in the Standard for Software Test
Documentation IEEE Std 829-1998.

This specification is organized around the following topics:

¢ Interoperability testing architecture
e Test cases for basic interoperability
o Test data materials

1.2 Document Conventions

Terms in /falics are defined in the Definition of Terms in Appendix H. Terms listed in Bold Italics
represent the element and/or attribute content. Terms listed in Courier font relate to test data. Notes
are listed in Times New Roman font and are informative (non-normative). Attribute names begin with
lowercase. Element names begin with Uppercase.

The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT,
RECOMMENDED, MAY and OPTIONAL, when they appear in this document, are to be interpreted as
described in [RFC2119] as quoted here:

e MUST: This word, or the terms "REQUIRED" or "SHALL", means that the definition is an absolute
requirement of the specification.

e MUST NOT: This phrase, or the phrase "SHALL NOT", means that the definition is an absolute prohibition of
the specification.

e SHOULD: This word, or the adjective "RECOMMENDED", means that there may exist valid reasons in
particular circumstances to ignore a particular item, but the full implications MUST be understood and
carefully weighed before choosing a different course.

e SHOULD NOT: This phrase, or the phrase "NOT RECOMMENDED", means that there may exist valid
reasons in particular circumstances when the particular behavior is acceptable or even useful, but the full
implications should be understood and the case carefully weighed before implementing any behavior
described with this label.

e MAY: This word, or the adjective "OPTIONAL", means that an item is truly optional. One vendor may
choose to include the item because a particular marketplace requires it or because the vendor feels that it
enhances the product while another vendor may omit the same item. An implementation that does not
include a particular option MUST be prepared to interoperate with another implementation which does
include the option, though perhaps with reduced functionality. In the same vein an implementation that does
include a particular option MUST be prepared to interoperate with another implementation which does not
include the option (except, of course, for the feature the option provides).

1.3 Audience

The target audience for this specification is:

e The community of software developers who implement and/or deploy the ebXML Messaging
Service (ebMS) or use other ebXML technologies such a s Registry/Repository (RegRep),

ebxml-iic-test-framework-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 5 of 185

177
178

179

180
181

182

183

184
185

186

187

188
189

190
191
192
193
194
195

196
197
198

199
200
201

202
203

204
205
206
207

208
209
210
211

212

213

214
215

216
217

218
219

Collaboration Profile Protocol/Agreement (CPPA) or Business Process Specification Schema
(BPSS)

e The testing or verification authority, which will implement and deploy conformance or
interoperability testing for ebXML implementations.

1.4 Caveats and Assumptions

It is assumed the reader has an understanding of communications protocols, MIME, XML, SOAP, SOAP
Messages with Attachments and security technologies.

1.5 Related Documents

The following set of related specifications are developed independent of this specification as part of the
ebXML initiative, they can be found on the OASIS web site (http://www.oasis-open.org).

e ebXML Collaboration Protocol Profile and Agreement Specification [ebCPP] — CPP defines
one business partner's technical capabilities to engage in electronic business collaborations with
other partners by exchanging electronic messages. A CPA documents the technical agreement
between two (or more) partners to engage in electronic business collaboration. The MS Test
Requirements and Test Cases will refer to CPA documents or data as part of their material, or
context of verification.

o ebXML Messaging Service Specification [ebMS] — defines the messaging protocol and
service for ebXML, which provide a secure and reliable method for exchanging electronic
business transactions using the Internet.

e ebXML Test Framework [ebTestFramework]— describes the test architecture, procedures and
material that are used to implement the MS Interoperability Test Suite, as well as the test harness
for this suite.

e ebXML MS Conformance Test Suite [ebMSConfTestSuite]- describes the Conformance test
suite and material for Messaging Services.

o ebXML Registry Specification [ebRS] — defines how one party can discover and/or agree upon
the information the party needs to know about another party prior to sending them a message
that complies with this specification. The Test Framework is also designed to support the testing
of a registry implementation.

e ebXML Business Process Specification Schema [BPSS] — defines how two parties can
cooperate through message-based collaborations, which follow particular message
choreographies. The Test Framework is also designed to support the testing of a business
process implementation.

1.6 Minimal Requirements for Conformance

An implementation of the Test Framework specified in this document MUST satisfy ALL of the following
conditions to be considered a conforming implementation:

e It supports all the mandatory syntax; features and behavior (as identified by the [RFC2119] key words
MUST, MUST NOT, REQUIRED, SHALL and SHALL NOT) defined in Part 1.1.1 — Document Conventions.

e It supports all the mandatory syntax, features and behavior defined for each of the components of the Test
Framework.

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 6 of 185

220
221
222
223
224

225
226
227
228
229
230
231
232
233

It complies with the following interpretation of the keywords OPTIONAL and MAY: When these keywords
apply to the behavior of the implementation, the implementation is free to support these behaviors or not,
as meant in [RFC2119]. When these keywords apply to data and configuration material used by an
implementation of the Test Framework, a conforming implementation of the Test Framework MUST be

capable of processing these optional materials according to the described semantics.

ebxml-iic-basic-interop-test-suite-10
Copyright © OASIS Open 2003. All Rights Reserved.

03 April 2003
Page 7 of 185

234
235

236

237

238
239
240
241
242

243
244
245

246
247

248
249
250

251

252
253

254

255
256
257
258
259
260

261
262
263

264
265
266
267
268

269

270
271

272

273
274
275
276

2 Principles and Methodology of Operations

2.1 General Objectives

The OASIS IIC ebXML Test Framework is intended to support conformance and interoperability testing
for ebXML (as well as other eBusiness) specifications. It describes a testbed architecture and its software
components, how these can be combined to create a test harness forvarious types of testing. It also
describes the test material to be processed by this architecture, a mark-up language and format for
representing test requirements, and test suites (a set of Test Cases).

The Test Framework described here has been designed to achieve the following objectives:

The Test Framework is a foundation for testing all ebXML architectural components such as Messaging,
Registry, BPSS, CPA, and Core Components

Because of its generic design, the Test Framework is flexible enough to permit testing beyond ebXML
message format, to include XML message envelope and payload testing of any e-Business messaging
service

Test Suites and Test Cases that are related to these standards, aredefined in a formal manner They can
be automatically processed by the Test Framework, and their execution can easily be reproduced.

The harnessing of an ebXML implementation (or possibly several implementations, in case of
interoperability testing) with the Test Framework requires a moderate effort. It generally requires some
interfacing work specific to an implementation, in the case no standard interface (API) has been specified.
For example, the Test Service (a component of the Test Framework) defines Actions that will need to be
called by a particular MSH implementation for ebXML Messaging Services conformance testing.
Additionally, MS interoperability testing would require the interfaces defined in section 3.5.5.

Operating the Test Framework - or one of the test harnesses that can be derived from it — in order to
execute a test suite, does not require advanced expertise in the framework internals, once the test suites
have been designed. The tests should be easy to operate and to repeat with moderate effort or overhead,
by users of the ebXML implementation(s) and IT staff responsible for maintaining the B2B infrastructure,
without expertise in testing activity.

Users can define new Test Suites and Test Cases to be run on the framework. For this, they will script
their tests using the proposed test suite definition language or mark-up (XML-based) for Test Cases.

A Test Suite (either for conformance or for interoperability) can be run entirely and validated from one
component of the framework: the Test Driver. This means that all test outputs will be generated - and test
conditions verified - by one component, even if the test harness involves several — possibly remote —
components of the framework.

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 8 of 185

277
278
279

280

281
282

283
284
285
286
287
288
289
290

291
292

293

294
295
296

297

298
299
300
301

302

303
304
305
306
307
308

309

310
311
312
313
314

315

The verification of each Test Case is done by the Test Driver at run-time, as soon as the Test Case
execution is completed. The outcome of the verification can be obtained as the Test Suite has completed,
and a verification report is generated.

2.2 General Methodology

This specification only addresses the technical aspect of ebXML testing, and this section describes the
portion of testing methodology that relates directly to the usage of the Test Framework. A more general
test program for ebXML, describing a comprehensive methodology oriented toward certification, is
promoted by the OASIS Conformance TC and is described in [ConfCertTestFrmk] (NIST). When
conformance certification is the objective, the ebXML Test Framework should be used in a way that is
compliant with a conformance certification model as described in [ConfCertModelNIST]. More general
resources on Testing methodology and terminology can be found on the OASIS site (www.oasis-
open.org), as well as at NIST (www.itl.nist.gov.)

This specification adopts the terminology and guidelines published by the OASIS Conformance
Committee [ConfReqOASIS].

The Test Framework is intended for the following mode of operation, when testing for conformance or for
interoperability. In order for a testing process (or validation process) to conform to this specification, the
following phases need to be implemented:

e Phase 1: Test Plan (RECOMMENDED). An overall test plan is defined, which includes a
validation program and its objectives, the conditions of operations of the testing, levels or profiles
of conformance or of interoperability, and the requirements for Candidate Implementations to be
tested (context of deployment, configuration).

e Phase 2: Test Requirements Design (MANDATORY). A list of Test Requirements is established
for the tested specification, and for the profile/level of conformance/interoperability that is
targeted. These Test Requirements MUST refer to the specification document. Jointly to this list,
it is RECOMMENDED that Specification Coverage be reported. This document shows, for each
feature in the original specification, the Test Requirements items that address this feature. It also
estimates to which degree the feature is validated by these Test Requirements items.

o Phase 3: Test Harness Design (MANDATORY). A Test Harness is defined for a particular test
plan. It describes an architecture built from components of the Test Framework, along with
operation instructions and conditions. In order to conform to this specification, a test harness
MUST be described as a system that includes a Test Driver as specified in this document, and
MUST be able to interpret conforming test suites.

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 9 of 185

316
317
318
319
320
321
322

323

324
325
326
327

328

329
330

331

e Phase 4: Test Suite Design (MANDATORY). Each Test Requirement from Phase 2 is translated
into one or more Test Cases. A Test Case is defined as a sequence of operations over the Test
Harness. Each Test Case includes: configuration material (CPA data), message material
associated with eachoperation and test verification conditions that define criteria for passing this
test. All this material, along with any particular operation directives, defines a Test Suite. In order
to be conforming to this specification, a test suite needs to be described as a document (XML)
conforming to part Il of this specification.

e Phase 5: Validation Conditions (RECOMMENDED). Validation criteria are defined for the profile
or level being tested, and expressed as a general condition over the set of results from the
verification report of each Test Case of the suite. These validation criteria define the certification
or “badging” for this profile/level.

e Phase 6: Test Suite Execution (MANDATORY). The Test Suite is interpreted and executed by
the test Driver component of the Test Harness.

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 10 of 185

332

333

334
335

336
337
338
339

340
341

342

343
344

345

346

347

348
349
350

351
352

353
354
355

356

357

358

359
360
361
362

363
364

365
366
367

368
369

370
371

3 The Test Framework Components

The components of the framework are designed so that they can be combined in different configurations,
or Test Harnesses.

We describe here two components that are central to the Test Framework:

The Test Driver, which interprets Test Case data and drives Test Case execution.

The Test Service, which implements some test operations (actions) that can be triggered by received
messages. These operations support and automate the execution of Test Cases.

These components interface with the ebXML Message Service Handler (MSH), but are not restricted to
testing an MSH implementation.

3.1 The Test Driver

The Test Driver is the component that drives the execution of each step of a Test Case. Depending on
the test harness, the Test Driver may drive the Test Case by interacting with other components in
connection modeor in service mode.

In connection mode, the Test Driver directly generates ebXML messages at transport protocol level — e.g.
by using an appropriate transport adapter.

In service mode, the Test Driver does not operate at transport level, but at application level, by invoking
actions in the Test Service, which is another component of the framework. These actions will in turn send
or receive messages to and from the MSH.

3.1.1 Functions

The primary function of the Test Driver is to parse and interpret the Test Case definitions that are part of a
Test Suite, as described in the Test Framework mark-up language. Even when these Test Cases involve
several components of the Test Framework, the interpretation of the Test Cases is under control of the
Test Driver.

The Test Driver component of the ebXML Test Framework MUST have the following capabilities:

Self-Configuration - Based upon supplied configuration parameters specified in the ebXML
TestSuite.xsd schema (Appendix C), Test Driver configuration is done at startup, and MAY be modified at
the TestCase and Thread levels as well.

Test Service Configuration — Based upon supplied configuration parameters, Test Service configuration
may be done at startup via remote procedure call.

ebXML (or other type) Message Construction — Includes any portion of the message, including
message envelope and optional message payloads

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 11 of 185

372
373

374
375

376
377

378
379

380
381

382
383

384
385

386

387
388

389
390

391
392

393
394
395

396
397

398
399

Persistence of (received) Messages —received messages MUST persist for the life of a Test Case.
Persistent messages MUST validate to the ebXMLMessageStore.xsd schema in Appendix D.

Parse and query persistent messages — Test Driver MUST use XPath query syntax to query persistent
message content

Parse and query message payloads — Test Driver MUST support XPath query syntax to query XML
message payloads of persistent messages.

Control the execution and workflow of the steps of a Test Case. Some steps may be executed by
other components, but their initiation is under control of the Test Driver.

Repeat previously executed Test operations— Test Driver MUST be capable of repeating previously
executed message requests for the current Test Case.

Send messages through the Test Driver - Directly at transport layer (e.g. by opening an HTTP
connection).

Send messages through the Test Service — Locally (if coupled with the Test Service) or via remote
procedure call (if not directly interfacew with the Test Service)

Receive messages - Either directly at transport layer, or by notification from Test Service actions.

Perform discreet message content validation — Test Driver MUST be capable of performing discreet
validation of Time, URI, Signature and the entire XML message

Perform discreet payload content validation — Test Driver MUST be capable of performing discreet
validation of Time, URI, Signature and an XML payload

Report Test Results — Test Driver MUST generate an XML test report for all executed tests in the profile.
Reports MUST validate to the ebXMLTestReport.xsd schema in Appendix E.

A possible design that supports these functions is illustrated in Figure 1.

1= Test Driver
/{dapter Send N —1
) wnterface B ; Test I:
= e {BR s nnnoninsinen SERRRRR R UARRN LS ... Request |
Message i & sending Case AL I:!
HTTP output : Interpreter T I:!
or SMTP R g EEN
or... Trace ML -Eﬂurkﬂ-uw
or Test Servige Of the Kralys: Srarelanan Test Cases
Test Case - +\Verification
: +Eeporting
. Eeception | &
Message Bﬂcewe I LTI 1>
input interface o
S
- Test Beports
& Trace
Figure 1- The Test Driver: Functions and Data Flows
ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 12 of 185

400
401

402 3.1.2 Using the Test Driver in Connection Mode

403

404 The Test Driver MUST be able to control the inputs and outputs of an MSH at transport level. This can be
405 achieved by using an embedded transport adapter. This adapter has transport knowledge, and can

406 format message material into the right transport envelope. Independently from the way to achieve this,
407 the Test Driver MUST be able to:

408 Create a message envelope, and generate fully formed messages for this transport.

409 Parse a message envelope and extract header data from a message, as well as from the message
410 payload in case it is an XML document.

411 Open a message communication channel (connection) with a remote message handler. In that case the
412 Test Driver is said to operate in connection mode.

413 When used in connection mode, the Test Driver is acting as a transport end-point that can receive or
414 send messages with an envelope consistent with the transport protocol (e.g. HTTP,SMTP, or FTP). The
415 interaction between the MSH and the Test Service is of the same nature as the interaction between the
416 MSH and an application (as the Test Service simulates an application), i.e. it involves the MSH API,
417 and/or a callback mechanism. Figure 2 illustrates how the Test Driver operates in connection mode.

418
Test references
ESE agE : LERS TR R RN R RN)]
Test document | [| :
Service =
t ‘i Test Case Data
- s R
IMessage e T
: Test
MSH input Tratsport ;
Adapter | Driver tl % Comngapation
.o... sets (MSH, CPA)
Ileszage ﬁ' s
gutput ‘B' data
i R T
Test Eepotts
419
420 Figure 2- Test Driver: Connection Mode
421
ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 13 of 185

422
423

424
425

426

427

428
429
430
431
432
433
434

435

436
437
438
439

440

441
442
443
444
445

446

Test Reports

Host 1 Host 2
i ! e
i ! i . [1
Test : Test Case i —
i Service i ! documents —]
i 1................é...............................1:...... Test
i MSH i : Driver

Figure 3 — Test Driver: Remote Connection Mode

3.1.3 Using the Test Driver in Service Mode

In this configuration, the Test Driver directly interacts with the Service/Actions of the Test Service
component, without involving the transport layer, e.g. by invoking these actions via a software interface, in
the same process space. This allows for controlling the Test Cases execution from the application layer
(as opposed to the transport layer). Such a configuration is appropriate when doing interoperability testing
- for example between two MSH implementations — and in particular, in situations where the transport
layer should not be tampered with, or interfered with. The interactions with the Test Service must consist

of:

Sending: One method of the Test Service(represented by the the “Initiator” scripting element) , instructs
the MSH it has been interfaced with to construct and send a message. This method also MUST interface
with the Test Service at application level. When invoked by a call that contains message data, the method

generates a sending request using that MSH’s API.

Receiving: As all actions of the Test Service may participate in the execution of a Test Case (i.e. of its
Threads), the Test Driver needs to be aware of their invocation by incoming notification messages
provided by the Test Service. Each of these actions notify the Test Driver through its “Receive” interface,
passing received message data, as well as response data. In this way, the Test Driver builds an internal
trace (or state) for the Test Case execution, and is able to verify the test based on this data.

ebxml-iic-basic-interop-test-suite-10
Copyright © OASIS Open 2003. All Rights Reserved.

03 April 2003
Page 14 of 185

447
448
449
450
451

452

453
454
455

456
457
458
459
460

461
462

The Test Driver MUST support the above communication operations with the Test Service when in
Service Mode. This may be achieved by using an embedded Service Adapter to bridge the sending and
receiving functions of the Test Driver, with the Service/Action calls of the Test Service. Figure 4 illustrates
how the Test Driver operates with a Service Adapter. Alternately, the Test Service MAY notify the Test

Driver of receive messages and errors via RPC.

Test Case

]
1
document]
1
: B

references

MESSAZES
iu-----

TR - MSH Test Beportz +

Trace

Figure 4 — Test Driver: Service Mode

=
ST

ey S e~y

L Test Caze Data

Configuration
sets (WMSH, CPA)

Message
data

This design allows for a minimal exposure of the MSH-specific API, to the components of the Test
Framework. The integration code that needs to be written for connecting the MSH implementation is then
restricted to an interface with the Service/Actions defined by the framework. Neither the Test Driver, nor
the Service Adapter, need to be aware of the MSH-specific interface. An example of test harness using

the Test Driver in Service Mode is shown in Figure 5.

ebxml-iic-basic-interop-test-suite-10
Copyright © OASIS Open 2003. All Rights Reserved.

03 April 2003
Page 15 of 185

463

464

465

466

467

468

469

470
471
472
473
474
475

476
477
478
479
480
481

Host 1

Test
Service

.‘uuu SEsEssskS A NA NS E S SEEEEEEREFERAEEEEREEE

Host 2

Test Case o E
i 5 L] !
E documents - :

}llll.-

Test
Eeports

Figure 5 — Test Driver in Service Mode: Point-to-Point Interoperability Testing of Message Handlers

3.2 The Test Service

3.2.1 Functions and Interactions

The Test Service defines a set of Actions that are useful for executing Test Cases. The Test Service
represents the application layer for a message handler. It receives message content and error
notifications from the MSH, and also generates requests to the MSH, which normally are translated into
messagesto be transmitted. The Test Actions are predefined, and are part of the Test Framework). For
ebXML Messaging Services testing, Service and Actions will map to the Service and Action header

attributes of ebXML messages generated during the testing.

For ebXML Messaging Services testing, the Test Service name MUST be: urn:ebXML:iic:test.

Figure 6 shows the details of the Test Service and its interfaces.

ebxml-iic-basic-interop-test-suite-10

Copyright © OASIS Open 2003. All Rights Reserved.

03 April 2003
Page 16 of 185

482
483

484
485
486

487
488
489

490
491

492
493

494
495

496
497
498

499
500
501
502
503
504

505

Notification interface

e T [F‘IA Test Driver |

e Test Service ™

& Trace interface {(optional
Predefined 5 {f P T)
Test Service T G ECOEREE TEL est-Lrace
Actions — " = sl - i d_,/l
+ ﬁ T ﬂ Local invocation
: '." ‘.‘.‘-‘ R (by Test Driver in
) ':* ", -‘.‘ ; Service Mode)
MSC-ipuicatpter we R MSH-specific adapter
ibﬁﬂdlng recuests "'m_._l | | i‘__——" litl'l.‘-"':-‘]il.'.-ﬁ Test .ti'i.EtJ..l}ﬂE:]
sadminfconfipuration
"* * WEH-zpecific
— callback interface
MSH-specific APF” ’
eb XML Message o
MSH gt
s)
Message
output

Figure 6 — The Test Service and its Interfaces

The functions of the Test Service are:

To implement the actions which map to Service / Action fields in a message header. The set of test
actions which are pre-defined in the Test Service will perform diverse functions, which are enumerated
below:

To notify the Test Driver of incoming messages. This only occurs when the Test Service is deployed in
reporting mode, which assumes it is coupled with a Test Driver either locally, or via RPC.

To perform some message processing, e.g. compare a received message payload with a reference
payload (or their digests).

To send back a response to the MSH. Depending on the action invoked, the response may range from a
pre-defined acknowledgment to a specific message as previously specified.

Optionally, to generate a trace of its operations, in order to help trouble-shooting, or for reporting purpose.

Although the Test Service simulates an application, it is part of the Test Framework, and does not vary
from one test harness to the other. However, in order to connect to the Test Service, a developer will
have to write wrapper code to the Test Service/Actions that is specific to the MSH implementation that
needs to be integrated. This proprietary code is expected to require a minor effort, but is necessary as the
API and callback interfaces of each MSH are not specified in the [ebMS] standard and is implementation-
dependent.

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 17 of 185

506
507

508

509
510
511

512
513
514

515

516
517
518

519
520

521

522
523
524

525

526
527
528
529

530

531
532
533
534
535

3.2.2 Modes of Operation of the Test Service

The Test Service operates in two modes: Reporting or Loop mode

Reporting mode: in that mode, the actions of the Test Service instance, when invoked, will send a
notification to the Test Driver. The Test Driver will then be aware of the workflow of the test case. There
are two “sub-modes” of behavior:

Local Reporting Mode: The Test Driver is installed on the same host as the Test Service, and executes
in the same process space. The notification uses the Receive interface of the Test Driver, which is
operating in service mode.

Remote Reporting Mode: The Test Driver is installed on a different host than the Test Service. The
notification is done via messages to the Test Driver, which is operating in connection mode.

Loop mode: in this mode, the actions of the Test Service instance, when invoked, will NOT send a
notification to the Test Driver. The only interaction of the Test Service with external parties, is by sending
back messages via the message handler

The Test Service actions operate similarly in both reporting and loop modes. In other words, the mode of
operation does not normally affect the logic of the action. The action may send a response message, to
the requesting party via the “ResponseURL”. In general, the ResponseURL is the same as the requestor
URL.

Figure 7 shows a test harness with a Test Driver in connection mode, controlling a Test Service (Host 1)
in remote reporting mode. The other Test Service (Host 3) is operating in loop mode. This configuration is
used when the test cases are controlled from a third party test center, when doing interoperability testing.
The test center may also act as a Hub, and be involved in monitoring the traffic between the

interoperating

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 18 of 185

537

538

539
540
541
542
543
544
545
546
547
548

549

550

551
552
553
554
555
556

557

A

Host 2
: = .. -
Q1| TestCase
QLN documents

Il

i Test | notification] w| LSt E}@
E Service e’ | Driver :

i it Test

i e

: ST J.m:'rmtmg Eeports
: U Test cases

-‘t+llttl||-+-llllllllnllllttlll.lnllllllllnlllln:mlll|-l|l|l+llnlll|

Test
Service

Figure 7 — Example of Remote Reporting Mode : The Interoperability Test Center Model

3.2.3 Configuration Parameters of the Test Service

Test Service configuration is initially performed when the Test Driver reads the executable Test Suite
XML document, and sends the TestServiceConfigurator element content found at the beginning of the
TestSuite document to the Test Service via its Configuration interface. If the Test Driver is unable to
configure the Test Service, then the Test Driver MUST generate an exception. The Test Driver MAY
handle this exception in a “non-fatal” manner if the Test Service provides an alternate means of initial

configuration.

ebxml-iic-basic-interop-test-suite-10

Copyright © OASIS Open 2003. All Rights Reserved.

03 April 2003
Page 19 of 185

558
559
560

561
562
563
564
565
566
567
568

569
570
571

572
573
574

575
576
577

578
579

580
581
582
583
584

585
586
587
588
589
590
591

592

593

594
595
596
597
598

599

600
601

Test Service configuration parameters are defined as content within the TestServiceConfiguration
element. There are three parameters that MUST be present to configure the Test Service, and one
“optional” parameter type. The three REQUIRED parameters are:

OperationMode (either local-reporting, remote-reporting or loop mode)
ResponseURL (destination for response messages in any mode)
NotificationURL (destination for notification messages, if in local or remote reporting mode)

Additionally, the content of the PayloadDigests element MAY be passed to the Test Service. These
values are used by the PayloadVerify Test Service action to assert whether a received message payload
is unchanged when received by the MSH.

Outside of these four parameters, the Test Service is considered “stateless”.

Test Service configuration MAY be performed locally, if in the same program space as the Test Service.
Test Service configuration MUST be performed via RPC to the Test Service Configuration interface’s
“configurator” method if it is in “connection” mode.

In a test harness where an interoperability test suite involves two parties, the test suite (and Test Service
Configuration) will need to be executed twice - alternatively driven from each party. In that case, each
Test Service instance will alternatively be set to a reporting mode (local or remote), while the other will be
set to loop mode. These settings can be set remotely via RPC call to the configurator method of the Test
Service.

3.2.4 The Messaging Actions of the Messaging Services Test Service

The actions described here are required of the Test Service when performing messaging services testing,
and should suffice in supporting most messaging Test Cases. In the case of ebXML Messaging Services
testing, these actions map to the Service/Action field of a message, and will be triggered on reception of
messages containing these service/action names. However, these actions are generic enough to be
used for any business messaging service.

3.2.4.1 Common Functions

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 20 of 185

602
603

604

605
606
607
608

609
610
611
612

613
614

615

616

617
618
619
620
621

622

623

624

625
626
627

628

629
630
631
632
633

634

635

636

637
638
639
640

641
642
643

644
645
646

Some functions are common to several actions, in addition to the specific functions they fulfill. These
common functions are:

e Generate a response message. Response messages are destined to the ResponseURL .
They also specify a Service/Action, as they are usually intended for another Test Service
although in case the ResponseURL directly points to the Test Driver in connection mode,
Service/Action will not have the regular MSH semantics.

e Notify the Test Driver. This assumes the Test Service is coupled with a Test Driver. In that
configuration, the Test Service is in reporting mode. The reporting is done by a message
(sent to the Notification URL) when in remote reporting mode, or by a call to the Receive
interface when in local reporting mode.

3.24.2 Test Service Actions

The Test Service actions defined below are “generic” types of actions that can be implemented for any
type of messaging service. Specific details regarding Service, Action, Messageld and other elements are
requirements specific to testing ebXML MS. In order to implement these actions for other types of
messaging services the “equivalent” message content would require manipulation. The ebXML test
actions are:

3.24.21 Mute action

Reporting/Loop Mode Action Description: This is an action that does not generate any response
message back. Such an action is used for messages that do not require any effect, except possibly to
cause some side effect in the MSH, for example generating an error.

Response Destination: None

In Reporting Mode: The action will notify the associated Test Driver. The notification containing the
received header and payload(s) material, will be done via the Receive interface, if in local reporting mode,
or with a message with Service / Action fields set to “urn:ebxML:iic:test”l “Notify”, if in remote
reporting mode. The notification will report the action name (“Mute”) and the instance ID of the Test
Service.

3.2.4.2.2 Dummy action

Reporting/Loop Mode Action Description: This is an action that generates a simple response. On
invocation, this action will generate a canned response message back (no payload, simplest header with
minimally required message content), with no dependency on the received message, except for the
previous MessagelD (for correlation) in the RefToMessageld header attribute.

Response Destination: A message with a Mute action element is sent to the Test Component (Test Driver
or Service) associated with the ResponseURL. This notice serves as proof that the message has been
received, although no assumption can be made on the integrity of its content.

In Reporting Mode: The action will also notify the associated Test Driver. The notification containing the
received header and payload(s) material, will be done via the Receive interface, if in local reporting mode,
or with a message with Service / Action fields set to “urn:ebxML:iic:test’l “Notify”, if in remote

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 21 of 185

647
648

649

650

651
652

653
654
655

656
657
658

659
660

661
662
663
664
665

666

667
668

669
670
671

672
673
674
675
676

677

678
679

680

681
682

683
684
685
686
687
688
689
690

reporting mode. The notification will report the action name (“Dummy”) and the instance ID of the Test
Service.

3.2.4.2.3 Reflector

3.2.4.2.4 Reporting/Loop Mode Action Description: On invocation, this action generates a response to a
received message, by using the same message material, with minimal changes in the header:

e Swapping of the to/from parties so that the “to” is now the initial sender.
e Setting RefToMessageld to the ID of the received message.
¢ Removing AckRequested or SyncReply elements if any.

e All other header elements (except for time stamps) are unchanged. The conversation ID remains
unchanged, as well as the CPAId. The payload is the same as in the received message, i.e. same
attachment(s).

Response Destination: a message with a Mute action element is sent to the Test Component (Test Driver
or Service) associated with the ResponseURL. This action acts as a Reflector for the initial sending party

In Reporting Mode: The action also notifies the associated Test Driver. The notification containing the
received header and payload(s) material, will be done via the Receive interface, if in local reporting mode,
or with a message with Service / Action fields setto “urn:ebxML:iic:test” “Notify”, if in remote
reporting mode. The noatification will report the action name (“Reflector”) and the instance ID of the Test
Service.

3.2.4.2.5 Initiator action

Reporting/Loop Mode Action Description: This Test Service action is not invoked through reception of a
request message. Instead, it is invoked via a local method call to the Test Services “Send” interface.
This action may be initiated by a locally interfaced Test Driver, or (via RPC) by a remote Test Driver.

On invocation, this action generates a new message. This message may be the first message of a totally
new conversation, or it may be part of an existing conversation (depending upon the message declaration
provided by the Test Driver. The header of the new message can be anything that is specified by the Test
Driver. For example, this action would be used to generate a "first" message of a new conversation,
different from the conversation ID specified in the invoking message.

Response Destination: Any party defined by the Test Driver.

In Reporting mode: Not Applicable, since this action is invoked directly by the Test Driver only (i.e. no
incoming message is received via MSH).

3.2.4.2.6 PayloadVerify action

Reporting/Loop Mode Action Description: On invocation, this action will compare the payload(s) of the
received message, with the expected payload. Instead of using real payloads, to be pre-installed on the
site of the Test Service, it is RECOMMENDED that a digest (or signature) of the reference payloads (files)
be pre-installed on the Test Service host using TestServiceConfiguration parameters supplied by the Test
Driver. The PayloadVerify action will then calculate the digest of each received payload and compare with
the reference digest parameter values. This action will test the service contract between application and
MSH, as errors may originate either on the wire, or at every level of message processing in the MSH until
message data is passed to the application. The action reports to the Test Driver the outcome of the

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 22 of 185

691
692
693
694
695

696
697

698
699

700
701
702
703

704
705
706
707

708
709

710
711
712

713

714
715

716

717
718
719
720

721

722
723
724

725

726
727

comparison. This is done via an alternate communication channel to ensure that the same system being
tested is not used to report the reliability of its own MSH. A “notification” message is sent via RPC to the
Test Driver. The previous MessagelD is reported (for correlation) in the RefToMessageld header attribute
of the response. The previous Conversationld is also reported. The payload message will contain a
verification status notification for each verified payload, as specified in Appendix F.

The XML format used by the response message is described in the section 7.1.12 (“Service Messages”).

Response Destination: a message is sent with a Mute action element to the Test Component (Test Driver
or Service) associated with the ResponseURL.

In both loop and reporting mode: Action will also notify the associated Test Driver. The notification
containing the received header and payload(s) material, will be done via the Receive interface, if in local

reporting mode, or with a message with Service / Action fields setto “urn:ebxML:iic:test"/
“Notify”, if in remote reporting mode.

3.2.4.3 Integration of the Test Service with an MSH Implementation

As previously mentioned, the actions above are predefined and are a required part of the Test Framework
for messaging services testing, and will require some integration code with the MSH implementation, in
form of three adapters, to be provided by the MSH development (or user) team. These adapters are:

(1) Reception adapter, which is specific to the MSH callback interface. This code allows for
invocation of the actions of the Test Service, on reception of a message.

(2) MSH control adapter, which will be invoked by some Test Service actions, and will invoke in turn
the MSH-specific Message Service Interface (or API). Examples of such invocations are for
sending messages (e.g. by actions which send response messages), and MSH configuration
changes (done by the TestServiceConfigurator operation).

(3) Error URL adapter, which is actually independent from the candidate MSH. This adapter will
catch error messages, and invoke the report method of the Test Service. The report method
notifies the Test Driver of the error message.

3.2.5 Interfaces for Test Driver and Test Service

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 23 of 185

728
729
730
731
732
733

734
735

736
737
738

739
740
741

742

743
744
745
746

747
748

749
750
751

752
753
754

755
756
757
758
759

760

761

762
763
764
765
766
767
768

769
770

771

Not all Test Harness communication occurs at the messaging level (i.e. through Test Service actions).
Certain Test Harness functionality can only be safely and reliably guaranteed by decoupling it from the
actual messaging protocol being tested. This is the case for Test Service message initiation,
configuration and error notification. . If the same protocol under test were also used as the infrastructure
for the actions above, then failure of that protocol would result in undetermined/ambiguous Test Case
results.

Four interfaces (3 Test Service, 1 Test Driver) are defined to provide a “decoupled” relationship between
the system under test, and the test harness.

The three interfaces on the Test Service component are:

Send — consists of one method (initiator) that accepts a message declaration, builds the message
envelope, attaches any referenced payloads, and sends the message. The method returns an XML
notification document with a “pass/fail” Result element.

Configuration — Consists of one method, (configurator) which accepts a Configuration Group list of
parameters and their corresponding values. This includes three “required” parameters, and additional
optionalpayload digest name/value parameters. The method returns an XML notification document with a
“pass/fail” Result element.

These two interfaces can be accessed either locally (if the Test Driver and Test Service are running in the
same program space), or remotely (if the Test Driver and Test Service are not local). In the case of
remote communication, these methods MUST be accessible via RPC call.

The interface on the Test Driver component is:

Receive — Its “notify” method accepts incoming notification messages from the Test Service andpasses
them to the Test Service for storage in its Message Store. Notification messages include messages
received by the Test Service (when the Test Service is in “reporting mode”) and application error
messages generated by the Test Service and response messages from the Test Service referencing
success/failure of received message payload verification.

3.2.5.1 Abstract Test Service “Send” Interface

The abstract interface is defined as:

1. Aninterface that must be supported by the Test Service
2. Aninitiator method that must be supported by that interface
3. The parameters and responses that must be supported by that method

This abstract Test Service interface does not specify any particular implementation of a MSH, nor does it
specify a particular language binding.

Method Return Type Method Name Exception

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 24 of 185

772
773

774
775
776
777
778
779

780

781
782
783
784

785

786

787

788
789
790
791
792
793
794

795
796

797
798

799
800
801

Condition

InitiatorResponse (an XML initiator (MessageDeclaration Failed to
document, returning a declarationMessagePayloadList | construct or send
synchronous response payloads) message

message containing a boolean

Passes the constructed
Result element)

message “declaration” to the
Test Service initiator action
Additionally, any message
payloads are passed as an
encapsulated list.

Table 1 — Initiator method description

Semantic Description: The Initiator call instructs the Test Service to generate a new message. The
new message content is provided as a argument to the initiator call. Any payload content is provided as
attachments in the SOAP message, and have the same content-Id as defined in the message
Declaration. The envelope header of the new message can be anything that is specified and understood
by the Test Service (e.g. ebXML or RNIF). This action may be used to generate a "first" message of a
new conversation (if no Conversationld is present in the Declaration .

The method is of return-type InitiatorResponse, meaning the method returns a response XML message
document containing a status message describing the success/failure of the Initiator method call. This is
returned to the Test Driver. A return value of “false” stops execution of the Test Case with a final result of
“‘undetermined”. A return value of “true” signals the Test Driver to proceed with the testing workflow.

3.2.5.2 WSDL representation of the initiator RPC method

If the Test Driver is “remote” to the Test Service (i.e. resides outside of the program space of the Test
Service), messages may still be initiated by the Test Driver on the remote Test Service via RPC. The
Web Service Description Language (WSDL) document in Appendix H describes the Service, Operation,
Port and (example SOAP) bindings that MUST be implemented in the Test Service in order to perform
remote message initiation via SOAP v1.2 Other RPC bindings may be implemented, as long as the
operations and documents described in this WSDL definition are used, and both the Test Service and
Test Driver are using the same RPC methods and definitions.

Operations PortTypes Bindings Services

- o -
—|- %= initiator = & TestService
=B Input: tnz:InitiatorR equest H _l— % InitiatorSOAPE inding

=B Input
— i@ mime:MultiPartRelated

part: InitiatorR equest xsd1:InitiatorReg
—- B4 Dutput: the:InitiatorR esponse

part: InitiatorR esponsze xzd1:InitiatorF g il St -6 mime: Part
q | | » @& soap:Body
=B Output
- i@ mime:MultiPartRelated
+- 6 mime: Part

Figure 8 — WSDL diagram of the Initiator SOAP method

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 25 of 185

802

803
804
805
806
807
808
809

810
811

812

813
814

815
816
817
818

819
820
821
822

823
824

825
826

827
828
829
830
831
832
833
834

835
836

3.2.5.3 Abstract Test Service “Configuration” Interface

The abstract interface is defined as:

1. Aninterface that must be supported by the Test Service
2. A configurator method that must be supported by that interface
3. The parameters and responses that must be supported by that method

This abstract MSH interface does not specify any particular implementation of a MSH, nor does it specify
a particular language binding.

Method Return Type Method Name Exception
Condition

ConfiguratorResponse (an XML | configurator (ConfigurationList | Test Service fails
document containing a boolean | list) to configure

result element) Passes the configuration properly

parameters to the Test Service

Table 2 — Configurator method

Semantic Description: The configurator call passes configuration data from the Test Driver to the Test
Service. This includes the three REQUIRED configuration items (ResponseURL, NotificationURL,
ServiceMode), plus additional optional parameters that may be used in payload verification payload
integrity verification.

The method is of type ConfiguratorResponse, meaning the method returns a response XML message
document containing a status message describing the success/failure of the configurator method call to
the Test Driver. A return value of “false” stops execution of the Test Case with a final result of
“‘undetermined”. A return value of “true” signals the Test Driver to proceed with the testing workflow.

3.2.5.3.1 WSDL representation of the configurator SOAP method

3.2.5.3.2 Ifthe Test Driver is “remote” to the Test Service (i.e. resides outside of the program space of
the Test Service), messages may still be initiated by the Test Driver on the remote Test
Service via RPC. The Web Service Description Language (WSDL) document in Appendix H
describes the Service, Operation, Port and (example) bindings that MUST be implemented in
the Test Service in order to perform remote Test Service configuration via SOAP v1.2 Other
RPC bindings may be implemented, as long as the operations and documents described in
the WSDL definition are used, and the same RPC mechanism is used by both Test Driver and
Test Service implementer.

3.25.3.3

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 26 of 185

837
838

839
840

841
842

843

844

845
846

847
848
849
850
851

852
853

854

855
856

857
858
859

860

Operations PortTypes Bindings Services

=& configurator] [P & ConfigurstarS0APBinding: =1] Test3ervice
=B Input: tns: TestServiceConfiguratorReq] : configurator % ConfiguratorS 0APEinding

part: TestServiceConfiguratorR equest =B Input
+ B Outpuk: ths:TestS erviceConfiguratorRe: S =g mime:MuliPartF elated
4| v il ndrhert it -1 mime:Part
&2 soap:Body
=B Output
=18 mime:MultiPantPelated
-6 mime:;Part
@ soapBody

Figure 9 — WSDL diagram of the configurator SOAP method

3.2.5.4 Abstract Test Driver “Receive” Interface

The Test Driver MUST also have an interface available for communication with the Test Service. The
abstract interface is defined as:

1. An interface that must be supported by the Test Driver
2. An notify method that must be supported by that interface
3. The parameters and responses that must be supported by that method

This abstract MSH interface does not specify any particular implementation of a MSH, nor does it specify
a particular language binding.

Method Return Type Method Name Exception
Condition

NotificationResponse Test Driver fails
to accept the

notify (NotificationMessage
message, MessagePayloadList
messagePayloads)

notification
message

Passes the, received
notification message envelope
and any encapsulated
message payloads to the Test
Driver

Table 4 — WSDL diagram of the notify SOAP method

Semantic Description: The notify method instructs the Test Driver to add the received or generated
message content to the Message Store, along with accompanying service instance id, service action and
other data provided by the Test Service.

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 27 of 185

861
862
863

864
865
866

867
868
869
870
871

872

873
874

875
876
877

878
879

880
881
882
883
884
885
886

887

888
889
890
891

892
893

894
895
896
897
898
899
900

901

902
903
904
905
906

907

The method is of type NotificationResponse, meaning the method returns a response XML message
document containing a status message describing the success/failure of the notify method call back to the
Test Service.

The types of notifications that a Test Service may pass to a Test Driver include:

An application error notification message captures specific error notifications from the MSH to its using
application. It is not triggered by reception of an error message, but it is directly triggered by the internal
error module of the MSH local to this Test Service. If the MSH implementation does not support such
direct notification of the application (e.g. instead, it writes such notifications to a log), then an adapter
needs to be written to read this log and invoke this action whenever such an error is notified.

Such errors fall into two categories:

e MSH errors that need to be directly communicated to its application — and not to any remote party, e.g.
failure to send a message (no Acks received after maximum retries).

¢ In case an MSH generates regular errors with a severity level set to “Error” — as opposed to “Warning” — the
MSH is supposed to (SHOULD) also notify its application. The ErrorAppNotify action is intended to support
both types of notifications.

Application Error Notification Message Format:

Error notification messages have the same characteristics a normal error message (i.e. have a
MessageHeader with refToMessageld, Conversationld, CPAId corresponding to that of the incoming
“offending” message that generated the error). In addition, the message will contain an Error List
conforming to that normally generated by the MSH. This message will be identified as “different” from a
received message by the presence of a “Notification” root element, which contains reporting test service
name, reporting test service instance id, reporting method name (errorAppNotify), synch type
(synchronous or asynchronous), and id.

An MSH Error notification message captures “normal” error notifications from the MSH (i.e. errors
normally returned to the sending MSH). This method is specified to handle cases where the MSH cannot
resolve the error reporting location (not present in CPA) and does not return the error to the sending
MSH. In this case the Test Service Notification interface is utilized to report the error to the Test Driver.

MSH Error Notification Message Format:

Error notification messages will have the same characteristics a normal error message (i.e. have a
MessageHeader with refToMessageld, Conversationld, CPAId corresponding to that of the incoming
“offending” message that generated the error). In addition, the message will contain an Error List
conforming to that normally generated by the MSH. This message will be identified as “different” from a
received message by the presence of a “Notification” root element, which contains reporting test service
name, reporting test service instance id, reporting method name (errorURLNOotify), synch type
(synchronous or asynchronous), and id.

Received Message notifications capture messages received by the Test Service. This method is
specified to handle testing scenarios where the Test Service is in “local-reporting” or “remote reporting”
mode. A notification message generated by the notify method is a “copy” of the received message
envelope and an encapsulated list of any attachments provided with the message. The message
contains.

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 28 of 185

908

909
910
911
912
913
914

915

916
917
918
919
920
921
922

923
924

925
926
927
928
929
930

931

932
933

934
935

936
937
938
939

940
941

942

943

944
945
946
947
948
949
950

951
952

Received Message Notification Format:

All notification messages generated by the report method will have the same characteristics a normal
message (i.e. have a MessageHeader with refToMessageld, Conversationld, CPAId). Additionally, an
encapsulated list of message attachments that were a part of the received message is passed to the Test
Driver. The message will be identified as “different” from a received message by the presence of a
“Notification” root element, which contains reporting test service name, reporting test service instance id,
reporting method name (notify), synch type (synchronous or asynchronous), and id.

Payload verification notification messages inform the Test Driver of the result of the PayloadVerify
action of the Test Service. A notification message consists of a message envelope with the same
characteristics a normal response message (i.e. have a MessageHeader with refToMessageld,
Conversationld, CPAId corresponding to that of the incoming message). This message will be identified
as “different” from a received message by the presence of a “Notification” root element, which contains
reporting test service name, reporting test service instance id, reporting method name (payloadVerify),
synch type (synchronous or asynchronous), and id.

Received Payload Verification Format:

All payload verification messages will have the same characteristics a normal message (i.e. have a
MessageHeader with refToMessageld, Conversationld, CPAId). Additionally, the notify method will pass
to the Test Driver an XML document describing the result of the payload verification. This message will
be identified as “different” from a received message by the presence of a “Notification” root element,
which contains reporting test service name, reporting test service instance id, reporting method name
(messageNotify), synch type (synchronous or asynchronous), and id.

The XML format used use for all of the above notification messages is described in the section 7.1.12
(“Service Messages”).

Additional note:

Notfication messages do not contain any artifacts pertaining to the protocol that carried them. For
example, no HTTP or MIME headers are passed along with the notification message; becase the Test
Service does not normally have access to this message content at the application level. Only message

envelopes, and accompanying message payloads are passed on to the Test Driver’s “Receive” interface.

3.2.5.4.1 WSDL representation of the Test Driver notify SOAP method

If the Test Driver is “remote” to the Test Service (i.e. resides outside of the program space of the Test
Service), messages may still be initiated by the Test Service via RPC. The Web Service Description
Language (WSDL) document in Appendix H describes the Service, Operation, Port and (example)
Bindings that MUST be implemented in the Test Service in order to perform remote Test Service
configuration via SOAP v1.2 Other RPC methods may be implemented, as long as the operations and
documents described in the WSDL definition are used, and the same RPC mechanism is used by both
Test Driver and Test Service implementer.

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 29 of 185

953
954

955

956

957

958
959

960
961

962
963
964
965

966
967

968
969

970
971

972
973

974
975
976

977
978
979

980

981

982
983
984
985

986
987

Operations PortTypes Bindings Services

=2 Maotify =|-{i& M ohificationS 0APBinding: = (Ej TestDriverReceiveService
= EA Input: tns:MotificationFequest H =5 Matify - W, NotifyS04PBinding

part: MotificationFequest xzd1:Motifica =B Input
=~ B4 Dutput: tns:MNotificationResponse X ol -1 mime:MultiParF elated
part: MotificationAesponze xed1:Motific irkochlesioat i = mirne: Fart
< | 3 @@ zoapBody
=B Output
—1&@ mime:MultiParF elated
= mirne: Fart
@@ soap:Body

Figure 10 — WSDL diagram of the Test Driver notify SOAP method

3.3 Executing Test Cases

A Test Suite document contains a collection of Test Cases. Each Test Case is an XML script, intended to
be interpreted by a Test Driver. Using the Test Suite document, the Test Driver MUST be able to:

Configure Itself — Define necessary parameters that permit the Test Driver to send messages and verify
and/or validate received message content

Configure the Test Service — Define necessary parameters that permit the Test Service to set it mode of
operation, and send notification messages to the Test Driver (if required).

Access all necessary testing material — Test Requirements documents, message content, payload
content

Execute Test Cases — Interpret a formalized and valid XML scripting language that permits
unambiguous, repeatable results each time it is interpreted and executed

Generate a Test Report — After executing the Test Cases, a Test Driver MUST is able to generate a Test
Report using the material provided in the Test Suite, and collateral test material that is part of the Test
Suite.

3.3.1 A Typical Execution Scenario

In order to get an idea of how the Test Framework operates, a brief description of how a Test Driver
would typically execute a Test Suite is described below. This is an “overview” description of how the Test
Framework executes. In order to fully understand the details and requirements of implementing this
specification, the remaining portion of this specification must be examined.

A typical execution model for the Test Harness would be:

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 30 of 185

988
989
990

991
992

993
994

995
996

997
998

999
1000
1001
1002

1003
1004

1005
1006
1007

1008
1009
1010

1011
1012
1013
1014
1015

1016
1017
1018

1019
1020
1021

1022

1023

1024

1025
1026
1027
1028
1029
1030

1031
1032
1033
1034

A Test Driver is installed on a networked computer.
An implementer wishing to test an ebXML (or other) implementation invokes the Test Driver executable.

The Test Driver asks the tester for fundamental information (e.g. mode of testing to be used by the Test
Driver, message and error reporting URL for the candidate implementation)

The Test Driver “self configures” based upon user preferences.
The Test Driver performs any local or remote configuration of the candidate implementation if necessary.

The Test Driver presents the tester with a list of conformance or interoperability testing profiles that
he/she may select from for testing the candidate implementation.

The tester chooses a testing requirements profile.
Execution of Test Cases against the specified testing requirements profile begins.

A standard Test Report Document is generated by the Test Driver, providing a trace of all testing
operations performed for each Test Case, with accompanying Test Case results, indicating a final result
of “pass”, “fail” or “undetermined” for each Test Case, based upon detailed results of each operation
within each Test Case.

If a candidate implementation passes all Test Cases in the Test Suite, it can be considered conformant or
interoperable for that particular testing profile.

If a candidate implementation fails some Test Cases, but the Test Requirement that they tested against
were “OPTIONAL”, “HIGHLY RECOMMENDED” or “RECOMMENDED?”, then that implementation may
still be conformant for all REQUIRED features tested.

If the optional features tested were actually implemented on the candidate, and it failed any Test Cases
that test against those features then the candidate would be considered “non-conformant” for those
optional features.

If any Test Case results were “undetermined” (due to network problems, or due to missing prerequisite
candidate features that are not under the control of the Test Harness) then ultimate
conformance/interoperability of the candidate implementation is deemed “undetermined” for that testing
profile. In such cases, resolution of the underlying system issue must be resolved or the Testing Profile
must be redefined to test only those features that are truly supported by the candidate implementation.

The above list represents an “overall” view of how a Test Harness operates. Detailed descriptions of the
testing material that drives the Test Harness, and implementation requirements for the Test Driver and
Test Service follow.

3.3.2 Test Case as a Workflow of Threads

A Test Case is a workflow of Test Threads. A Thread can be executed either in a synchronous or
asynchronous manner. If a particular operation consists of a logically grouped sequence of message
“send” and “receive” operations, then a Thread is a logical container to group those operations. In
addition, a Thread may test an assertion of expected message content from a received message. A
Thread may also include conditional actions (testing preconditions) that are a basis for proceeding to the
execution of the assertion test.

A Test Case Instance is the execution of a particular sequence of test operations, Two instances of the
same Test Case will be distinguished by distinct Conversationld and Messageld values in the generated
messages (referred to as the message “context”). An example of a sequence of Threads associated with
an MS Conformance Test Case is:

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 31 of 185

1035

1036
1037

1038
1039
1040
1041

1042

1043

1044
1045

1046
1047
1048
1049
1050

1051
1052
1053
1054

1055
1056

1057

1058

1059

1060
1061
1062
1063

1064

1065
1066
1067
1068

1069
1070
1071

Thread 1: Test driver sends a sample message to the Reflector action of the Test Service. Message
header data is obtained from message header declaration, and message payload from the received file.

Thread 2: Test driver receives the response message and adds it to the stored messages received for
this Test Case instance Step 3: Correlation with Step 3 is done based on the Conversationld attribute,
which should be identical to the Messageld of Step 2. Test driver verifies the test condition on response
message, for example that the SOAP envelope and extensions are valid.

3.3.3 Related Message Data and Declarations

Some Threads will require construction of message data. This message data MUST be specified using a
Declaration (see Section 7). A Declaration is an XML-based script interpreted by the Test Driver (or Test
Service if doing interoperability testing) to construct a message envelope and its content. Payload
material is not included in the messages declaration, but may be referenced by it (for example, in the
case of ebXML Messaging, via the Manifest element).

The Test Driver MUST be capable of interpreting these scripts in order to:

Assemble a message from script material and referenced payloads.

Analyze and select a received message based on header and envelope content (as well as based on
payload content if the payload is in XML).

3.3.4 Related Testing Configuration Data

Test Cases MAY be executed under a pre-defined collaboration agreement. For example, when testing
ebXML Messaging Services, this agreement is a CPA [ebCPP]. This agreement will configure the ebXML
Candidate Implementations involved in the testing, and define the collaborations that execute on these
implementations.

Test Driver Configuration data (found in the Test Suite XML document) parameters define the operational
mode of the test driver itself. The Test Driver is agnostic to any type of collaboration agreement, but does
have its own set of configuration parameters and requirements. This information is provided (or
referenced via URI) in the Test Suite document..

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 32 of 185

1072
1073

1074
1075
1076

Test Cases
Database

Test Caze %
Test
XYz E T Cases

Test configuration
= data:: Test Driver,
CPPA

Test
Steps

L Mezsage
payloads

An XML document Test case data
(2L artifacts)

Figure 11 — Test Case Document and Database

ebxml-iic-basic-interop-test-suite-10
Copyright © OASIS Open 2003. All Rights Reserved.

03 April 2003
Page 33 of 185

o7 Part ll: Test Suite Representation

1078

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 34 of 185

1079
1080

1081
1082

1083
1084

1085

1086
1087
1088
1089
1090

1091

1092
1093
1094
1095
1096
1097
1098
1099

1100

1101
1102

1103
1104

1105
1106

1107
1108

1109
1110

1111
1112
1113

1114

4 Test Suite

4.1 Conformance vs. Interoperability Test Suite

We distinguish two types of test suites, which share similar document schemas and architecture
components, but serve different purposes:

= Conformance Test Suite. The objective is to verify the adherence or non-adherence of a Candidate
Implementation to the target specification. The test harness and Test Cases will be designed around
a single (candidate) implementation. The suite material emphasizes the target specification, by
including a comprehensive set of Test Requirements, as well as a clear mapping of these to the
original specification (e.g. in form of an annotated version of this specification).

= Interoperability Test Suite. The objective is to verify that two implementations (or more) of the same
specification, or that an implementation and its operational environment, can interoperate according
to an agreement or contract (which is compliant with the specification, but usually restricts further the
requirements). These implementations are assumed to be conforming (i.e. have passed conformance
tests or have achieved the level of function of such tests), so the reference to the specification is not
as important as in conformance. Such a test suite involves two or more Candidate Implementations of
the target specification. The test harness and Test Cases will be designed in order to drive and
monitor these implementations.

A conformance test suite is composed of:

One or more Test Profile documents (XML). Such documents represent the level or profile of
conformance to the specification, as verified by this Test Suite.

Design of a Test Harness for the Candidate Implementation that is based on components of the ebXML
[IC Test Framework.

A Test Requirements document. This document contains a list of conformance test assertions that are
associated with the test profile to be tested.

An annotation of the target specification, that indicates the degree of Specification Coverage for each
specification feature or section, that this set of Test Requirements provides.

A Test Suite document. This document implements the Test Requirements, described using the Test
Framework material (XML mark-up, etc.)

An Interoperability Test Suite is composed of:

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 35 of 185

1115

1116
1117
1118

1119
1120

1121
1122

1123
1124

1125
1126

1127

1128

1129
1130

1131
1132

1133
1134
1135

1136
1137

1138
1139
1140

1141
1142
1143
1144

1145

One or more Test Profile documents (XML). Such documents represent a set of features specific to a
particular functionality, represented in a Test Suite through Test Cases that only test those particular
features, and hence, that profile.

Design of a Test Harness for two or more interoperating implementations of the specification that is
based on components of the ebXML Test Framework.

A Test Requirements document. This document contains a list of test assertions associated with this
profile (or level) of interoperability.

A Test Suite document. This document implements the Test Requirements, described using the Test
Framework material (XML mark-up, etc.)

4.2 The Test Suite Document

The Test Suite XML document is a collection of Test Driver configuration data, documentation and
executable Test Cases.

= Test Suite Metadata provides documentation used by the Test Driver to generate a Test Report for
all executed Test Cases.

= Test Driver Configuration data provide basic Test Driver parameters used to modify the
configuration of the Test Driver to accurately perform and evaluate test results. It also contains
configuration data for the candidate ebXML implementation(s).

= Message data is a collection of pre-defined XML payload messages that can be referenced for
inclusion in an ebXML test message.

= Test Cases are a collection of discrete Threads. Each Thread can execute any number of test
Operations (including sending, receiving, and examining returned messages). An ebXML Test Suite
document MUST validate against the ebTest.xsd file in Appendix C.

= Message Payloads provide XML and non-XML content for use as material for test messages, as well
as message data for Test Services linked to the Test Driver.

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 36 of 185

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

4[[‘ configurationGroupRef]
any el

@.I # ConfigurationGroup

TestSuite

@.| + TestSer\riceEunﬁguratnr

S

Figure 12 — Graphic representation of basic view of TestSuite schema

Definition of Content

Name Description Default | Required/Optional | Exception Condition
Value
From
Test
Driver
TestSuite Container for all Required
configuration,

ebxml-iic-basic-interop-test-suite-10

Copyright © OASIS

Open 2003. All Rights Reserved.

03 April 2003
Page 37 of 185

1162

1163

1164

1165

1166

1167

1168
1169

1170

1171

documentation and tests

configurationGroupRef

Reference ID of the
ConfigurationGroup data
used to configure
theTest Driver (in
connection mode) or
Test Service/MSH (
when in service mode)

Required

ConfigurationGroup
not found

Metadata

Container for general
documentation of the
entire Test Suite

Required

ConfigurationGroup

Container for Test Driver
configuration instance
data

Optional

TestServiceConfigurator

Containter for Test
Service configuration
instance data

Required

Unable to configure
Test Service (non-
fatal)

Message

Container element for
“wildcard” message

content (i.e. any well-
formed XML content)

Optional

TestCase

Container for an
individual Test Case

Required

Table 5 provides a list of TestSuite element and attribute content

421 Test Suite Metadata

Documentation for the ebXML MS Test Suite is done through the Metadata element. It is a container
element for general documentation.

ebxml-iic-basic-interop-test-suite-10
Copyright © OASIS Open 2003. All Rights Reserved.

03 April 2003
Page 38 of 185

Description =

Yersion =
In

i&

Maintainer =
MetaData

Location =
anyl &l

PublishDate =

ig

E |
i

1172

1173 Figure 13 — Graphic representation of expanded view of the Metadata element
1174

1175

1176

1177

1178 Definition of Content

Name Description Default Value Required/Optional | Exception
From Test Driver Conditions
Description Generall description of the Required
Test Suite
Version Version identifier for Test Required
Suite
Maintainer | Name of person(s) Required
maintaining the Test Suite
Location URL or filename of this test Required
suite
PublishDate | Date of publication Required
Status Status of this test suite Required

1179 Table 6 provides a list of Metadata element and attribute content
1180

1181 4.2.2 The ConfigurationGroup

1182

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 39 of 185

1183
1184
1185

1186
1187
1188
1189

1190
1191
1192
1193
1194
1195
1196

1197

1198

1199

1200

1201

1202

1203

The ConfigurationGroup element contains configuration data for both the Test Driver as well as modifying
the content of test messages constructed by the Test Driver (when in “connection” mode) or message
declarations passed to the Test Service (when in “service” mode).

ConfigurationGroups may be referenced throughout a Test Suite, in a hierarchical fashion. By default, a
“global” ConfigurationGroup is required for the entire Test Suite, and MUST be referenced by the
TestSuite element in the Executable Test Suite document. This established a “base” configuration for the
Test Driver.

Subsequent re-configurations of the Test Driver may be done at the Test Case and Thread levels of the
test object hierarchy. At each level, a reference to a ConfigurationGroup via the “configurationGroupRef’
attribute takes precedence and defines the Test Driver configuration for the current test object and any
“‘descendent” test objects (e.g. any Test Cases and sub-Threads will inherit the Test Driver configuration
defined by their parent Thread). Logically, when workflow control of the Test Case returns to a higher
level in the object hierarchy, then the ConfigurationGroup defined at that level again takes precedence
over any defined at a lower level by a descendent test object.

M by
+ Stepl]uratiunq
Inkeger
I anport by
+* Eunﬁguratinnﬁrnup R empty 2ring
SroreAttachments
Exzecd=an

_®| # SetParameter

Yalue
non-emph- Sring

ParameterRef
nen-amph- Sring

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 40 of 185

1204

1205

1206

1207

1208

Figure 14 — Graphic representation of expanded view of the ConfigurationGroup element

Definition of Content

Name

Description

Default
Value
From Test
Driver

Required/Optional

Exception
Condition

ConfigurationGroup

Container Test Driver/MSH
configuration data

Required

id

Unique URI used to identify this set
of configuration data

Required

Mode

One of two types for the Test Driver,

(service | connection)

Required

StepDuration

Timeout (in seconds) of a message
send or receiver operation

Required

Transport

Directs the Test Driver as to which
transport protocol to use to carry
messages.

Required

Envelope

Directs the Test Driver as to which
Messaging envelope type it is
constructing

Required

StoreAttachments

Toggle switch directing Test Driver
to ignore (false) or store (true)
incoming message attachments

Required

SetParameter

Container for "ad-hoc’name/value
pair used by the Test Driver for
configuration or possibly for
message payload content
construction

Optional

Name

Name for the Configurationltem

Required

Value

Value of the Configurationltem

Optional

ParameterRef

Name of previously defined
parameter, whose value is
substituted for the value of this
parameter

Optional

ebxml-iic-basic-interop-test-suite-10
Copyright © OASIS Open 2003. All Rights Reserved.

03 April 2003
Page 41 of 185

1209

1210

1211
1212
1213
1214
1215

1216
1217

1218
1219

1220
1221

1222

1223

1224
1225

Table 7 provides a list of ConfigurationGroup element and attribute content

4[[:cnnﬁguralionﬁroupkef]
anydi el

Mode ps

moae by
StepDuration g
Transport ps=

M an gk

Envelope =

7 5 i
2 3

®| # ConfigurationGroup Don:emplyaring

Storedttachments B

ParameterRef =
nen-amph-dring

®| + TestServiceConﬁguratorE‘

[: id d ;Ndescription a ;Nauthor a ==:N!u'ersinna

[‘ requirementReferenceId% ,@{ # configurationGroupRef
anydel ANl el

5 ThreadGroup

| # ThreadRef l & nameRefq @{ # configurationGroupRef & * Ioopg &) * instanceld%
JGEEF ANkl Intagar Srin,

& + Splic

o

Figure 15 — Graphic representation of hierarchical use of the ConfigurationGroup via reference at
TestSuite, TestCase and ThreadRef Thread levels in the test object hierarchy

4.2.2.1 Precedence Rules for Test Driver/MSH configuration parameters used in message construction

In order to generate messages correctly, the Test Driver MUST follow the precedence rules for
interpreting a Configuration Group parameter reference. The precedence rules are:

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 42 of 185

1226

1227 Certain portions of a message are auto-generated by the Test Driver (or MSH) at run-time
1228

1229 This includes the following run time generated parameters:

1230

1231

1232 Conversationld — Unique to each new Test Case

1233 Messageld — Unique to each message generated by the PutMessage instruction
1234 Timestamp - Unique to each message generated by the PutMessage instruction
1235 These run time parameters MUST have the names specified above (case sensitive).
1236

1237

1238 Additional message content MAY be provided through parameter definitions in the current
1239 ConfigurationGroup, or through a SetParameter or SetXPathParameter operation within a Thread. This
1240 includes message content such as:

1241

1242 CPAId
1243 Service
1244 Action

1245 Sender Party Id
1246 Receiver Party Id
1247

1248 The parameters listed above canbe given any parameter name the test writer chooses. However, the test
1249 writer MUST reference the parameter in XSLT mutator stylesheets, or in XPath expressions using the
1250 identical name (case sensitive) with which it was defined using the SetParameter instruction.

1251

1252 The following rule describes how a Test Driver MUST interpret parameter values and their precedence of
1253 assignment within a Test Suite.

1254

1255 The TestSuite element’s “configurationGroupRef” attribute points to the global parameter definition for the
1256 entire Test Suite. This acts as the “basel” parameter definition before Test Suite execution begins.

1257 Parameters MAY be used by an XSL stylesheet or XUpdate document to “mutate” a Declaration into a
1258 valid message. They are passed to the XSL or XUpdate processor via name reference.

1259 Parameters MAY be used by the VerifyContent operation through reference in an XPath expression.
1260 Parameter names are referenced in XPath expressions with a preceding “$” character. The Test Driver
1261 MUST dereference the parameter prior to performing an XPath query on a FilterResult document object.

1262 If a parameter is defined in a ConfigurationGroup or via a SetParameter operation, the parameter
1263 definition takes precedence over any “auto-generated” definition of that parameter by the Test Driver.
1264 Care should be taken to only “override” such values at the TestCase or) Thread Thread level, so that
1265 “side effects” are not passed on through the Test Suite object hierarchy (i.e. influencing message
1266 construction beyond the scope of the Thread that is intended).

1267 Any descendent Thread T element with a “configurationGroupRef” attribute “redefines” a parameters
1268 value for itself and any of its descendent Threads (i.e. it limits the scope of the parameter definition to all
1269 of its descendents).

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 43 of 185

1270
1271
1272

1273

1274

1275
1276

1277
1278

1279

1280
1281

1282
1283

1284

1285

1286
1287
1288
1289

1290
1291

1292
1293

1294
1295

Any “SetParameter” instruction within a TestCase or Thread element supersedes its current definition
within the currently defined ConfigurationGroup. The scope of the parameter definition is limited to the
current Thread and any descendent Threads. .

4.2.2.1.1 Exception Conditions

A Test Driver MUST generate an exception and terminate the Test Case with a result of “undetermined” if
it cannot mutate a message due to an undefined parameter.

A Test Driver MUST generate an exception and terminate the Test Case with a result of “undetermined” if
it cannot verify a message due to an undefined parameter in an XPath query.

4.2.3 The TestServiceConfigurator Operation

The TestServiceConfiguration element instructs the Test Driver to configure the Test Service. A Test
Service MUST provide both a Configuration interface to the Test Service, with a “configurator” method,
like that specified in section 3.2.5. The Test Driver MAY access the Configuration interface either locally
or remotely (via RPC), depending upon the mode of the Test Driver.

o L e
+ RespnnseURLa
anydlel

NotificationURL
anyl il

7 # payloadDigests # payload

+ TestServiceConfigurator

Figure 16 — Graphic representation of the TestServiceConfigurator content

Name Description Default Required/Optional Exception
Value Condition
From Test
Driver
TestServiceConfigurator | Container for Test Required (as a child ofa | Unable to
Service configuration TestSuite element only), | configure
data optional elsewhere Test Service
ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 44 of 185

1296

1297

1298

1299
1300
1301

1302
1303

1304
1305
1306

ServiceMode

Switch to set to one of
three modes (loop |
local-reporting | remote-
reporting)

Required

ResponseURL

Endpoint to send

response messages

Required

NotificationURL

Endpoint to send
message and error
notifications (typically
the Test Driver URL)

Required

PayloadDigests

Container for one or
more payload identifiers
and corresponding MD5

digest value

Optional

Payload

Container for individual

payload information

Required

Id

Id of the message

payload

Required

Digest

MD?5 digest value of the
payload

Required

4.2.3.1 TestServiceConfigurator behavior in Connection and Service mode

In Connection Mode: The “TestServiceConfigurator” operation instructs the Test Driver to pass
configuration parameters to a remote Test Service Configuration interface, using its “configurator”

method. The Test Service MUST respond with a status of “success” or “fail”.

In Service Mode: The “TestServiceConfigurator” operation instructs the Test Driver to pass configuration
parameters to the local Test Service via its Configuration interface, and its “configurator” method. The

Test Service MUST respond with a status of “success” or “fail”.

ebxml-iic-basic-interop-test-suite-10
Copyright © OASIS Open 2003. All Rights Reserved.

03 April 2003
Page 45 of 185

1307
1308

1309

1310

1311
1312
1313

1314
1315
1316
1317

1318

1319
1320
1321
1322
1323
1324
1325

1326

1327
1328
1329
1330

1331

1332
1333
1334
1335
1336
1337
1338

1339

1340

1341

1342
1343
1344
1345
1346

1347

5 Test Requirements

5.1 Purpose and Structure

The next step in designing a test suite is to define Test Requirements. This material, when used in a
conformance-testing context, is also called Test Assertions in NIST and OASIS terminology (see
definition in glossary in Appendix).

When used for conformance testing, each Test Requirement defines a test item to be performed, that
covers a particular requirement of the target specification. It rewords the specification element into a
“testable form”, closer to the final corresponding Test Case, but unlike the latter, independently from the
test harness specifics. In the ebXML Test Framework, a Test Requirement will be made of three parts:

Pre-condition The pre-condition defines the context or situation under which this test item applies. It
should help a reader understand in which case the corresponding specification requirement applies. In
order to verify this Test Requirement, the test harness will attempt to create such a situation, or at the
very least to identify when it occurs. If for some reason the pre-condition is not satisfied when doing
testing, then it does not mean that the outcome of this test is negative — only that the situation in which it
applies did not occur. In that case, the corresponding specification requirement could simply not be
validated, and the subsequent Assertion will not be tested.

Assertion The assertion actually defines the specification requirement, as usually qualified by a MUST or
SHALL keyword. In the test harness, the verification of an assertion will be attempted only if the pre-
condition is itself satisfied. When doing testing, if the assertion cannot be verified while the pre-condition
was, then the outcome of this test item is negative.

Requirement Level Qualifies the degree of requirement in the specification, as indicated by such
keywords as RECOMMENDED, SHOULD, MUST, and MAY. Three levels can be distinguished: (1)
“required” (MUST, SHALL), (2) “recommended” ([HIGHLY] RECOMMENDED, SHOULD), (3) “optional”
(MAY, OPTIONAL). Any level lower than “required” qualifies a Test Requirement that is not mandatory
for Conformance testing. Yet, lower requirement degrees may be critical to interoperability tests. The test
requirement level can be override by explicit declaration in the Test Profile document, in case a lower or
higher level is required.

5.2 The Test Requirements Document

The Test Requirements XML document provides metadata describing the Testing Requirements, their
location in the specification, and their requirement type (REQUIRED, HIGHLY RECOMMENDED,
RECOMMENDED, or OPTIONAL). A Test Requirements XML document MUST validate against the
ebXMLTestRequirements.xsd file found in Appendix B. The ebXML MS Conformance Test Requirements
instance file can be found in Appendix E.

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 46 of 185

1348
1349

1350
1351
1352

1353

{

+ TestRequirement

@ idq
i

[] name% [@ specRef%
Sring S1ing

aring

- functinnalTvpe%

5| # dependencyRef =
2| S rrerdenciie'd

,: idq

name
sring

5

[. spetRef% @l # testCaseRefl
sring

anylkl

ﬂ{ # dependencyRef =
anyd el

Sring

ST

Assertion =

+ FunttionalRequirement &
L]

+ FunctienalRequirement
+ TestRequirement

+ TestRequirement

Figure 17 — Graphic representation of ebXMLTestRequirements.xsd schema

Definition of Content

5.21
Name Description Default | Required/Optional | Exception
Value Condition
From
Test
Driver
Requirements Container for all test requirements Required
MetaData Container for requirements Required
metadata, including Description,
Version, Maintainer, Location,
Publish Date and Status
TestRequirement Container for all testable sub- Required
requirements
(FunctionalRequirements) of a
single generalized Test
Requirement. A TestRequirement
may also contain other
TestRequirement elements as
children
description Description of requirement Required
id Unique identifier for each Test Required
Requirement
name Name of test requirement Required
specRef Pointer to location in specification Required
where requirement is found
ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved.

Page 47 of 185

1354

functionalType

Generic classification of function
to be tested

Required

dependencyRef

ID of “prerequisite”
TestRequirement or
FunctionalRequirement that must
be successfully tested prior to
testing this requirement

Optional

FunctionalRequirement

Sub-requirement for the main Test
Requirement. This is an actual
testable requirement, not a
“container” of requirements.

Required

Unique ID for the sub-requirement

Required

name

Short descriptor of Functional
Requirement

Required

specRef

Pointer to location in specification
where sub-requirement is found

Required

dependencyRef

ID of “prerequisite”
TestRequirement or
FunctionalRequirement that must
be successfully tested first prior to
testing this requirement

Optional

TestCaseld

Identifier of Test Case(s) that test
this requirement

Optional

Clause

Grouping element for Condition
expression(s)

Optional

Condition

Textual description of test
precondition

Required

ConditionRef

Reference (via id attribute) to
existing Condition element already
defined in the Test Requirements
document

Optional

And/Or

Union/Intersection operators for
Conditions

Optional

Assertion

Axiom expressing expected
behavior of an implementation
under conditions specified by any
Clause

Required

AssertionRef

Reference (via id attribute) to
existing Assertion element already
defined in the Test Requirements
document

Optional

requirementType

Enumerated Assertion descriptor
(REQUIRED, OPTIONAL...etc.)

Required

Table 8 provides a list of the testing Requirements element and attribute content

ebxml-iic-basic-interop-test-suite-10
Copyright © OASIS Open 2003. All Rights Reserved.

03 April 2003
Page 48 of 185

1355

1356

1357
1358
1359
1360

1361
1362
1363
1364
1365

1366
1367
1368

1369

1370
1371

1372
1373
1374
1375
1376
1377

1378
1379
1380
1381
1382
1383
1384
1385

1386

1387
1388
1389
1390

1391

1392
1393
1394
1395
1396

1397

1398
1399

1400
1401

5.3 Specification Coverage

A Test Requirement is a formalized way to express a requirement of the target specification. The
reference to the specification is included in each Test Requirement, and is made of one or more section
numbers. There is no one-to-one mapping between sections of a specification document and the Test
Requirement items listed in the test material for this specification:

A specification section may map to several Test Requirements.
A Test Requirement item may also cover (partially or not) more than one section or sub-section.

A Test Requirement item may then cover a subset of the requirements that are specified in a section.

For these reasons, it is important to determine to which degree the requirements of each section of a
specification, are fully satisfied by the set of Test Requirements listed in the test suite document.
Establishing the Specification Coverage by the Test Requirements does this.

The Specification Coverage document is a separate document containing a list of all sections and
subsections of a specification document, each annotated with:

e A coverage qualifier.
o Alist of Test Requirements that map to this section.

The coverage qualifier may have values:

¢ Full: The requirements included in the specification document section are fully covered by
the associated set of Test Requirements. This means that if each one of these Test
Requirements is satisfied by an implementation, then the requirements of the corresponding
document section are fulfilled. When the tests requirements are about conformance: The
associated set of test requirement(s) are a clear indicator of conformance to the specification
item, i.e. if a Candidate Implementation passes a Test Case that implements this test
requirement(s) in a verifiable manner, there is a strong indication that it will behave similarly
in all situations identified by the spec item.

e None: This section of the specification is not covered at all. Either there is no associated set
of Test Requirements, or it is known that the test requirements cannot be tested even
partially, at least with the Test Framework on which the test suite is to be implemented, and
under the test conditions that are defined.

e Partial: The requirements included in this document section are only partially covered by the
associated (set of) Test Requirement(s). This means that if each one of these Test
Requirements is satisfied by an implementation, then it cannot be asserted that all the
requirements of the corresponding document section are fulfilled: only a subset of all
situations identified by the specification item are addressed. Reasons may be:

o (1) The pre-condition(s) of the test requirement(s) ignores on purpose a subset of
situations that cannot be reasonably tested under the Test Framework.

o (2) The occurrence of situations that match the pre-condition of a Test Requirement
is known to be under control of the implementation (e.g. implementation-dependent)

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 49 of 185

1402
1403

1404
1405
1406

1407

1408

1409

1410
1411
1412

1413

1414
1415
1416
1417
1418
1419
1420

1421

1422
1423
1424
1425
1426
1427
1428
1429
1430

1431

1432
1433
1434
1435
1436
1437
1438

1439

1440
1441
1442
1443

1444
1445
1446
1447
1448
1449

or of external factors, and out of the control of the testbed. (See contingent run-time
coverage definition, Section 7).

When the tests requirements are about conformance: The associated set of test
requirement(s) are a weak indicator of conformance to the specification item. A negative test
result will indicate non-conformance of the implementation.

5.4 Test Requirements Coverage (or Test Run-Time Coverage)

In a same way as Test Requirements may not be fully equivalent to the specification items they represent
(see Specification Coverage, Section 5.3), the Test Cases that implement these Test Requirements may
not fully verify them, for practical reasons.

Some Test Requirements may be difficult or impossible to verify in a satisfactory manner. The reason for
this generally resides in an inability to satisfy the pre-condition. When processing a Test Case, the Test
Harness will attempt to generate an operational context or situation that intends to satisfy the pre-
condition, and that is supposed to be representative enough of real operational situations. The set of such
real-world situations that is generally covered by the pre-condition of the Test Requirement is called the
test requirements (or test run-time) coverage of this test Requirement. This happens in the following
cases:

Partial run-time coverage: It is in general impossible to generate all the situations that should verify a
test. It is however expected that the small subset of run-time situations generated by the Test Harness, is
representative enough of all real-world situations that are relevant to the pre-condition. However, it is in
some cases obvious that the Test Case definition (and its processing) will not generate a representative-
enough (set of) situation(s). It could be that a significant subset of situations identified by the pre-condition
of a Test Requirement cannot be practically set-up and verified. For example, this is the case when some
combinations of events or of configurations of the implementation will not be tested due to the
impracticality to address the combinatorial nature of their aggregation. Or, some time-related situations
cannot be tested under expected time constraints.

Contingent run-time coverage: It may happen that the test harness has no complete control in
producing the situation that satisfies the pre-condition of a Test Requirement. This is the case for Test
Requirements that only concern optional features that an implementation may or may not decide to
exhibit, depending on factors under its own control and that are not understood or not easy to control by
the test developers. An example is: “ IF the implementation chooses to bundle together messages [e.g.
under some stressed operation conditions left to the appreciation of this implementation] THEN the
bundling must satisfy condition XYZ".

When a set of Test Cases is written for a particular set of Test Requirements, the degree of coverage of
these Test Requirements by these Test Cases SHOULD be assessed. The Test Requirements coverage
— not to be confused with the Specification Coverage - is represented by a list of the Test Requirements
Ids, which associates with each Test Requirement:

The Test Case (or set of Test Cases) that cover it,
The coverage qualifier, which indicates the degree to which the Test Requirement is covered.

The coverage qualifier may have values:

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 50 of 185

1450
1451

1452
1453

1454
1455

e Full: the Test Requirement item is fully verified by the set of Test Cases.
e Contingent: The run-time coverage is contingent (see definition).

o Partial: the Test Requirement item is only partially verified by the associated set of Test

Cases. The run-time coverage is partial (see definition).

¢ None: the Test Requirement item is not verified at all: there is no relevant Test Case.

ebxml-iic-basic-interop-test-suite-10
Copyright © OASIS Open 2003. All Rights Reserved.

03 April 2003
Page 51 of 185

1456
1457

1458

1459

1460
1461

1462
1463
1464
1465
1466

1467

1468

1469
1470
1471
1472
1473

6 Test Profiles

6.1 The Test Profile Document

The Test Profile document points to a subset of Test Requirements (in the Test Requirements document),
that is relevant to the conformance or interoperability profile to be tested.

The document drives the Test Harness by providing the Test Driver with a list of unique reference IDs of
Test Requirements for a particular Test Profile. The Test Driver reads this document, and executes all
Test Cases (located in the Test Suite document) that contain a reference to each of the test
requirements. A Test Profile driver file MUST validate against the ebXMLTestProfile.xsd file found in
Appendix A. A Test Profile example file can be found in section 10.2.

* requirementsanatinn% # name a * descriptinn%
anyl &l #ing ring

[[® name gl (@ profleRef]
L sring anyi
* id% @I # requirementType %]
Jrin requlremeant,

Comment a

aring

TestProfile

_®| # TestRequirementRef iy

Figure 18 — Graphic representation of ebXMLTestProfile.xsd schema

Definition of Content

Name Description Default Required/Optional | Exception
Value Condition
From
Test
Driver
TestProfile Container for all references Required
to test requirements
requirementsLocation | URI of test requirements Required Requirements
XML file document not
found
name Name of profile Required
description Short description of profile Required
Dependency Prerequisite profile reference Optional
container
ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 52 of 185

name Name of the required Required
prerequisite profile

profileRef Identifier of prerequisite Required Profile
profile to be loaded by Test document not
Driver before executing this found
one

TestRequirementRef | Test Requirement reference Required

id Unique Identifier of Test Required

Requirement, as defined in
the Test Requirements
document

requirementType Override existing Optional
requirement type with
enumerated type of
(REQUIRED, OPTIONAL,
STRONGLY
RECOMMENDED or
RECOMMENDED)

Comment Profile author's comment for Optional
a particular requirement

1474 Table 9 provides a list of TestProfile element and attribute content
1475

1476 6.2 Relationships between Profiles, Requirements and Test Cases

1477

1478 Creation of a testing profile requires selection of a group of Test Requirement references that fulfill a
1479 particular testing profile. For example, to create a testing profile for a Core Profile would require the
1480 creation of an XML document referencing Test Requirements 1,2,3,4,5 and 8.

1481

1482 The Test Driver would read this list, and select (from the Test Requirements Document) the

1483 corresponding Test Requirements (and their “sub” Functional Requirements). The Test Driver then

1484 searches the Executable Test Suite document to find all Test Cases that “point to” the selected Functional
1485 Requirements. If more than one Test Case is necessary to satisfactorily test a single Functional

1486 Requirement (as is the case for Functional Requirement #1) there may be more than one Test Case

1487 pointing to it. The Test Driver would then execute Test Cases #1, #2 and #3 in order to fully test an

1488 ebXML application against Functional Requirement #1.

1489

1490 The only test material outside of the three documents below that MAY require an external file reference
1491 from within a Test Case are large, or non-XML message Payloads

1492
1493 Test Profile XML Document
1494 _
T Test Requirements XML Document
1496 TestRequirementRef #1 (Validation)
1497
ement #1 (Validation)
1498 TestRequirementRef #2 (Packaging)
1499
Functional Requirement #1 (Valid MessageHeader content
TestRequirementRef #3 (Core Extension
ebxm Elements)

Cop‘ TgTTT OU7OTO UPTIT ZUUT, 7T TUYTTS TXCSTT Ve

Functional Requirement #2 (Valid Acknowledgment

1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528

Test Suite XML Document
Test Driver Configuration Data
XML Payloads

Test Cases

Test Case # e~ ntent)

Figure 19 — Test Framework documents and their relationships

ebxml-iic-basic-interop-test-suite-10
Copyright © OASIS Open 2003. All Rights Reserved.

Test Case #2 (Test Valid “From —

03 April 2003
Page 54 of 185

1529
1530

1531

1532

1533
1534

1535
1536
1537
1538
1539

1540
1541
1542
1543
1544

1545
1546

1547
1548
1549
1550

1551
15562

1553
1554

1555
1556
15567

1558
1559

1560
1561
1562
1563
1564
1565

1566
1567

1568
1569

7 Test Cases

7.1 Structure of a Test Case

An Executable Test Case is the translation of a Test Requirement (or a part of a Test Requirement), in an
executable form, for a particular Test Harness. A Test Case includes the following information:

Test Requirement reference.
A workflow of Test Threads
Testable assertion(s) of success or of failure of operations within those Threads.

NOTE: The same Test Case may consolidate several Test Requirement items, i.e. a successful outcome
of its execution will verify the associated set of Test Requirement items. This is usually the case when
each of these Test Requirement items can make use of the same sequence of operations, varying only in
the final test condition. When several Test Requirement items are covered by the same Test Case, the
processing of the latter SHOULD produce separate verification reports for each Test Requirement.

Test Cases MUST evaluate to a value of “pass, fail, or undetermined”. The Test Case result is based
upon the final state of the Test Driver as it traverses the logic tree defined by the sequence of Test
Threads and logical branches. Ultimately, a Test Case result is determined by the state set by the
TestAssertion operations in the Test Case Workflow.

A Test Case has a final state of “pass” if:

The last executed “TestAssertion” operation in the workflow sets the Test Case state to “pass”, and the
workflow executes to completion without any exception conditions.

A Test Case has a final state of “fail” if:

The last executed “TestAssertion” operation in the workflow sets the Test Case state to “fail”, and the
workflow executes to completion without any exception conditions.

A Test Case has a final state of “undetermined” if:

The last executed “TestAssertion” operation in the workflow sets the Test Case state to “undetermined”,
at which point the Test Driver automatically ceases execution o the Test Case.

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 55 of 185

1570
1571
1572
1573
1574

1575
1576
1577

1578
1579
1580
1581
1582
1583
1584
1585

1586
1587

1588
1589

1590
1591
1592
1593
1594

OR

A system exception condition (as defined for each individual operation) occurs in the Workflow. For
example, a protocol error occurring in a PutMessage or GetMessage operation will generate such an

exception.

TestCase

I: idd ;ﬂfescriptinna @[:Maulhnra @[:N\rersinna

I e requirementReferenceIda @l @ configurationGroupRef
amdl &l anydl

_@I + ThreadGrnup + Thread

SetParameter

nop-empbedring

ParameterRef =
nop-emph-gring

ThreadRef [L nameRefq @[L] cnnﬁguralinnﬁrnupRef% @[& loop q @[& instanceld]
IBREF anylEl Inkeqer gring
T #* Threadref]

Figure 20 — Graphic representation of expanded view of the TestCase element

Definition of Content

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 56 of 185

Name

Description

Default
Value
From
Test
Driver

Required/Optional

Exception
Condition

TestCase

Container element for all test
case content

Optional

id

Unique identifier for this Test
Case

Required

description

Short description of TestCase

Optional

author

Name of person(s) creating
the Test Case

Optional

version

Version number of Test Case

Optional

requirementReferenceld

Pointer to the unique ID of
the FunctionalRequiremt

Required

Test
Requirement
not found

configurationGroupRef

URI pointing to a
ConfigurationGroup instance
used to reconfigure Test
Driver

Optional

Configuration
Group not
found

ThreadGroup

Container for all Threads
declared for this Test Case

Optional

Thread

Definition of a subprocess of
operations and/or Threads
that may be forked
synchronously or
asynchronously

Required

SetParameter

Contains name/value pair to
be used by subsequent
Threads in this Test Case

Optional

TestServiceConfigurator

Container of configuration
content for Test Service when
Test Driver is in “service”
mode

Optional

Unable to
configure Test
Service

ThreadRef

Name of the Thread to be
executed in this TestCase

Optional

Thread not
found

Split

Parallel execution of
referenced sub-threads inside
of the Split element

Optional

Join

Evaluation of results of
named threads (as “andjoin”
or “orjoin”) permits execution
of operations that follow the
Join element

Optional

Sleep

Instruction to the Test Driver

Optional

ebxml-iic-basic-interop-test-suite-10
Copyright © OASIS Open 2003. All Rights Reserved.

03 April 2003
Page 57 of 185

to “wait” for the specified time
interval (in seconds). May be
invoked anywhere in the
script

1595 Table 10 provides a list of TestCase element and attribute content
1596

1597 7.1.1 Test Threads

1598

1599 Test Threads are a workflow of operations and/or other sub-threads. One can think of a Thread as a
1600 collection of related operations (such as a sequences of operations performing message transmissions
1601 and receptions for a common business process). Operations and sub-threads contained in a Test
1602 Thread are executed sequentially as they appear in that Thread script.

1603
1604 Sub-threads MAY be executed in parallel if they are the child of a Split element.

1605 The Test Driver interprets a ThreadRef element as an instruction to execute the Thread instance whose
1606 name matches that defined in the ThreadRef. A Thread will be executed serially if its ThreadRef is not
1607 the child of a Split element.

1608
1609
1610

1611 A Join operation “synchs” the execution of the Test Case, waiting until one (orJoin) or all (andJoin)
1612 Threads defined as children within the Join complete execution Concurrent Threads MUST be “joined”
1613 anywhere in the scripting AFTER the Split but within the same Thread in which they were invoked.

1614 Split Threads that are not Joined MUST generate an error message from the Test Driver and cause
1615 execution of the Test Case to cease, with a final Test Case result status of “undetermined”.

1616 A Join operation is by default an “andJoin”, unless specifically set otherwise by the “type” attribute of the
1617 Join element.

1618
1619
1620

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 58 of 185

1621

1622
1623

1624

description
#ring

4[

[name q
v

)

+ SetParameter

+ TestAssertiun

name
i

E}I & destriptiun%
srin

SertParameter

PutMessage

GetMessage

TestAssertion

ThreadRef &

Figure 21 — The Thread content diagram

Name

Declaration Description Default Value | Required/Optio | Exception
From Test nal Condition
Driver
name Short name for the Thread Optional
description Description of the Thread Optional
SetParameter | get namey/value pair to be Optional
used by subsequent Thread
operations
PutMessage Instruction to Test Driver to Optional Message could
send a message not be sent
ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved.

Page 59 of 185

1625
1626
1627

1628

1629

1630
1631
1632

1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644

Initiator Instruction to Test Driver to Optional Message could

pass a message declaration not be initiated
to the Test Service for by Test Service
sending

GetMessage Instruction to Test Driver to Optional Protocol error
retrieve message(s) from the occured
Message STore

TestAssertion | |hstryction to the Test Driver Optional

to perform an evaluation

ThreadRef Reference via name to Optional Thread not found
Thread to execute serially

Split Directive to run the Optional Thread not found
referenced Thread(s)
enclosed in the Split element
in parallel

Join Directive to evaluate the Optional Thread not found
boolean result of the enclosed
referenced Thread(s) in a
previous Split

Sleep Instrution to “wait” (specified Optional
in integer seconds) a period
of time before executing the
next operation in the script

Table 11 — Thread Content Description

7.1.2 Thread Operations

These operations may be performed by the Test Driver in one of two modes: connection (Test Driver is
remote from Test Service) or service (Test Driver is interfaced with Test Service). The section below
describes these operations and their behavior in various modes (if applicable) in more detail.

DeclarationDeclarationDeclarationDeclarationDeclarationDeclarationDeclaration

Thread
Table 12 — Expanded list of SetParameter element content

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 60 of 185

1645

1646

1647

1648
1649
1650
1651

1652

1653
1654

1655
1656
1657
1658
1659
1660
1661

1662
1663
1664
1665

7.1.2.1 SetParameter: Setting Parameter values

The “SetParameter” operation instructs the Test Driver to create a name/value pair that can be used by
reference by any subsequent operation in the current Thread, as well as any operation in any descendent
Threads. Parameter names can be included in XSL stylesheets of message Mutators, or they may be
referenced in XPath expressions to verify message content.

SetParameter

ParameterRef
non-amphe-dring

Figure 22 — Graphic representatin of expanded view of SetParameter element
Thread

Definition of Content

Name Declaration Description Default Value | Required/Optio | Exception
From Test nal Condition
Driver
SetParameter | |ngtryction for Test Driver to Optional
store a name/value pair
scope Attribute to control visibility of | selfAndDesce | Optional
parameter ndents
(selfAndDescendents | self)
Name Parameter Name Required Not a valid name
Value String representation of Optional Not a valid value
parameter value
ParameterRef | Name of another parameter Optional Parameter not
whose value you wish to store found
in this parameter

Semantics of the SetParameter operation:

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 61 of 185

1666

1667
1668

1669
1670
1671

1672
1673

1674

1675

1676

1677
1678
1679
1680
1681
1682
1683
1684
1685

1686

1687
1688
1689
1690
1691
1692
1693
1694

1695
1696
1697
1698
1699
1700

1701

1702

1703
1704
1705
1706
1707

1708
1709
1710
1711

Parameters that could be used to manipulate sent message content, or to evaluate received message
content, can be assigned for use by Thread operations in three ways:

Through assignment as a parameter name/value pair within the current ConfigurationGroup.
Using SetParameter at the beginning of a Thread

Using SetXPathParameter operation in a GetMessage operation (to extract a message content value via
XPath and assign it to a parameter)

7.1.21.1 Scope of a parameter

These same semantic rules apply to parameters referenced via ConfigurationGroup. The
“configurationGroupRef” attribute is available for use at the TestSuite, TestCase, and Thread levels. A
hierarchical relationship exists for any parameters defined in the ConfigurationGroup. A
configurationGroupRef at the TestSuite level is “global”’, meaning any parameter definitions defined at the
TestSuite level are exposed to descendent TestCaseor Thread. If a parameter is “redefined” at any of
those “lower levels” in the object hierarchy, then that definition takes precedence for that object and any
“descendent” objects, until the logical workflow of the TestCase moves back to the current level in the
object hierarchy. When that occurs, whichever previous definition of a parameter (via a
configurationGroupRef or SetParameter operation) takes precedence.

The SetParameter operation dynamically creates (or redefines) a single parameter whose value is
available to the current Test Object (TestCase or Thread) it is defined in. For example, if it is defined
within a Thread, then it is available to any operation in that Thread, as well as any descendent Threads..

If it is defined within a Thread, then its definition exists for the lifecycle of that Thread. When the
workflow execution moves to a “higher” level (i.e. to the parent Thread containing the Thread) then that
parameter a) ceases to exist if it was not already defined at a higher level in the workflow hierarchy or b) if
defined at a higher level, takes the previously value defined at the next highest level in the workflow
hierarchy.

7.1.2.1.2 Referencing/Dereferencing parameters in PutMessage and GetMessage operations

In the case of a PutMessage operation, a parameter defined with the ConfigurationGroup and/or the
SetParameter operation can be passed to an XSL or XUpdate processor and referenced within an XSL
stylesheet or XUpdate “mutator” document (via its name) and used to provide/mutate message content of
the newly constructed message A Test Driver MUST make pass these parameters to the XSL or XUpdate
processors for use in mutating a Declaration.

In the case of a GetMessage operation, a parameter defined with the ConfigurationGroup and/or the
SetParameter operation can be passed to the XPath processor used for the Filter or VerifyContent
operations. Within the XPath expression, the parameter MUST be referenced with the same name (case
sensitive) with which it has been assigned, and MUST be preceeded by a ‘$’ character. The Test Driver

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 62 of 185

1712
1713

1714
1715

1716

1717
1718
1719

1720
1721
1722
1723

1724
1725
1726
1727
1728
1729
1730

1731
1732
1733
1734
1735
1736

1737
1738

1739
1740

MUST recognize the parameter within the XPath expression, and substitute its value prior to evaluating
the XPath expression

How parameters are stored and retrieved by the Test Driver is an implementation detail.

7.1.2.1 PutMessage: Message Construction and Transmission

The “PutMessage” directive instructs the Test Driver to construct a message and transmit it to the
designated party. The PutMessage element contains a Declaration (i.e. an XML script) that is used as a
template to construct the message. The Test Driver must successfully construct and send the message;
otherwise it must generate an exception.

The PutMessage operation instructs the Test Driver to build and send a messageDeclaration.A minimal
Declaration (contained within its child Declaration element) is required to construct a message and an
optional XSL stylesheet or XUpdate document MAY mutate that message declaration. Dynamic message
content such as timestamps, message ids and conversation ids are passed to the XSLT or XUpdate
processor through parameters created by the Test Driver. Additional message content may be passed to
the XSLT or XUpdate processor through parameter definitions defined by the test writer (using the
configurationGroupRef attribute or the SetParameter directive to define a name/value pair).

DeclarationDeclarationDeclarationDeclaration

L] destriptiun% * repeatWithSameEnntextq # repeatWithMewContext q]

sring Inkeqar Inkeqar

5| ® description =
oGz

4 Declaration * fyildCard |

¥ FileURI =
' anyl &l

+ PutMessage _@.| + SetPart

Figure 23 — Graphic representation of expanded view of the PutMessage element

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 63 of 185

1741

1742
1743
1744
1745

7.1.2.2

Definition of Content

Name

Description

Default
Value
From
Test
Driver

Required/Optional

Exception
Condition

PutMessage

Container element for
message construction and
sending operation

Optional

Protocol error
prevented
message
transmission

description

Metadata describing the
nature of the PutMessage
operation

Required

repeatWithSameContext

Integer looping parameter,
using same message
context (Messageld and
Timestamp)

Optional

repeatWithNewContext

Integer looping parameter,
using new message context
(Messageld and
Timestamp)

Optional

SetPart

Container for construction
of a part of the message to
be sent

Required

description

Description of the portion of
the message being added

Required

Header

Instruction to Test Driver to
add an attribute name/value
pair to this message portion

Optional

Name

Message part attribute
name

Required

Value

Message part attribute
value

Required

Declaration

XML content defines
message envelope to be
created (or mutated) by
Test Driver

Optional

FileURI

Reference to message
declaration contained in a
file

Optional

File not found

MessageRef

Reference to an ID in the
Test Suite whose parent is
a Messageelement

Optional

Invalid Id

Mutator

Container element for a
reference to either an XSL

Optional

ebxml-iic-basic-interop-test-suite-10
Copyright © OASIS Open 2003. All Rights Reserved.

03 April 2003
Page 64 of 185

1746
1747
1748
1749

1750

1751

1752
1753
1754
1755
1756

1757
1758
1759

1760
1761
1762
1763
1764

1765

1766
1767
1768
1769
1770
1771

1772

1773
1774
1775
1776

1777

1778
1779

stylesheet or XUpdate

document
XSL URI to an XSL stylesheet Optional Stylesheet not
found
XUpdate URI to an XUpdate Oprional XUpdate script
document not found
DSign Container element for XML Optional

Digital Signature
declaration(s) for this
message, used to sign any
portion (envelope or
payload(s)) of the message

Table 13 defines the content of the PutMessage element

Semantics of the PutMessage operation:

7.1.2.21 The Declaration

The IIC Test Framework is a generalized testing framework, agnostic to any particular messaging
protocol. As a result, it is designed in a very flexibly way. Any type of message can be expressed inside
an XML Declaration element. As long as a “mutator” XSL styleesheet or Xupdate document is used to
interpret that declaration and generate an actual message, it is up to the discretion of the test writer how
they wish to express their message declaration.

DeclarationAs a best practice, the XML content necessary to describe a basic message should be
minimal, with default parameter values supplied by the Test Driver for most common and reuseable
message content (such as Conversatoinld, CPAId, Sending Party Id..etc) . If the test developer wishes to
“override” the default element and attribute values, they may do so by explicitly declaring those values in
the XML markup.

Default values for message content are typically set using the Test Suite ConfigurationGroup parameters.
Setting parameter values at the Test Suite level makes them “global” for use by any Test Case in the Test
Suite. Parameters such as CPAId, Conversationld, Service, Action, ToPartyld and FromPartyld (or their
equivalent) would typically be set globally for a messaging Test Suite. They could be optionally
“overridden” locally within each Test Case by use of an individual “SetParameter” instruction in the Test
Case scripting.

A test writer may additionally override any Test Driver parameter value by explicitly specifiying a value in
the Declaration itself. For example, explicitly providing a Conversationld in the Declaration can be used
as a way to override the Test Driver supplying it in its mutator transformation if the mutator is designed to
allow it.

Two parameters (using the exact names specified below) are generated by the Test Driver, and CAN
NOT be overridden using parameter definitions. They are Messageld and Timestamp. These two

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 65 of 185

1780
1781

1782

1783
1784
1785

1786

1787
1788
1789

1790

1791
1792
1793

1794

1795

1796

1797
1798

1799

1800

1801

1802
1803
1804
1805

1806
1807
1808

1809

1810

1811
1812
1813

values can however, be explicitly defined in a Declaration if the test writer wishes to subsitute an explicit
value for that supplied by the Test Driver in their mutator transformation.

Although it is not required with the IIC Test Framework, it is generally helpful if a community testing a
particular eBusiness application uses an “agreed upon” schema and semantics to represent the format of
their Declaration. This simplifies understanding of test scripts among that community.

As an example, a Declaration schema for ebXML Messaging Services v2.0 is described in Appendix C of
this document. Both a semantic description, as well as a normative schema is provided for test writers
wishing to write tests for ebXML MS v2.0.

If the Declaration is not “inlined” as content in the Test Case script, it MAY be included via the FileURI
element content, or via the MessageRef (an IDREF pointing to a static Declaration already defined in the
Test Suite document.

7.1.2.2.2 Header: A Name/Value attribute for the message part

Because the IIC Test Framework is agnostic to the messaging protocol used, a generic “name/value pair”
scheme is used to add attributes for the particular the message part.

7.1.2.2.3 Mutator: Turning a Declaration into an actual Message

A Declaration generally will need to be transformed into a complete and valid message. Additional
information such as a message timestamp, message identifier and other “run time” information may need
to be added to complete the message. A Mutator element provides a URI to an XSL or XUpdate
document that would transform the Declaration into a valid message.

7.1.2.2.4 DSign: Applying an XML Signature to the message

The DSign instruction tells the Test Driver (or Test Service if doing interoperability testing) to
create and include an XML Signature element with the XML message (or XML payload) after it is
constructed.

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 66 of 185

1814
1815

1816
1817
1818
1819

SignedInfo
SlqneainhoTyr

ds:Signature

| + DSign
Elqnatur 2Ty

Figure 39 — Graphic representation of expanded view of the DSign element

Definition of Content

Slgnature\"alue
SI b o

7 s
&) # CanonicalizationMethod =
Cananizalizaton Meho Ty
ST
Slqnabur ket oo Ty

o

B

TranshormaTypes

_®| # Transforms) # Transform =

T anshor m Type

Reference

Algorithm
anygdl&l

D sk bt 0o Ty

DigestMethod =

+ #wildCard |

: Digest¥alue =
*

anyl il

Name

Description

Default Value From Test
Driver

Required/Option
al

Exceptio
n
Conditio
n

DSign

Container for
Signature
declaration
content

Optional

ds:Signature

Signature root
element, as
defined in
[XMLDSIG]

Required

Unique
identifier for
Signature

Optional

Signedinfo

Create
container for
Canonicalizatoi
n and
Signature
algorithms and
References

Required

CanonicalizationMeth
od

Modify default
container
element

Container auto-generated by
Test Driver

Optional

Method
not
supported

ebxml-iic-basic-interop-test-suite-10
Copyright © OASIS Open 2003. All Rights Reserved.

03 April 2003
Page 67 of 185

by Test

Driver
Algorithm Modify default | http:/www.w3.0rg/TR/2001/RE | Required Algorithm
attribute and not
value C-xml-c14n-20010315 supported
by Test
Driver
#wildCard Generat‘? . Optional
content “inline
SignatureMethod Create
container
element Required
Algorithm Create Algorithm
attribute and not
value Required supported
by Test
Driver
HMACOutputLength Slzrr]r?;iieand Optional
its value
#wildcard Generat‘? . Optional
content “inline
ds:Reference Generate Optional
container
element and all
default content
Id Generate Optional
attribute and
its value
URI Modify default Optional
attribute value
type Generate Optional
attribute and
its value
Transforms Generate Optional
container
relement
Transform Generate Optional
element with
its value
Algorithm Modify default | http:/www.w3.0rg/TR/2001/RE | Required Algorithm
attribute value | C-xml-c14n-20010315 not
supported
by Test
Driver
#wildCard Generate Optional
content “inline”
XPath Generate Optional Invalid
element with XPath
its value expressio
n
ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved.

Page 68 of 185

1820
1821
1822
1823
1824
1825
1826

1827
1828
1829
1830
1831
1832

DigestMethod Generate Required Method
element with not
its value supported
by Test
Driver
Algorithm Required Algorithm
Generate not
attribute and supported
value by Test
Driver
#wildCard Generate Optional
content “inline”
DigestValue Generate Set by Test Driver, based
element with upon URI value Optional
its value
#wildCard Generate Optional
content “inline”
SignatureValue Generate Set by Test Driver at run time
element and its Optional
value
Id Generate Optional
attribute and
its value
Keylnfo Generate All required and optional Optional Invalid
container content, as described in Key data
Element [XMLDSIG] MUST be explicitly
declared (no auto-generation
by Test Driver)
Object Generate Optional
container
element
Table 27 - Content of the Dsign element
Declaration
ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved.

Page 69 of 185

1833

1834

1835

1836
1837
1838
1839
1840
1841

1842
1843
1844

1845
1846

1847
1848

1849
1850
1851
1852

7.1.2.3 Initiator: Passing message construction directives to the Test Service

Unlike the “PutMessage” operation, in which the Test Driver constructs and sends a message, the
“Initiator” operation instructs the Test Driver to instead pass a Declaration (and any associated message
payloads) to the Test Service Initiation interface, via its “initiator” method. The initiator method of the Test
Service must successfully interpret the Declaration; construct the message Declarationand send the
message through its host messaging service. The Test Service initiator method must return a response
message (defined in Appendix F) to the Test Driver indicating success or failure.

Semantically, all the “sub-operations” of Initiator are identical to that of PutMessage. The only difference
is that none of the actual message building or sending occurs within the Test Driver, but instead, the
message is built and sent by the Test Service through its MSH API.

[g
ring
7| ® description =
— ol

+ Detlaratinn # gwildCard |

| # Initiator _®| + SetPart

Figure 24 — Graphic representation of expanded view of the Initiator element

Definition of Content

Name Description Default Required/Optional | Exception
Value Condition
From Test
Driver
Initiator Container element for message Optional Protocol error
construction and sending operation prevented
message
transmission
description Metadata describing the nature of Required
the PutMessage operation
ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 70 of 185

1853
1854
1855
1856
1857
1858
1859
1860
1861

1862
1863
1864
1865
1866
1867

SetPart Container for construction of a part of Required
the message (Declaration or
Payload) to be sent
description Description c_)f the portion of the Optional
message being added
Header Instruction to Test Serviceto add an Optional
attribute name/value pair to this
message portion
Name Message part attribute name Required
Value Message part attribute value Required
Declaration | XML content defines message Optional
envelope to be created by Test
Service
FileURI Reference to message declaration Optional File not found
contained in a file
MessageRef | Reference to an ID in the Test Suite Optional
whose parent is a Messageelement
Mutator Container element for a reference to Optional
either an XSL stylesheet or XUpdate
document to mutate the Declaration,
prior to passing it to the Test Service
XSL URI to an XSL stylesheet Optional Stylesheet not
found
XUpdate URI to an XUpdate document Oprional XUpdate script
not found
DSign Container element for XML Digital Optional

Signature declaration(s) for this
message, used to direct the Test
Service to sign any portion (envelope
or payload(s)) of the message

Table 14 defines the content of the Initiator element

DeclarationDeclarationDeclarationDeclarationDeclarationDeclarationDeclarationDeclaration

DeclarationDeclarationDeclarationDeclarationDeclarationDeclarationDeclarationDeclarationDec
larationDeclarationDeclaration

DeclarationDeclaration

Declaration

ebxml-iic-basic-interop-test-suite-10
Copyright © OASIS Open 2003. All Rights Reserved.

03 April 2003
Page 71 of 185

Declaration

1877

1878
1879

1880 7.1.2.4 GetMessage: Message Retrieval

1881

1882 The “GetMessage” Thread operation is used by the Test Driver to retrieve incoming messages (when the
1883 Test Driver is in Connection mode) and message notifications (when the Test Driver is in Service mode).
1884 Incoming messages for a Test Case are maintained in a persistent Message Store for the life of a Test
1885 Case.

1886
1887
1888
1889
1890
1891
& ipti % El] g
sm“rdrl!srl:rlpntl-unn b-ad::.naSk]
Filter =
non-ampbe2ring
Mame
#| # Ser¥PathParameter nof-emply-3iring
non-amphe-dring
1892

1893 Figure 38 — Graphic representation of expanded view of the GetMessage element
1894

1895
1896
1897
1898
1899
1900
1901 Definition of Content
1902
Name Description Default Value Required/Optional | Exception
Condition
GetMessage Conta.iner for instructions
to retrieve a message(s)
from the Message Store
ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 72 of 185

1903
1904
1905
1906
1907
1908
1909
1910

1912

1913

1914

1915
1916
1917
1918
1919
1920
1921

Metadata describing the Required

description
nature of the SetPayload
operation
mask Instruction to hide any false Optional

Filtered content from
subsequent Filter XPath
queries (true | false)

Filter Container for XPath Required
query that is used to
retrieve message content
from Message Store

SetXPathParameter | |siryction directint the Optional

Test Driver to extract
message content and
store it in a parameter
that is available (by
default) to the current
Thread and its
descendent Threads

scope Visibility of parameter to | selfAndDescendents | Optional

current and descendent
Threads
(selfAndDescendents |
self)

Name Name of new parameter Required

Expression XPath expression that Required

returns message content
to be used as the value
of the parameter

Table 26 defines the content of the GetMessage element

7.1.2.5 The Initiator Operation

The Initiator Operation provides a means to initiate a conversation from the candidate MSH. The Test
Driver through the “Send” interface of the Test Service performs the Initiator operation. This is
accomplished programmatically if the Test Driver is “local” to the Test Service. |[f this is not the case,
then this is accomplished through a remote procedure call (RPC), described in section 3.2.4. The Test
Driver passes on the XML content illustrated and described below to the Test Service “initiator” RPC
method to construct a message. The type of content in the Declaration element will vary with the
message envelope type (e.g. ebXML, RNIF..etc.). Also, because it is the Test Service that is actually

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 73 of 185

1922
1923
1924
1925
1926

1927

1928
1929

1930

1931
1932

1933
1934
1935
1936

constructing the message (not the Test Driver), message declarations MUST only contain directives that
the MSH API can execute. For example MIME and SOAP content is generally not available for
manipulation by an ebXML MSH API. Therefore, MIME and SOAP message construction directives
SHOULD NOT be present as Declaration content, or if present, MUST be ignored by the initiator method

of the Send interface.

The schema illustrating the Declaration content for ebXML Messaging Services v2.0 testing can be found

in Appendix C.

pic—
=ring

Declaration o+, # swildCard

FileURI =
anyl &l

MessageRel p
IDREF

Figure 40 — Graphic representation of expanded view of the generic Initiator element

Definition of Content

Name

Description

Default
Value
From
Test
Driver

Required/Optional

Exception
Condition

Initiator

Container element for
message construction
directives and message
payloads to be passed to
MSH via RPC

Optional

Protocol error
prevented
message
transmission

description

Metadata describing the
nature of the Initiator
operation

Required

SetMessageEnvelope

Content defines message
envelope to be created (or
mutated) by Test Driver

Optional

Declaration

Message construction
directives to be passed to
MSH for interpretation and
message generation

Optional

FileURI

Reference to message
declaration contained in a

Optional

File not found

ebxml-iic-basic-interop-test-suite-10
Copyright © OASIS Open 2003. All Rights Reserved.

03 April 2003
Page 74 of 185

1937

1938
1939

1940

1941

1942
1943
1944
1945
1946

1947
1948

file

MessageRef Reference to an ID in the Optional
Test Suite whose parent is a
Message element

DSign Container element for XML Optional

Digital Signature
declaration(s) for this
message, used to sign any
portion (envelope or
payload(s)) of the message

Table 28 — Content of the Initiator operation

7.1.2.6 The GetMessage Operation

The GetMessage Operation, using its child XPath Filter instruction, retrieves a node-list of Messages from
the Message Store of the Test Driver. The content of the node-list is dependent upon the XPath Filter
provided. The resulting node-list MAY then be queried for adherence to a particular Test Assertion
Additionally, parameter values that may be used later in the Test Case script can be assigned using the
SetXPathParameter instruction.

GetMessage

Figure 41 — Graphic representation of expanded view of the GetMessage element

description - maskﬂ @{
[smng % i[mmun

stepDuration q]

| # Ser¥PathParameter

ebxml-iic-basic-interop-test-suite-10
Copyright © OASIS Open 2003. All Rights Reserved.

03 April 2003
Page 75 of 185

Name

Description

Default Value from
Test Driver

Required/Optional

Exception
Condition

GetMessage

Container element for filtering,
verifying and validating message
and payload content

Optional

description

Description the nature of the
GetMessage operation

Required

mask

Boolean attribute, when set to
“true” will “mask” (hide) the
message(s) which satisfy the
XPath expression. When “false”,
the Test Driver will NOT mask
any messages

false

Optional

Filter

Select a node list from Message
Store based upon the XPath
query supplied as

Required

Not a valid
XPath or well
formed XPath
expression

stepDuration

Maximum time (in seconds) that
the Test Driver MUST wait to
satisfy the XPath expression
before continuing script
execution

Optional

SetXPathParameter

Set the value of a parameter with
the value of a node returned by
an XPath query against a
Filtered message retrieved from
the Message Store

Optional

Invalid XPath
syntax in
Expression
element

scope

Constraint on visibility of
parameter to other Threads (self
| selfAndDescendents)

(selfAndDescendent
s)

Required

Name

Parameter name

Required

Expression

XPath expression used to
capture parameter value from
FilterResult

Required

Not a valid
XPath
expression

1949

1950 Table 29 defines the content of the GetMessage element

1951

1952 7.1.2.6.1

1953
1954

Semantics of the GetMessage operation

1955 A fundamental aspect of the GetMessage operation is its behavior and effect over the Message Store.
1956 The Message Store is an XML document object created by the Test Driver that contains an XML
1957 representation of all synchronous and asynchronously received ebXML messages for a Test Case. The

1958
1959
1960
1961
1962
1963
1964
1965
1966

received messages for a particular Test Case MUST persist in the Message Store for the life of the Test
Case. Messages in the Message Store MAY contain an XML representation of all MIME, SOAP, ebXML
or other types of message content, represented as an XML document (the schema permits any type of
XML representation of a messaging envelope, with each representation specified in a “best practice”
document for a particular testing community). The particular XML representation of a message in the
Message Store is based upon a "best practice" schema for representing a particular message type. If the
messages being stored are ebXML messages using HTTP transport and a SOAP envelope, the XML
format of the Message Store document MUST validate against the ebXMLMessageStore.xsd schema in
appendix D. The scope of message content stored in the Message Store is “global”’, meaning its content

ebxml-iic-basic-interop-test-suite-10
Copyright © OASIS Open 2003. All Rights Reserved.

03 April 2003
Page 76 of 185

1967
1968

1969

1970
1971
1972
1973
1974

1975

1976
1977
1978
1979
1980

1981
1982
1983

1984
1985
1986
1987

1988
1989

1990
1991
1992

1993
1994
1995

1996
1997

1998
1999
2000
2001
2002
2003

2004
2005
2006
2007
2008
2009
2010
2011
2012
2013

is accessible at any time by any Thread (even concurrently executing Threads) during the execution of a
Test Case. Message Store content changes dynamically with each received message or notification.

The GetMessage “Filter” operation queries the Message Store document object, and retrieves the XML
content that satisfies the XPath expression specified in its Filter child element. As the MessageStore is
updated every time a new message comes in, a GetMessage operation will automatically execute as
often as needed, until either (1) its XPath Filteris satisfied (evaluates to “true”), or (2) the timeout
(stepDuration) expires.

The XPath query used as content for a Filter operation MUST yield a node-list of 0 or more XML
elements.Although the content of a message may vary (e.g. ebXML, RNIF, SOAP), all node-list results
from a Filter operation MUST contain XML elements in order to permit the creation of a FilterResult
document object, which can then be examined by the TestAssertion operation The required structure of
the FilterResult document object is defined in the Filter Result schema in Appendix D.

Message Masking:

All the message items available for querying are children of the MessageStore document object. The
Xpath expression in the Filter will typically select Message Store content that satisfies the filter. Such
content MUST be a node list of XML elements. If they are not, the Test Driver MUST generate an
exception and terminate the Test Case with a final result of “undetermined”.

The elements returned by the XPath query are appended as children of a FilterResult element, available
for further querying, by the TestAssertion operation.

When the mask attribute is set to “true”, the messages (or XML elements) that have been selected
by a GetMetmessage operation are "invisible" to future Getmessage operations in the same test case. By
default, filtering is not performed by the Test Driver.

Setting Parameters using user-defined or received Message Content:

In addition to storing message content, the Message Store MAY also store parameter values to be used
in the evaluation of subsequent received messages. This is not an implementation requirement however.

As in the case of the SetParameter operation described in 4.2.2.1 , parameters may also be
defined/redefined through the SetXPathParameter operation. This operation extracts message content
from the Message Store and stores it as a parameter value. Whether it is a message header, or an XML
message payload being examined, the test writer may assign a parameter name, and an XPath pointing
to the content to be stored as a parameter. Each parameter value is a string representation of the
nodelist content retrieved by the XPath query.

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 77 of 185

2014
2015

2016
2017

2018

2019
2020
2021

2022

2023

2024

2025
2026
2027
2028
2029

2030
2031

2032

7.1.2.7 The TestAssertion Operation

The TestAssertion Operation verifies a Test Requirement through one of three possible sub-operations.

These sub-operations are: VerifyContent (compare message content to expected values),
ValidateContent (validate the structure of a document, or a single item in the document) and

VerifyTimeDifference (compare a computed time difference between two parameters against an expected

value).

Ri==")
aring

+ ?erify[:nntenta
non-amphegdring

+ ?alidate[ﬁnntenta

non -=mphesiring

YerifyTimeDifference

ParamMame =
non=amphegring
ParamMame =
non-amphegring
T Aty b
Difference gy
auraton

TestAssertion

Figure 44 — Graphic representation of expanded view of the TestAssertion element

aszarHon EAL R

ebxml-iic-basic-interop-test-suite-10
Copyright © OASIS Open 2003. All Rights Reserved.

03 April 2003
Page 78 of 185

2033
2034
2035

2036

2037

2038
2039

Definition of Content

Name

Description Defa | Required/Opt | Excepti
ult ional on
Valu Conditi
e on
From
Test
Drive
r
description Metadata des_qibing the _nature of the Required
TestPreCondition operation
VerifyContent XPath expression to evaluate content of Optional Invalid
message(s) XPath
express
ion
ValidateConten | gty if entire XML document is to be validated or Optional Invalid
t XPath expression to “point to” content to be XPath
validated for correct format if type is URI, dateTime express
or Signature ion
contentType An enumerated list of XML, URI, dateTime, or Optional
signature validation descriptors
schemalocatio | yR| describing location of validating XML schema, Optional Schema
n as defined in [XMLSCHEMA] or a URI of a not
Schematron schema found
VerifyTimeDiffe | |nstruction to Test Driver to compute the time Optional
rence difference between two parameters and determine if
the difference is less than equal or greater to an
expected value
ParamName Parameter used in computation of time difference Required
Operator (lessThen|lessThanOrEquallequal|greaterThan|grea Required
terThanOrEqual)
Difference Expected value Required
WhenTrue Branching instruction based upon boolean result of Optional
the TestAssertion operation
WhenFalse Branching instruction based upon boolean result of Optional
the TestAssertion operation
Table 32 defines the content of the TestAssertion element
7.1.2.7.1 Semantics of the TestAssertion operation
ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved.

Page 79 of 185

2040
2041

2042

2043
2044
2045
2046

2047

2048
2049
2050
2051
2052
2053

2054

2055
2056

2057
2058
2059
2060

2061

2062
2063
2064
2065
2066

2067
2068
2069
2070

2071
2072
2073
2074
2075

2076

2078
2079
2080
2081

The TestAssertion operation MUST return either a true or false result (or semantically a pass/fail result) to
the Test Driver.

If TestAssertion includes a VerifyContent sub-operation, the VerifyContent operation MUST vyield a
boolean value of true/false. If the verification is an XPath operation, the VerifyContent XPath expression
may yield a node-set, boolean, number or string object. All of these resulting objects MUST be evaluated
using the “boolean” function described in [XPath]. Those evaluation rules are:

e areturned node-set object evaluates to true if and only if it is non-empty

e areturned boolean object evaluates to true if it evaluates to “true” and false if it evaluates to
“false”

e areturned number object evaluates to true if and only if it is neither positive or negative zero nor
NaN

e areturned string object evaluates to true if and only if its length is non-zero

If the TestAssertion sub-operation is ValidateContent, then the content pointed to by the XPath
expression contained in the text content MUST validate according to its contentType attribute . The
ValidateContent operation MUST yield a boolean value of true/false. Rules for determining the resulting
Boolean value are:

o if the contentType attribute value is XMLSchema, as defined in [XML] , the operation evaluates to
true if the content at the specified XPath validates according to the schema defined in the
“schemalocation” attribute

o if the contentType is URI, as defined in [XMLSCHEMA], the operation evaluates to true if the
content at the specified XPath is a valid URI

o if the contentType is dateTime, as defined in [XMLSCHEMA], the operation evaluates to true if
the content af the specified XPath is a valid dateTime
o if the contentType is signature, as defined in [XMLDSIG], the operation evaluates to true if the

content at the specified XPath is a valid signature.

If the TestAssertion sub-operation is VerifyTimeDifference, then two dateTime parameter values are
compared, with an operator of “lessThen, lessThenOrEqual, equal, greaterThan, greaterThanOrEqual’.
The TestAssertion operation evaluates to “true” if the equation is satisfied, otherwise it returns a value of
“false” to the Test Driver. The Test Driver MUST generate an exception and exit the Test Case if any of
the parameters used in VerifyTimeDifference operation are not a dateTime type.

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 80 of 185

2082
2083
2084

2085

2086

2087
2088
2089
2090
2091

2092

2093

2094
2095
2096
2097
2098
2099
2100
2101
2102
2103

7.1.3 Message Store Schema

The Generic Message Store schema (Appendix D) describes the XML document format required for a
Test Driver implementation. The schema facilitates a standard XPath query syntax to be used for retrieval
and evaluation of received messages, notifications and (optionally) parameter names and values by the
Test Driver. The “generic” schema design of the Message Store document object permits virtually any
type of XML format for messages and notifications to be stored and queried via XPath.

#® synchType & id% @[_‘ ser\ricelnstanceld% & ser\riceName%
[gﬂmgpe dring aring sing

reportingfction %
Fring

Name =
2ring

Yalue =

ring)
3 + Enntent + HuildCcard |

synchType * ida @[_‘ servicelnstancelda & ser\riceNamea

= = Ig,gmgpe aring aring aring
t

peportingAction % # notificationType q

sring notiHcation ke
Header

7 +* Cnnlenl # guildCard |

_@I + Message + part

Name =

_@I # Motification + Part

Figure 47 — Graphic representation of expanded view of the generic Test Driver MessageStore schema

Description of Content

Name Description Default Required/Optional | Exception
Value Condition
From
Test
Driver

MessageStore Container for all message, notification Required

and possibly parameter values for a
ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 81 of 185

2104
2105
2106

2107

2108
2109

2110
2111
2112
2113
2114

2115

2116
2117
2118

Test Case instance

Message

Container for a received message,
along with some overhead attributes
describing the type of message, its
origin etc

Optional

synchType

Descriptor of type of how message
was received
(synchronous|asynchronous)

Required

id

Test driver provided unique identifier
of received message

Required

servicelnstanceld

Unique identifier of the Test Service
that generated the received message

Optional

serviceName

Name of the Service that generated
the received message

Optional

reportingAction

Name of the action that generated the
received message

Optional

Part

Container for content of a single
portion of entire messagae

Required

Header

Container of any name/value attribute
associated with this particular
message part

Name

Container for actual message part
attribute name

Required

Value

Container for actual message part
attribute value

Required

Content

Container for actual XML message. If
message part is not XML, then no
Content element is present

Optional

#wildcard

Any XML representation of message
content (typically conforming to
specified schemas)

Required

Notification

Container for any type of message
received by a Test Servce and
reported to the Test Driver

Optional

notificationType

Type of notification (message,
errorURL, errorApp)

Required

7.1.3.1 Semantics of the Message Store

The Message schema permits any type of message representation. Messages are required to have a
unique ID within the Message Store, and a “synchType” attribute, identifying the message as received
either synchronously or asynchronously. Messsages (unlike Notifications) are received directly by the
Test Driver (i.e. the Test Driver is in “connection” mode). Hence message content is more complete ,
since it was received “over the wire”, and all content is accessible to the Test Driver.

Notification messages are received via an interface from the Test Service. Because the messaging
system under test cannot be trusted to provide the notifications,they are either passed locally (via the
Test Service Notification interface) or remotely (via RPC) between Test Service and Test Driver via the

ebxml-iic-basic-interop-test-suite-10
Copyright © OASIS Open 2003. All Rights Reserved.

03 April 2003
Page 82 of 185

2119
2120
2121
2122
2123
2124

2125

2126

2127

2128
2129
2130

2131

Test Driver “Receive” interface. As a result, message content is restricted to what part of the message
was exposed to the Test Service application layer. Therefore the representation or received messages
passed via notification is less complete than message content directly received by the Test Driver (for
example, MIME content may not be exposed to a Test Service application, therefore MIME headers are
not represented in the Notifcation message). For all other purposes however, the format of the
Notification message content is identical to that of a message directly received by the Test Driver.

7.13.2

ebXML Specific Message Store Schema

The ebXML MS v2.0 Message Store Schema (Appendix D) defines the structure of an individual ebXML
MS version 2.0 message received over HTTP. This schema MUST be used to define the message
structure for ebXML MS V2.0 messages and notifications.

il ParameterGroup

Fpch bypes

] syncthpe%

=8

#ring

L] servicelnstanceld% @l L] serviceName%

ring

7| ® reportingfction =
*{

@| # Message E‘=—®| + PartEF

MessageStore

®| # Content +* soap:Envelope E‘
Entesliopee

eb:MessageHeader

: eb:SyncReply
7 eb:MessageOrder
7 eh:AckRequestad

@.I + eb:AcknowIedgment

)

| +* eb:SlatusRequest

eb:StatusResponse

|§ Body

apinch Fype

L] svncthpe%

[] id% @l * serviceInstanceId% @[* serviceName%
sring dring dring

shring

reportingAction %

[] notiﬁcationT\rpeq
nolificaticn bype

_®| + Notification _{ + part

ebxml-iic-basic-interop-test-suite-10

¥ eb:MessageHeader

-
S
5 eb:AckRequested

®| #* eb:Acknowledgment

_®| # Content

soap:Envelope
Entlope

Copyright © OASIS Open 2003. All Rights Reserved.

| + eb:StalusRequesl

2 eb:StalusResponse

03 April 2003
Page 83 of 185

2132
2133

2134
2135
2136
2137
2138
2139
2140

2141
2142
2143
2144
2145
2147
2148

2149

2150

2151
2152
2153

2154
2155
2156
2157
2158
2159
2160
2161

2162

2163
2164

2165
2166
2167
2168
2169
2170
2171

Figure 48 — Graphic representation of expanded view of Message Store content model, specifically for
ebXML/SOAP messaging services

Definition of Content

The content represented in the figure 48 above is that defined for a Message Store containing ebXML
message content received directly by the Test Driver (in connection mode) and message notification
content received by the Test Service (with the Test Driver in service mode). All SOAP and ebXML
Messaging Services message content validates to the schemas defined in their respective [SOAP] and
[ebMS] specifications.

Table 35 defines the content of the MessageStore element

7.1.3.3 Filter Result Schema

Like the Message Store, the Filter Result is a document object that can be queried for content testing and
verification. Unlike the MessageStore, the FilterResult document object only needs to exist for the
lifecycle of a single Thread. The Filter Result document is identical (in structure) to the MessageStore
document, with one exception. The root node of the Filter Result document is a FilterResult element, not
a MessageStore element. The content of the Filter Result MUST be a node list object whose node(s) are
XML elements. This means that any Filter XPath expression MUST always query for elements within the
Message Store. Doing so means that the Test Driver will be able to construct a document object from the
Filter node list, and use it for subsequent VerifyContent and ValidateContent operations.

FilterResult o, * HuildCard

Figure 49 — Generic Filter Result schema, permitting any Message Store element content

Definition of Content

Name

Declaration Description Default Value Required/Optional
From Test Driver
FilterResult Container for XML representation of Required
all messages received by Test Driver
ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 84 of 185

2172
2173
2174

2175

2176

2177
2178
2179
2180

2181

2182
2183

2184
2185

2186
2187
2188

2189
2190
2191

2192
2193
2194

2195
2196
2197

2198
2199
2200

2201
2202
2203
2204

2205

2206
2207
2208
2209
2210
2211
2212
2213

for a given Test Case

#wildcard Any Message Store element content Optional

Table 36 defines the content of the FilterResult element

7.3 Test Service Configurator, Initiator, and Notification Message Formats

The Test Service Message Schema (Appendix F) describes an XML syntax that MUST be followed for
passing Test Service configuration, message construction and message notification data between the
Test Driver to the Test Service when the Test Driver is either interfaced with the Test Service, or is
remote to the Test Service but is receiving notification messages from the Test Service via RPC.

If the Test Service is in “local reporting mode”, configuration and message initiation information is passed
from the Test Driver to the Test Service via the Test Service “Send” and “Configuration” interfaces.

The Send interface provides the “initiator” method to start a new conversation or to construct a message
with the conversationld already provided by the Test Driver.

The Configuration interface provides the “configurator” method, which provides the t fundamental
parameters for setting the state of the Test Service (ResponseURL, NotificationURL ,ServiceMode and
PayloadDigests).

The message initiation and Test Service configuration use the same methods if the Test Service is in
“remote reporting mode”. The only difference is that the messages are passed between the two test
components via a Remote Procedure Call (RPC) instead of via local calls to respective interfaces.

Using an alternate channel for Test Service configuration, message initiation and message reporting
separates the implementation under test from the actual testing infrastructure. This helps to isolate
failures in conformance and interoperability from failures in the test harness.

The particular alternate communication binding that a test driver and test service implement is not
mandated in this specification, however (as an example) an abstract definition and WSDL definition with a
SOAP binding is provided in section 3.2.5.The list below describes each of the alternate channel
messages defined in Appendix H.

InitiatorRequest — XML message content to be interpreted by the Test Service initiator method to
construct an ebXML Message (or any other message envelope). This XML request is passed to a
candidate MSH Test Service via the Send interface (if the Test Driver is in service mode) or via a remote
procedure call to the Test Service (if the Test Driver is in connection mode). The first argument carries
the message envelope construction declarations. The second argument is a list of message payloads to
be added to the message. If the Test Driver is in “service” mode, the configuration parameters are
passed to the Send interface via the initiator method call. If the Test Driver is in “loop” mode, the two
parameters are passed to the Test Service via RPC call to the initiator method.

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 85 of 185

2214
2215
2216
2217
2218

2219
2220
2221

2222
2223
2224
2225
2226
2227
2228
2229
2230
2231

2232

2233

Init +*
InitiatorRequest SEtBart ®| # Declaration il + twildcard |

¥ dc:Signature
Slqnahur =Ty

Figure 51 — Initiator request content

Definition of Content

Name

Declaration Description Default Value | Required/Optio | Exception
From Test nal Condition
Driver
InitiatorRequest | container for message Required
declaration
SetPart Container for message Required
component declarations
Header Generic Optional
Name Name of message part Required
header
Value Value assigned to message Required
part header
DSign Instruction to Test Service Optional

to digitally sign (using
[XMLDSIG] the appropriate
part of the message

Table 37 — Describes the content of the InitiatorRequest element

InitiatorResponse — XML message content to be interpreted by the Test Driver, with a result of “success”
or “failure” returned by the Test Service. The response is passed to Test Driver through its Receive
interface (if Test Driver is in Service mode) or sent to the getMessage method of the Test Driver Receive
RPC Service (if Test Driver is in Loop mode). In both cases, the getMessage method is invoked on the
Test Driver. The response message is added to the Message Store by appending its content to a
Message Store “Message” element. The Test Driver will automatically evaluate the result of the response
message, and exit the Test Case with a final status of “undetermined” if the initiator result is “failure”.
Otherwise, the Test Case will proceed to the next operation. Response message content is appended to
a Message Store Message element “as is”, with appropriate service instance, reporting action and other
information provided as

InitiatorResponse #* Success T
Eoclean :

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 86 of 185

2234
2235
2236
2237

2238
2239
2240
2241
2242
2243
2244

2245
2246
2247
2248
2249
2250

2251

2252
2253

2254
2255
2256
2257

Figure 52 — Graphical representation of the InitiatorResponse schema

Definition of Content

Name Declaration Description Default Value | Required/Optio | Exception
From Test nal Condition
Service
InitiatorResponse | container for response from Required
Test Service
Success Boolean resullt (tru.e_l f_alse) Required
for conversation initiation
from Test Service

Table 38 — Describes the content of the InitiatorResponse element

TesetServiceConfiguratorRequest — XML message content passed to a candidate MSH Test Service,
to be interpreted by the configurator method call. Content consists of three required parameter names
and their corresponding values and types. If the Test Driver is in “service” mode, the configuration
parameters are passed to the Test Service Configuration interface via the configurator method call. If the
Test Driver is in “loop” mode, the parameters are passed to the Test Service via RPC call to the
configurator method.

g on ko = b
+ RespnnseURLa

anydl il

MotificationURL
amdl il

+ TestServiceConfiguratorRequest

=) # PayloadDigests) #* Payload

Figure 53 — A Graphical representation of the ConfiguratorRequest content schema

Definition of Content

Name Description Default Required/Optional | Exception
Value Condition
From Test
Driver

ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 87 of 185

2258
2259

2260
2261
2262
2263
2264
2265
2266
2267
2268

2269

2270
2271

2272
2273

2274

OperationMode

Toggle mode to (local-reporting |
remote-reporting | loop)

Required

ResponseURL

Parameter defining the URL for the
Test Service to send response
messages to

Optional

NotificationURL

Parameter defining the location for
the Test Service to send natification
messages to

Optional

Configurationltem

Container for individual name/value
pair used by the Test Driver for
configuration or possibly for
message payload content
construction

Optional

Name

Name for the Configurationltem

Required

Value

Value of the Configurationltem

Required

Type

Type of Configurationltem

Required

(namespace or parameter)

Table 39 — Describes the content of the ConfigurationRequest element

TestServiceConfiguratorResponse — XML message content to be interpreted by the getMessage
method of the Test Driver Receive interface. The response is passed to Test Driver through its Receive
interface (if Test Driver is in Service mode) or sent to the Test Driver Receive RPC Service (if Test Driver
is in Loop mode). In both cases, the getMessage method is invoked on the Test Driver. The Test Driver
will automatically evaluate the result of the response message, and exit the Test Case with a final status
of “undetermined” if the XML content in the response message indicates “failure” to configure the Test
Service. Otherwise, the Test Case will proceed to the next operation. Response message content is
appended to a Message Store Message element “as is”, and providing the required service instance,
reporting action and other information.

+ TestServiceConfiguratorResponse # Success T

Exceni=an

Figure 54 - A graphical representation of the ConfiguratorResponse content schema
Definition of Content

Name Declaration Description Default Value | Required/Optio | Exception
From Test nal Condition
Service
TestServiceConfi | container for response from Required
guratorResponse | 15t Service
Success Boolean resu_lt (true | false) Required
for Test Service
configuration
Table 40 — Description of content for the ConfiguratoreResponse element
ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 88 of 185

2275
2276

2277
2278
2279
2280
2281
2282
2283
2284
2285
2286

2287

2288
2289

2290

2291
2292
2293
2294

2295

2296
2297
2298
2299
2300

2301

2302
2303
2304
2305

2306
2307
2308
2309
2310
2311
2312

2313

Notification — XML message envelope and payloads passed from the Test Service to the Test Driver.
This includes errorURL notifications, errorApp notifications and any messages received by the Test
Service while operating in “reporting” mode. Notifications are passed to Test Driver through its Receive
interface (if Test Driver is in Service mode) or sent to the Test Driver via messaging to the Test Driver
“Notify” action. In both cases, the Test Driver will automatically append the received Notification element
and content the root element of the Message Store. Additional message payloads associated with the
message MUST be stored by the Test Driver for examination by a “GetPayload” operation if necessary.

If a particular Test Case must verify that a particular message was received by the candidate
implementation, then a GetMessage operation examining the MessageStore for that particular notification
message MUST be performed to verify conformance or interoperability.

Although the Notification message format is stored the same way in the MessageStore, there are
important differences for each type of notification.

A Notification message with a notificationType attribute of “message”, looks in many ways like a message
received directly by a Test Driver, with the exception that some information may not be present (such as
MIME header content), since this portion of the message may not be exposed to the methods of the Test
Service Notification interface.

A Notification message with a notificationType attribute value of “errorURL” is similar to a generic
“‘message” notification, with the exception that the message was passed to the Test Driver in response to
an erroneous message received by the candidate MSH. The content of the notification is the error
message that the candidate MSH would normally send to the requesting party or to an identified error
reporting URI if one were defined.

A Notification message with a notificationType attribute value of “errorApp” is identical to an “errorURL”
notification , with the exception that error list provided in the notification contains “application-level” errors
that are not normally returned to the sending party, but are handled internally by the candidate
implementation under test.

shing
+ Euntent #* uildCard |

o # Part

synchType & id L] serviceInstanceId% [serviceName%
[gﬂmgg % [smng % #ring aring
@ repurtingAttinn% * nntiﬁcatinnTgpeq
sring noHoalion e
Motification

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 89 of 185

2314
2315
2316
2317
2318

2319
2320
2321
2322

2323
2324

2325

Figure 55 — Graphical representation of the Notification element content schema

Definition of Content

Name Declaration Description Default | Required/Optional
Value
From
Test
Driver
Notification Container for reported Optional
message content
synchType Descriptor of type (?f how Required
message was received by
Test Service
id Test Service provided unique Required
identifier of received message
servicelnstanceld Uniq_ue identifier of the Test Optional
Service that generated the
notification
serviceName Name of the Serw_c_e that Optional
generated the notification
; ; Name of the action that Optional
reportingAction
poriingAct generated the notification
P Type of notification message. Required
notificationType
ricationtyp (ErrorURL | ErrorApp |
Message)
Part Portion of the message Required
received by the Test Service
Header Geperic containe.r for any Optional
attributes and their values
associated with this message
part
Name Message part attribute name Required
Value Message part attribute value Required
Content Container f_or any XML Optional
representation of message
content for this part of the
message
Content Optional

Table 41 — Description of MessageNotification element content

NotificationResponse — XML message content to be interpreted by the Test Service. The response is
returned by the notify method of the Test Driver or sent to the Test Service as an RPC response.

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 90 of 185

2326
2327

2328
2329

2330
2331

2332

2333
2334

2335
2336
2337
2338

2339
2340

2341

2342

2343
2344
2345

2346
2347
2348
2349
2350

+* NutiﬁtatinnRespnnse ¥ Success T
boclean %

Figure 56 - A graphical representation of the NotificationResponse content schema

Definition of Content

PayloadVerifyResponse — XML message content to be interpreted by the “notify” method of the Test

Driver’s “Receive” interface. This message content is an attachment to the notification message.

Payload¥erifyResponse) + Payload

Success T
Eeceod=an -

Figure 57 - A graphical representation of the PayloadVerifyResponse content schema
Definition of Content

Definition of Content

Name

Declaration Description Default | Required/Optional
Value
From
Test
Driver
PayloadVerifyResponse Contain.er for results of Required
comparison of message
payload received by
candidate MSH with their
MD5 digest values
Payload Container f(?r_ indjvidual Required
payload verification result
Id ID of the payload Required
Success Boolean c.:o.mparison result Required
for an individual payload

Table 42 — Description of PayloadVerifyResponse content

7.4 Test Report Schema

The Test Report schema (Appendix G) describes the XML report document format required for Test
Driver implementations. The schema facilitates a standard XML syntax for reporting results of Test Cases
and their Threads.

The Test Report is a “full trace” of the Test Case. All XML content in the XML Test Case is available in
the Test Report. Additionally, a “result” element is appendedto certain operation elements in the trace, to
provide dignaostic information. The “result” attribute MUST have a value of “pass”, “fail” or
“‘undetermined”. The Test Report schema is too large to graphically display on this page. Please consult

Appendix G if you wish to examine the normative schema.

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 91 of 185

2351
2352
2353
2354
2355
2356

ebxml-iic-basic-interop-test-suite-10
Copyright © OASIS Open 2003. All Rights Reserved.

03 April 2003
Page 92 of 185

257 8 Test Material

2358

2359 Test material to support the ebXML Testing Framework includes:
2360

2361 A Testing Profile XML document

2362 A Test Requirements XML document

2363 A Test Suite XML document

2364 Message Declaration Mutator document

2365 Collaboration Agreement document (if needed to configure an MSH)
2366

2367

2368

2369 8.1.1 Testing Profile Document

2370

2371 Both conformance and interoperability testing require the creation of a Testing Profile XML document,
2372 which lists the Test Requirements against which Test Cases will be executed. A Test Profile document
2373 MUST be included in an interoperability of conformance test suite. The Testing Profile document MUST
2374 validate against the ebProfile.xsd schema in Appendix A.

2375

2376 8.1.2 Test Requirements Document

2377

2378 Both conformance and interoperability testing require the existence of a Test Requirements document.
2379 While Test Requirements for conformance testing are specific and detailed against an ebXML

2380 specification, interoperability Test Requirements may be more generic, and less rigorous in their

2381 description and in their reference to a particular portion of an ebXML specification. However, both types
2382 of testing MUST provide a Test Requirements XML document that validates against the

2383 ebXMLTestRequirements.xsd schema in Appendix B.

2384

2385 8.1.3 Test Suite Document

2386

2387 Both conformance and interoperability testing require the existence of a Test Suite XML document that
2388 validates against the ebTest.xsd schema in Appendix C. It is important to note that test case scripting
2389 inside the Test Suite document MUST take into account the test harness architecture. Although a Test
2390 Driver in Connection Mode can manipulate low-level message content (such as HTTP or MIME header
2391 content) such content may not be accessible by a Test Driver in Service Mode, as the MSH does not
2392 communicate this data to the application layer. Therefore, the following test scripting rules SHOULD be
2393 followed when designing Test Cases:

2394 Message content described in a Message Declaration MUST be restricted to the business envelope and
2395 its content, and not include references to the transport protocol content. Transport level content MAY be
2396 described via the Header (name/value pair) child element of the message Part.

2397

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 93 of 185

2398
2399
2400

2401

2402
2403
2404
2405

2406
2407
2408
2409
2410

2411
2412
2413

2414

2415
2416
2417
2418

2419

2420

2421

2422
2423
2424
2425
2426
2427
2428

2429
2430

8.1.4 Mutator documents

When the Test Driver is in “connection mode”, a message declaration content MAY be “mutated” via an
XSL or XUpdate processor into a valid message for transmission by the Test Driver. Likewise, when a
Test Driver is in “service mode”, a message declaration content MAY be “mutated” in to a format suitable
for interpretation by the Test Service Receive interface, and its message “initiator” method.

Because a message Declaration element content can be any well-formed XML content, message Mutator
content can also be any valid XSLT or XUpdate format that will mutate its corresponding Declaration
content. It is HIGHLY RECOMMENDED that a particular testing community agree to a common message
Declaration and Mutator content schema in order to provide understandability and minimize the
duplication of effort in constructing conformance and interoperability test suites within that community.

The OASIS IIC has adopted a message declaration schema for ebXML Messaging Services v2.0
conformance and interoperability testing. It has also defined an XSL stylesheet to mutate that declaration
into an ebXML message. The schema and stylesheet are available in Appendix G.

Likewise, communities wishing to test other messaging services, or other web applications SHOULD
devise a schema and stylesheet for their particular testing purpose. These documents SHOULD be
published as a “recommended practice” for that particular testing community, to minimize the work
involved in creating test suites that can be used with any I[IC Test Framework implementation.

8.1.5 CPAs

For ebXML Messaging Services (MS) testing), both conformance and interoperability testing require the
existence of a “base” CPA configuration that describes the “bootstrap” configuration of the candidate
MSH for conformance and interoperability testing. Additional CPAs MAY be needed if testing requires
different configurations of the candidate MSH. All CPA configurations MUST be uniquely defined (via a
CPA ID) and documented in the Conformance or Interoperability Test Suite Specification document
accompanying the Executable Test Suite. How the CPA configuration is presented to the candidate MSH
imiplementation isnot defined in this specification.

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 94 of 185

2431

2432
2433
2434
2435
2436
2437
2438
2439

9 Test Material Examples

This section includes example test material to illustrate

A Test Requirements Document — Listing all Test Requirements for an ebXML implementation
A Test Profile Document — Listing all selected Test Requirements to be exercised

A Test Suite Document — Listing all Executable Test Cases for an ebXML implementation

A Mutator XSL Stylesheet

9.1 Example Test Requirements

Below are two XML documents illustrating how Test Requirements are constructed, in this case for an
ebXML MS 2.0 implementation. In this particular case, the two documents represent Conformance and
Interoperability Test Requirements for an ebXML Messaging Services V2.0 implementation. The
example XML documents below include a subset of testing requirements defined for implementations of
the ebXML Messaging Services v2.0 Specification. Each Test Requirement may have one or more
Functional Requirements that together must be satisfied in order for an implementation to fully meet that
Test Requirement.

9.1.1 Conformance Test Requirements

In the example below, a “packaging” TestRequirement element contains two FunctionalRequirement
elements. The first Functional Requirement states that the primary SOAP message MUST be the first
MIME part of the message. The second packaging Functional Requirement states that the Content-Type
MIME header of the Message Package MUST be “text/xml”. If all Test Cases having a requirement
reference to these two Functional Requirements “pass”, then an ebXML MS v2.0 implementation would
be deemed “conformant” to the specification for the “Packaging” of ebXML messages. Of course, this is a
limited set of Test Requirements for illustrative purposes only.

<?xml version="1.0" encoding="UTF-8" 2>
<Requirements xmlns="http://www.oasis-open.org/tc/ebxml-iic/conformance/reqgs"
xmlns:xsi="http://www.w3.0rg/2000/10/XMLSchema-instance"
xsi:schemalocation="http://www.oasis-open.org/tc/ebxml-iic/conformance/reqgs/
ebXMLTestRequirements.xsd">
<MetaData>
<Description>Master Requirements File: ebXML Messaging Services 2.0</Description>
<Version>1.0</Version>
<Maintainer>Michael Kass<Michael.kass@nist.gov></Maintainer>
<Location>http://www.oasis-open.org/commitees/ebxml-
iic/ebmsg/requirementsl.0.xml</Location>
<PublishDate>20 Feb 2003</PublishDate>
<Status>DRAFT</Status>
</MetaData>
<!-Main Test Requirement, for message packaging—>
<TestRequirement id="req id 2" name="PackagingSpecification" specRef="ebMS-2#2.1"
functionalType="packaging">

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 95 of 185

2478 <!-Define first sub-requirement to fulfill packaging testing—>

2479 <FunctionalRequirement id="funreq id 2"
2480 name="GenerateConformantSOAPWithAttachMIMEHeaders" specRef="ebMS-2#2.1.2">
2481 <Clause>
2482 <!—Set first condition of the message is of type “multipart-mime” >
2483 <Condition id="condition id 2" requirementType="required">For each generated mesage,
2484 if it is multipart MIME</Condition>
2485 <0r />
2486 <!—Set alternate condition that the message is not “text/xml” —>
2487 <Condition id="condition id 305" requirementType="required">if it is not
2488 text/xml</Condition> -
2489 </Clause>
2490 <!—Define the Assertion that the first part of message is a SOAP message —>
2491 <Assertion id="assert id 2" requirementType="required">The primary SOAP message is
2492 carried in the root bod§ pgrt of the message.</Assertion>
2493 </FunctionalRequirement>
2494 <!—Define a second sub-requirement to fulfill packaging testing—>
2495 <FunctionalRequirement id="funreq id 4" name="GenerateCorrectMessagePackageContent-Type"
2496 specRef="ebMS-2#2.1.2"> -
2497 <Clause>
2498 <!-Define condition that the candidate MSH generates a message —>
2499 <Condition id="condition id 4" requirementType="required">For each generated
2500 message</Condition> -
2501 </Clause>
2502 <!—Define the Assertion that the Content-Type of MIME header of that message is
2503 “text/xml” >
2504 <Assertion id="assert id 4" requirementType="required">The Content-Type MIME header in
2505 the Message Package contains a type attribute of "text/xml".</Assertion>
2506 </FunctionalRequirement>
2507 </TestRequirement>
2508 <!—Define a new Test Requirement, for the Core Extension Elements of messaging—>
2509 <TestRequirement id="req id 3" name="CoreExtensionElements" specRef="ebMS-2#3.1.1"
2510 functionalType:"packaging">_
2511 <!-Define a sub-requirement to test the CPAId extension element—>
2512 <FunctionalRequirement id="funreq id 35" name="ReportFailedCPAIDResolution"
2513 specRef="ebMS-2#3.1.2"> -
2514 <Clause>
2515 <!=First , set condition of a candidate MSH receiving a message with an unresolvable
2516 CPATd>
2517 <Condition id="condition id 40" requirementType="required">For each received message,
2518 if value of the CPAId element on an inbound message cannot be resolved</Condition>
2519 </Clause>
2520 <!—Next , define the Assertion that the candidate MSH MUST (since requirementType is
2521 “required”) respond with an Error—>
2522 <Assertion id="assert id 35" requirementType="required">The MSH responds with an error
2523 (ValueNotRecognized/Errgr) . </Assertion>
2524 </FunctionalRequirement>
2525 <!-Define a sub-requirement to test continuity in message ConversationId—>
2526 <FunctionalRequirement id="funreq id 36" name="ProvideConversationIdIntegrity"
2527 specRef="ebMS-2#3.1.3">
2528 <Clause>
2529 <!—First , set condition of all messages generated by a Candidate Implementation
2530 pertaining to a single CPAId—>
2531 <Condition id="condition id 41" requirementType="required">For each generated message
2532 within the context of the gpesified CPAId</Condition>
2533 </Clause>
2534 <!—Next , define the Assertion that a ConversationId element is always present—>
2535 <Assertion id="assert id 36" requirementType="required">The generated ConversationId
2536 will be present in all xiesgages pertaining to the given conversation.</Assertion>
2537 </FunctionalRequirement>
2538
2539 </TestRequirement>
2540 </Requirements>
2541
2542
ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 96 of 185

9.1.2 Interoperability Test Requirements

In the example below, a “basic interoperability profile” TestRequirement element contains two
FunctionalRequirement elements. The first Functional Requirement states that ebXML MS
implementation MUST be able to receive and send a basic ebXML message without a payload. The
second packaging Functional Requirement states that an ebXML MS implementation MUST be able to
process and return a simple ebXML message with one payload. If all Test Cases having a requirement
reference to these two Functional Requirements “pass”, then an ebXML MS v2.0 implementation would
be deemed “interoperable” to the Basic Interoperability Profile Specification for ebXML Messaging. Of
course, this is a limited set of Test Requirements for illustrative purposes only.

<?xml version="1.0" encoding="UTF-8" 2>
<Requirements xmlns="http://www.oasis-open.org/tc/ebxml-iic/interop/reqgs"
xmlns:xsi="http://www.w3.0rg/2000/10/XMLSchema-instance"
xsi:schemalocation="http://www.oasis-open.org/tc/ebxml-iic/interop/regs
ebXMLTestRequirements.xsd">
<MetaData>
<Description>Interoperability Requirements File: ebXML Messaging Services
2.0</Description>
<Version>1.0</Version>
<Maintainer>Michael Kass <michael.kass@nist.gov></Maintainer>
<Location>http://www.oasis-open.org/commitees/ebxml-
iic/ebmsg/ms_2.0_interop_ requirementsl.0.xml</Location>
<PublishDate>11 Feb 2003</PublishDate>
<Status>DRAFT</Status>
</MetaData>
<!—Main Test Requirement, for basic interoperability testing—>
<TestRequirement id="req id 1" name="Basic Interoperability Profile" specRef="MS 2.0 BIP
0.8" functionalType="basic interoperability">
<!—Define first sub-requirement to fulfill basic testing, sending a “no payload”
message—>
<FunctionalRequirement id="funreq id 1" name="BasicExchangeNoPayload" specRef="ebMS 2.0
BIP#3.2.1">
<Clause>
<!—First , set condition of a candidate MSH receiving a message with no payload—>
<Condition id="condition id 1" requirementType="required">For each received ebXML
message with no payload, received by the “Dummy” action</Condition>
</Clause>
<!—Next , define the Assertion of expected behavior for the Dummy Action->
<Assertion id="assert id 1" requirementType="required">The message is received and
processed, and a simple response message is returned</Assertion>
</FunctionalRequirement>
<!—-Define second sub-requirement to fulfill basic testing, sending a “one payload”
message—>

<FunctionalRequirement id="funreq id 2" name="BasicExchangeOnePayload" specRef="ebMS 2.0
BIP#3.2.2">
<Clause>
<!—Set condition of a candidate MSH receiving a message with one payload—>

<Condition id="condition id 2" requirementType="required">For each received ebXML
message with one payload, received by the “Reflector” action </Condition>

</Clause>
<!-Define the Assertion of expected behavior for the Reflector Action—>

<Assertion id="assert id 2" requirementType="required">The message is received and
processed, and a simple response message with the identical payload is
returned</Assertion>

</FunctionalRequirement>
<!-Define third sub-requirement to fulfill basic testing, sending a “three payload”
message—>
<FunctionalRequirement id="funreq id 3" name="BasicExchangeThreePayloads" specRef="ebMS
2.0 BIP#3.2.3">
<Clause>
<!—Set condition of a candidate MSH receiving a message with three payloads—>

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 97 of 185

2631

2632

2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644

2645

2646

2647

2648
2649
2650

2651

2652
2653
2654
2655
2656
2657
2658

<Condition id="condition id 3" requirementType="required">For each received ebXML
message with three payloads, received by the “Reflector” action</Condition>
</Clause>

<!-Define the Assertion of expected behavior for the Reflector Action—>

<Assertion id="assert id 3" requirementType="required">The message is received and
processed, and a simple response message with the identical three payloads are
returned</Assertion>

</FunctionalRequirement>
<!—-Define third sub-requirement to fulfill basic testing, generating Error messages-—>
<FunctionalRequirement id="funreq id 4" name="BasicExchangeGenerateError" specRef="ebMS
2.0 BIP#3.2.4">
<Clause>
<!—Set condition of a candidate MSH receiving an erroneous message—>

<Condition id="condition id 4" requirementType="required">For each received basic
ebXML message that should generate an Error </Condition>

</Clause>
<!—Define the Assertion of expected behavior for the candidate MSH =

<Assertion id="assert id 4" requirementType="required">The message is received and,
the MSH returns a message to the originating party with an ErrorList and appropriate
Error message </Assertion>

</FunctionalRequirement>
</TestRequirement>
</Requirements>

9.2 Example Test Profiles

Below are two XML documents illustrating how a Test Profile document is constructed, in this case for an
ebXML MS v2.0 implementation. The example XML documents below represent a subset of test
requirements to be exercised. The Test Profile document provides a list of ID references (pointers) to
Test Requirements or Functional Requirements in an external Test Requirements document (see above).
A Test Harness would read this document, resolve the location of the Test Requirements document, and
then execute all Test Cases in the Test Suite document that point to (via ID reference) the Test
Requirements listed below. Note that a Test Driver can execute Test Cases pointing to a Functional
Requirement (discreet requirement) or a Test Requirement (a container of a group of Functional
Requirements). If the TestRequirementRef id attribute value points to a Test Requirement, then all Test
Cases for all child Functional Requirements will be executed by the Test Harness (This is a way to
conveniently execute a cluster of Test Cases by specifying a single Test Requirement.). This method is
used for both conformance and interoperability testing.

9.2.1 Conformance Test Profile Example

The Test Profile document below would be used to drive a Test Harness, by executing all Test Cases that
point (via ID) to the listed Test Requirement references (including individual Functional Requirements and
a single Test Requirement listed in the above example Conformance Test Requirements document.

<?xml version="1.0" encoding="UTF-8" ?>

<TestProfile xmIns="http://www.oasis-open.org/tc/ebxml-iic/test-profile"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance" Xsi:schemalocation="http://www.oasis-
open.org/tc/ebxml-iic/test-profile http://www.oasis-open.org/tc/ebxml-iic/test-
profile/test-profile.xsd" requirementsLocation="ebxml-iic-msg-v20-conformance regs.xml"
name="ebXML MS v2.0 Conformance Test Requirements" description="Core conformance testing
profile for ebXML MS v2.0 implementations”>

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 98 of 185

2659
2660
2661
2662
2663
2664
2665

2666

2667

2668

2669
2670
2671

2672

2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684

2685
2686
2687

2688

2689

2690
2691
2692
2693
2694

2695

2696

2697
2698

2699
2700

2701
2702
2703
2704

2705

<TestRequirementRef id="funreq id 2" /> <!-Execute all Test Casses that reference the
Basic SOAP message structure Functional Requirement-—>

<TestRequirementRef id="funreq id 4" /> <!-Execute all Test Cases that reference Message
Packaeg Content Type Functional Requirement-—>

<TestRequirementRef id="req_id 2" /> <!-Execut all Test Cases that reference all
Functional Requirements within the Core Extension Elements Test Requirement->

</TestProfile>

9.2.3 Interoperability Test Profile

The Test Profile document below would be used to drive a Test Harness, by executing all Test Cases that
point (via ID) to the listed Test Requirement references (including individual Functional Requirements
and a single Test Requirement listed in the above example Interoperability Test Requirements document.

<?xml version="1.0" encoding="UTF-8" ?>
<TestProfile xmIns="http://www.oasis-open.org/tc/ebxml-iic/test-profile"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance" Xxsi:schemalocation="http://www.oasis-
open.org/tc/ebxml-iic/test-profile http://www.oasis-open.org/tc/ebxml-iic/test-
profile/test-profile.xsd" requirementsLocation="ebxml-iic-msg-v20-conformance regs.xml"
name="ebXML MS v2.0 Conformance Test Requirements" description="Core conformance testing
profile for ebXML MS v2.0 implementations”>

<TestRequirementRef id="funreq id 1.1" /> <!-Execute all Test Casses that reference the
“Basic Exchange, No Payload” Functional Requirement->

<TestRequirementRef id="funreq id 1.2" /> <!-Execute all Test Casses that reference the
“Basic Exchange, One Payload” Functional Requirement-—>

</TestProfile>

9.3 Example Test Suites

Below are two XML documents illustrating how Test Cases are constructed, in this case for testing an
ebXML MS v2.0 implementation. Each Test Case has a required “requirementReferenceld” attribute,
pointing to a Functional Requirement in the Test Requirements document. A Test Driver executes all
Test Cases in this document that have a requirementReferenceld value matching the particular Semantic
Test Requirement being exercised.

9.3.1 Conformance Test Suite

For brevity, only one Test Case is included in the Test Suite below. The complete ebXML MS v2.0
Conformance Test Suite is available at the OASIS [IC Technical Committee web site.

A Test Driver executing conformance Test Cases operates in “connection” mode, meaning it is not
interfaced to any MSH, and is acting on its own. The Test Case exercises a Functional Requirement
listed in section 10.1 The Test Case below verifies that a Conversationld element is present in an
ebXML response message

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 99 of 185

2706
2707

2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770

<?xml version = "1.0" encoding = "UTF-8"?>

Zll==

Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS]
January 2002. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright
notice and this paragraph are included on all such copies and derivative works. However, this document
itself may not be modified in any way, such as by removing the copyright notice or references to OASIS,
except as needed for the purpose of developing OASIS specifications, in which case the procedures for
copyrights defined in the OASIS Intellectual Property Rights document MUST be followed, or as required
to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

->

<ebTest:TestSuite xmlIns:ebTest = "http://www.oasis-open.org/tc/ebxml-iic/tests"
ebTest:configurationGroupRef = "base" xmins:ds = "http://www.oasis-open.org/tc/ebxmi-
iic/tests/xmldsig" xmlIns:mime = "http://www.oasis-open.org/tc/ebxml-iic/tests/mime" xmlns:soap =
"http://www.oasis-open.org/tc/ebxml-iic/tests/soap" xmlIns:eb = "http://www.oasis-open.org/tc/ebxml-
iic/tests/eb" xmlns:xlink = "http://www.w3.0rg/1999/xlink" xmlIns:xsi =
"http://www.w3.0rg/2001/XMLSchema-instance" xsi:schemalocation = "http://www.oasis-
open.org/tc/ebxml-iic/tests schemas\ebTest.xsd">
<ebTest:MetaData>
<ebTest:Description> Test for presence of Conversationld in ebXML MessageHeader
element</ebTest:Description>
<ebTest:Version>0.1</ebTest:Version>
<ebTest:Maintainer>Michael Kass</ebTest:Maintainer>
<ebTest:Location>ScriptingTestSuite.xml</ebTest:Location>
<ebTest:PublishDate>05/20/2004</ebTest:PublishDate>
<ebTest:Status>DRAFT</ebTest:Status>
</ebTest:MetaData>
<ebTest:ConfigurationGroup ebTest:id = "mshc_basic">
<ebTest:Mode>connection</ebTest:Mode>
<ebTest:StepDuration>300</ebTest:StepDuration>
<ebTest:Transport>HTTP</ebTest:Transport>
<ebTest:Envelope>ebXML</ebTest:Envelope>
<ebTest:StoreAttachments>false</ebTest:StoreAttachments>
<ebTest:SetParameter>
<ebTest:Name>SenderParty</ebTest:Name>
<ebTest:Value>TestDriver</ebTest:Value>
</ebTest:SetParameter>
<ebTest:SetParameter>
<ebTest:Name>ReceiverParty</ebTest:Name>
<ebTest:Value>TestService</ebTest:Value>
</ebTest:SetParameter>
<ebTest:SetParameter>
<ebTest:Name>Service</ebTest:Name>
<ebTest:Value>urn:ebxml:iic:test</ebTest:Value>
</ebTest:SetParameter>
<ebTest:SetParameter>
<ebTest:Name>Action</ebTest:Name>
<ebTest:Value>Dummy</ebTest:Value>
</ebTest:SetParameter>
</ebTest:ConfigurationGroup>
<ebTest:TestCase ebTest:id = "testcase_1" ebTest:description = "Conversationld is present in
message" ebTest:requirementReferenceld = "funreq id 36">
<ebTest:ThreadGroup>
<ebTest:Thread ebTest:name = "thread_01">
<ebTest:PutMessage ebTest:description = "Send a message to the
Dummy action">

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 100 of 185

2771
2772

2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805

2806

2807

2808
2809
2810
2811
2812

2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830

<ebTest:SetPart>
<ebTest:Declaration>

<soap:Envelope>
<soap:Header>

<eb:MessageHeader>
<eb:Action>Dummy</eb:Action>

</eb:MessageHeader>
</soap:Header>
</soap:Envelope>
</ebTest:Declaration>
<ebTest:Mutator>ebXMLEnvelope.xsl</ebTest:Mutator>
</ebTest:SetPart>
</ebTest:PutMessage>
<ebTest:GetMessage ebTest:description = "Retrieve response message ">

<ebTest:Filter>/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header
/eb:MessageHeader[eb:CPAId="'mshc_Basic' and eb:MessageData/eb:RefToMessageld=$Messageld and
eb:Action="'Mute']]</ebTest:Filter>
</ebTest:GetMessage>
<ebTest:TestAssertion ebTest:description = "Verify that a Conversationld
element is present in response'">

<ebTest:VerifyContent>/FilterResult/Message/soap:Envelope/soap:Header/eb:MessgeHeader/eb:Co
nversationld</ebTest:VerifyContent>
</ebTest:TestAssertion>
</ebTest:Thread>
</ebTest:ThreadGroup>
<ebTest:Thread ebTest:name = "main">
<ebTest:ThreadRef ebTest:nameRef = "thread_01"/>
</ebTest:Thread>
</ebTest:TestCase>
</ebTest:TestSuite>

9.3.2 Interoperability Test Suite

In the example below, a series of four Test Cases make up an Interoperability Test Suite. A Test Driver
executing conformance Test Cases operates in “service” mode, meaning it is interfaced to a MSH. The

Test Case exercises a Functional Interoperability Requirement. The Test Case below performs a basic

message exchange with no message payload. The complete ebXML Basic Interoperability Profile Test
Suite is available online at the OASIS IIC Technical Commite web site.

<?xml version = "1.0" encoding = "UTF-8"?>

<l--

Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS]
January 2002. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright
notice and this paragraph are included on all such copies and derivative works. However, this document
itself may not be modified in any way, such as by removing the copyright notice or references to OASIS,
except as needed for the purpose of developing OASIS specifications, in which case the procedures for
copyrights defined in the OASIS Intellectual Property Rights document MUST be followed, or as required
to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

-->

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 101 of 185

2831 <ebTest:TestSuite xmins:ebTest = "http://www.oasis-open.org/tc/ebxml-iic/tests"

2832 ebTest:configurationGroupRef = "base" xmlns:ds = "http://www.oasis-open.org/tc/ebxml-
2833 iic/tests/xmldsig" xmiIns:mime = "http://www.oasis-open.org/tc/ebxml-iic/tests/mime" xmins:soap =
2834 "http://www.oasis-open.org/tc/ebxml-iic/tests/soap" xmlins:eb = "http://www.oasis-open.org/tc/ebxml-
2835 iic/tests/eb" xmlIns:xlink = "http://www.w3.0rg/1999/xlink" xmlIns:xsi =
2836 "http://www.w3.0rg/2001/XMLSchema-instance" xsi:schemalocation = "http://www.oasis-
2837 open.org/tc/ebxmi-iic/tests schemas\ebTest.xsd">
2838 <ebTest:MetaData>
2839 <ebTest:Description>ebXML MS Interoperabilty Test Suite </ebTest:Description>
2840 <ebTest:Version>0.1</ebTest:Version>
2841 <ebTest:Maintainer>Michael Kass</ebTest:Maintainer>
2842 <ebTest:Location>ScriptingTestSuite.xml</ebTest:Location>
2843 <ebTest:PublishDate>05/20/2004</ebTest:PublishDate>
2844 <ebTest:Status>DRAFT</ebTest:Status>
2845 </ebTest:MetaData>
2846 <ebTest:ConfigurationGroup ebTest:id = "mshc_basic">
2847 <ebTest:Mode>connection</ebTest:Mode>
2848 <ebTest:StepDuration>300</ebTest: StepDuration>
2849 <ebTest:Transport>HTTP</ebTest: Transport>
2850 <ebTest:Envelope>ebXML</ebTest:Envelope>
2851 <ebTest:StoreAttachments>false</ebTest:StoreAttachments>
2852 <ebTest:SetParameter>
2853 <ebTest:Name>SenderParty</ebTest:Name>
2854 <ebTest:Value>TestDriver</ebTest:Value>
2855 </ebTest:SetParameter>
2856 <ebTest:SetParameter>
2857 <ebTest:Name>ReceiverParty</ebTest:Name>
2858 <ebTest:Value>TestService</ebTest:Value>
2859 </ebTest:SetParameter>
2860 <ebTest:SetParameter>
2861 <ebTest:Name>Service</ebTest:Name>
2862 <ebTest:Value>urn:ebxml:iic:test</ebTest:Value>
2863 </ebTest:SetParameter>
2864 <ebTest:SetParameter>
2865 <ebTest:Name>Action</ebTest:Name>
2866 <ebTest:Value>Dummy</ebTest:Value>
2867 </ebTest:SetParameter>
2868 </ebTest:ConfigurationGroup>
2869 <ebTest:TestCase ebTest:id = "testcase_1" ebTest:description = "Basic request/response test"
2870 ebTest:requirementReferenceld = " funreq id 1.1">
2871 <ebTest:ThreadGroup>
2872 <ebTest:Thread ebTest:name = "thread_01">
2873 <ebTest:PutMessage ebTest:description = "Send a message to the
2874 Dummy action">
2875 <ebTest:SetPart>
2876 <ebTest:Declaration>
2877 <soap:Envelope>
2878 <soap:Header>
2879
2880 <eb:MessageHeader>
2881
2882 <eb:Action>Dummy</eb:Action>
2883
2884 </eb:MessageHeader>
2885 </soap:Header>
2886 </soap:Envelope>
2887 </ebTest:Declaration>
2888 <ebTest:Mutator>ebXMLEnvelope.xsl</ebTest:Mutator>
2889 </ebTest:SetPart>
2890 </ebTest:PutMessage>
%gg; <ebTest:GetMessage ebTest:description = "Retrieve response message ">
2893 <ebTest:Filter>/TEST:MessageStore/mime:Message[mime:Container[1]/soap:Envelope/soap:Header
2894 /eb:MessageHeader[eb:CPAId='mshc_Basic' and eb:MessageData/eb:RefToMessageld=$Messageld and
2895 eb:Action='Mute']]</ebTest:Filter>
ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 102 of 185

2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910

2911
2912
2913

2914

2915

2916
2017
2918
2919

2920

2921
2922
2923

2924

2925
2926
2927

2928
2929
2930

2931

2932

</ebTest:GetMessage>
<ebTest:TestAssertion ebTest:description = "Verify that an ebXML
Message was received">

<ebTest:VerifyContent>/FilterResult/Message/soap:Envelope/soap:Header/eb:MessgeHeader
</ebTest:VerifyContent>
</ebTest:TestAssertion>
</ebTest:Thread>
</ebTest:ThreadGroup>
<ebTest:Thread ebTest:name = "main">
<ebTest:ThreadRef ebTest:nameRef = "thread_01"/>
</ebTest:Thread>
</ebTest:TestCase>
</ebTest:TestSuite>

9.3.3 A sample Mutator XSL Document

The XML document below is an XSLT stylesheet that is used by an XSL processor to interpret anXML
message Declearation element and its ebXML content, and generate a valid ebXML message envelope.
This stylesheet can be used in any number of Test Cases, with variations in the resulting message based
upon variations in the Declaration content in the Test Case.

The stylesheet below was developed by the IIC for creating a valid ebXML Message by transforming a
message declaration conforming to the IIC ebXML MS v2.0 Message Declaration Schema defined in
Appendix G.

Testing communities wishing to perform conformance and/or interoperability testing of other messaging
services, or other XML-based business applications SHOULD define a message declaration schema, and
any stylesheets they need to construct their messages using the 1IC Test Framework.

To Be added

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 103 of 185

Appendix A (Normative) The ebXML Test Profile
Schema

The OASIS ebXML Implementation and Interoperability Committee has provided a version of the ebXML
Test Profile schema using the schema vocabulary that conforms to the W3C XML Schema
Recommendation specification [XMLSchema].

<?xml version = "1.0" encoding = "UTF-8"?>
<!--Generated by XML Authority. Conforms to w3c http://www.w3.0rg/2001/XMLSchema-->
<schema xmlns = "http://www.w3.0rg/2001/XMLSchema"
targetNamespace = "http://www.oasis-open.org/tc/ebxml-iic/test-profile"
xmlns:tns = "http://www.oasis-open.org/tc/ebxml-iic/test-profile"
>
Ll==
Generated by XML Authority. Conforms to w3c http://www.w3.org/2001/XMLSchema
-—>
&l==
$Id: TestProfile.xsd,v 1.2 2002/07/02 15:28:27 matt Exp $
-—>
<element name = "TestProfile">
<complexType>
<sequence>
<element ref = "tns:Dependency" minOccurs = "0" maxOccurs =
"unbounded" />
<element ref = "tns:TestRequirementRef" maxOccurs =
"unbounded" />
</sequence>
<attribute name = "requirementsLocation" use = "required" type =
"anyURI" />
<attribute name = "name" use = "required" type = "string"/>
<attribute name = "description" use = "required" type = "string"/>
</complexType>
</element>
<element name = "Dependency">
<complexType>
<attribute name = "name" use = "required" type = "string"/>
<attribute name = "profileRef" use = "required" type = "anyURI"/>
</complexType>
</element>
<element name = "TestRequirementRef">
Ll==
To overide the conformance type of the underlying requirement
-—>
<complexType>
<sequence>
<element name = "Comment" type = "string" minOccurs = "0O"
maxOccurs = "unbounded"/>
</sequence>
<attribute name = "id" use = "required" type = "string"/>
<attribute name = "requirementType" use = "optional" type =
"tns:requirement.type" />
</complexType>
</element>
<simpleType name = "requirement.type">
<restriction base = "string">
<enumeration value = "required"/>
<enumeration value = "strongly recommended"/>
<enumeration value = "recommended"/>
<enumeration value = "optional"/>
</restriction>
</simpleType>
</schema>
ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 104 of 185

2996
2997

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 105 of 185

Appendix B (Normative) The ebXML Test
Requirements Schema
The OASIS ebXML Implementation and Interoperability Committee has provided a version of the ebXML

Test Requirements schema using the schema vocabulary that conforms to the W3C XML Schema
Recommendation specification [XMLSchema].

<?xml version = "1.0" encoding = "UTF-8"?>
<!--Generated by XML Authority. Conforms to w3c http://www.w3.o0rg/2001/XMLSchema—->
<schema xmlns = "http://www.w3.0rg/2001/XMLSchema"
targetNamespace = "http://www.oasis-open.org/tc/ebxml-iic/conformance/reqgs"
xmlns:tns = "http://www.oasis-open.org/tc/ebxml-iic/conformance/reqgs"
>
<group name = "FunctionalRequirementGroup">
<sequence>
<element ref = "tns:FunctionalRequirement"/>
</sequence>
</group>
<l--
Copyright (C) The Organization for the Advancement of Structured Information Standards
[OASIS]

January 2002. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and
derivative works that comment on or otherwise explain it or assist in its implementation
may be prepared, copied, published and distributed, in whole or in part, without
restriction of any kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this document itself may not
be modified in any way, such as by removing the copyright notice or references to OASIS,
except as needed for the purpose of developing OASIS specifications, in which case the
procedures for copyrights defined in the OASIS Intellectual Property Rights document
MUST be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or
its successors or assigns.

-—>

<!--Generated by XML Authority. Conforms to w3c http://www.w3.0rg/2000/10/XMLSchema--

<!-- OASIS/ebXML Test Suite Framework
Description: Schema used to define ebXML Test Requirements instance document

Author: Michael Kass
Organization: NIST

Author: Matthew MacKenzie
Organization: XML Global

Date: 03/31/2002
Version 1.0
—-—>

<!-- CHANGES:
Version 1.0 (Matt):
- added attributes requirementType and name to Level.
- added other to functional.type enumeration.
-=>

<element name = "TestRequirement">

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 106 of 185

WWWWWWWWWWWW
G G G i G G G G G QU Gy
N2 a0
QOONOUNARWN-OO

<complexType>
<sequence>
<element ref = "tns:Clause" minOccurs = "0"/>
<choice maxOccurs = "unbounded">
<element ref = "tns:Assertion"/>
<element ref = "tns:AssertionRef"/>
</choice>
<choice minOccurs = "0" maxOccurs = "unbounded">
<element ref = "tns:FunctionalRequirement"/>
<element ref = "tns:TestRequirement"/>
</choice>
</sequence>
<attribute name = "id" use = "required" type = "ID"/>
<attribute name = "name" use = "required" type = "string"/>
<attribute name = "specRef" use = "required" type = "string"/>
<attribute name = "functionalType" use = "required" type = "string"/>
<attribute name = "dependencyRef" use = "optional" type = "anyURI"/>
</complexType>
</element>
<element name = "FunctionalRequirement">
<complexType>
<sequence>
<element ref = "tns:Clause" minOccurs = "0"/>
<choice maxOccurs = "unbounded">
<element ref = "tns:Assertion"/>
<element ref = "tns:AssertionRef"/>
</choice>
<choice minOccurs = "0" maxOccurs = "unbounded">
<element ref = "tns:FunctionalRequirement"/>
<element ref = "tns:TestRequirement"/>
</choice>
</sequence>
<attribute name = "id" use = "required" type = "ID"/>
<attribute name = "name" use = "required" type = "string"/>
<attribute name = "specRef" use = "required" type = "string"/>
<attribute name = "testCaseRef" use = "optional" type = "anyURI"/>
<attribute name = "dependencyRef" use = "optional" type = "anyURI"/>
</complexType>
</element>
<element name = "Clause">
<complexType>
<sequence>
<choice>
<element ref = "tns:Clause"/>
<choice>
<element ref = "tns:Condition"/>
<element ref = "tns:ConditionRef"/>
</choice>
</choice>
<sequence minOccurs = "0" maxOccurs = "unbounded">
<choice>
<element ref = "tns:And"/>
<element ref = "tns:0r"/>
</choice>
<choice>
<element ref = "tns:Clause"/>
<choice>
<element ref = "tns:Condition"/>
<element ref = "tns:ConditionRef"/>
</choice>
</choice>
</sequence>
</sequence>
</complexType>
</element>
<element name = "Condition">
<complexType>
<simpleContent>
<extension base = "string">
<attribute name = "id" use = "required" type = "ID"/>

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 107 of 185

<attribute name = "requirementType" use "optional"
type = "tns:requirement.type"/>
</extension>
</simpleContent>
</complexType>
</element>
<element name = "ConditionRef">
<complexType>
<attribute name = "id" use = "required" type =
</complexType>
</element>
<element name = "And" type = "string"/>
<element name = "Or" type = "string"/>
<element name = "Assertion">
<complexType>
<simpleContent>
<extension base = "string">
<attribute name = "requirementType" use "required"
type = "tns:requirement.type"/>
<attribute name = "id" use = "required" type = "ID"/>
</extension>
</simpleContent>
</complexType>
</element>
<element name = "MetaData">
<complexType>
<sequence>
<element ref = "tns:Description"/>
<element ref = "tns:Version"/>
<element ref = "tns:Maintainer"/>
<element ref = "tns:Location"/>
<element ref = "tns:PublishDate"/>
<element ref = "tns:Status"/>
</sequence>
</complexType>
</element>
<element name = "Description" type = "string"/>
<element name = "Version" type = "string"/>
<element name = "SourceControlInfo" type = "string"/>
<element name = "Maintainer" type = "string"/>
<element name = "Location" type = "anyURI"/>
<element name = "PublishDate" type = "string"/>
<element name = "Status" type = "tns:pubStatus.type"/>
<simpleType name = "pubStatus.type">
<restriction base = "string">
<enumeration value = "DRAFT"/>
<enumeration value = "FINAL"/>
<enumeration value = "RETIRED"/>
</restriction>
</simpleType>
<simpleType name = "requirement.type">
<restriction base = "string">
<enumeration value = "required"/>
<enumeration value = "strongly recommended"/>
<enumeration value = "recommended"/>
<enumeration value = "optional"/>
</restriction>
</simpleType>
<simpleType name = "testLevel.type">
<restriction base = "string">
<enumeration value = "full"/>
<enumeration value = "most"/>
<enumeration value = "partial"/>
<enumeration value = "none"/>
</restriction>
</simpleType>
<simpleType name = "functional.type">
<restriction base = "string">
<enumeration value = "security"/>
<enumeration value = "reliable messaging"/>
<enumeration value = "packaging"/>
ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved.

Page 108 of 185

3201 <enumeration value = "other"/>

3202 </restriction>
3203 </simpleType>
3204 <simpleType name = "layerList">
3205 <list itemType = "string"/>
3206 </simpleType>
3207 <element name = "Requirements">
3208 <complexType>
3209 <sequence>
3210 <element ref = "tns:MetaData"/>
3211 <element ref = "tns:TestRequirement" maxOccurs = "unbounded"/>
3212 </sequence>
3213 </complexType>
3214 </element>
3215 <element name = "AssertionRef">
3216 <complexType>
3217 <attribute name = "id" use = "required" type = "IDREF"/>
3218 </complexType>
3219 </element>
3220 </schema>
3221
ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 109 of 185

3222
3223
3224

3225
3226
3227

3228
3229

3230
3231

3232
3233
3234

3235
3236

3237
3238
3239

3240

3241
3242
3243
3244
3245
3246

3247

Appendix C (Normative) The ebXML Test Suite
Message Declaration Schema and Supporting
Subschemas

The OASIS ebXML Implementation and Interoperability Committee has provided a version of the ebXML
Test Requirements schema using the schema vocabulary that conforms to the W3C XML Schema
Recommendation specification [XMLSchemal].

eb:MessageHeader

3 + eh:S-,rncRepl-,r
®| # eb:MessageOrder

7 .ﬂ + eb:AckRequested

@I + eh:Acknuwledgment

Envelope
Enerlop

| + eh:StatusRequest

eb:StatusResponse

Figure 24 — Image of Message Envelope Declaration

9.3.3.1.1 Schema for ebXML Declaration using SOAP

MIME header data: is not expressed in the message Envelope declaration, because it is transport
specific. MIME (or other transport) header data MAY be expressed in the Test Case script using
the “Header” element defined outside of the message declaration schema.

SOAP header and body data: SOAP message content MUST be created or modified using the
Declaration content syntax described above and in the soap.xsd schema in Appendix EA Test Driver
operating in “service” mode MAY ignore the SOAP portion of a Declaration, since message SOAP
manipulation may be unavailable at the application level interface used for an MSH implementation. Test
drivers in “connection” mode MUST properly interpret the SOAP portion of a Declaration and generate the
appropriate SOAP header/body content.

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 110 of 185

3248
3249
3250
3251

3252

3253
3254
3255
3256
3257
3258

3259
3260

3261
3262
3263

3264
3265

3266
3267
3268
3269
3270
3271
3272
3273

3274

3275

3276
3277
3278

3279

ebXML MS 2.0 Message data: ebXML message content MUST be created or modified using the
Declaration content syntax illustrated above and described in the eb.xsd schema described in Appendix
X. . Test drivers operating in both “connection” and “service” modes MUST properly interpret the ebXML
portion of a Declaration, and generate the appropriate ebXML content or declaration (respectively).

Other Types of Message Envelopes and Payloads: RNIF, BizTalk or other XML Message Envelopes
and payloads can be constructing using any implementation-specific XML message declaration syntax in
combination with an XSL stylesheet or XUpdate declaration. Itis HIGHLY RECOMMENDED that the
schemas used to define the Declaration and the Message Store structure be published as a “best
practice” in order to provide conformity and reusability of conformance and interoperability test suites
across this Test Framework.

Below is a sample ebXML Declaration. The Test Driver mutates the Declaration (using an XSL
stylesheet), inserting element and attribute content wherever it knows default content should be, and
declaring, or overriding default values where they are explicitly defined in the Declaration.

<ebTest:Declaration>
<soap:Envelope>
<soap:Header>

<eb:MessageHeader/>

</soap:Header>
<soap:Body />
</soap:Envelope>

</ebTest:Declaration>

For illustrative purposes, the resulting message can be represented by the example message below. The
Test Driver, after parsing the simple Declaration above, and mutating it through an XSL stylesheet, would
generate the following MIME message with enclosed SOAP/ebXML content.

Content-Type: multipart/related; type="text/xml"; boundary="boundaryText";
start=messagepackageloasis.org

--boundaryText

Content-ID: <messagepackage@oasis.org>
Content-Type: text/xml; charset="UTF-8"

<soap:Envelope xmlns:xlink="http://www.w3.0rg/1999/x1link"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:SOAP="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:eb="http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-
2 0.xsd" xsi:schemalocation="http://schemas.xmlsoap.org/soap/envelope/

http://www.oasis-open.org/committees/ebxml-msg/schema/envelope.xsd

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 111 of 185

http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2 0.xsd

http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2 0.xsd">
<soap:Header>
<eb:MessageHeader soap:mustUnderstand="1" eb:version="2.0">
<eb:From>
<eb:PartyId>urn:oasis:iic:testdriver</eb:PartyId>
</eb:From>
<eb:To>
<eb:PartyId>urn:oasis:iic:testservice</eb:PartyId>
</eb:To>
<eb:CPAId> mshc_basic</eb:CPAId>
<eb:ConversationId> 987654321</eb:ConversationId>
<eb:Service>urn:ebXML:iic:test</eb:Service>
<eb:Action>Dummy</eb:Action>
<eb:MessageData>
<eb:Messageld>0123456789</eb:Messageld>
<eb:Timestamp>2000-07-25T12:19:05</eb:Timestamp> MessageData>
</eb:MessageHeader>
</soap:Header>
</soap:Envelope>

Dynamic ebXML message content values (highlighted above) are supplied by the Test Driver.

The ebXMLMessage.xsd schema in Appendix X defines the format for element and attribute content
declaration for ebXML MS testing. However, the schema alone DOES NOT define default XML element
content, since this is beyond the capability of schemas. Therefore, Test Driver implementers MUST
consult the “Definition of Content” tables for this section of the specification to determine what default
XML content must be generated by the Test Driver or MSH to create a valid ebXML message.

The following sections describe how a Test Driver or MSH MUST interpret the Declaration content in
order to be conformant to this specification for eb XML MS testing.

The following XML represents all the information necessary to permit a Test Driver to construct a MIME
message that may contain a SOAP envelope in its first MIME container. The XML document below
validates against the mime.xsd schema in Appendix C.

<mime:Message xmlns:mime="http://www.oasis-open.org/tc/ebxml-iic/testing/mime">
<mime:MessageContainer/>
</mime:Message>

9.3.3.1.2 Interpreting the SOAP portion of the ebXML Declaration

The XML syntax interpreted by the Test Driver to construct the SOAP message content consists of the
declaration of a SOAP Envelope element, which in turn is a container for the SOAP Header, Body and
non-SOAP XML content. Construction of the SOAP Header and Body content is simple for the Test
Driver, requiring only the creation of the two container elements with their namespace properly declared,

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 112 of 185

3349
3350

3351
3352

3353
3354

3355
3356
3357
3358
3359
3360

and valid according to the [SOAP]. The Test Driver only constructs the SOAP Body element if it is
explicitly declared in the content.

soap:Envelope
Envel ope

| * Bnd',r

Figure 26 — Graphic representation of expanded view of the soap:Envelope element declaration

Definition of Content

Name Declaration Description Default Value | Required/Optional
From Test
Driver
soap:Envelope Generate container element with its Required
proper namespace for SOAP Header
and Body elements and their content
soap:Header Generate SOAP Header extension Required
element
soap:Body Modify the default Body element Element is Optional
auto-
generated by
Test Driver at
run time
#wildCard Generate “inline” wildcard content Optional
inside SOAP Envelope

Table 15 defines the SOAP message content of the Declaration element in a message declaration

An Example of Minimal SOAP Declaration Content

The following XML represents all the information necessary to permit a Test Driver to construct a minimal
SOAP message. It validates against the soap.xsd schema in appendix X.

<soap:Envelope>
<soap:Header/>
</soap:Envelope>

ebxml-iic-basic-interop-test-suite-10
Copyright © OASIS Open 2003. All Rights Reserved.

03 April 2003
Page 113 of 185

3374

3375

3376
3377
3378
3379
3380
3381
3382

3383
3384

3385
3386

3387
3388
3389
3390
3391
3392
3393

3394

9.3.3.1.3 Interpreting the SOAP Header Extension Element Declaration

The declarative syntax interpreted by the Test Driver to construct the ebXML Header extension message
content consists of the declaration of a SOAP Header element, which in turn is a container for the ebXML
Header extension elements and their content. The only extension element that is required in the container
is the eb:MessageHeader element, which directs the Test Driver to construct an ebXML MessageHeader
element, along with its proper namespace declaration, as defined in [EBMS]. The Test Driver does not
construct any other Header extension elements unless they are explicitly declared as content in the
SOAP Header Declaration.

eb:MessageHeader

7 + eh:SyncReply
®| #+ eb:MessageDrder

7 @I + eh:Athequested

@I + eh:Acknuwledgment

eb:ErrorList

Figure 27 — Graphic representation of expanded view of the soap:Header element declaration

Definition of Content

Name Declaration Description Default Required/Optional
Value From
Test Driver
Header SOAP Header declaration and Required
container for ebXML ebXML Header
Extension Element declarations
eb:MessageHeader Create an ebXML MessageHeader Required
element with namespace declaration
eb-ErrorList Create an ebXML ErrorList element Optional
eb:SyncReply Create an ebXML SyncReply element Optional
eb:MessageOrder Create an ebXML MessageOrder Optional
element
eb:AckRequested Create an ebXML AckRequested Optional
element
eb:Acknowledgment Create an ebXML Acknowledgment Optional
element

Table 16 defines the MIME message content of the SOAP Header element in a message declaration

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 114 of 185

3395
3396

3397

3398

3399
3400
3401
3402
3403
3404
3405
3406

3407
3408

3409
3410

3411
3412

3413

9.3.3.1.4 Interpreting the ebXML MessageHeader Element Declaration

The XML syntax interpreted by the Test Driver to construct the ebXML MessageHeader extension content
consists of the declaration of a MessageHeader element, and a required declaration of CPAId and Action
elements within it. This is the "minimum” declaration aTest Driver needs to generate an ebXML Message
Header. All other required content, as defined in the schema in the ebXML MS v2.0 Specification, is
provided by the Test Driver through either default parameters defined in the ebTest.xsd schema in
Appendix C, or directly generated by the Test Driver (e.g. to generate necessary message container
elements) or by explicit declaration of content in the Declaration. The figure below illustrates the schema
for an ebXML Message Header declaration to be interpreted by the Test Driver.

@[* id% # version % @)[# soap:mustUnderstand
1r non-emphrsrin = bl ean

= E

3 E

¢ CPAId

non-empbegring

i~
I E
i

ConversationId
non-emphrsring

; Service
MessageHeader nen- #mpy 2ring

Action
non-amph-3ring

®| + Messagel]ata

@I # DuplicateElimination

Figure 28 — Graphic representation of expanded view of the ebXML MessageHeader element declaration

Definition of Content

Name Declaration Description | Default Value Required/Option | Exception
From Test Driver | al Condition

eb:MessageHea Generate Required
der MessageHeader

element and all of its

default element/attribute

content
id Generate attribute with Optional
ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 115 of 185

declared value

version

Modify default attribute 20 Optional
value
soap:mustUnder | \joify default attribute | true Optional
stand value
From Modify default From Generated by Optional
message element Test Driver/MSH
generated by Test Driver | at run time
Partyld Replace default Required
element value with new | gonerated by
value Test Driver/MSH
at run time, using
config value
type Generate a type Optional
attribute with value
Role Generates a Role Optional
element with its value
To Modify default To Generated by Optional
message element Test Driver at run
generated by Test Driver | time
Partyld Replace default element Required
value with new value Generated by
Test Driver/MSH
at run time, using
config value
type Generate type attribute Optional
with value
Role Generates a Role Optional
element with its value
CPAld Generate element with Generated by Optional
its value Test Driver/MSH
at run time, using
config value
Conversationld | nogify default value Generated by Optional
provided by Test Driver | Test Driver at run
time
Service Modify default value Generated by Optional
generated by Test Driver | Test Driver/MSH
at run time, using
config value
Action Replace default value | Generated by
with specified Action Test Driver/MSH Optional

name

at run time, using
config value

ebxml-iic-basic-interop-test-suite-10
Copyright © OASIS Open 2003. All Rights Reserved.

03 April 2003
Page 116 of 185

3414
3415
3416
3417
3418

3419
3420
3421

3422
3423

3424

3425

3426
3427
3428
3429
3430

3431
3432

MessageData Modify default container | Generated by Optional
generated by Test Driver | Test Driverat run
time
Messageld Modify default value Generated by Optional
generated by Test Driver | Test Driver at run
time
Timestamp Modify default value Generated by Optional
generated by Test Driver | Test Driver at run
time
RefToMessageld | Generate element and Optional
its value
TimeToLive Generate elementand | Generated by Optional
its value Test Driver at run
time
!?)?]plicateEIiminat Generate element Optional
i
Description Generate element with Optional
value
#wildcard Generate content inline Optional

Table 17 defines the content of the ebXML MessageHeader element in a message declaration

An Example of a Minimal ebXML MessageHeader Content Declaration

The following XML represents all the information necessary to permit a Test Driver to construct an ebXML
MessageHeader element with all necessary content to validate against the ebXML MS V2.0 schema. All
declared content must validate the ebTest.xsd schema in Appendix C.

<eb:MessageHeader/>

9.3.3.1.5

Interpreting the ebXML ErrorList Element Declaration

The XML syntax interpreted by the Test Driver to construct the ebXML ErrorList extension content
consists of the declaration of an ErrorList element, and a required declaration of one or more Error
elements within it. All required content, as defined in the schema in the ebXML MS V2.0 Specification, is
provided through either default parameters defined in the ebTest.xsd schema and included by the Test
Driver, or by explicit declaration.

ebxml-iic-basic-interop-test-suite-10
Copyright © OASIS Open 2003. All Rights Reserved.

03 April 2003
Page 117 of 185

3433
3434

3435
3436
3437
3438

3439

o s

soap:mustUnderstand

= jbooiean

highestSeverity g]
il

& id% @[& cudel:nntext%
Iz aniiel

arrorCode %

non-emphegring

(S
non-amphedring

severity g
sty

| # eb:ErrorList i=

®| * gwildCard

-
non-amph-gring
#wildCard

xml:lang=
langquage

Figure 29 - Graphic representation of expanded view of the ebXML ErrorList element declaration

Definition of Con

tent

Name Declaration Description | Default Value Required/Option | Exception
From Test Driver | al Condition
eb:ErrorList Generate container Optional
element
id Generate attribute and Optional
its value
version Modify default value 2.0 Optional
soap:mustUnder | \joqify default value true Optional
stand
highestSeverity | Generate required Required
attribute and value
Error Generate new Error Required
container
id Generate attribute with Optional
declared value
codeContext Generate element with Optional
declared value
errorCode Generate required Required
attribute and value
severity Generate required Required
attribute and value
location Generate attribute with Optional
declared value
Description Generate element with Optional
declared value
#wildCard Generate content “inline” Optional
into message
Table 18 defines the content of the ErrorList element in a message declaration
ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved.

Page 118 of 185

3440
3441
3442
3443 An Example of a Minimal ebXML ErrorList Content Declaration
3444

3445 The following XML represents all the information necessary to permit a Test Driver to construct an ebXML
3446 ErrorList element with all necessary content to validate against the ebXML MS v2.0 schema. All required
3447 content not visible in the example would be generated by the Test Driver.

3448

3449 <eb:ErrorList eb:highestSeverity=Error">

3450 <eb:Error eb:errorCode="Inconsistent” eb:severity="Error”/>
3451 </eb:ErrorList>

3452

3453

3454 9.3.3.1.6 Interpreting the ebXML SyncReply Element Declaration

3455

3456 The XML syntax interpreted by the Test Driver to construct the ebXML SyncReply extension content
3457 consists of the declaration of a SyncReply element. All required content, as defined in the schema in
3458 [EBMS], is provided through either default parameters provided by the Test Driver or through explicit
3459 declaration.

3460
3461
& j] i] H] H
. |da @,[nm_:“ep:rs::: % @,[wm::;p mustUnderstanda @,[mﬂsunap actor a]
al # eb:SyncReply +| # #wildCard |
3462
3463 Figure 30 — Graphic representation of expanded view of the ebXML SyncReply element declaration
3464
3465
3466
3467
3468
3469 Definition of Content
3470
Name Declaration Description | Default Value Required/Option | Exception
From Test Driver | al Condition
eb:SyncReply Generate container Optional
element and all default
content
id Generate attribute and Optional
its value
version Modify default attribute | 2.0 Optional
value
soap:mustUnder | \1oify default attribute | true Optional
stand
ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 119 of 185

3471
3472
3473
3474
3475
3476
3477

3478
3479

3480
3481

3482

3483

3484
3485
3486

3487
3488

3489
3490

3491
3492
3493
3494

value
soap:actor Modify default attribute | Dttp//schemas.xmls | qptigng)
value oap.torg/soap/actor/
nex
#wildCard Generate content “inline” Optional

Table 19 defines the content of the SyncReply element in a message declaration

An Example of a Minimal ebXML SyncReply Content Declaration

The following XML represents all the information necessary to permit a Test Driver to construct an ebXML
AckRequested element with all necessary content to validate against the [EBMS] schema schema.

<eb:SyncReply/>

9.3.3.1.7 Interpreting the ebXML AckRequested Element Declaration

The XML syntax interpreted by the Test Driver to construct the ebXML AckRequested extension content
consists of the declaration of an AckRequested element. All required content as defined in the [EBMS]
schema, is provided by the Test Driver or by explicit declaration.

& id% @[# version % L] snap:mustUnderstanda @{ [suap:actnr%
e non-empheErin =pbooiean anyd il

5| ® signed g

2| et

* HuildCard |

)| #* eb:AckRequested il

Figure 31 — Graphic representation of expanded view of the ebXML AckRequested element declaration

Definition of Content

Name Declaration Description | Default Value Required/Option | Exception
From Test Driver | al Condition

eb:AckRequeste | Generate container Optional
d element and all default

content
id Generate attribute and Optional

its value
version Modify default value 2.0 Optional
ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 120 of 185

soap:mustUnder | \jodify default value true Optional
stand
soap:actor Modify default attribute ~ | Urn-oasis:names:t | gptional
value with new value c:ebxml-
msg:actor:toParty
MSH
signed Modify default attribute | false Optional
value
#wildCard Generate content “inline” Optional
3495 Table 20 defines the content of the AckRequested element in a message declaration
3496
3497
3498 An Example of a Minimal ebXML AckRequested Content Declaration
3499
3500 The following XML represents all the information necessary to permit a Test Driver to construct an ebXML
3501 AckRequested element with all necessary content to validate against the [EBMS] schema.
3502
3503 <eb:AckRequested/>
3504
3505 9.3.3.1.8 Interpreting the ebXML Acknowledgment Element Declaration
3506
3507 The XML syntax interpreted by the Test Driver to construct the ebXML Acknowledgment extension
3508 content consists of the declaration of an Acknowledgment element. All required content, as defined in the
3509 [EBMS] schema, is provided by the Test Driver or through explicit declaration.
3510
3511
@ j [i [H [H
4[@[“} id % @["m_:me;rs;:? % ‘Jm::::p mustUnderstand % @[“ws;ap actor %]
¢ Ti —
ST
@I # RefToMessageld
non-amphe3ring
2.8
*1d # UrI1 & Type J
+* Atknnwledgment 4[@{“} q @{""”” a @{’""”” a
o e
Tr anzhof Ty
ds:Reference anyl el
RS |_¢;_I]igestMethnd B * HwildCard |
DA gt bbb ceg Ty
o[e
[getvialuaTye
3512

ebxml-iic-basic-interop-test-suite-10
Copyright © OASIS Open 2003. All Rights Reserved.

03 April 2003
Page 121 of 185

3513
3514
3515
3516
3517

Figure 32 — Graphic representation of expanded view of the ebXML Acknowledgment element declaration

Definition of Content

Name Declaration Description | Default Value Required/Option | Exception
From Test Driver | al Condition
eb:Acknowledgm Generate container Optional
ent element and all default
content
id Generate attribute and Optional
its value
version Modify default attribute | 2.0 Optional
value
soap:mustUnder | \joqify default attribute | true Optional
stand value
soap:actor Modify default attribute urn:oasis:names:t | Optional
value c.ebxml-
msg:actor:toParty
MSH
Timestamp Modify default element | Generated by Optional
value Test Driver at run
time
RefToMessageld | \1ogify default element | Generated by Optional
value Test Driver at run
time
From Modify default container | Generated by Optional
Test Driver at run
time
Partyld Modify default value urn:ebxml:iic:itestd | Required
river
type Generate type attribute Optional
with value
Role Generates a Role Optional
element with its value
ds:Reference Generate container Optional
element and all default
content
Id Generate attribute and Optional
its value
URI Modify default attribute | * Required
value
type Generate attribute and Optional
its value
ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved.

Page 122 of 185

3518
3519
3520
3521
3522

3523
3524

3525
3526

3527
3528

3529

3530

3531
3532
3533

3534

Transforms

Generate container Optional
relement
Transform Generate element with Optional
its value
Algorithm Modify default attribute http://www.w3.org | Required
value /TR/2001/REC-
xml-c14n-
20010315
#wildCard Generate content “inline” Optional
XPath Generate element with Optional
its value
DigestMethod Generate element with Required
its value
Algorithm Modify default attribute | Generated by Required
value Test Driver at run
time, based upon
CPA
#wildCard Generate content “inline” Optional
DigestValue Generate element with | Computed by Required
its value Test Driver at run
time
#wildCard Generate content “inline” Optional

Table 21 defines the content of the Acknowledgment element in a message declaration

An Example of a Minimal “unsigned” ebXML Acknowledgment Content Declaration

The following XML represents the minimum information necessary to permit a Test Driver to construct an

ebXML Acknowledgment element.

<eb:Acknowledgment/>

9.3.3.1.9

Interpreting the ebXML MessageOrder Element Declaration

The XML syntax interpreted by the Test Driver to construct the ebXML MessageOrder extension content
consists of the declaration of a MessageOrder element. All required content, as defined in the [EBMS]

schema, is provided by the Test Driver or through explicit declaration.

ebxml-iic-basic-interop-test-suite-10
Copyright © OASIS Open 2003. All Rights Reserved.

Page 123 of 185

3535
3536

3537
3538
3539
3540

3541
3542
3543
3544

3545
3546

3547

3548
3549
3550

3551

3552

3553

3554
3555
3556

* id% @[# version
I non-empkegring %

= booiean

spap:mustUnderstand]

SequenceMumber

)| # ebh:MessageOrder

Sequanosumber e

& # stavus pe
shabus

Figure 33 — Graphic representation of expanded view of the ebXML MessageOrder element declaration

Definition of Content

Name

Declaration Description Default Value Required/Option | Exception
From Test Driver | al Condition
eb:MessageOrde Generate container Optional
r element and all default
content
id Generate attribute and Optional
its value
version Modify default attribute | 2.0 Optional
value
soap:mustUnder | \gify default attribute | true Optional
stand value
SequenceNumbe | Generate element with Required
r declared value
status Generate attribute with Optional
declared value
#wildCard Generate content “inline” Optional

Table 22 defines the content of the MessageOrder element in a message declaration

An Example of a Minimal ebXML MessageOrder Content Declaration

The following XML represents all the information necessary to permit a Test Driver to construct an ebXML
MessageOrder element.

<eb:MessageOrder>
<eb:SequenceNumber>1</eb:SequenceNumber>
</eb:MessageOrder>

9.3.3.1.10 Interpreting the SOAP Body Extension Element Declaration

The XML syntax used by the Test Driver to construct the ebXML Body extension message content
consists of the declaration of a SOAP Body element, which in turn is a container for the ebXML Manifest,
StatusRequest or StatusResponse elements.

03 April 2003
Page 124 of 185

ebxml-iic-basic-interop-test-suite-10
Copyright © OASIS Open 2003. All Rights Reserved.

3557
3558

3559
3560

3561
3562

3563

3564

3565

3566
3567
3568

3569
3570

3571
3572

3573
3574
3575
3576

The Test Driver does not construct any of these SOAP Body extension elements unless they are explicitly
declared as content in the SOAP Body Declaration.

| * eh:StatusRequest

ﬂf Body

eh:StatusResponse

Figure 34 — Graphic representation of expanded view of the soap:Body element declaration

9.3.3.1.11 Interpreting the ebXML Manifest Element Declaration

The XML syntax interpreted by the Test Driver to construct the ebXML Manifest extension content
consists of the declaration of a Manifest element. All required content, as defined in the [EBMS] schema,
is provided by the Test Driver or through explicit declaration

4[®[- ida @[& version %]

i non-empoesrin
& id & zlink:type & zlink:href & xlink:role
i a ®[=.uumcu<5u * a [an-.u:u a ®[an-.u:u %
contentId * tnntentTgpea * cuntenthcatinn%

Z [smng % #ring anylEl

Description =
non=amph-gring

FileName =
non-amphesring

MessageRel =

non-emphegring

Figure 35 — Graphic representation of expanded view of the ebXML Manifest element declaration

off g

Definition of Content

Name Declaration Description | Default Value Required/Option | Exception
From Test Driver | al Condition

eb:Manifest Generate container Optional

element and all default

content
id Generate attribute and Optional

its value
version Modify default attribute | 2.0 Optional
ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved.

Page 125 of 185

3577
3578
3579
3580

3581
3582

3583

value

id

Modify default attribute
value

true

Optional

xlink:type

Generate element with
declared value

Optional

xlink:href

Generate attribute with
declared value

Required

xlink:role

Generate attribute with
declared value

Optional

contentld

Modify the Content-ID
MIME header of the
payload

Optional

contentType

Set the the Content-
Type MIME header of
the payload

Optional

contentLocation

Set the the Content-
Location MIME header
of the payload

Optional

Schema

Generate schema
container element

Optional

location

Generate URI attribute
and value of schema
location

Required

version

Generate schema
version attribute and
value

Optional

Description

Generate description
element and value

Optional

xml:lang

Generate description
language attribute and
value

Required

PayloadLocation

Load specified file as a
MIME attachment to
message

Required

File not found

MessageRef

Load designated XML
document via IDREF as
a MIME attachment to
message

Required

PayloadDeclarati
on

“Inline” the XML content
of this element as a
MIME message
attachment

Required

Table 23 defines the content of the Manifest element in a message declaration

An Example of a Minimal ebXML Manifest Content Declaration

The following XML represents the minimum information necessary to permit a Test Driver to construct an
ebXML Manifest element with all necessary content to validate against the ebXML MS v2.0 schema.

ebxml-iic-basic-interop-test-suite-10
Copyright © OASIS Open 2003. All Rights Reserved.

03 April 2003
Page 126 of 185

3584
3585
3586

3587

3588

3589
3590
3591
3592

3593

3594
3595

3596
3597
3598
3599

3600
3601
3602
3603

3604
3605

3606

3607
3608
3609

3610
3611

<eb:Manifest>
<eb:Reference xlink:href="cid:payload 1”/>
</eb:Manifest>

9.3.3.1.12 Interpreting the ebXML StatusRequest Element Declaration

The XML syntax interpreted by the Test Driver to construct the ebXML StatusRequest extension content
consists of the declaration of a StatusRequest element. All required content, as defined in the [EBMX]
schema. All required content, as defined in the [EBMS] schema, is provided by the Test Driver or through
explicit declaration

@ id # version %
i E% Einmﬂmﬂvwm]
RefToMessageld a

nion-emph-gring

Figure 36 — Graphic representation of expanded view of the ebXML StatusRequest element declaration

oh:StatusRequest

Definition of Content

Name

Declaration Default Value Required/Option | Exception
Description From Test Driver | al Condition
Generate container Optional

eb:StatusRequest
element and all

default content

id Generate attribute Optional
and its value

version Modify default value | 2.0 Optional

RefToMessageld | Generate element and Required
its value

#wildCard Generate content Optional
“inline”

Table 24 defines the content of the StatusRequest element in a message declaration

An Example of a Minimal ebXML StatusRequest Content Declaration

The following XML represents all the minimum information necessary to permit a Test Driver to construct
an ebXML StatusRequest element with all necessary content to validate against the [EBMS] schema.

<eb:StatusRequest>
<eb:RefToMessageId>20001209-133003-28571@example.com</eb:RefToMessageId>
</eb:StatusRequest>

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 127 of 185

3612

3613

3614
3615
3616

3617

3618
3619

3620
3621
3622
3623

3624
3625
3626
3627

3628
3629

3630
3631

9.3.3.1.13 Interpreting the ebXML StatusResponse Element Declaration

The XML syntax used by the Test Driver to construct the ebXML StatusResponse extension content
consists of the declaration of a StatusResponse element with required and optional element/attribute

content.

&* id% @[# version
1 non-emphe-grin

messageStatus
mazos qastahs

RefToMessageld

non-emphyedring a

eh:StatusResponse

* Timestamp F]
aakeTime

Figure 37 — Graphic representation of expanded view of the ebXML StatusResponse element declaration

Definition of Content

Name

Declaration Description Default Value Required/Option | Exception
From Test Driver | al Condition
eb:StatusRespon Generate container Optional
se element and all default
content
id Generate attribute and Optional
its value
version Modify default attribute | 2.0 Optional
value
messageStatus | Generate attribute and Optional
its value
RefToMessageld | Generate element and Required
its value
Timestamp Modify default value Generated by Optional
Test Driver at run
time
#wildCard Generate content “inline” Optional

Table 25 defines the content of the StatusResponse element in a message declaration

An Example of a Minimal ebXML StatusResponse Content Declaration

The following XML represents all the information necessary to permit a Test Driver to construct an ebXML
StatusResponse element with all necessary content to validate against the [EBMX] schema.

<eb:StatusResponse messageStatus="Processed’/>

ebxml-iic-basic-interop-test-suite-10
Copyright © OASIS Open 2003. All Rights Reserved.

03 April 2003
Page 128 of 185

SOAP Portion of the ebXML Declaration Schema

<?xml version = "1.0" encoding = "UTF-8"?>
<!--Generated by XML Authority. Conforms to w3c http://www.w3.0rg/2001/XMLSchema-->
<schema xmlns = "http://www.w3.0rg/2001/XMLSchema"
targetNamespace = "http://www.oasis-open.org/tc/ebxml-iic/tests/soap"
xmlns:tns = "http://www.oasis-open.org/tc/ebxml-iic/tests/soap"
xmlns:xs = "http://www.w3.0rg/2001/XMLSchema"
xmlns:eb = "http://www.oasis-open.org/tc/ebxml-iic/tests/eb"
xmlns:ds = "http://www.w3.0rg/2000/09/xmldsig#">
<import namespace = "http://www.oasis-open.org/tc/ebxml-iic/tests/eb" schemalocation
= "eb.xsd"/>
<import namespace = "http://www.w3.0rg/2000/09/xmldsig#" schemalLocation =
"http://www.oasis-open.org/committees/ebxml-msg/schema/xmldsig-core-schema.xsd"/>
<group name = "optionElements">
<all minOccurs = "0">
<element ref = "eb:SyncReply" minOccurs = "0"/>
<element ref = "eb:MessageOrder" minOccurs = "0"/>
<element ref = "eb:AckRequested" minOccurs = "0"/>
<element ref = "eb:Acknowledgment" minOccurs = "0"/>
<element ref = "eb:ErrorList" minOccurs = "0"/>
<element ref = "ds:Signature" minOccurs = "0"/>
</all>
</group>
<attributeGroup name = "encodingStyle">
<attribute name = "encodingStyle" type = "tns:encodingStyle"/>
</attributeGroup>

<!-- Schema for the SOAP/1.1 envelope

This schema has been produced using W3C's SOAP Version 1.2 schema
found at:

http://www.w3.0rg/2001/06/socap-envelope

Copyright 2001 Martin Gudgin, Developmentor.

Changes made are the following:

- reverted namespace to http://schemas.xmlsoap.org/soap/envelope/
- reverted mustUnderstand to only allow 0 and 1 as lexical values
Copyright 2003 OASIS

Changes made are the following:

- SOAP Header and Body element content models constrained to include ebXML content
Original copyright:

Copyright 2001 W3C (Massachusetts Institute of Technology,
Institut National de Recherche en Informatique et en Automatique,
Keio University). All Rights Reserved.

http://www.w3.org/Consortium/Legal/

This document is governed by the W3C Software License [1l] as
described in the FAQ [2].

[1] http://www.w3.o0rg/Consortium/Legal/copyright-software-19980720
[2] http://www.w3.org/Consortium/Legal/IPR-FAQ-20000620.html#DTD

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 129 of 185

3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767

-—>
<!-- Envelope, header and body -->
<element name = "Envelope" type = "tns:Envelope"/>
<complexType name = "Envelope">
<sequence>
<element ref = "tns:Header"/>
<element ref = "tns:Body"/>
<any namespace = "##other" processContents = "lax" minOccurs = "0"
maxOccurs = "unbounded"/>
</sequence>
<anyAttribute namespace = "##other" processContents = "lax"/>
</complexType>
<element name = "Header">
<complexType>
<sequence>
<element ref = "eb:MessageHeader"/>
<group ref = "tns:optionElements"/>
</sequence>
</complexType>
</element>
<complexType name = "Header">
<sequence>
<any namespace = "##other" processContents = "lax" minOccurs = "0"
maxOccurs = "unbounded"/>
</sequence>
<anyAttribute namespace = "##other" processContents = "lax"/>
</complexType>
<element name = "Body">
<complexType>
<choice minOccurs = "0">
<element ref = "eb:Manifest"/>
<element ref = "eb:StatusRequest"/>
<element ref = "eb:StatusResponse"/>
</choice>
</complexType>
</element>
<complexType name = "Body">
<annotation>
<documentation>
Prose in the spec does not specify that attributes are allowed on the Body
element
</documentation>
</annotation>
<sequence>
<any namespace = "##any" processContents = "lax" minOccurs = "0"
maxOccurs = "unbounded"/>
</sequence>
<anyAttribute namespace = "##any" processContents = "lax"/>
</complexType>
<!-- Global Attributes. The following attributes are intended to be usable via
qualified attribute names on any complex type referencing them. -->
<attribute name = "mustUnderstand" default = "0">
<simpleType>
<restriction base = "boolean">
<pattern value = "0[|1"/>
</restriction>
</simpleType>
</attribute>
<attribute name = "actor" type = "anyURI"/>
<simpleType name = "encodingStyle">
<annotation>
<documentation>

'encodingStyle' indicates any canonicalization conventions followed in the
contents of the containing element. For example, the value
'http://schemas.xmlsoap.org/soap/encoding/"' indicates the pattern described in SOAP
specification

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 130 of 185

</documentation>
</annotation>
<list itemType = "anyURI"/>
</simpleType>
<complexType name = "Fault"
final = "extension">
<annotation>
<documentation>
Fault reporting structure
</documentation>
</annotation>
<sequence>
<element name = "faultcode" type = "QName"/>
<element name = "faultstring" type = "string"/>
<element name = "faultactor" type = "anyURI" minOccurs = "0"/>
<element name = "detail" type = "tns:detail" minOccurs = "0"/>
</sequence>
</complexType>
<complexType name = "detail">
<sequence>
<any namespace = "##any" processContents = "lax" minOccurs = "0O"
maxOccurs = "unbounded"/>
</sequence>
<anyAttribute namespace = "##any" processContents = "lax"/>
</complexType>
</schema>

ebMS portion of the ebXML Declaration Schema

<?xml version = "1.0" encoding = "UTF-8"?>
<!--Generated by XML Authority. Conforms to w3c http://www.w3.o0rg/2001/XMLSchema—->
<schema xmlns = "http://www.w3.0rg/2001/XMLSchema"
targetNamespace = "http://www.oasis-open.org/tc/ebxml-iic/tests/eb"
xmlns:tns = "http://www.oasis-open.org/tc/ebxml-iic/tests/eb"
xmlns:xlink = "http://www.w3.0rg/1999/x1link"
xmlns:ds = "http://www.oasis-open.org/tc/ebxml-iic/tests/xmldsig"
xmlns:soap = "http://www.oasis-open.org/tc/ebxml-iic/tests/soap"
version = "1.0"
elementFormDefault = "qualified"
attributeFormDefault = "qualified">
<import namespace = "http://www.w3.0rg/1999/xlink" schemalocation =
"http://www.oasis-open.org/committees/ebxml-msg/schema/xlink.xsd"/>
<import namespace = "http://www.oasis-open.org/tc/ebxml-iic/tests/xmldsig"
schemalocation = "xmldsig.xsd"/>
<import namespace = "http://www.oasis-open.org/tc/ebxml-iic/tests/soap"
schemalocation = "soap.xsd"/>
<import namespace = "http://www.w3.0rg/XML/1998/namespace" schemalocation =
"http://www.oasis-open.org/committees/ebxml-msg/schema/xml lang.xsd"/>
<attributeGroup name = "headerExtension.grp">
<attribute ref = "tns:id"/>
<attribute ref = "tns:version" use = "optional"/>
<attribute ref = "soap:mustUnderstand" use = "optional"/>
</attributeGroup>
<attributeGroup name = "bodyExtension.grp">
<attribute ref = "tns:id"/>
<attribute ref = "tns:version" use = "optional"/>
</attributeGroup>
<l--

Copyright (C) The Organization for the Advancement of Structured Information Standards

[OASIS]
January 2002. All Rights Reserved.

ebxml-iic-basic-interop-test-suite-10

Copyright © OASIS Open 2003. All Rights Reserved. Page 131 of 185

3831 This document and translations of it may be copied and furnished to others, and

3832 derivative works that comment on or otherwise explain it or assist in its implementation
3833 may be prepared, copied, published and distributed, in whole or in part, without
3834 restriction of any kind, provided that the above copyright notice and this paragraph are
3835 included on all such copies and derivative works. However, this document itself may not
3836 be modified in any way, such as by removing the copyright notice or references to OASIS,
3837 except as needed for the purpose of developing OASIS specifications, in which case the
3838 procedures for copyrights defined in the OASIS Intellectual Property Rights document
3839 MUST be followed, or as required to translate it into languages other than English.
3840 The limited permissions granted above are perpetual and will not be revoked by OASIS or
3841 its successors or assigns.
3842 -—>
3843
3844
3845 <!-- MANIFEST, for use in soap:Body element -->
3846
3847 <element name = "Manifest">
3848 <complexType>
3849 <sequence>
3850 <element ref = "tns:Reference" maxOccurs = "unbounded"/>
3851 <any namespace = "##other" processContents = "lax" minOccurs =
3852 "0" maxOccurs = "unbounded"/>
3853 </sequence>
3854 <attributeGroup ref = "tns:bodyExtension.grp"/>
3855 </complexType>
3856 </element>
3857 <element name = "Reference">
3858 <complexType>
3859 <sequence>
3860 <element ref = "tns:Schema" minOccurs = "0" maxOccurs =
3861 "unbounded" />
3862 <element ref = "tns:Description"” minOccurs = "0" maxOccurs =
3863 "unbounded" />
3864 <choice>
3865 <element ref = "tns:FileName"/>
3866 <element ref = "tns:MessageRef"/>
3867 <any namespace = "##other" processContents = "lax"
3868 minOccurs = "0" maxOccurs = "unbounded"/>
3869 </choice>
3870 </sequence>
3871 <attribute ref = "tns:id"/>
3872 <attribute ref = "xlink:type" fixed = "simple"/>
3873 <attribute ref = "xlink:href" use = "required"/>
3874 <attribute ref = "xlink:role"/>
3875 <attribute name = "contentId" use = "optional" type = "string"/>
3876 <attribute name = "contentType" use = "optional" type = "string"/>
3877 <attribute name = "contentLocation" use = "optional" type = "anyURI"/>
3878 </complexType>
3879 </element>
3880 <element name = "Schema">
3881 <complexType>
3882 <attribute name = "location" use = "required" type = "anyURI"/>
3883 <attribute name = "version" type = "tns:non-empty-string"/>
3884 </complexType>
3885 </element>
3886
3887 <!-- MESSAGEHEADER, for use in soap:Header element -->
3888
3889 <element name = "MessageHeader">
3890 <complexType>
3891 <sequence>
3892 <element ref = "tns:From" minOccurs = "0"/>
3893 <element ref = "tns:To" minOccurs = "0"/>
3894 <element ref = "tns:CPAId" minOccurs = "0"/>
3895 <element ref = "tns:ConversationId" minOccurs = "0"/>
3896 <element ref = "tns:Service" minOccurs = "0"/>
3897 <element ref = "tns:Action" minOccurs = "0"/>
3898 <element ref = "tns:MessageData" minOccurs = "0"/>
3899 <element ref = "tns:DuplicateElimination" minOccurs = "0"/>
3900 <element ref = "tns:Description" minOccurs = "0" maxOccurs =
3901 "unbounded" />
ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 132 of 185

<any namespace = "##other" processContents = "lax" minOccurs =
"0" maxOccurs = "unbounded"/>
</sequence>
<attributeGroup ref = "tns:headerExtension.grp"/>
</complexType>
</element>
<element name = "CPAId" type = "tns:non-empty-string"/>
<element name = "ConversationId" type = "tns:non-empty-string"/>
<element name = "Service">
<complexType>
<simpleContent>
<extension base = "tns:non-empty-string">
<attribute name = "type" type = "tns:non-empty-
string"/>
</extension>
</simpleContent>
</complexType>
</element>
<element name = "Action" type = "tns:non-empty-string"/>
<element name = "MessageData'">
<complexType>
<sequence>
<element ref = "tns:MessageId" minOccurs = "0"/>
<element ref = "tns:Timestamp" minOccurs = "0"/>
<element ref = "tns:RefToMessageId" minOccurs = "0"/>
<element ref = "tns:TimeToLive" minOccurs = "0"/>
</sequence>
</complexType>
</element>
<element name = "MessagelId" type = "tns:non-empty-string"/>
<element name = "TimeToLive" type = "dateTime"/>
<element name = "DuplicateElimination"/>
<!-- SYNC REPLY, for use in soap:Header element -->
<element name = "SyncReply">
<complexType>
<sequence>
<any namespace = "##other" processContents = "lax" minOccurs =
"0" maxOccurs = "unbounded"/>
</sequence>
<attributeGroup ref = "tns:headerExtension.grp"/>
<attribute ref = "soap:actor" default = "urn:oasis:names:tc:ebxml-
msg:actor:toPartyMSH" />
</complexType>
</element>
<!-- MESSAGE ORDER, for use in socap:Header element -->
<element name = "MessageOrder">
<complexType>
<sequence>
<element ref = "tns:SequenceNumber"/>
<any namespace = "##other" processContents = "lax" minOccurs =
"0" maxOccurs = "unbounded"/>
</sequence>
<attributeGroup ref = "tns:headerExtension.grp"/>
</complexType>
</element>
<element name = "SequenceNumber" type = "tns:sequenceNumber.type"/>
<!-- ACK REQUESTED, for use in socap:Header element -->
<element name = "AckRequested">
<complexType>
<sequence>
<any namespace = "##other" processContents = "lax" minOccurs =
"0" maxOccurs = "unbounded"/>
</sequence>
<attributeGroup ref = "tns:headerExtension.grp"/>
<attribute ref = "soap:actor"/>
ebxml-iic-basic-interop-test-suite-10

Copyright © OASIS Open 2003. All Rights Reserved.

03 April 2003
Page 133 of 185

3973 <attribute name = "signed" use = "optional" type = "boolean"/>

3974 </complexType>
3975 </element>
3976
3977 <!-- ACKNOWLEDGMENT, for use in soap:Header element -->
3978
3979 <element name = "Acknowledgment">
3980 <complexType>
3981 <sequence>
3982 <element ref = "tns:Timestamp" minOccurs = "0"/>
3983 <element ref = "tns:RefToMessageId" minOccurs = "0"/>
3984 <element ref = "tns:From" minOccurs = "0"/>
3985 <element name = "Reference" minOccurs = "0" maxOccurs =
3986 "unbounded" />
3987 <any namespace = "##other" processContents = "lax" minOccurs =
3988 0" />
3989 <element ref = "ds:Reference" minOccurs = "0" maxOccurs =
3990 "unbounded" />
3991 </sequence>
3992 <attributeGroup ref = "tns:headerExtension.grp"/>
3993 <attribute ref = "soap:actor" default = "urn:oasis:names:tc:ebxml-
3994 msg:actor:toPartyMSH" />
3995 </complexType>
3996 </element>
3997
3998 <!-- ERROR LIST, for use in soap:Header element -->
3999
4000 <element name = "ErrorList">
4001 <complexType>
4002 <sequence>
4003 <element ref = "tns:Error" maxOccurs = "unbounded"/>
4004 <any namespace = "##other" processContents = "lax" minOccurs =
4005 "0" maxOccurs = "unbounded"/>
4006 </sequence>
4007 <attributeGroup ref = "tns:headerExtension.grp"/>
4008 <attribute name = "highestSeverity" use = "required" type =
4009 "tns:severity.type"/>
4010 </complexType>
4011 </element>
4012 <element name = "Error">
4013 <complexType>
4014 <sequence>
4015 <element ref = "tns:Description" minOccurs = "0"/>
4016 <any namespace = "##other" processContents = "lax" minOccurs =
4017 "0" maxOccurs = "unbounded"/>
4018 </sequence>
4019 <attribute ref = "tns:id"/>
4020 <attribute name = "codeContext" default = "urn:oasis:names:tc:ebxml-
4021 msg:service:errors" type = "anyURI"/>
4022 <attribute name = "errorCode" use = "required" type = "tns:non-empty-
4023 string"/>
4024 <attribute name = "severity" use = "required" type =
4025 "tns:severity.type"/>
4026 <attribute name = "location" type = "tns:non-empty-string"/>
4027 </complexType>
4028 </element>
4029
4030 <!-- STATUS RESPONSE, for use in soap:Body element -->
4031
4032 <element name = "StatusResponse">
4033 <complexType>
4034 <sequence>
4035 <element ref = "tns:RefToMessageId"/>
4036 <element ref = "tns:Timestamp" minOccurs = "0"/>
4037 <any namespace = "##other" processContents = "lax" minOccurs =
4038 "0" maxOccurs = "unbounded"/>
4039 </sequence>
4040 <attributeGroup ref = "tns:bodyExtension.grp"/>
4041 <attribute name = "messageStatus" use = "required" type =
4042 "tns:messageStatus.type"/>
4043 </complexType>
ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 134 of 185

4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086

</element>
<!-- STATUS REQUEST, for use in soap:Body element -->
<element name = "StatusRequest">
<complexType>
<sequence>
<element ref = "tns:RefToMessageId"/>
<any namespace = "##other" processContents = "lax" minOccurs =
"0" maxOccurs = "unbounded"/>
</sequence>
<attributeGroup ref = "tns:bodyExtension.grp"/>
</complexType>
</element>
<!-- COMMON TYPES -->
<complexType name = "sequenceNumber.type">
<simpleContent>
<extension base = "positivelnteger">
<attribute name = "status" default = "Continue" type =
"tns:status.type"/>
</extension>
</simpleContent>
</complexType>
<simpleType name = "status.type">
<restriction base = "NMTOKEN">
<enumeration value = "Reset"/>
<enumeration value = "Continue"/>
</restriction>
</simpleType>
<simpleType name = "messageStatus.type">
<restriction base = "NMTOKEN">
<enumeration value = "UnAuthorized"/>
<enumeration value = "NotRecognized"/>
<enumeration value = "Received"/>
<enumeration value = "Processed"/>
<enumeration value = "Forwarded"/>
</restriction>
</simpleType>
<simpleType name = "non-empty-string">
<restriction base = "string">
<minLength value = "1"/>
</restriction>
</simpleType>
<simpleType name = "severity.type">
<restriction base = "NMTOKEN">
<enumeration value = "Warning"/>
<enumeration value = "Error"/>
</restriction>
</simpleType>
<!-- COMMON ATTRIBUTES and ATTRIBUTE GROUPS -->
<attribute name = "id" type = "ID"/>
<attribute name = "version" type = "tns:non-empty-string"/>
<!-- COMMON ELEMENTS -->
<element name = "PartyId">
<complexType>
<simpleContent>
<extension base = "tns:non-empty-string">
<attribute name = "type" type = "tns:non-empty-
string"/>
</extension>
</simpleContent>
</complexType>
</element>
<element name = "To">
<complexType>
ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 135 of 185

e
Saaaaan
N—_—maaaa
QOoO~NOO

<sequence>
<element ref = "tns:PartyId"/>
<element name = "Role" type = "tns:non-empty-string”" minOccurs
= "o"/>
</sequence>
</complexType>
</element>
<element name = "From">
<complexType>
<sequence>
<element ref = "tns:PartyId"/>
<element name = "Role" type = "tns:non-empty-string”" minOccurs
= "o"/>
</sequence>
</complexType>
</element>
<element name = "Description">
<complexType>
<simpleContent>
<extension base = "tns:non-empty-string">
<attribute ref = "xml:lang" use = "required"/>
</extension>
</simpleContent>
</complexType>
</element>
<element name = "RefToMessageId" type = "tns:non-empty-string"/>
<element name = "Timestamp" type = "dateTime"/>
<element name = "FileName" type = "tns:non-empty-string"/>
<element name = "MessageRef" type = "tns:non-empty-string"/>
</schema>

ebxml-iic-basic-interop-test-suite-10
Copyright © OASIS Open 2003. All Rights Reserved.

03 April 2003
Page 136 of 185

4145
4146

4147
4148
4149
4150
4151
4152

4153

4154
4155
4156

4157
4158

4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203

Appendix D (Normative) The ebXML Message Store
Schema (and supporting sub-schemas)

The Message Store content schema below is a representation of the ebXML message envelope and any
XML payload content that accompanies the message. Although he schema for the Message Store is
generic in design, permitting any XML envelope structure, and any XML payload structure, in order to use
a particular executable test suite, the structure of the messages within the Message Store MUST have an
“agreed upon” schema. By defining a specific Message Store schema structure, Executable Test Cases
can be written by any party wishing to contribute to a common Test Case library.

Below is the IIC schema for representing ebXML MS v2.0 message and payload content in the
Message Store. Content stored in an IIC Test Driver Message Store MUST conform to this schema in
order to execute the IIC MS 2.0 Conformance Test Suite using the IIC Test Framework V2.0.

<?xml version = "1.0" encoding = "UTF-8"?>
<!--Generated by XML Authority. Conforms to w3c http://www.w3.0rg/2001/XMLSchema-->
<schema xmlns = "http://www.w3.0rg/2001/XMLSchema"

targetNamespace = "http://www.oasis-open.org/tc/ebxml-iic/tests"

xmlns:ebTest = "http://www.oasis-open.org/tc/ebxml-iic/tests"

xmlns:ds = "http://www.oasis-open.org/tc/ebxml-iic/tests/xmldsig"

xmlns:mime = "http://www.oasis-open.org/tc/ebxml-iic/tests/mime"

version = "1.0"

elementFormDefault = "unqualified"

attributeFormDefault = "unqualified">

<import namespace = "http://www.oasis-open.org/tc/ebxml-iic/tests/xmldsig"
schemalLocation = "xmldsig.xsd"/>

<import namespace = "http://www.oasis-open.org/tc/ebxml-iic/tests/mime"
schemaLocation = "file:///C:/scripting poc 07 13 04/schemas/mime.xsd"/>

<!-- <import namespace = "http://www.oasis-open.org/tc/ebxml-iic/tests/xmldsig"
schemalocation = "xmldsig.xsd"/> -->

<!-- <import namespace = "http://www.oasis-open.org/tc/ebxml-iic/tests/mime"
schemaLocation = "file:///C:/scripting poc 06 27 04/schemas/mime.xsd"/> -->

<!-- edited with XML Spy v4.3 U (http://www.xmlspy.com) by Michael Kass (NIST) -->

<!-- edited with XML Spy v4.3 U (http://www.xmlspy.com) by Michael Kass (NIST) -->

<!-- edited with XML Spy v4.3 U (http://www.xmlspy.com) by Michael Kass (NIST) -->

Ll==
Copyright (C) The Organization for the Advancement of Structured Information Standards
[OASIS]
January 2002. All Rights Reserved.
This document and translations of it may be copied and furnished to others, and
derivative works that comment on or otherwise explain it or assist in its implementation
may be prepared, copied, published and distributed, in whole or in part, without
restriction of any kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this document itself may not
be modified in any way, such as by removing the copyright notice or references to OASIS,
except as needed for the purpose of developing OASIS specifications, in which case the
procedures for copyrights defined in the OASIS Intellectual Property Rights document
MUST be followed, or as required to translate it into languages other than English.

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 137 of 185

4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273

The limited permissions granted above are perpetual and will not be revoked by OASIS or
its successors or assigns.
-=>
<element name = "TestSuite">
<complexType>
<sequence>
<element ref = "ebTest:MetaData"/>
<element ref = "ebTest:ConfigurationGroup" maxOccurs =
"unbounded" />
<element ref = "ebTest:TestServiceConfigurator" minOccurs =
"o"/>
<element ref = "ebTest:Message" minOccurs = "0" maxOccurs =
"unbounded" />
<element ref = "ebTest:TestCase" maxOccurs = "unbounded"/>
</sequence>
<attribute name = "configurationGroupRef" use = "required" type =
"anyURI"/>
</complexType>
</element>
<element name = "MetaData">
<complexType>
<sequence>
<element ref = "ebTest:Description"/>
<element ref = "ebTest:Version"/>
<element ref = "ebTest:Maintainer"/>
<element ref = "ebTest:Location"/>
<element ref = "ebTest:PublishDate"/>
<element ref = "ebTest:Status"/>
</sequence>
</complexType>
</element>
<element name = "Description" type = "ebTest:non-empty-string"/>
<element name = "Version" type = "ebTest:non-empty-string"/>
<element name = "Maintainer" type = "ebTest:non-empty-string"/>
<element name = "Location" type = "anyURI"/>
<element name = "PublishDate" type = "ebTest:non-empty-string"/>
<element name = "Status" type = "ebTest:non-empty-string"/>
<element name = "TestCase">
<complexType>
<sequence>
<element ref = "ebTest:ThreadGroup" minOccurs = "0"/>
<element ref = "ebTest:SetParameter" minOccurs = "0" maxOccurs
= "unbounded"/>
<choice maxOccurs = "unbounded">
<element ref = "ebTest:Thread"/>
<element ref = "ebTest:ThreadRef"/>
<element ref = "ebTest:Split"/>
<element ref = "ebTest:Join"/>
<element ref = "ebTest:Sleep"/>
</choice>
</sequence>
<attribute name = "id" use = "required" type = "ID"/>
<attribute name = "description" use = "required" type = "string"/>
<attribute name = "author" use = "optional" type = "string"/>
<attribute name = "version" use = "optional" type = "string"/>
<attribute name = "requirementReferenceId" use = "required" type =
"anyURI" />
<attribute name = "configurationGroupRef" use = "optional" type =
"anyURI"/>
</complexType>
</element>
<element name = "ConfigurationGroup">
<complexType>
<sequence>
<element ref = "ebTest:Mode"/>
<element ref = "ebTest:StepDuration"/>
<element ref = "ebTest:Transport"/>
<element ref = "ebTest:Envelope"/>
<element ref = "ebTest:StoreAttachments"/>
ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved.

Page 138 of 185

4274 <element ref = "ebTest:SetParameter" minOccurs = "0" maxOccurs

4275 = "unbounded"/>

4276 </sequence>

4277 <attribute name = "id" use = "required" type = "ID"/>

4278 </complexType>

4279 </element>

4280 <element name = "CPAId" type = "ebTest:non-empty-string"/>

4281 <element name = "Mode" type = "ebTest:mode.type"/>

4282 <element name = "SenderParty" type = "anyURI"/>

4283 <element name = "ReceiverParty" type = "anyURI"/>

4284 <element name = "Service" type = "anyURI"/>

4285 <element name = "Action" type = "ebTest:non-empty-string"/>

4286 <element name = "StepDuration" type = "integer"/>

4287 <element name = "Transport" type = "ebTest:transport.type"/>

4288 <element name = "Envelope" type = "ebTest:non-empty-string"/>

4289 <simpleType name = "mode.type">

4290 <restriction base = "NMTOKEN">

4291 <enumeration value = "local-service"/>

4292 <enumeration value = "remote-service"/>

4293 <enumeration value = "connection"/>

4294 </restriction>

4295 </simpleType>

4296 <simpleType name = "mimeHeader.type">

4297 <restriction base = "NMTOKEN">

4298 <enumeration value = "MIMEMessageContent-Type"/>

4299 <enumeration value = "MIMEMessageStart"/>

4300 <enumeration value = "Content-Type"/>

4301 <enumeration value = "start"/>

4302 <enumeration value = "charset"/>

4303 <enumeration value = "type"/>

4304 <enumeration value = "wildcard"/>

4305 </restriction>

4306 </simpleType>

4307 <simpleType name = "content.type">

4308 <restriction base = "NMTOKEN">

4309 <enumeration value = "XML"/>

4310 <enumeration value = "date"/>

4311 <enumeration value = "URI"/>

4312 <enumeration value = "signature"/>

4313 <enumeration value = "XPointer"/>

4314 </restriction>

4315 </simpleType>

4316 <simpleType name = "method.type">

4317 <restriction base = "NMTOKEN">

4318 <enumeration value = "xpath"/>

4319 <enumeration value = "md5"/>

4320 </restriction>

4321 </simpleType>

4322 <simpleType name = "messageContext.type">

4323 <restriction base = "NMTOKEN">

4324 <enumeration value = "true"/>

4325 <enumeration value = "false"/>

4326 </restriction>

4327 </simpleType>

4328 <simpleType name = "requirement.type">

4329 <restriction base = "NMTOKEN">

4330 <enumeration value = "required"/>

4331 <enumeration value = "stronglyrecommended"/>

4332 <enumeration value = "recommended"/>

4333 <enumeration value = "optional"/>

4334 </restriction>

4335 </simpleType>

4336 <simpleType name = "non-empty-string">

4337 <restriction base = "string">

4338 <minLength value = "1"/>

4339 </restriction>

4340 </simpleType>

4341 <simpleType name = "configAction.type">

4342 <restriction base = "NMTOKEN">

4343 <enumeration value = "query"/>

4344 <enumeration value = "replace"/>
ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved.

Page 139 of 185

4345 </restriction>

4346 </simpleType>

4347 <simpleType name = "action.type">

4348 <restriction base = "NMTOKEN">

4349 <enumeration value = "reset"/>

4350 <enumeration value = "modify"/>

4351 </restriction>

4352 </simpleType>

4353 <simpleType name = "configltem.type">

4354 <restriction base = "NMTOKEN"/>

4355 </simpleType>

4356 <simpleType name = "parameter.type">

4357 <restriction base = "NMTOKEN">

4358 <enumeration value = "string"/>

4359 <enumeration value = "parameter"/>

4360 </restriction>

4361 </simpleType>

4362 <simpleType name = "connectivePredicate.type">

4363 <restriction base = "NMTOKEN">

4364 <enumeration value = "and"/>

4365 <enumeration value = "or"/>

4366 </restriction>

4367 </simpleType>

4368 <simpleType name = "thread.type">

4369 <restriction base = "NMTOKEN">

4370 <enumeration value = "synchronous"/>

4371 <enumeration value = "asynchronous"/>

4372 </restriction>

4373 </simpleType>

4374 <simpleType name = "matchResult.type">

4375 <restriction base = "NMTOKEN">

4376 <enumeration value = "pass"/>

4377 <enumeration value = "fail"/>

4378 </restriction>

4379 </simpleType>

4380 <simpleType name = "if.type">

4381 <restriction base = "NMTOKEN">

4382 <enumeration value = "andif"/>

4383 <enumeration value = "orif"/>

4384 </restriction>

4385 </simpleType>

4386 <simpleType name = "split.type">

4387 <restriction base = "NMTOKEN">

4388 <enumeration value = "andsplit"/>

4389 <enumeration value = "orsplit"/>

4390 </restriction>

4391 </simpleType>

4392 <simpleType name = "join.type">

4393 <restriction base = "NMTOKEN">

4394 <enumeration value = "andjoin"/>

4395 <enumeration value = "orjoin"/>

4396 </restriction>

4397 </simpleType>

4398 <simpleType name = "serviceMode.type">

4399 <restriction base = "NMTOKEN">

4400 <enumeration value = "loop"/>

4401 <enumeration value = "local-reporting"/>

4402 <enumeration value = "remote-reporting"/>

4403 </restriction>

4404 </simpleType>

4405 <simpleType name = "time.type">

4406 <restriction base = "NMTOKEN">

4407 <enumeration value = "timeToAcknowlegeReceipt"/>

4408 <enumeration value = "timeToAcknowledgeAcceptance"/>

4409 <enumeration value = "timeToPerform"/>

4410 <enumeration value = "other"/>

4411 </restriction>

4412 </simpleType>

4413 <simpleType name = "operator.type">

4414 <restriction base = "NMTOKEN">

4415 <enumeration value = "equal"/>
ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 140 of 185

4416 <enumeration value = "lessThanl"/>

4417 <enumeration value = "lessThanOrEqual"/>
4418 <enumeration value = "greaterThan"/>
4419 <enumeration value = "greaterThanOrEqual"/>
4420 </restriction>
4421 </simpleType>
4422 <simpleType name = "assertionExit.type">
4423 <restriction base = "NMTOKEN">
4424 <enumeration value = "pass"/>
4425 <enumeration value = "fail"/>
4426 <enumeration value = "undetermined"/>
4427 </restriction>
4428 </simpleType>
4429 <simpleType name = "preconditionExit.type">
4430 <restriction base = "NMTOKEN">
4431 <enumeration value = "undetermined"/>
4432 </restriction>
4433 </simpleType>
4434 <simpleType name = "scope.type">
4435 <restriction base = "NMTOKEN">
4436 <enumeration value = "self"/>
4437 <enumeration value = "selfAndDescendents"/>
4438 </restriction>
4439 </simpleType>
4440 <simpleType name = "transport.type">
4441 <restriction base = "NMTOKEN">
4442 <enumeration value = "FTP"/>
4443 <enumeration value = "SMTP"/>
4444 <enumeration value = "HTTP"/>
4445 </restriction>
4446 </simpleType>
4447 <element name = "MessageExpression">
4448 <complexType>
4449 <sequence>
4450 <element ref = "ebTest:ErrorMessage"/>
4451 </sequence>
4452 </complexType>
4453 </element>
4454 <element name = "ErrorMessage" type = "ebTest:non-empty-string"/>
4455 <element name = "PutMessage">
4456 <complexType>
4457 <sequence>
4458 <element ref = "ebTest:SetPart" maxOccurs = "unbounded"/>
4459 </sequence>
4460 <attribute name = "description" use = "required" type = "string"/>
4461 <attribute name = "repeatWithSameContext" use = "optional" type =
4462 "integer"/>
4463 <attribute name = "repeatWithNewContext" use = "optional" type =
4464 "integer"/>
4465 </complexType>
4466 </element>
4467 <element name = "GetPayload">
4468 <complexType>
4469 <sequence>
4470 <choice>
4471 <element ref = "ebTest:Content-ID"/>
4472 <element ref = "ebTest:Content-Location"/>
4473 <element ref = "ebTest:Index"/>
4474 </choice>
4475 <element ref = "ebTest:SetXPathParameter" minOccurs = "0O"
4476 maxOccurs = "unbounded"/>
4477 </sequence>
4478 <attribute name = "description" use = "required" type = "string"/>
4479 </complexType>
4480 </element>
4481 <element name = "GetMessage">
4482 <complexType>
4483 <sequence maxOccurs = "unbounded">
4484 <element ref = "ebTest:Filter"/>
4485 <element ref = "ebTest:SetXPathParameter" minOccurs = "0"
4486 maxOccurs = "unbounded"/>
ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 141 of 185

4487 </sequence>

4488 <attribute name = "description" use = "required" type = "string"/>

4489 <attribute name = "mask" use = "optional" type = "boolean"/>

4490 </complexType>

4491 </element>

4492 <element name = "Filter">

4493 <complexType>

4494 <simpleContent>

4495 <extension base = "ebTest:non-empty-string">

4496 <attribute name = "stepDuration" use = "optional" type

4497 = "integer"/>

4498 </extension>

4499 </simpleContent>

4500 </complexType>

4501 </element>

4502 <element name = "SetPart">

4503 <complexType>

4504 <sequence>

4505 <element ref = "ebTest:Header" minOccurs = "0" maxOccurs =

4506 "unbounded" />

4507 <choice>

4508 <element ref = "ebTest:Declaration"/>

4509 <element ref = "ebTest:FileURI"/>

4510 <element ref = "ebTest:MessageRef"/>

4511 </choice>

4512 <element ref = "ebTest:Mutator" minOccurs = "0"/>

4513 <element ref = "ebTest:DSign" minOccurs = "0"/>

4514 </sequence>

4515 <attribute name = "description" use = "optional" type = "string"/>

4516 </complexType>

4517 </element>

4518 <element name = "TestAssertion">

4519 <complexType>

4520 <sequence>

4521 <choice>

4522 <element ref = "ebTest:VerifyContent"/>

4523 <element ref = "ebTest:ValidateContent"/>

4524 <element ref = "ebTest:VerifyTimeDifference"/>

4525 </choice>

4526 <element name = "WhenTrue" minOccurs = "0">

4527 <complexType>

4528 <choice>

4529 <element ref = "ebTest:Continue"/>

4530 <element ref = "ebTest:ThreadRef"/>

4531 <element ref = "ebTest:Split"/>

4532 <element name = "Exit" type =

4533 "ebTest:assertionExit.type"/>

4534 </choice>

4535 </complexType>

4536 </element>

4537 <element name = "WhenFalse" minOccurs = "0">

4538 <complexType>

4539 <choice>

4540 <element ref = "ebTest:Continue"/>

4541 <element ref = "ebTest:ThreadRef"/>

4542 <element ref = "ebTest:Split"/>

4543 <element name = "Exit" type =

4544 "ebTest:assertionExit.type"/>

4545 </choice>

4546 </complexType>

4547 </element>

4548 </sequence>

4549 <attribute name = "description" use = "required" type = "string"/>

4550 </complexType>

4551 </element>

4552 <element name = "MimeHeader" type = "ebTest:mimeHeader.type"/>

4553 <element name = "MimeHeaderValue" type = "ebTest:non-empty-string"/>

4554 <element name = "Content-Location" type = "ebTest:non-empty-string"/>

4555 <element name = "Index" type = "integer"/>

4556 <element name = "FileURI" type = "anyURI"/>

4557 <element name = "PayloadRef" type = "ebTest:non-empty-string"/>
ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 142 of 185

4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628

<element name = "Signature" type = "base64Binary"/>
<element name = "Content-ID" type = "ebTest:non-empty-string"/>
<element name = "MessageDeclaration">
<complexType>
<sequence>
<any namespace = "##other" processContents = "lax" minOccurs =
"0" maxOccurs = "unbounded"/>
</sequence>
</complexType>
</element>
<element name = "ValidateContent">
<complexType>
<simpleContent>
<extension base = "ebTest:non-empty-string">
<attribute name = "contentType" use = "required" type =
"ebTest:content.type" />
<attribute name = "schemalocation" use = "optional"
type = "anyURI"/>
</extension>
</simpleContent>
</complexType>
</element>
<element name = "VerifyContent" type = "ebTest:non-empty-string"/>
<element name = "Message">
<complexType>
<sequence>
<any namespace = "##other" processContents = "lax" minOccurs =
"0" maxOccurs = "unbounded"/>
</sequence>
<attribute name = "id" use = "required" type = "ID"/>
</complexType>
</element>
<element name = "SetParameter">
<complexType>
<sequence>
<element name = "Name" type = "ebTest:non-empty-string"/>
<choice>
<element name = "Value" type = "ebTest:non-empty-
string"/>
<element name = "ParameterRef" type = "ebTest:non-
empty-string"/>
</choice>
</sequence>
<attribute name = "scope" use = "optional" type =
"ebTest:scope.type"/>
</complexType>
</element>
<element name = "Mutator">
<complexType>
<choice>
<element ref = "ebTest:XSL"/>
<element ref = "ebTest:XUpdate"/>
</choice>
</complexType>
</element>
<element name = "XSL" type = "anyURI"/>
<element name = "XUpdate" type = "anyURI"/>
<element name = "BooleanClause">
<complexType>
<attribute name = "booleanPredicate" use = "required" type =
"boolean" />
</complexType>
</element>
<element name = "DSign">
<complexType>
<sequence>
<element ref = "ds:Signature"/>
</sequence>
</complexType>
</element>
<element name = "Declaration">
ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 143 of 185

4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699

<complexType>
<sequence>
<any namespace = "##other" processContents = "lax" minOccurs =
"0" maxOccurs = "unbounded"/>
</sequence>
</complexType>
</element>
<element name = "Thread">
<complexType>
<choice maxOccurs = "unbounded">
<element ref = "ebTest:SetParameter"/>
<element ref = "ebTest:PutMessage"/>
<element ref = "ebTest:Initiator"/>
<element ref = "ebTest:GetMessage"/>
<element ref = "ebTest:TestAssertion"/>
<element ref = "ebTest:ThreadRef"/>
<element ref = "ebTest:Split"/>
<element ref = "ebTest:Join"/>
<element ref = "ebTest:Sleep"/>
</choice>
<attribute name = "name" use = "required" type = "ID"/>
<attribute name = "description" use = "optional" type = "string"/>
</complexType>
</element>
<element name = "ThreadRef">
<complexType>
<attribute name = "nameRef" use = "required" type = "IDREF"/>
<attribute name = "configurationGroupRef" use = "optional" type =
"anyURI" />
<attribute name = "loop" use = "optional" type = "integer"/>
<attribute name = "instanceId" use = "optional" type = "string"/>
</complexType>
</element>
<element name = "Pass">
<complexType/>
</element>
<element name = "Fail">
<complexType/>
</element>
<element name = "ThreadGroup">
<complexType>
<sequence>
<element ref = "ebTest:Thread" maxOccurs = "unbounded"/>
</sequence>
</complexType>
</element>
<element name = "Sleep" type = "integer"/>
<element name = "Split">

<complexType>
<sequence maxOccurs =

"unbounded">
:ThreadRef"/>

:ThreadRef"/>

<element ref = "ebTest
</sequence>
</complexType>
</element>
<element name = "Join">
<complexType>
<sequence maxOccurs = "unbounded">
<element ref = "ebTest
</sequence>

<attribute name =
"ebTest:join.type" />
</complexType>
</element>
<element name = "Initiator">
<complexType>
<sequence>
<choice>
<element ref =
<element ref =
<element ref =
</choice>

"joinType" use =

"optional" type =

"ebTest:Declaration"/>
"ebTest:FileURI" />
"ebTest:MessageRef" />

ebxml-iic-basic-interop-test-suite-10
Copyright © OASIS Open 2003. All Rights Reserved.

03 April 2003
Page 144 of 185

4700 <element ref = "ebTest:Mutator" minOccurs = "0"/>

4701 <element ref = "ebTest:DSign" minOccurs = "0"/>
4702 </sequence>
4703 <attribute name = "description" use = "required" type = "string"/>
4704 </complexType>
4705 </element>
4706 <element name = "TestServiceConfigurator">
4707 <complexType>
4708 <sequence>
4709 <element ref = "ebTest:ServiceMode"/>
4710 <element ref = "ebTest:ResponseURL"/>
4711 <element ref = "ebTest:NotificationURL"/>
4712 <element ref = "ebTest:PayloadDigests" minOccurs = "0"/>
4713 </sequence>
4714 </complexType>
4715 </element>
4716 <element name = "MessageRef" type = "IDREF"/>
4717 <element name = "ConfigurationItem">
4718 <complexType>
4719 <sequence>
4720 <element name = "Name" type = "ebTest:non-empty-string"/>
4721 <element name = "Value" type = "ebTest:non-empty-string"/>
4722 </sequence>
4723 </complexType>
4724 </element>
4725 <element name = "ErrorURL" type = "anyURI"/>
4726 <element name = "NotificationURL" type = "anyURI"/>
4727 <element name = "SetXPathParameter">
4728 <complexType>
4729 <sequence>
4730 <element name = "Name" type = "ebTest:non-empty-string"/>
4731 <element name = "Expression" type = "ebTest:non-empty-
4732 string"/>
4733 </sequence>
4734 <attribute name = "scope" use = "optional" type =
4735 "ebTest:scope.type"/>
4736 </complexType>
4737 </element>
4738 <element name = "ResponseURL" type = "anyURI"/>
4739 <element name = "StoreAttachments" type = "boolean"/>
4740 <element name = "OperationMode" type = "string"/>
4741 <element name = "PayloadDigests">
4742 <complexType>
4743 <sequence>
4744 <element name = "Payload" maxOccurs = "unbounded">
4745 <complexType>
4746 <sequence>
4747 <element name = "Id" type = "anyURI"/>
4748 <element name = "Digest" type =
4749 "base64Binary"/>
4750 </sequence>
4751 </complexType>
4752 </element>
4753 </sequence>
4754 </complexType>
4755 </element>
4756 <element name = "ServiceMode" type = "ebTest:serviceMode.type"/>
4757 <element name = "Transaction">
4758 <complexType>
4759 <sequence maxOccurs = "unbounded">
4760 <choice maxOccurs = "unbounded">
4761 <element ref = "ebTest:PutMessage"/>
4762 <element ref = "ebTest:Initiator"/>
4763 </choice>
4764 <element ref = "ebTest:GetMessage" minOccurs = "0" maxOccurs =
4765 "unbounded" />
4766 </sequence>
4767 <attribute name = "timeToPerform" use = "optional" type = "duration"/>
4768 </complexType>
4769 </element>
4770 <element name = "VerifyTimeDifference">
ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 145 of 185

4771 <complexType>

4772 <sequence>
4773 <element ref = "ebTest:ParamName"/>
4774 <element ref = "ebTest:ParamName"/>
4775 <element ref = "ebTest:Operator"/>
4776 <element ref = "ebTest:Difference"/>
4777 </sequence>
4778 </complexType>
4779 </element>
4780 <element name = "TimeToAcknowledgeReceipt">
4781 <complexType>
4782 <sequence>
4783 <element ref = "ebTest:XPathExpression"/>
4784 </sequence>
4785 </complexType>
4786 </element>
4787 <element name = "TimeToAcknowledgeAcceptance">
4788 <complexType>
4789 <sequence>
4790 <element ref = "ebTest:XPathExpression"/>
4791 </sequence>
4792 </complexType>
4793 </element>
4794 <element name = "Difference" type = "duration"/>
4795 <element name = "Operator" type = "ebTest:operator.type"/>
4796 <element name = "XPathExpression" type = "ebTest:non-empty-string"/>
4797 <element name = "Continue">
4798 <complexType/>
4799 </element>
4800 <element name = "ParamName" type = "ebTest:non-empty-string"/>
4801 <element name = "VerifyTimeToPerform">
4802 <complexType>
4803 <sequence>
4804 <element ref = "ebTest:ThreadName" maxOccurs = "unbounded"/>
4805 </sequence>
4806 <attribute name = "maxTime" use = "required" type = "duration"/>
4807 </complexType>
4808 </element>
4809 <element name = "ThreadName" type = "IDREF"/>
4810 <element name = "Header">
4811 <complexType>
4812 <sequence>
4813 <element ref = "ebTest:Name"/>
4814 <element ref = "ebTest:Value"/>
4815 </sequence>
4816 </complexType>
4817 </element>
4818 <element name = "Name" type = "ebTest:non-empty-string"/>
4819 <element name = "Value" type = "ebTest:non-empty-string"/>
4820 </schema>
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 146 of 185

4832
4833
4834
4835
4836
4837
4838
4839

4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896

SOAP Portion

of ebXML-Specific Message Store Schema

<?xml ver

sion = "1.0" encoding = "UTF-8"?>

<!--Generated by XML Authority. Conforms to w3c http://www.w3.0rg/2001/XMLSchema—->

<schema xmlns = "http://www.w3.0rg/2001/XMLSchema"
targetNamespace = "http://www.oasis-open.org/tc/ebxml-iic/testing/soap"
xmlns:tns = "http://www.oasis-open.org/tc/ebxml-iic/testing/soap"
xmlns:xs = "http://www.w3.0rg/2001/XMLSchema"
xmlns:eb = "http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-
2 0.xsd">
<import namespace = "http://www.oasis-open.org/committees/ebxml-msg/schema/msg-
header-2 0.xsd" schemaLocation = "http://www.oasis-open.org/committees/ebxml-
msg/schema/msg-header-2 0.xsd"/>
<group name = "optionElements">
<all minOccurs = "0">
<element ref = "eb:SyncReply" minOccurs = "0"/>
<element ref = "eb:MessageOrder" minOccurs = "0"/>
<element ref = "eb:AckRequested" minOccurs = "0"/>
<element ref = "eb:Acknowledgment" minOccurs = "0"/>
<element ref = "eb:ErrorList" minOccurs = "0"/>
</all>
</group>
<attributeGroup name = "encodingStyle">
<attribute name = "encodingStyle" type = "tns:encodingStyle"/>
</attributeGroup>
<!-- Schema for the SOAP/1.1 envelope
This schema has been produced using W3C's SOAP Version 1.2 schema
found at:
http://www.w3.0rg/2001/06/soap-envelope
Copyright 2001 Martin Gudgin, Developmentor.

Chan
- re
- re

Orig
Copy
Inst
Keio

http

This
desc

[1]
[2]

<!-- E

<eleme
<compl

ges made are the following:
verted namespace to http://schemas.xmlsoap.org/soap/envelope/
verted mustUnderstand to only allow 0 and 1 as lexical values

inal copyright:

right 2001 W3C (Massachusetts Institute of Technology,

itut National de Recherche en Informatique et en Automatique,
University) . All Rights Reserved.
://www.w3.0org/Consortium/Legal/

document is governed by the W3C Software License [1l] as
ribed in the FAQ [2].

http://www.w3.0org/Consortium/Legal/copyright-software-19980720
http://www.w3.0org/Consortium/Legal/IPR-FAQ-20000620.html#DTD

nvelope, header and body -->

nt name = "Envelope" type = "tns:Envelope"/>
exType name = "Envelope">
<sequence>

ebxml-iic-basic-interop-test-suite-10
Copyright © OASIS Open 2003. All Rights Reserved.

03 April 2003
Page 147 of 185

4897 <element ref = "tns:Header"/>

4898 <element ref = "tns:Body"/>
4899 <any namespace = "##other" processContents = "lax" minOccurs = "0O"
4900 maxOccurs = "unbounded"/>
4901 </sequence>
4902 <anyAttribute namespace = "##other" processContents = "lax"/>
4903 </complexType>
4904 <element name = "Header">
4905 <complexType>
4906 <sequence>
4907 <element ref = "eb:MessageHeader"/>
4908 <group ref = "tns:optionElements"/>
4909 </sequence>
4910 </complexType>
4911 </element>
4912 <complexType name = "Header">
4913 <sequence>
4914 <any namespace = "##other" processContents = "lax" minOccurs = "0"
4915 maxOccurs = "unbounded"/>
4916 </sequence>
4917 <anyAttribute namespace = "##other" processContents = "lax"/>
4918 </complexType>
4919 <element name = "Body">
4920 <complexType>
4921 <choice>
4922 <element ref = "eb:Manifest"/>
4923 <element ref = "eb:StatusRequest"/>
4924 <element ref = "eb:StatusResponse"/>
4925 </choice>
4926 </complexType>
4927 </element>
4928 <complexType name = "Body">
4929 <annotation>
4930 <documentation>
4931 Prose in the spec does not specify that attributes are allowed on the Body
4932 element
4933 </documentation>
4934 </annotation>
4935 <sequence>
4936 <any namespace = "##any" processContents = "lax" minOccurs = "0"
4937 maxOccurs = "unbounded"/>
4938 </sequence>
4939 <anyAttribute namespace = "##any" processContents = "lax"/>
4940 </complexType>
4941
4942 <!-- Global Attributes. The following attributes are intended to be usable via
4943 qualified attribute names on any complex type referencing them. -->
4944
4945 <attribute name = "mustUnderstand" default = "0">
4946 <simpleType>
4947 <restriction base = "boolean">
4948 <pattern value = "0[1"/>
4949 </restriction>
4950 </simpleType>
4951 </attribute>
4952 <attribute name = "actor" type = "anyURI"/>
4953 <simpleType name = "encodingStyle">
4954 <annotation>
4955 <documentation>
4956 'encodingStyle' indicates any canonicalization conventions followed in the
4957 contents of the containing element. For example, the value
4958 'http://schemas.xmlsoap.org/soap/encoding/"' indicates the pattern described in SOAP
4959 specification
4960 </documentation>
4961 </annotation>
4962 <list itemType = "anyURI"/>
4963 </simpleType>
4964 <complexType name = "Fault"
4965 final = "extension">
4966 <annotation>
4967 <documentation>
ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 148 of 185

4968 Fault reporting structure

4969 </documentation>

4970 </annotation>

4971 <sequence>

4972 <element name = "faultcode" type = "QName"/>

4973 <element name = "faultstring" type = "string"/>

4974 <element name = "faultactor" type = "anyURI" minOccurs = "Q"/>

4975 <element name = "detail" type = "tns:detail" minOccurs = "0"/>

4976 </sequence>

4977 </complexType>

4978 <complexType name = "detail">

4979 <sequence>

4980 <any namespace = "##any" processContents = "lax" minOccurs = "0O"

4981 maxOccurs = "unbounded"/>

4982 </sequence>

4983 <anyAttribute namespace = "##any" processContents = "lax"/>

4984 </complexType>

4985 </schema>

4986

4987

4988 ebMS Portion of ebXML-Specific Message Store Schema

4989

4990 <?xml version = "1.0" encoding = "UTF-8"?>

4991 <!--Generated by XML Authority. Conforms to w3c http://www.w3.0rg/2001/XMLSchema-->

4992 <schema xmlns = "http://www.w3.0rg/2001/XMLSchema"

4993 targetNamespace = "http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-

4994 2 0.xsd"

4995 "~ xmlns:tns = "http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header—

4996 2 _0.xsd"

4997 " xmlns:xlink = "http://www.w3.0rg/1999/x1ink"

4998 xmlns:ds = "http://www.w3.0rg/2000/09/xmldsig#"

4999 xmlns:soap = "http://schemas.xmlsoap.org/soap/envelope/"

5000

5001 version = "1.0"

5002 elementFormDefault = "qualified"

5003 attributeFormDefault = "qualified">

5004 <import namespace = "http://www.w3.0rg/1999/xlink" schemalocation =

5005 "http://www.oasis-open.org/committees/ebxml-msg/schema/xlink.xsd"/>

5006 <import namespace = "http://www.w3.0rg/2000/09/xmldsig#" schemalLocation =

5007 "http://www.oasis-open.org/committees/ebxml-msg/schema/xmldsig-core-schema.xsd"/>

5008 <import namespace = "http://schemas.xmlsoap.org/soap/envelope/" schemalLocation =

5009 "http://www.oasis-open.org/committees/ebxml-msg/schema/envelope.xsd"/>

5010 <import namespace = "http://www.w3.org/XML/1998/namespace”" schemaLocation =

5011 "http://www.oasis-open.org/committees/ebxml-msg/schema/xml lang.xsd"/>

5012 <attributeGroup name = "bodyExtension.grp"> B

5013 <attribute ref = "tns:id"/>

5014 <attribute ref = "tns:version" use = "required"/>

5015 </attributeGroup>

5016 <attributeGroup name = "headerExtension.grp">

5017 <attribute ref = "tns:id"/>

5018 <attribute ref = "tns:version" use = "required"/>

5019 <attribute ref = "soap:mustUnderstand" use = "required"/>

5020 </attributeGroup>

5021

5022 <l--

5023 Copyright (C) The Organization for the Advancement of Structured Information Standards

5024 [OASIS]

5025 January 2002. All Rights Reserved.

5026 This document and translations of it may be copied and furnished to others, and

5027 derivative works that comment on or otherwise explain it or assist in its implementation

5028 may be prepared, copied, published and distributed, in whole or in part, without

5029 restriction of any kind, provided that the above copyright notice and this paragraph are

5030 included on all such copies and derivative works. However, this document itself may not

5031 be modified in any way, such as by removing the copyright notice or references to OASIS,

5032 except as needed for the purpose of developing OASIS specifications, in which case the

5033 procedures for copyrights defined in the OASIS Intellectual Property Rights document

5034 MUST be followed, or as required to translate it into languages other than English.
ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 149 of 185

The limited permissions granted above are perpetual and will not be revoked by OASIS or
its successors or assigns.

-=>
<!-- MANIFEST, for use in soap:Body element -->
<element name = "Manifest">
<complexType>
<sequence>
<element ref = "tns:Reference" maxOccurs = "unbounded"/>
<any namespace = "##other" processContents = "lax" minOccurs =
"0" maxOccurs = "unbounded"/>
</sequence>
<attributeGroup ref = "tns:bodyExtension.grp"/>
</complexType>
</element>
<element name = "Reference">
<complexType>
<sequence>
<element ref = "tns:Schema" minOccurs = "0" maxOccurs =
"unbounded" />
<element ref = "tns:Description"” minOccurs = "0" maxOccurs =
"unbounded" />
<any namespace = "##other" processContents = "lax" minOccurs =
"0" maxOccurs = "unbounded"/>
</sequence>
<attribute ref = "tns:id"/>
<attribute ref = "xlink:type" fixed = "simple"/>
<attribute ref = "xlink:href" use = "required"/>
<attribute ref = "xlink:role"/>
</complexType>
</element>
<element name = "Schema">
<complexType>
<attribute name = "location" use = "required" type = "anyURI"/>
<attribute name = "version" type = "tns:non-empty-string"/>
</complexType>
</element>
<!-- MESSAGEHEADER, for use in socap:Header element -->
<element name = "MessageHeader">
<complexType>
<sequence>
<element ref = "tns:From"/>
<element ref = "tns:To"/>
<element ref = "tns:CPAId"/>
<element ref = "tns:ConversationId"/>
<element ref = "tns:Service"/>
<element ref = "tns:Action"/>
<element ref = "tns:MessageData"/>
<element ref = "tns:DuplicateElimination" minOccurs = "0"/>
<element ref = "tns:Description" minOccurs = "0" maxOccurs =
"unbounded" />
<any namespace = "##other" processContents = "lax" minOccurs =
"0" maxOccurs = "unbounded"/>
</sequence>
<attributeGroup ref = "tns:headerExtension.grp"/>
</complexType>
</element>
<element name = "CPAId" type = "tns:non-empty-string"/>
<element name = "ConversationId" type = "tns:non-empty-string"/>
<element name = "Service">
<complexType>
<simpleContent>
<extension base = "tns:non-empty-string">
<attribute name = "type" type = "tns:non-empty-
string"/>
</extension>
</simpleContent>
ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 150 of 185

5106 </complexType>

5107 </element>
5108 <element name = "Action" type = "tns:non-empty-string"/>
5109 <element name = "MessageData'">
5110 <complexType>
5111 <sequence>
5112 <element ref = "tns:MessageId"/>
5113 <element ref = "tns:Timestamp"/>
5114 <element ref = "tns:RefToMessageId" minOccurs = "0"/>
5115 <element ref = "tns:TimeToLive" minOccurs = "0"/>
5116 </sequence>
5117 </complexType>
5118 </element>
5119 <element name = "Messageld" type = "tns:non-empty-string"/>
5120 <element name = "TimeToLive" type = "dateTime"/>
5121 <element name = "DuplicateElimination"/>
5122
5123 <!-- SYNC REPLY, for use in soap:Header element -->
5124
5125 <element name = "SyncReply">
5126 <complexType>
5127 <sequence>
5128 <any namespace = "##other" processContents = "lax" minOccurs =
5129 "0" maxOccurs = "unbounded"/>
5130 </sequence>
5131 <attributeGroup ref = "tns:headerExtension.grp"/>
5132 <attribute ref = "soap:actor" use = "required"/>
5133 </complexType>
5134 </element>
5135
5136 <!-- MESSAGE ORDER, for use in soap:Header element -->
5137
5138 <element name = "MessageOrder">
5139 <complexType>
5140 <sequence>
5141 <element ref = "tns:SequenceNumber"/>
5142 <any namespace = "##other" processContents = "lax" minOccurs =
5143 "0" maxOccurs = "unbounded"/>
5144 </sequence>
5145 <attributeGroup ref = "tns:headerExtension.grp"/>
5146 </complexType>
5147 </element>
5148 <element name = "SequenceNumber" type = "tns:sequenceNumber.type"/>
5149
5150 <!-- ACK REQUESTED, for use in socap:Header element -->
5151
5152 <element name = "AckRequested">
5153 <complexType>
5154 <sequence>
5155 <any namespace = "##other" processContents = "lax" minOccurs =
5156 "0" maxOccurs = "unbounded"/>
5157 </sequence>
5158 <attributeGroup ref = "tns:headerExtension.grp"/>
5159 <attribute ref = "soap:actor"/>
5160 <attribute name = "signed" use = "required" type = "boolean"/>
5161 </complexType>
5162 </element>
5163
5164 <!-- ACKNOWLEDGMENT, for use in soap:Header element -->
5165
5166 <element name = "Acknowledgment">
5167 <complexType>
5168 <sequence>
5169 <element ref = "tns:Timestamp"/>
5170 <element ref = "tns:RefToMessageId"/>
5171 <element ref = "tns:From" minOccurs = "0"/>
5172 <element ref = "ds:Reference" minOccurs = "0" maxOccurs =
5173 "unbounded" />
5174 <any namespace = "##other" processContents = "lax" minOccurs =
5175 "0" maxOccurs = "unbounded"/>
5176 </sequence>
ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 151 of 185

5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247

<attributeGroup ref = "tns:headerExtension.grp"/>
<attribute ref = "soap:actor"/>
</complexType>
</element>
<!-- ERROR LIST, for use in soap:Header element -->
<element name = "ErrorList">
<complexType>
<sequence>
<element ref = "tns:Error" maxOccurs = "unbounded"/>
<any namespace = "##other" processContents = "lax" minOccurs =
"0" maxOccurs = "unbounded"/>
</sequence>
<attributeGroup ref = "tns:headerExtension.grp"/>
<attribute name = "highestSeverity" use = "required" type =
"tns:severity.type"/>
</complexType>
</element>
<element name = "Error">
<complexType>
<sequence>
<element ref = "tns:Description" minOccurs = "0"/>
<any namespace = "##other" processContents = "lax" minOccurs =
"0" maxOccurs = "unbounded"/>
</sequence>
<attribute ref = "tns:id"/>
<attribute name = "codeContext" default = "urn:oasis:names:tc:ebxml-
msg:service:errors" type = "anyURI"/>
<attribute name = "errorCode" use = "required" type = "tns:non-empty-
string"/>
<attribute name = "severity" use = "required" type =
"tns:severity.type"/>
<attribute name = "location" type = "tns:non-empty-string"/>
</complexType>
</element>
<!-- STATUS RESPONSE, for use in soap:Body element -->
<element name = "StatusResponse">
<complexType>
<sequence>
<element ref = "tns:RefToMessageId"/>
<element ref = "tns:Timestamp" minOccurs = "0"/>
<any namespace = "##other" processContents = "lax" minOccurs =
"0" maxOccurs = "unbounded"/>
</sequence>
<attributeGroup ref = "tns:bodyExtension.grp"/>
<attribute name = "messageStatus" use = "required" type =
"tns:messageStatus.type"/>
</complexType>
</element>
<!-- STATUS REQUEST, for use in soap:Body element -->
<element name = "StatusRequest">
<complexType>
<sequence>
<element ref = "tns:RefToMessageId"/>
<any namespace = "##other" processContents = "lax" minOccurs =
"0" maxOccurs = "unbounded"/>
</sequence>
<attributeGroup ref = "tns:bodyExtension.grp"/>
</complexType>
</element>
<!-- COMMON TYPES -->
<complexType name = "sequenceNumber.type">
<simpleContent>
<extension base = "positiveInteger">
ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 152 of 185

5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278

<attribute name = "status" default = "Continue" type =
"tns:status.type"/>
</extension>
</simpleContent>
</complexType>
<simpleType name = "status.type">
<restriction base = "NMTOKEN">
<enumeration value = "Reset"/>
<enumeration value = "Continue"/>
</restriction>
</simpleType>
<simpleType name = "messageStatus.type">
<restriction base = "NMTOKEN">
<enumeration value = "UnAuthorized"/>
<enumeration value = "NotRecognized"/>
<enumeration value = "Received"/>
<enumeration value = "Processed"/>
<enumeration value = "Forwarded"/>
</restriction>
</simpleType>
<simpleType name = "non-empty-string">
<restriction base = "string">
<minLength value = "1"/>
</restriction>
</simpleType>
<simpleType name = "severity.type">
<restriction base = "NMTOKEN">
<enumeration value = "Warning"/>
<enumeration value = "Error"/>
</restriction>
</simpleType>
<!-- COMMON ATTRIBUTES and ATTRIBUTE GROUPS -->
<attribute name = "id" type = "ID"/>
<attribute name = "version" type = "tns:non-empty-string"/>
<!-- COMMON ELEMENTS -->
<element name = "PartyId">
<complexType>
<simpleContent>
<extension base = "tns:non-empty-string">
<attribute name = "type" type = "tns:non-empty-
string"/>
</extension>
</simpleContent>
</complexType>
</element>
<element name = "To">
<complexType>
<sequence>
<element ref = "tns:PartyId" maxOccurs = "unbounded"/>
<element name = "Role" type = "tns:non-empty-string" minOccurs
= "o"/>
</sequence>
</complexType>
</element>
<element name = "From">
<complexType>
<sequence>
<element ref = "tns:PartyId" maxOccurs = "unbounded"/>
<element name = "Role" type = "tns:non-empty-string" minOccurs
= "o"/>
</sequence>
</complexType>
</element>
<element name = "Description">
<complexType>
<simpleContent>
<extension base = "tns:non-empty-string">
ebxml-iic-basic-interop-test-suite-10

Copyright © OASIS Open 2003. All Rights Reserved.

03 April 2003
Page 153 of 185

5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384

<attribute ref = "xml:lang" use = "required"/>
</extension>
</simpleContent>
</complexType>
</element>
<element name = "RefToMessageId" type = "tns:non-empty-string"/>
<element name = "Timestamp" type = "dateTime"/>
</schema>
Generic FilterResult Schema
<?xml version = "1.0" encoding = "UTF-8"?>
<!--Generated by XML Authority. Conforms to w3c http://www.w3.0rg/2001/XMLSchema-->
<xsd:schema xmlns = "http://www.oasis-open.org/tc/ebxml-iic/testing/messageStore"
targetNamespace = "http://www.oasis-open.org/tc/ebxml-iic/testing/messageStore"
xmlns:xsd = "http://www.w3.0rg/2001/XMLSchema">
<!-- edited with XML Spy v4.3 U (http://www.xmlspy.com) by Michael Kass (NIST) -->
<!-- edited with XML Spy v4.3 U (http://www.xmlspy.com) by Michael Kass (NIST) -->
<l--
Copyright (C) The Organization for the Advancement of Structured Information Standards
[OASIS]

January 2002. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and
derivative works that comment on or otherwise explain it or assist in its implementation
may be prepared, copied, published and distributed, in whole or in part, without
restriction of any kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this document itself may not
be modified in any way, such as by removing the copyright notice or references to OASIS,
except as needed for the purpose of developing OASIS specifications, in which case the
procedures for copyrights defined in the OASIS Intellectual Property Rights document
MUST be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or
its successors or assigns.

-—>

<xsd:element name = "FilterResult">
<xsd:complexType>
<xsd:choice>
<xsd:element ref = "Message" minOccurs = "0" maxOccurs =
"unbounded" />
<xsd:element ref = "Notification" minOccurs = "0" maxOccurs =
"unbounded" />
</xsd:choice>
</xsd:complexType>
</xsd:element>
<xsd:element name = "GenericMessage" type = "GenericMessageType"/>
<xsd:simpleType name = "synch.type">
<xsd:restriction base = "xsd:string">
<xsd:enumeration value = "synchronous"/>
<xsd:enumeration value = "asynchronous"/>
</xsd:restriction>
</xsd:simpleType>
<xsd:simpleType name = "notification.type">
<xsd:restriction base = "xsd:NMTOKEN">
<xsd:enumeration value = "message"/>
<xsd:enumeration value = "errorURL"/>
<xsd:enumeration value = "errorApp"/>
</xsd:restriction>
</xsd:simpleType>
<xsd:element name = "Message'">

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 154 of 185

5385 <xsd:complexType>

5386 <xsd:complexContent>
5387 <xsd:extension base = "GenericMessageType">
5388 <xsd:attribute name = "type" use = "optional" type =
5389 "xsd:string"/>
5390 <xsd:attribute name = "contentType" use = "optional"
5391 type = "xsd:string"/>
5392 </xsd:extension>
5393 </xsd:complexContent>
5394 </xsd:complexType>
5395 </xsd:element>
5396 <xsd:complexType name = "GenericMessageType'">
5397 <xsd:sequence>
5398 <xsd:any namespace = "##other" processContents = "lax" minOccurs = "0"
5399 maxOccurs = "unbounded"/>
5400 </xsd:sequence>
5401 <xsd:attribute name = "synchType" use = "required" type = "synch.type"/>
5402 <xsd:attribute name = "id" use = "required" type = "xsd:string"/>
5403 <xsd:attribute name = "serviceInstanceId" use = "optional" type =
5404 "xsd:string"/>
5405 <xsd:attribute name = "serviceName" use = "optional" type = "xsd:string"/>
5406 <xsd:attribute name = "reportingAction" use = "optional" type =
5407 "xsd:string"/>
5408 <xsd:anyAttribute namespace = "##any" processContents = "strict"/>
5409 </xsd:complexType>
5410 <xsd:element name = "Notification">
5411 <xsd:complexType>
5412 <xsd:complexContent>
5413 <xsd:extension base = "GenericMessageType">
5414 <xsd:attribute name = "notificationType" use =
5415 "required" type = "notification.type"/>
5416 </xsd:extension>
5417 </xsd:complexContent>
5418 </xsd:complexType>
5419 </xsd:element>
5420 </xsd:schema>
5421
5422
5423 ebXML Specific Filter Result Schema
5424 <?xml version = "1.0" encoding = "UTF-8"?>
5425 <!--Generated by XML Authority. Conforms to w3c http://www.w3.0rg/2001/XMLSchema-->
5426 <xsd:schema xmlns = "http://www.oasis-open.org/tc/ebxml-iic/testing/messageStore"
5427 targetNamespace = "http://www.oasis-open.org/tc/ebxml-iic/testing/messageStore"
5428 xmlns:mime = "http://www.oasis-open.org/tc/ebxml-iic/testing/mime"
5429 xmlns:soap = "http://www.oasis-open.org/tc/ebxml-iic/testing/soap"
5430 xmlns:xsd = "http://www.w3.0rg/2001/XMLSchema">
5431 <xsd:import namespace = "http://www.oasis-open.org/tc/ebxml-iic/testing/mime"
5432 schemalocation =
5433 "file:///E:/ebXML MS 20 Conformance Testing 1.0/schemas/messagestore mime.xsd"/>
5434 <xsd:import namespace = "http://www.oasis-open.org/tc/ebxml-iic/testing/soap"
5435 schemalocation =
5436 "file:///E:/ebXML MS 20 Conformance Testing 1.0/schemas/messagestore soap.xsd"/>
5437 <!-- edited with XML Spy v4.3 U (http://www.xmlspy.com) by Michael Kass (NIST) -->
5438
5439
5440 <!-- edited with XML Spy v4.3 U (http://www.xmlspy.com) by Michael Kass (NIST) -->
5441
5442
5443 <l--
5444 Copyright (C) The Organization for the Advancement of Structured Information Standards
5445 [OASTS]
5446 January 2002. All Rights Reserved.
ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 155 of 185

5447 This document and translations of it may be copied and furnished to others, and

5448 derivative works that comment on or otherwise explain it or assist in its implementation
5449 may be prepared, copied, published and distributed, in whole or in part, without
5450 restriction of any kind, provided that the above copyright notice and this paragraph are
5451 included on all such copies and derivative works. However, this document itself may not
5452 be modified in any way, such as by removing the copyright notice or references to OASIS,
5453 except as needed for the purpose of developing OASIS specifications, in which case the
5454 procedures for copyrights defined in the OASIS Intellectual Property Rights document
5455 MUST be followed, or as required to translate it into languages other than English.
5456 The limited permissions granted above are perpetual and will not be revoked by OASIS or
5457 its successors or assigns.
5458 -—>
5459
5460 <xsd:element name = "FilterResult">
5461 <xsd:complexType>
5462 <xsd:choice>
5463 <xsd:element ref = "Message" minOccurs = "0" maxOccurs =
5464 "unbounded" />
5465 <xsd:element ref = "Notification" minOccurs = "O" maxOccurs =
5466 "unbounded" />
5467 </xsd:choice>
5468 </xsd:complexType>
5469 </xsd:element>
5470 <xsd:element name = "GenericMessage" type = "GenericMessageType"/>
5471 <xsd:simpleType name = "synch.type">
5472 <xsd:restriction base = "xsd:string">
5473 <xsd:enumeration value = "synchronous"/>
5474 <xsd:enumeration value = "asynchronous"/>
5475 </xsd:restriction>
5476 </xsd:simpleType>
5477 <xsd:simpleType name = "notification.type">
5478 <xsd:restriction base = "xsd:NMTOKEN">
5479 <xsd:enumeration value = "errURL"/>
5480 <xsd:enumeration value = "errorApp"/>
5481 <xsd:enumeration value = "message"/>
5482 </xsd:restriction>
5483 </xsd:simpleType>
5484 <xsd:element name = "Message">
5485 <xsd:complexType>
5486 <xsd:complexContent>
5487 <xsd:extension base = "GenericMessageType">
5488 <xsd:sequence>
5489 <xsd:element ref = "mime:MessageContainer"/>
5490 </xsd:sequence>
5491 <xsd:attribute name = "type" use = "optional" type =
5492 "xsd:string"/>
5493 <xsd:attribute name = "contentType" use = "optional"
5494 type = "xsd:string"/>
5495 </xsd:extension>
5496 </xsd:complexContent>
5497 </xsd:complexType>
5498 </xsd:element>
5499 <xsd:complexType name = "GenericMessageType">
5500 <xsd:attribute name = "synchType" use = "required" type = "synch.type"/>
5501 <xsd:attribute name = "id" use = "required" type = "xsd:string"/>
5502 <xsd:attribute name = "servicelnstancelId" use = "optional" type =
5503 "xsd:string"/>
5504 <xsd:attribute name = "serviceName" use = "optional" type = "xsd:string"/>
5505 <xsd:attribute name = "reportingAction" use = "optional" type =
5506 "xsd:string"/>
5507 <xsd:anyAttribute namespace = "##any" processContents = "strict"/>
5508 </xsd:complexType>
5509 <xsd:element name = "Notification">
5510 <xsd:complexType>
5511 <xsd:complexContent>
5512 <xsd:extension base = "GenericMessageType">
5513 <xsd:sequence>
5514 <xsd:element ref = "soap:Envelope"/>
5515 </xsd:sequence>
5516 <xsd:attribute name = "notificationType" use =
5517 "required" type = "notification.type"/>
ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 156 of 185

5518
5519
5520
5521
5522

</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
</xsd:element>
</xsd:schema>

ebxml-iic-basic-interop-test-suite-10
Copyright © OASIS Open 2003. All Rights Reserved.

03 April 2003
Page 157 of 185

5523

5524

5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536

Appendix E (Normative) The Test Report Schema

<?xml version = "1.0" encoding = "UTF-8"?>
<!--Generated by XML Authority. Conforms to w3c http://www.w3.0rg/2001/XMLSchema-->
<schema xmlns = "http://www.w3.0rg/2001/XMLSchema"

targetNamespace = "http://www.oasis-open.org/tc/ebxml-iic/tests"

xmlns:ebTest = "http://www.oasis-open.org/tc/ebxml-iic/tests"

xmlns:ds = "http://www.oasis-open.org/tc/ebxml-iic/tests/xmldsig"

xmlns:mime = "http://www.oasis-open.org/tc/ebxml-iic/tests/mime"

version = "1.0"

elementFormDefault = "unqualified"

attributeFormDefault = "unqualified">

<import namespace = "http://www.oasis-open.org/tc/ebxml-iic/tests/xmldsig"
schemalocation = "xmldsig.xsd"/>

<import namespace = "http://www.oasis-open.org/tc/ebxml-iic/tests/mime"
schemaLocation = "file:///C:/scripting poc 07 13 04/schemas/mime.xsd"/>

<!-- edited with XML Spy v4.3 U (http://www.xmlspy.com) by Michael Kass (NIST) -->

<!-- edited with XML Spy v4.3 U (http://www.xmlspy.com) by Michael Kass (NIST) -->

<!-- edited with XML Spy v4.3 U (http://www.xmlspy.com) by Michael Kass (NIST) -->

==

Copyright (C) The Organization for the Advancement of Structured Information Standards
[OASIS]

January 2002. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and
derivative works that comment on or otherwise explain it or assist in its implementation
may be prepared, copied, published and distributed, in whole or in part, without
restriction of any kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this document itself may not
be modified in any way, such as by removing the copyright notice or references to OASIS,
except as needed for the purpose of developing OASIS specifications, in which case the
procedures for copyrights defined in the OASIS Intellectual Property Rights document
MUST be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or
its successors or assigns.

-—>
<element name = "TestSuite">
<complexType>
<sequence>
<element ref = "ebTest:MetaData"/>
<element ref = "ebTest:ConfigurationGroup" maxOccurs =
"unbounded" />
<element ref = "ebTest:TestServiceConfigurator" minOccurs =
"om"/>
<element ref = "ebTest:Message" minOccurs = "0" maxOccurs =
"unbounded" />
<element ref = "ebTest:TestCase" maxOccurs = "unbounded"/>
</sequence>
<attribute name = "configurationGroupRef" use = "required" type =
"anyURI" />
</complexType>
</element>
<element name = "MetaData">
<complexType>
<sequence>
<element ref = "ebTest:Description"/>
<element ref = "ebTest:Version"/>
ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 158 of 185

5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658

<element ref = "ebTest:Maintainer"/>
<element ref = "ebTest:Location"/>
<element ref = "ebTest:PublishDate"/>
<element ref = "ebTest:Status"/>
</sequence>
</complexType>
</element>
<element name = "Description" type = "ebTest:non-empty-string"/>
<element name = "Version" type = "ebTest:non-empty-string"/>
<element name = "Maintainer" type = "ebTest:non-empty-string"/>
<element name = "Location" type = "anyURI"/>
<element name = "PublishDate" type = "ebTest:non-empty-string"/>
<element name = "Status" type = "ebTest:non-empty-string"/>
<element name = "TestCase">
<complexType>
<sequence>
<element ref = "ebTest:ThreadGroup" minOccurs = "0"/>
<element ref = "ebTest:SetParameter" minOccurs = "0" maxOccurs
= "unbounded"/>
<choice>
<element ref = "ebTest:Thread"/>
<element ref = "ebTest:ThreadRef"/>
<sequence maxOccurs = "unbounded">
<element ref = "ebTest:Split" maxOccurs =
"unbounded" />
<element ref = "ebTest:Join" maxOccurs =
"unbounded" />
</sequence>
</choice>
</sequence>
<attribute name = "id" use = "required" type = "ID"/>
<attribute name = "description" use = "required" type = "string"/>
<attribute name = "author" use = "optional" type = "string"/>
<attribute name = "version" use = "optional" type = "string"/>
<attribute name = "requirementReferenceId" use = "required" type =
"anyURI"/>
<attribute name = "configurationGroupRef" use = "optional" type =
"anyURI" />
<attribute name = "result" use = "required" type =
"ebTest:result.type"/>
</complexType>
</element>
<element name = "ConfigurationGroup">
<complexType>
<sequence>
<element ref = "ebTest:Mode"/>
<element ref = "ebTest:StepDuration"/>
<element ref = "ebTest:Transport"/>
<element ref = "ebTest:Envelope"/>
<element ref = "ebTest:StoreAttachments"/>
<element ref = "ebTest:SetParameter" minOccurs = "0" maxOccurs
= "unbounded"/>
</sequence>
<attribute name = "id" use = "required" type = "ID"/>
</complexType>
</element>
<element name = "CPAId" type = "ebTest:non-empty-string"/>
<element name = "Mode" type = "ebTest:mode.type"/>
<element name = "SenderParty" type = "anyURI"/>
<element name = "ReceiverParty" type = "anyURI"/>
<element name = "Service" type = "anyURI"/>
<element name = "Action" type = "ebTest:non-empty-string"/>
<element name = "StepDuration" type = "integer"/>
<element name = "Transport" type = "ebTest:transport.type"/>
<element name = "Envelope" type = "ebTest:non-empty-string"/>

<simpleType nam

= "mode.type">

<restriction base = "NMTOKEN">
<enumeration value = "local-service"/>
<enumeration value = "remote-service"/>
<enumeration value = "connection"/>
</restriction>

ebxml-iic-basic-interop-test-suite-10
Copyright © OASIS Open 2003. All Rights Reserved.

03 April 2003
Page 159 of 185

5722
5723
5724
5725
5726
5727
5728
5729

</simpleType>
<simpleType name = "mimeHeader.type">
<restriction base = "NMTOKEN">
<enumeration value = "MIMEMessageContent-Type"/>
<enumeration value = "MIMEMessageStart"/>
<enumeration value = "Content-Type"/>
<enumeration value = "start"/>
<enumeration value = "charset"/>
<enumeration value = "type"/>
<enumeration value = "wildcard"/>
</restriction>
</simpleType>
<simpleType name = "content.type">
<restriction base = "NMTOKEN">
<enumeration value = "XML"/>
<enumeration value = "date"/>
<enumeration value = "URI"/>
<enumeration value = "signature"/>
<enumeration value = "XPointer"/>
</restriction>
</simpleType>
<simpleType name = "method.type">
<restriction base = "NMTOKEN">
<enumeration value = "xpath"/>
<enumeration value = "md5"/>
</restriction>
</simpleType>
<simpleType name = "messageContext.type">
<restriction base = "NMTOKEN">
<enumeration value = "true"/>
<enumeration value = "false"/>
</restriction>
</simpleType>
<simpleType name = "requirement.type">
<restriction base = "NMTOKEN">
<enumeration value = "required"/>
<enumeration value = "stronglyrecommended"/>
<enumeration value = "recommended"/>
<enumeration value = "optional"/>
</restriction>
</simpleType>
<simpleType name = "non-empty-string">
<restriction base = "string">
<minLength value = "1"/>
</restriction>
</simpleType>
<simpleType name = "configAction.type">
<restriction base = "NMTOKEN">
<enumeration value = "query"/>
<enumeration value = "replace"/>
</restriction>
</simpleType>
<simpleType name = "action.type">
<restriction base = "NMTOKEN">
<enumeration value = "reset"/>
<enumeration value = "modify"/>
</restriction>
</simpleType>
<simpleType name = "configltem.type">
<restriction base = "NMTOKEN"/>
</simpleType>
<simpleType name = "parameter.type">
<restriction base = "NMTOKEN">
<enumeration value = "string"/>
<enumeration value = "parameter"/>
</restriction>
</simpleType>
<simpleType name = "connectivePredicate.type">
<restriction base = "NMTOKEN">
<enumeration value = "and"/>
<enumeration value = "or"/>

ebxml-iic-basic-interop-test-suite-10
Copyright © OASIS Open 2003. All Rights Reserved.

03 April 2003
Page 160 of 185

5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800

</restriction>
</simpleType>
<simpleType name = "thread.type">
<restriction base = "NMTOKEN">
<enumeration value = "synchronous"/>
<enumeration value = "asynchronous"/>
</restriction>
</simpleType>
<simpleType name = "matchResult.type">
<restriction base = "NMTOKEN">
<enumeration value = "pass"/>
<enumeration value = "fail"/>
</restriction>
</simpleType>
<simpleType name = "if.type">
<restriction base = "NMTOKEN">
<enumeration value = "andif"/>
<enumeration value = "orif"/>
</restriction>
</simpleType>
<simpleType name = "split.type">
<restriction base = "NMTOKEN">
<enumeration value = "andsplit"/>
<enumeration value = "orsplit"/>
</restriction>
</simpleType>
<simpleType name = "join.type">
<restriction base = "NMTOKEN">
<enumeration value = "andjoin"/>
<enumeration value = "orjoin"/>
</restriction>
</simpleType>
<simpleType name = "serviceMode.type">
<restriction base = "NMTOKEN">
<enumeration value = "loop"/>
<enumeration value = "local-reporting"/>
<enumeration value = "remote-reporting"/>
</restriction>
</simpleType>
<simpleType name = "time.type">
<restriction base = "NMTOKEN">
<enumeration value = "timeToAcknowlegeReceipt"/>
<enumeration value = "timeToAcknowledgeAcceptance"/>
<enumeration value = "timeToPerform"/>
<enumeration value = "other"/>
</restriction>
</simpleType>
<simpleType name = "operator.type">
<restriction base = "NMTOKEN">
<enumeration value = "equal"/>
<enumeration value = "lessThanl"/>
<enumeration value = "lessThanOrEqual"/>
<enumeration value = "greaterThan"/>
<enumeration value = "greaterThanOrEqual"/>
</restriction>
</simpleType>
<simpleType name = "assertionExit.type">
<restriction base = "NMTOKEN">
<enumeration value = "pass"/>
<enumeration value = "fail"/>
<enumeration value = "undetermined"/>
</restriction>
</simpleType>
<simpleType name = "preconditionExit.type">
<restriction base = "NMTOKEN">
<enumeration value = "undetermined"/>
</restriction>
</simpleType>
<simpleType name = "scope.type">
<restriction base = "NMTOKEN">
<enumeration value = "self"/>

ebxml-iic-basic-interop-test-suite-10
Copyright © OASIS Open 2003. All Rights Reserved.

03 April 2003
Page 161 of 185

5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871

<enumeration value =
</restriction>
</simpleType>
<simpleType name =
<restriction base =

"transport.type">
"NMTOKEN" >

"selfAndDescendents" />

<enumeration value = "FTP"/>
<enumeration value = "SMTP"/>
<enumeration value = "HTTP"/>
</restriction>
</simpleType>
<simpleType name = "result.type">
<restriction base = "NMTOKEN">
<enumeration value = "pass"/>
<enumeration value = "fail"/>

<enumeration value =
</restriction>
</simpleType>
<simpleType name =
<restriction base =
<enumeration value =

"exception.type">
"NMTOKEN" >

"undetermined" />

"undetermined" />

</restriction>
</simpleType>
<element name = "MessageExpression">
<complexType>
<sequence>
<element ref = "ebTest:ErrorMessage"/>
</sequence>
</complexType>
</element>
<element name = "ErrorMessage" type = "ebTest:non-empty-string"/>

<element name = "PutMessage">

<complexType>
<sequence>
<element ref = "ebTest:SetPart" maxOccurs = "unbounded"/>
</sequence>
<attribute name = "description" use = "required" type = "string"/>
<attribute name = "repeatWithSameContext" use = "optional" type =

"integer"/>
<attribute name =
"integer"/>

</complexType>
</element>
<element name = "GetMessage">

<complexType>
<sequence maxOccurs
<element ref
<element ref

maxOccurs = "unbounded"/>
</sequence>
<attribute name =
<attribute name =
</complexType>
</element>
<element name = "Filter">
<complexType>
<simpleContent>

<extension base =
<attribute name =

= "integer"/>

<attribute name =

"ebTest:result.type"/>
</extension>
</simpleContent>
</complexType>
</element>
<element name = "SetPart">
<complexType>
<sequence>
<element ref
"unbounded" />
<choice>

"repeatWithNewContext" use =

"description" use =
"mask"

"optional" type =

"unbounded" >

= "ebTest:Filter"/>
= "ebTest:SetXPathParameter" minOccurs = "Q"

"required" type = "string"/>

use = "optional" type = "boolean"/>

"ebTest:non-empty-string">

"stepDuration" use = "optional" type

"result" use = "required" type =

= "ebTest:Header" minOccurs = "0" maxOccurs =

ebxml-iic-basic-interop-test-suite-10
Copyright © OASIS Open 2003. All Rights Reserved.

03 April 2003
Page 162 of 185

5872 <element ref = "ebTest:Declaration"/>

5873 <element ref = "ebTest:FileURI"/>
5874 <element ref = "ebTest:MessageRef"/>
5875 </choice>
5876 <element ref = "ebTest:Mutator" minOccurs = "0"/>
5877 <element ref = "ebTest:DSign" minOccurs = "0"/>
5878 </sequence>
5879 <attribute name = "description" use = "optional" type = "string"/>
5880 <attribute name = "result" use = "required" type =
5881 "ebTest:result.type"/>
5882 </complexType>
5883 </element>
5884 <element name = "TestAssertion">
5885 <complexType>
5886 <sequence>
5887 <choice>
5888 <element ref = "ebTest:VerifyContent"/>
5889 <element ref = "ebTest:ValidateContent"/>
5890 <element ref = "ebTest:VerifyTimeDifference"/>
5891 </choice>
5892 <element name = "WhenTrue" minOccurs = "0">
5893 <complexType>
5894 <choice>
5895 <element ref = "ebTest:Continue"/>
5896 <element ref = "ebTest:ThreadRef"/>
5897 <element ref = "ebTest:Split"/>
5898 <element name = "Exit" type =
5899 "ebTest:assertionExit.type"/>
5900 </choice>
5901 </complexType>
5902 </element>
5903 <element name = "WhenFalse" minOccurs = "0">
5904 <complexType>
5905 <choice>
5906 <element ref = "ebTest:Continue"/>
5907 <element ref = "ebTest:ThreadRef"/>
5908 <element ref = "ebTest:Split"/>
5909 <element name = "Exit" type =
5910 "ebTest:assertionExit.type"/>
5911 </choice>
5912 </complexType>
5913 </element>
5914 </sequence>
5915 <attribute name = "description" use = "required" type = "string"/>
5916 <attribute name = "result" use = "required" type =
5917 "ebTest:result.type"/>
5918 </complexType>
5919 </element>
5920 <element name = "MimeHeader" type = "ebTest:mimeHeader.type"/>
5921 <element name = "MimeHeaderValue" type = "ebTest:non-empty-string"/>
5922 <element name = "Content-Location" type = "ebTest:non-empty-string"/>
5923 <element name = "Index" type = "integer"/>
5924 <element name = "FileURI" type = "anyURI"/>
5925 <element name = "PayloadRef" type = "ebTest:non-empty-string"/>
5926 <element name = "Signature" type = "base64Binary"/>
5927 <element name = "Content-ID" type = "ebTest:non-empty-string"/>
5928 <element name = "MessageDeclaration">
5929 <complexType>
5930 <sequence>
5931 <any namespace = "##other" processContents = "lax" minOccurs =
5932 "0" maxOccurs = "unbounded"/>
5933 </sequence>
5934 </complexType>
5935 </element>
5936 <element name = "ValidateContent">
5937 <complexType>
5938 <simpleContent>
5939 <extension base = "ebTest:non-empty-string">
5940 <attribute name = "contentType" use = "required" type =
5941 "ebTest:content.type" />
ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 163 of 185

<attribute name = "schemalLocation”" use = "optional"
type = "anyURI"/>
<attribute name = "result" use = "required" type =
"ebTest:result.type"/>
</extension>
</simpleContent>
</complexType>
</element>
<element name = "VerifyContent">
<complexType>
<simpleContent>
<extension base = "ebTest:non-empty-string">
<attribute name = "result" use = "required" type =
"ebTest:result.type"/>
</extension>
</simpleContent>
</complexType>
</element>
<element name = "Message">
<complexType>
<sequence>
<any namespace = "##other" processContents = "lax" minOccurs =
"0" maxOccurs = "unbounded"/>
</sequence>
<attribute name = "id" use = "required" type = "ID"/>
</complexType>
</element>
<element name = "SetParameter">
<complexType>
<sequence>
<element name = "Name" type = "ebTest:non-empty-string"/>
<choice>
<element name = "Value" type = "ebTest:non-empty-
string"/>
<element name = "ParameterRef" type = "ebTest:non-
empty-string"/>
</choice>
</sequence>
<attribute name = "scope" use = "optional" type =
"ebTest:scope.type"/>
<attribute name = "result" use = "optional" type =
"ebTest:exception.type"/>
</complexType>
</element>
<element name = "Mutator">
<complexType>
<choice>
<element ref = "ebTest:XSL"/>
<element ref = "ebTest:XUpdate"/>
</choice>
<attribute name = "result" use = "required" type =
"ebTest:result.type"/>
</complexType>
</element>
<element name = "XSL" type = "anyURI"/>
<element name = "XUpdate" type = "anyURI"/>
<element name = "BooleanClause">
<complexType>
<attribute name = "booleanPredicate" use = "required" type =
"boolean"/>
</complexType>
</element>
<element name = "DSign">
<complexType>
<sequence>
<element ref = "ds:Signature"/>
</sequence>
<attribute name = "result" use = "required" type =
"ebTest:result.type"/>
</complexType>
</element>

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 164 of 185

<element name = "Declaration">
<complexType>
<sequence>
<any namespace = "##other" processContents = "lax" minOccurs =
"0" maxOccurs = "unbounded"/>
</sequence>
</complexType>
</element>
<element name = "Thread">
<complexType>
<choice maxOccurs = "unbounded">
<element ref = "ebTest:SetParameter"/>
<element ref = "ebTest:PutMessage"/>
<element ref = "ebTest:Initiator"/>
<element ref = "ebTest:GetMessage"/>
<element ref = "ebTest:TestAssertion"/>
<element ref = "ebTest:ThreadRef"/>
<element ref = "ebTest:Split"/>
<element ref = "ebTest:Join"/>
<element ref = "ebTest:Sleep"/>
</choice>
<attribute name = "name" use = "required" type = "ID"/>
<attribute name = "description" use = "optional" type = "string"/>
</complexType>
</element>
<element name = "ThreadRef">
<complexType>
<attribute name = "nameRef" use = "required" type = "IDREF"/>
<attribute name = "configurationGroupRef" use = "optional" type =
"anyURI" />
<attribute name = "loop" use = "optional" type = "integer"/>
<attribute name = "instanceId" use = "optional" type = "string"/>
<attribute name = "result" use = "required" type =
"ebTest:result.type"/>
</complexType>
</element>
<element name = "Pass">
<complexType/>
</element>
<element name = "Fail">
<complexType/>
</element>
<element name = "ThreadGroup">
<complexType>
<sequence>
<element ref = "ebTest:Thread" maxOccurs = "unbounded"/>
</sequence>
</complexType>
</element>
<element name = "Sleep" type = "integer"/>
<element name = "Split">
<complexType>
<sequence maxOccurs = "unbounded">
<element ref = "ebTest:ThreadRef"/>
</sequence>
</complexType>
</element>
<element name = "Join">
<complexType>
<sequence maxOccurs = "unbounded">
<element ref = "ebTest:ThreadRef"/>
</sequence>
<attribute name = "joinType" use = "optional" type =
"ebTest:join.type" />
</complexType>
</element>
<element name = "Initiator">
<complexType>
<sequence>
<choice>
<element ref = "ebTest:Declaration"/>
ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 165 of 185

OO
P G QA Qi G Qi Qi QR Qi Qi Gt §
[\ = G S R (RS W I (S . N -]

QOONONPAWN-OO

<element ref = "ebTest:FileURI"/>
<element ref = "ebTest:MessageRef"/>
</choice>
<element ref = "ebTest:Mutator" minOccurs = "0"/>
<element ref = "ebTest:DSign" minOccurs = "0"/>
</sequence>
<attribute name = "description" use = "required" type = "string"/>
<attribute name = "result" use = "required" type =
"ebTest:result.type"/>
</complexType>
</element>
<element name = "TestServiceConfigurator">
<complexType>
<sequence>
<element ref = "ebTest:ServiceMode"/>
<element ref = "ebTest:ResponseURL"/>
<element ref = "ebTest:NotificationURL"/>
<element ref = "ebTest:PayloadDigests" minOccurs = "0"/>
</sequence>
</complexType>
</element>
<element name = "MessageRef" type = "IDREF"/>
<element name = "ConfigurationItem">
<complexType>
<sequence>
<element name = "Name" type = "ebTest:non-empty-string"/>
<element name = "Value" type = "ebTest:non-empty-string"/>
</sequence>
</complexType>
</element>
<element name = "ErrorURL" type = "anyURI"/>
<element name = "NotificationURL" type = "anyURI"/>
<element name = "SetXPathParameter">
<complexType>
<sequence>
<element name = "Name" type = "ebTest:non-empty-string"/>
<element name = "Expression" type = "ebTest:non-empty-
string"/>
</sequence>
<attribute name = "scope" use = "optional" type =
"ebTest:scope.type"/>
<attribute name = "result" use = "required" type =
"ebTest:result.type"/>
</complexType>
</element>
<element name = "ResponseURL" type = "anyURI"/>
<element name = "StoreAttachments" type = "boolean"/>
<element name = "OperationMode" type = "string"/>
<element name = "PayloadDigests">
<complexType>
<sequence>
<element name = "Payload" maxOccurs = "unbounded">
<complexType>
<sequence>
<element name = "Id" type = "anyURI"/>
<element name = "Digest" type =
"base64Binary" />
</sequence>
</complexType>
</element>
</sequence>
</complexType>
</element>
<element name = "ServiceMode" type = "ebTest:serviceMode.type"/>
<element name = "Transaction">
<complexType>
<sequence maxOccurs = "unbounded">
<choice maxOccurs = "unbounded">
<element ref = "ebTest:PutMessage"/>
<element ref = "ebTest:Initiator"/>
</choice>
ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 166 of 185

<element ref = "ebTest:GetMessage" minOccurs = "0" maxOccurs =
"unbounded" />

</sequence>
<attribute name = "timeToPerform" use = "optional" type = "duration"/>
</complexType>
</element>
<element name = "VerifyTimeDifference">
<complexType>
<sequence>
<element ref = "ebTest:ParamName" />
<element ref = "ebTest:ParamName"/>
<element ref = "ebTest:Operator"/>
<element ref = "ebTest:Difference"/>
</sequence>
<attribute name = "result" use = "required" type =
"ebTest:result.type"/>
</complexType>
</element>
<element name = "Difference" type = "duration"/>
<element name = "Operator" type = "ebTest:operator.type"/>
<element name = "XPathExpression" type = "ebTest:non-empty-string"/>
<element name = "Continue">
<complexType/>
</element>
<element name = "ParamName" type = "ebTest:non-empty-string"/>
<element name = "VerifyTimeToPerform">
<complexType>
<sequence>
<element ref = "ebTest:ThreadName" maxOccurs = "unbounded"/>
</sequence>
<attribute name = "maxTime" use = "required" type = "duration"/>
</complexType>
</element>
<element name = "ThreadName" type = "IDREF"/>
<element name = "Header">
<complexType>
<sequence>
<element ref = "ebTest:Name"/>
<element ref = "ebTest:Value"/>
</sequence>
</complexType>
</element>
<element name = "Name" type = "ebTest:non-empty-string"/>
<element name = "Value" type = "ebTest:non-empty-string"/>
</schema>
ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 167 of 185

Appendix F (Normative) ebXML Test Service Message

Schema

<?xml version = "1.0" encoding = "UTF-8"?>
<!--Generated by XML Authority. Conforms to w3c http://www.w3.0rg/2001/XMLSchema-->
<schema xmlns = "http://www.w3.0rg/2001/XMLSchema"

targetNamespace = "http://www.oasis-open.org/tc/ebxml-iic/tests/messages"

xmlns:tns = "http://www.oasis-open.org/tc/ebxml-iic/tests/messages"

xmlns:eb = "http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-
2 0.xsd"

xmlns:ds = "http://www.oasis-open.org/tc/ebxml-iic/tests/xmldsig"

xmlns:xsd = "http://www.w3.0rg/2001/XMLSchema">

<import namespace = "http://www.oasis-open.org/committees/ebxml-msg/schema/msg-
header-2 0.xsd" schemaLocation = "http://www.oasis-open.org/committees/ebxml-
msg/schema/msg-header-2 0.xsd"/>

<import namespace = "http://www.oasis-open.org/tc/ebxml-iic/tests/xmldsig"
schemalocation = "xmldsig.xsd"/>

<l--

Copyright (C) The Organization for the Advancement of Structured Information Standards
[OASIS]

January 2002. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and
derivative works that comment on or otherwise explain it or assist in its implementation
may be prepared, copied, published and distributed, in whole or in part, without
restriction of any kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this document itself may not
be modified in any way, such as by removing the copyright notice or references to OASIS,
except as needed for the purpose of developing OASIS specifications, in which case the
procedures for copyrights defined in the OASIS Intellectual Property Rights document
MUST be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or
its successors or assigns.

-—>

Ll==
Copyright (C) The Organization for the Advancement of Structured Information Standards
[OASIS]
January 2002. All Rights Reserved.
This document and translations of it may be copied and furnished to others, and
derivative works that comment on or otherwise explain it or assist in its implementation
may be prepared, copied, published and distributed, in whole or in part, without
restriction of any kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this document itself may not
be modified in any way, such as by removing the copyright notice or references to OASIS,
except as needed for the purpose of developing OASIS specifications, in which case the
procedures for copyrights defined in the OASIS Intellectual Property Rights document
MUST be followed, or as required to translate it into languages other than English.
The limited permissions granted above are perpetual and will not be revoked by OASIS or
its successors or assigns.

-=>
<element name = "InitiatorRequest">
<complexType>
<sequence>
<element ref = "tns:SetPart" maxOccurs = "unbounded"/>
</sequence>
</complexType>
</element>
<element name = "InitiatorResponse">
<complexType>
<sequence>
<element ref = "tns:Success"/>

ebxml-iic-basic-interop-test-suite-10
Copyright © OASIS Open 2003. All Rights Reserved.

03 April 2003
Page 168 of 185

</sequence>
</complexType>
</element>
<element name = "NotificationResponse">
<complexType>
<sequence>
<element ref = "tns:Success"/>
</sequence>
</complexType>
</element>
<complexType name = "GenericMessageType">
<attribute name = "synchType" use = "required" type = "tns:synch.type"/>
<attribute name = "id" use = "required" type = "string"/>
<attribute name = "servicelnstanceId" use = "optional" type = "string"/>
<attribute name = "serviceName" use = "optional" type = "string"/>
<attribute name = "reportingAction" use = "optional" type = "string"/>
<anyAttribute namespace = "##any" processContents = "strict"/>
</complexType>
<element name = "NotificationRequest">
<complexType>
<complexContent>
<extension base = "tns:GenericMessageType">
<sequence>
<element ref = "tns:Part" maxOccurs =
"unbounded" />
</sequence>
<attribute name = "notificationType" use = "required"
type = "tns:notification.type"/>
</extension>
</complexContent>
</complexType>
</element>
<element name = "TestServiceConfiguratorRequest">
<complexType>
<sequence>
<element name = "ServiceMode" type = "tns:serviceMode.type"/>
<element ref = "tns:ResponseURL"/>
<element ref = "tns:NotificationURL"/>
<element ref = "tns:PayloadDigests" minOccurs = "0"/>
</sequence>
</complexType>
</element>
<element name = "ResponseURL" type = "anyURI"/>
<element name = "TestServiceConfiguratorResponse">
<complexType>
<sequence>
<element ref = "tns:Success"/>
</sequence>
</complexType>
</element>
<element name = "Status" type = "boolean"/>
<element name = "Mode" type = "tns:non-empty-string"/>
<element name = "MessageId" type = "tns:non-empty-string"/>
<simpleType name = "non-empty-string">
<restriction base = "string">
<minLength value = "1"/>
</restriction>
</simpleType>
<simpleType name = "configAction.type">
<restriction base = "NMTOKEN">
<enumeration value = "query"/>
<enumeration value = "replace"/>
</restriction>
</simpleType>
<simpleType name = "result.type">
<restriction base = "NMTOKEN">
<enumeration value = "pass"/>
<enumeration value = "fail"/>
</restriction>
</simpleType>
<simpleType name = "operationMode.type">

ebxml-iic-basic-interop-test-suite-10
Copyright © OASIS Open 2003. All Rights Reserved.

03 April 2003
Page 169 of 185

<restriction base = "NMTOKEN">

<enumeration value = "reporting"/>
<enumeration value = "loop"/>
</restriction>
</simpleType>
<simpleType name = "parameter.type">
<restriction base = "NMTOKEN">
<enumeration value = "parameter"/>
<enumeration value = "string"/>
</restriction>
</simpleType>
<simpleType name = "serviceMode.type">
<restriction base = "NMTOKEN">
<enumeration value = "remote-reporting"/>
<enumeration value = "local-reporting"/>
<enumeration value = "loop"/>
</restriction>
</simpleType>
<simpleType name = "parameter.type">
<restriction base = "NMTOKEN">
<enumeration value = "string"/>
<enumeration value = "namespace"/>
</restriction>
</simpleType>
<simpleType name = "notification.type">
<restriction base = "NMTOKEN">
<enumeration value = "errURL"/>
<enumeration value = "errorApp"/>
<enumeration value = "message"/>
</restriction>
</simpleType>
<simpleType name = "synch.type">
<restriction base = "string">
<enumeration value = "synchronous"/>
<enumeration value = "asynchronous"/>
</restriction>
</simpleType>
<element name = "OperationMode" type = "tns:operationMode.type"/>
<element name = "NotificationURL" type = "anyURI"/>
<element name = "DSign">
<complexType>
<sequence>
<element ref = "ds:Signature"/>
</sequence>
</complexType>
</element>
<element name = "PayloadDigests">
<complexType>
<sequence>
<element ref = "tns:Payload" maxOccurs = "unbounded"/>
</sequence>
</complexType>
</element>
<element name = "Id" type = "string"/>
<element name = "Digest" type = "string"/>
<element name = "SetPart">
<complexType>
<sequence>
<element ref = "tns:Header" minOccurs = "O" maxOccurs =
"unbounded" />
<element ref = "tns:Declaration" minOccurs = "0"/>
<element ref = "tns:DSign" minOccurs = "0"/>
</sequence>
</complexType>
</element>
<element name = "Header">
<complexType>
<sequence>
<element ref = "tns:Name"/>
<element ref = "tns:Value"/>
</sequence>
ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 170 of 185

6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452

6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465

</complexType>
</element>
<element name = "Declaration">
<complexType>
<sequence>
<any namespace = "##other" processContents = "lax" minOccurs =
"0" maxOccurs = "unbounded"/>
</sequence>
</complexType>
</element>
<element name = "Payload">
<complexType>
<sequence>
<element ref = "tns:Id"/>
<element ref = "tns:Success"/>
</sequence>
</complexType>
</element>
<element name = "Name" type = "string"/>
<element name = "Value" type = "string"/>
<element name = "Part">
<complexType>
<sequence>
<element ref = "tns:Header" minOccurs = "0" maxOccurs =
"unbounded" />
<element ref = "tns:Content" minOccurs = "0"/>
</sequence>
</complexType>
</element>
<element name = "Content">
<complexType>
<sequence>
<any namespace = "##other" processContents = "lax" minOccurs =
"0" maxOccurs = "unbounded"/>
</sequence>
</complexType>
</element>
<element name = "PayloadVerifyResponse">
<complexType>
<sequence>
<element ref = "tns:Payload" minOccurs = "0" maxOccurs =
"unbounded" />
</sequence>
</complexType>
</element>
<element name = "Success" type = "boolean"/>

</schema>

ebxml-iic-basic-interop-test-suite-10
Copyright © OASIS Open 2003. All Rights Reserved.

03 April 2003
Page 171 of 185

6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479

ebxml-iic-basic-interop-test-suite-10
Copyright © OASIS Open 2003. All Rights Reserved.

03 April 2003
Page 172 of 185

6480

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 173 of 185

sss1 Appendix G WSDL Definitions for Test Service

6482

6483

6484

6485

6486

6487 WSDL Definition of the Test Service initiator SOAP method

6488

6489 <?xml version="1.0" encoding="UTF-8"?>

6490 <l-- edited with XMLSPY v2004 rel. 4 U (http://www.xmlspy.com) by Mike Kass (Personal) -
6491 ->

6492 <wsdl:definitions xmlns="http://schemas.xmlsoap.org/wsdl/"

6493 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" xmlns:tns="urn:oasis:names:tc:ebxml-
6494 iic:testservice:wsdl:2.0" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

6495 xmlns:xsdl="http://www.oasis-open.org/tc/ebxml-iic/tests/messages"

6496 xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"

6497 targetNamespace="urn:oasis:names:tc:ebxml-iic:testservice:wsdl:2.0"

6498 name="RegistryService">

6499 <wsdl:import namespace="http://www.oasis-open.org/tc/ebxml-iic/tests/messages"
6500 location="schemas/TestServiceMessages.xsd"/>

6501 <wsdl:message name="InitiatorRequest">

6502 <wsdl:part name="InitiatorRequest" element="xsdl:InitiatorRequest"/>
6503 </wsdl :message>

6504 <wsdl:message name="InitiatorResponse">

6505 <wsdl:part name="InitiatorResponse" element="xsdl:InitiatorResponse"/>
6506 </wsdl:message>

6507 <wsdl:portType name="SendPortType">

6508 <documentation>Maps to the Initiator interface of Test Framework
6509 spec.</documentation>

6510 <wsdl:operation name="initiator">

6511 <wsdl:input message="tns:InitiatorRequest"/>

6512 <wsdl:output message="tns:InitiatorResponse"/>

6513 </wsdl:operation>

6514 </wsdl:portType>

6515 <wsdl:binding name="InitiatorSOAPBinding" type="tns:SendPortType">

6516 <soap:binding style="document"

6517 transport="http://schemas.xmlsoap.org/soap/http"/>

6518 <wsdl:operation name="initiator">

6519 <soap:operation

6520 soapAction="uri:ocasis:ebxml:iic:testservice:Send:initiator"/>

6521 <wsdl:input>

6522 <mime:multipartRelated>

6523 <mime:part>

6524 <soap:body use="literal"/>

6525 </mime:part>

6526 </mime:multipartRelated>

6527 </wsdl:input>

6528 <wsdl:output>

6529 <mime:multipartRelated>

6530 <mime:part>

6531 <soap:body use="literal"/>

6532 </mime:part>

6533 </mime:multipartRelated>

6534 </wsdl:output>

6535 </wsdl:operation>

6536 </wsdl:binding>

6537 <wsdl:service name="TestService">

6538 <documentation>The QueryManager service of OASIS ebXML Test Framework version
6539 1.1</documentation>

6540 <wsdl:port name="InitiatorSOAPBinding" binding="tns:InitiatorSOAPBinding">
6541 <soap:address

6542 location="http://your URL to_your ConfigurationService"/>

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 174 of 185

</wsdl:port>
</wsdl:service>
<documentation>This is the the normative abstract WSDL service definition for the
OASIS ebXML Test Service</documentation>
</wsdl:definitions>

WSDL Definitnion of the Test Service configure method

<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XMLSPY v2004 rel. 4 U (http://www.xmlspy.com) by Mike Kass (Personal)
->
<wsdl:definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" xmlns:tns="urn:oasis:names:tc:ebxml-
iic:testservice:wsdl:2.0" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsdl="http://www.oasis-open.org/tc/ebxml-iic/tests/messages"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
targetNamespace="urn:oasis:names:tc:ebxml-iic:testservice:wsdl:2.0"
name="RegistryService">
<wsdl:import namespace="http://www.oasis-open.org/tc/ebxml-iic/tests/messages"
location="schemas/TestServiceMessages.xsd" />
<wsdl:message name="TestServiceConfiguratorRequest">
<wsdl:part name="TestServiceConfiguratorRequest"
element="xsdl:TestServiceConfiguratorRequest" />
</wsdl:message>
<wsdl:message name="TestServiceConfiguratorResponse">
<wsdl:part name="TestServiceConfiguratorResponse"
element="xsdl:TestServiceConfiguratorResponse"/>
</wsdl:message>
<wsdl:portType name="ConfigurationPortType">
<documentation>Maps to the Configurator interface of Test Framework
spec.</documentation>
<wsdl:operation name="configurator">
<wsdl:input message="tns:TestServiceConfiguratorRequest"/>
<wsdl:output message="tns:TestServiceConfiguratorResponse"/>
</wsdl:operation>
</wsdl:portType>
<wsdl:binding name="ConfiguratorSOAPBinding" type="tns:ConfigurationPortType">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
<wsdl:operation name="configurator">
<soap:operation
soapAction="uri:ocasis:ebxml:iic:testservice:Configuration:configurator"/>
<wsdl:input>
<mime:multipartRelated>
<mime:part>
<soap:body/>
</mime:part>
</mime:multipartRelated>
</wsdl:input>
<wsdl:output>
<mime:multipartRelated>
<mime:part>
<soap:body/>
</mime:part>
</mime:multipartRelated>
</wsdl:output>
</wsdl:operation>
</wsdl:binding>
<wsdl:service name="TestService">

ebxml-iic-basic-interop-test-suite-10
Copyright © OASIS Open 2003. All Rights Reserved.

03 April 2003
Page 175 of 185

<documentation>The QueryManager service of OASIS ebXML Test Framework version
1.1</documentation>
<wsdl:port name="ConfiguratorSOAPBinding"
binding="tns:ConfiguratorSOAPBinding">
<soap:address
location="http://your URL to your ConfigurationService"/>
</wsdl:port>
</wsdl:service>
<documentation>This is the the normative abstract WSDL service definition for the
OASIS ebXML Test Service</documentation>
</wsdl:definitions>

WSDL Definition of the Test Driver notify method

<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XMLSPY v2004 rel. 3 U (http://www.xmlspy.com) by Mike Kass (Personal) -
->
<wsdl:definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" xmlns:tns="urn:oasis:names:tc:ebxml-
iic:testservice:wsdl:2.0" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsdl="http://www.oasis-open.org/tc/ebxml-iic/tests/messages"
targetNamespace="urn:oasis:names:tc:ebxml-iic:testservice:wsdl:2.0"
name="RegistryService">
<wsdl:import namespace="http://www.oasis-open.org/tc/ebxml-iic/tests/messages"
location="schemas/TestServiceMessages.xsd" />
<wsdl:message name="NotificationRequest">
<wsdl:part name="NotificationRequest" element="xsdl:NotificationRequest"/>
</wsdl:message>
<wsdl:message name="NotificationResponse">
<wsdl:part name="NotificationResponse" element="xsdl:NotificationResponse"/>
</wsdl :message>
<wsdl:portType name="NotificationPortType">
<documentation>Maps to the Notification interface of Test Framework
spec.</documentation>
<wsdl:operation name="Notify">
<wsdl:input message="tns:NotificationRequest"/>
<wsdl:output message="tns:NotificationResponse"/>
</wsdl:operation>
</wsdl:portType>
<wsdl:binding name="NotificationSOAPBinding" type="tns:NotificationPortType">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
<wsdl:operation name="Notify">
<soap:operation
soapAction="uri:ocasis:ebxml:iic:testservice:Receive:Notification"/>
<wsdl:input>
<mime:multipartRelated>
<mime:part>
<soap:body use="literal"/>
</mime:part>
</mime:multipartRelated>
</wsdl:input>
<wsdl:output>
<mime:multipartRelated>
<mime:part>
<soap:body use="literal"/>
</mime:part>
</mime:multipartRelated>
</wsdl:output>
</wsdl:operation>

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 176 of 185

</wsdl:binding>
<wsdl:service name="TestDriverReceiveService">
<documentation>The Receive service of OASIS ebXML Test Framework version
1.1</documentation>
<wsdl:port name="NotifySOAPBinding" binding="tns:NotificationSOAPBinding">
<soap:address location="http://your URL to your ReceiveService"/>
</wsdl:port>
</wsdl:service>
<documentation>This is the the normative abstract WSDL service definition for the
OASIS ebXML Test Service</documentation>
</wsdl:definitions>

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 177 of 185

sss2 Appendix H Terminology

6683 Several terms used in this specification are borrowed from the Conformance Glossary (OASIS,

6684 [ConfGlossary]) and also from the Standards and Conformance Testing Group at NIST.

6685 [ConfCertModelNIST]. They are not reported in this glossary, which only reflects (1) terms that are

6686 believed to be specific to — and introduced by - the ebXML Test Framework, or (2) terms that have a well
6687 understood meaning in testing literature (see above references) and may have additional properties in the
6688 context of the Test Framework that is worth mentioning.

6689

Term Definition

Asymmetric testing Interoperability testing where all parties are not equally tested for the
same features. An asymmetric interoperability test suite is typically
driven from one party, and will need to be executed from every other
party in order to evenly test for all interoperability features between
candidate parties.

Base CPA Required by both the conformance and interoperabililty test suites
that describe both the Test Driver and Test Service Collaboration
Protocol Profile Agreement. This is the “bootstrap” configuration for
all messaging between the testing and candidate ebXML
applications. Each test suite will define additional CPAs. How the
base CPA is represented to applications is implementation specific.

Candidate Implementation (or Implementation Under test): The implementation (realization of a
specification) used as a target of the testing (e.g. conformance
testing).

Conformance Fulfillment of an implementation of all requirements specified;

adherence of an implementation to the requirements of one or more
specific standards or specifications.

Connection mode (Test Driver in) | In connection mode and depending on the test harness, the test
driver will interact with other components by directly generating
ebXML messages at transport level (e.g. generates HTTP
envelopes).

Interoperability profile A set of test requirements for interoperability which is a subset of all
possible interoperability requirements, and which usually exercises
features that correspond to specific user needs.

Interoperability Testing Process of verifying that two implementations of the same
specification, or that an implementation and its operational
environment, can interoperate according to the requirements of an
assumed agreement or contract. This contract does not belong
necessarily to the specification, but its terms and elements should
be defined in it with enough detail, so that such a contract, combined
with the specification, will be sufficient to determine precisely the
expected behavior of an implementation, and to test it.

Local Reporting mode (Test In this mode (a sub-mode of Reporting), the Test Service is installed
Service in) on the same host as the Test Driver it reports to, and executes in the
same process space. The notification uses the Receive interface of
the Test Driver, which must be operating in service mode.

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 178 of 185

6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702

Loop mode (Test Service in)

When a test service is in loop mode, it does not generate
notifications to the test driver. The test service only communicates
with external parties via the message handler.

MSH

Message Service Handler, an implementation of ebXML Messaging
Services

Reporting mode (Test Service in)

A test service is deployed in reporting mode, when it notifies the test
driver of invoked actions. This notification usually contains material
from received messages.

Profile

A profile is used as a method for defining subsets of a specification
by identifying the functionality, parameters, options, and/or
implementation requirements necessary to satisfy the requirements
of a particular community of users. Specifications that explicitly
recognize profiles should provide rules for profile creation,
maintenance, registration, and applicability.

Remote Reporting mode (Test
Service in)

In this mode (a sub-mode of Reporting), the Test Service is
deployed on a different host than the Test Driver it reports to. The
notification is done via messages to the Test Driver, which is
operating in connection mode.

Service mode (Test Driver in)

The Test Driver invokes actions in the test service via a
programmatic interface (as opposed to via messages). The Test
Service must be in local reporting mode.

Specification coverage

Specifies the degree that the specification requirements are satisfied
by the set of test requirements included in the test suite document.
Coverage can be full, partial or none.

Test actions

(Or Test Service actions). Standard functions available in the test
service to support most test cases.

Test case

In the TestFramework, a test case is a sequence of discrete
Threads, aimed at verifying a test requirement.

Test Requirements coverage

Specifies the degree that the test requirements are satisfied by the
set of test cases listed in the test suite document. Coverage can be
full, contingent, partial or none.

ebxml-iic-basic-interop-test-suite-10

Copyright © OASIS Open 2003. All Rights Reserved.

03 April 2003
Page 179 of 185

6703

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 180 of 185

6704

6705

6706

6707

6708
6709

6710
6711

6712
6713

6714

6715
6716

6717
6718

6719
6720

6721
6722
6723
6724

6725
6726

6727
6728
6729
6730
6731

6732
6733
6734

6735

6736
6737

6738
6739

6740
6741

6742
6743

Appendix | References

.1 Normative References

[ConfCertModelNIST] Conformance Testing and Certification Model for Software Specifications. L.
Carnahan, L. Rosenthal, M. Skall. ISACC '98 Conference. March 1998

[ConfCertTestFrmk] Conformance Testing and Certification Framework. L. Rosenthal, M. Skall, L.. Carnahan.
April 2001

[ConfReqOASIS] Conformance Requirements for Specifications. OASIS Conformance Technical
Committee. March 2002.

[ConfGlossary] Conformance Glossary. OASIS Conformance TC, L. Rosenthal. September 2000.

[RFC2119] Key Words for use in RFCs to Indicate Requirement Levels, Internet Engineering Task
Force, March 1997

[RFC2045] Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message
Bodies, N Freed & N Borenstein, Published November 1996

[RFC2046] Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types. N. Freed, N.
Borenstein. November 1996.

[RFC2387] The MIME Multipart/Related Content-type. E. Levinson. August 1998.

[RFC2392] Content-ID and Message-ID Uniform Resource Locators. E. Levinson, August 1998
[RFC2396] Uniform Resource Identifiers (URI): Generic Syntax. T Berners-Lee, August 1998
[RFC2821] Simple Mail Transfer Protocol, J. Klensin, Editor, April 2001 Obsoletes RFC 821

[RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P. and T. Berners-Lee,
"Hypertext Transfer Protocol, HTTP/1.1", June 1999.

[SOAP] W3C-Draft-Simple Object Access Protocol (SOAP) v1.1, Don Box, DevelopMentor; David
Ehnebuske, IBM; Gopal Kakivaya, Andrew Layman, Henrik Frystyk Nielsen, Satish
Thatte, Microsoft; Noah Mendelsohn, Lotus Development Corp.; Dave Winer, UserLand
Software, Inc.; W3C Note 08 May 2000,
http://www.w3.0rg/TR/2000/NOTE-SOAP-20000508/

[SOAPAttach] SOAP Messages with Attachments, John J. Barton, Hewlett Packard Labs; Satish Thatte
and Henrik Frystyk Nielsen, Microsoft, Published Oct 09 2000
http://www.w3.0rg/TR/2000/NOTE-SOAP-attachments-20001211

[XLINK] W3C XML Linking Recommendation, http://www.w3.0org/TR/2001/REC-xlink-20010627/

[XML] W3C Recommendation: Extensible Markup Language (XML) 1.0 (Second Edition),
October 2000, http://www.w3.0rg/TR/2000/REC-xmI-20001006

[XMLC14N] W3C Recommendation Canonical XML 1.0,
http://www.w3.0rg/TR/2001/REC-xml-c14n-20010315

[XMLNS] W3C Recommendation for Namespaces in XML, World Wide Web Consortium, 14
January 1999, http://www.w3.0rg/TR/1999/REC-xml-names-19990114/

[XMLDSIG] Joint W3C/IETF XML-Signature Syntax and Processing specification,
http://www.w3.0rg/TR/2002/REC-xmldsig-core-20020212/.

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 181 of 185

6744 [XPointer] XML Pointer Language (XPointer) Version 1.0, W3C Candidate Recommendation 11
6745 September 2001, http://www.w3.0rg/TR/2001/CR-xptr-20010911/

6746

6747 1.2 Non-Normative References

6748 [ebTestFramework] ebXML Test Framework specification, Version 1.0, Technical Committee
6749 Specification, March 4, 2003,
6750 http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ebxml-iic
6751 [ebMS] ebXML Messaging Service Specification, Version 2.0,
6752 http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ebxml-msg
6753 [ebMSiInteropTests] ebXML MS V2.0 Basic Interoperability Profile Test Cases,
6754 http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ebxml-iic
6755 [ebMSConfTestSuite] ebXML MS V2.0 Conformance Test Suite,
6756 http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ebxml-iic
6757 [ebMSInteropReqgs] ebXML MS V2.0 Interoperability Test Requirements,
6758 http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ebxml-iic
6759
6760 [XMLSchema] W3C XML Schema Recommendation,
6761 http://www.w3.0rg/TR/2001/REC-xmlschema-0-20010502/
6762 http://www.w3.0rg/TR/2001/REC-xmischema-1-20010502/
6763 http://www.w3.0rg/TR/2001/REC-xmIschema-2-20010502/
6764 [ebCPP] ebXML Collaboration Protocol Profile and Agreement specification, Version 1.0,
6765 published 10 May, 2001,
6766 http://www.ebxml.org/specs/ebCCP.doc
6767 [ebBPSS] ebXML Business Process Specification Schema, version 1.0, published 27 April 2001,
6768 http://www.ebxml.org/specs/ebBPSS.pdf.
6769 [ebRS] ebXML Registry Services Specification, version 2.0, published 6 December 2001
6770 http://www.oasis-open.org/committees/regrep/documents/2.0/specs/ebrs.pdf,
6771 published, 5 December 2001.
6772
ebxml-iic-basic-interop-test-suite-10 03 April 2003

Copyright © OASIS Open 2003. All Rights Reserved. Page 182 of 185

6773

6774
6775
6776

6777

6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790

6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809

Appendix J Acknowledgments

The authors wish to acknowledge the support of the members of the OASIS ebXML IIC TC who
contributed ideas, comments and text to this specification by the group’s discussion eMail list, on
conference calls and during face-to-face meetings.

J.1 lIC Committee Members

Jacques Durand, Fujitsu <jdurand@fsw.fujitsu.com>

Jeffery Eck, Global Exchange Services <Jeffery.Eck@gxs.ge.com>
Hatem El Sebaaly, IPNet Solutions <hatem@ipnetsolutions.com>
Aaron Gomez, Drummond Group Inc. <aaron@drummondgroup.com>
Michael Kass, NIST <michael.kass@nist.gov>

Matthew MacKenzie, Individual <matt@mac-kenzie.net>

Monica Martin, Sun Microsystems <monica.martin@sun.com>

Tim Sakach, Drake Certivo <tsakach@certivo.net>

Jeff Turpin, Cyclone Commerce <jturpin@cyclonecommerce.com>
Eric van Lydegraf, Kinzan <ericv@kinzan.com>

Pete Wenzel, SeeBeyond <pete@seebeyond.com>

Steven Yung, Sun Microsystems <steven.yung@sun.com>
Boonserm Kulvatunyou, NIST <serm@nist.gov>

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 183 of 185

6810

6811

Appendix K Revision History

Rev Date By Whom What

cs-10 2003-03-07 Michael Kass Initial version

cs-11 2004-03-30 Michael Kass First revision (DRAFT)
cs-12 2004-04-12 Michael Kass Second revision (DRAFT)

ebxml-iic-basic-interop-test-suite-10
Copyright © OASIS Open 2003. All Rights Reserved.

03 April 2003
Page 184 of 185

6812

6813
6814
6815
6816
6817
6818
6819
6820

6821
6822
6823

6824

6825
6826
6827
6828
6829
6830
6831
6832

6833
6834

6835
6836
6837
6838

6839

Appendix L Notices

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS's procedures with
respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights
made available for publication and any assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of such proprietary rights by
implementors or users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications,
or other proprietary rights which may cover technology that may be required to implement this
specification. Please address the information to the OASIS Executive Director.

Copyright © OASIS Open 2003. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this paragraph are included on all such copies and derivative works. However, this document itself
does not be modified in any way, such as by removing the copyright notice or references to OASIS,
except as needed for the purpose of developing OASIS specifications, in which case the procedures for
copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to
translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

This document and the information contained herein is provided on an “AS IS” basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR
ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

ebxml-iic-basic-interop-test-suite-10 03 April 2003
Copyright © OASIS Open 2003. All Rights Reserved. Page 185 of 185

