1.1 Execution of a Test Case and Test Case Results

A Test Case is a workflow of Test Threads. Test Threads can be thought of as containers of test operations used to perform some specific testing function. For example, a Thread MAY be used to send a message, receive a response and evaluate the content of that message response (to test a single “business transaction activity”. Or, a Thread MAY be used as a container of other Threads (performing a higher-level role in testing “binary collaboration activity” between two parties.

Threads MAY contain a number of test operations, including message construction and transmission, message reception and evaluation, assertion testing and logic control operations. Section 8 provides the syntactic rules and semantic meaning of the XML schema used to define Test Cases and their Threads.

However, before introducing the technical details of the IIC Test Framework scripting language, it would be helpful to understand how Threads can be used in an abstract sense in 3 sample Test Cases:

1.1.1 Test Case #1: Basic Transaction Send/Receive within specified TimeToAcknowledge and TimeToPerform

This Test Case illustrates a typical “send/receive” testing scenario, in which time plays a critical role in determining whether the candidate business application “passes” or “fails”.
· The Test Driver (acting in the role of the “Buyer”) sends a Purchase Order document to the candidate business application (the “Seller”).
· The Seller MUST respond with an Acknowledgment signal message within 60 seconds of receiving the Purchase Order message. See my comments below: that seems to be an ebMS reliable messaging Ack. Suggest we don’t make it part of our test case (we can just ignore it)
· Additionally, the Seller MUST respond with a “business Acknowledgment message” within 120 seconds.
· Lastly, either a Confirmation or Rejection message must be received by the Test Driver within 180 seconds of sending the Purchase Order message.
· Test Driver send a Receipt Ack for the confirmation/rejection
Below is a table illustrating (in an abstract way) how test Threads would be constructed and executed:
I think it is important that these use cases, even if not going into much detail, show the logic of message filtering (GetMessage filter, because it makes a big difference whether a condition is in the Filter vs in the Assertion after), and that the explanations also address the notion of the Message Store. (i.e. GetMessage is executed on a pool of messages, and the selected messages may (default) or may not be removed from the pool). So I add in the HTML table just what it takes to introduce the notion of Filter:
	Test Operation
	Argument(s)
	Description

	Thread
	name='main'
	

	PutMessage
	These 2 first rows are duplicate of the 2 next.
	Send a message containing a Purchase Order attachment

	Test Operation
	Argument(s)
	Description

	Thread
	name='main'
	

	PutMessage
	
	Send a message containing a Purchase Order attachment

	Split
	
	Fork a “sleep” Thread that waits for 3 minutes

	Thread
	name='thread_01'
	

	Sleep time=’180’
	
	Sleep for 180 seconds

	End Thread
	
	

	End Split
	
	

	Split
	
	Concurrently check for a signal Acknowledgment

	Thread
	name='thread_02'
	

	GetMessage
	
	Retrieve ebXML MS Acknowledgment

	Assertion
	
	Verify that Receipt Acknowledgment occured within specified 'TimeToAcknowledge of 60 seconds' Is this a Receipt Ack, or an ebMS reliable messaging Ack? I think the latter – suggest we don’t use it in this use case (might be confusing)
We can explain in the comments that even if such ebMS Ack messages are produced, they would be ignored by our Filters

	End Thread
	
	

	End Split
	
	

	Split
	
	Concurrently check for a business Acknowledgment

	Thread
	name='thread_03'
	

	GetMessage
	
	Retrieve business Acknowledgment
We should be a bit more precise here: succinctly specify the filter:

“Filter: any message of type Receipt Acknowledgement, having same ConversationId as PurchaseOrder”

	Assertion
	
	Verify that message is an 'ReceiptAcknowledgment with a Purchase order Reference corresponding to the ConversationId' It is important to decide whether

	Assertion
	
	Verify that Receipt Acknowledgment occured within specified 'TimeToAcknowledgeReceipt'

Period of 120 seconds
Should we be a little more precise here for the reader, and suggest how this time will be measured: I.e. we could “set a time variable at the beginning of this test case, and compare if the diff with current date is > 120.

	End Thread
	
	

	End Split
	
	

	Join
	name=’thread_01’

name=’thread_02’

name=’thread_03’
	This should be just a note: it sounds like there is a test condition associated with the “join”. I suggests to remove it as the explanations that follow the HTML should be enough.Make sure that both messaging and business Acknowledgments were received, and that 180 seconds have passed since the Purchase Order message was sent

	GetMessage
	
	Retrieve Response message(s)
We should be a bit more precise here: succinctly specify the filter:

“Filter: any business response message (either Confirmation or Rejection)” with same ConversationId as PurchaseOrder.

	Assertion
	
	Verify that result contains either a single Confirmation or Rejection

	Assertion
	
	Verify that the Confirmation/Rejection message was sent (or here received?) Isn’t that done in previous assertion?

	PutMessage
	
	Send a Receipt Acknowledgment (is not an ebMS reliable messaging Ack)

	End Thread
	
	

Table 9 – Abstract representation of Test Case Thread execution flow

Comments on Table 9:

· We should leave out the ebXML MS Acknowledgment message for this use case: it complicates the example and may confuse people (we can add a note that, in case an Ack is generated – or any other non relevant message -, our test case would simply ignore it, by NOT selecting it in GetMessage filters)
· We might remind the failure cases, when they occur (e.g. in Assertion, add “if not satisfied, the test case FAIL”
1.1.1.1 Semantics of Thread Execution:

 A “main” Thread is invoked, which contains two sub-threads and their test operations. It is a RECOMMENDED practice that a “main” Thread be used to control execution of the entire Test Case. Within this main Thread, a “PutMessage” operation sends a Purchawe Order request to a candidate business applkcations. Also within this main Thread, three sub-threads (thread_01, 02 and 03) are invoked “in parallel” using the Split operation. The first thread simply sleeps for 3 minutes, the second thread checks for the return of a messaging-level Acknowledgment message (which MUST be returned within 60 seconds of the Puchase Order Timestamp value). The Second Thread simultaneously checks for a business-level Acknowledgment message (which MUST be received within 120 seconds of the initial Purchase Order request Timestamp value)

Continued execution of the Test Case is predicated upon the successful completion of thread 01, 02 and 03 (which is determined by a successful “Join” teste operation). Any exception conditions, or TestAssertion operation failures in any of those Threads results in an immediate end to the Test Case, with a final Test Case state of “undetermined” or “fail” (respectively).

Assuming that Threads 01, 02 and 03 complete successfully, the Join (by default an “and join”) operation will continue Test Case exection. A final TestAssertion operationn is done to determine if a Confirmation or Rejection message was received by the Test Driver. If one or the other was received, then a final Acknowledgment signal is sent back to the “Seller” application and Test Case execution is complete. A Test Case result of “pass” results from the successful completion of the final Acknowledgment send operation.

1.1.2 Test Case #2: Basic Error Error Handling Test Scenario

This Test Case illustrates a scenario in which an error message may be generated at any time in the business transaction. The Test Driver (acting in the role of the “Buyer”) sends a Purchase Order document to the candidate business application (the “Seller”). The Seller responds with an Acceptance or Rejection message. An error MAY occur at any point within 5 minutes of the initial Purchase Order request (either before, during or after receiving the Acceptance or Rejection response).

Below is a table illustrating (in an abstract way) how test Threads would be constructed and executed:

	Test Operation
	Argument(s)
	Description

	Thread
	name='main'
	Create main Thread

	PutMessage
	
	Send a Purchase Order message

	End Thread
	
	

	Split
	
	

	Thread
	name='thread_01'
	

	GetMessage
	
	Get any received error messages

	TestAssertion
	
	Verify no error message is present

	End Thread
	
	

	End Split
	
	

	Thread
	name='thread_03'
	

	GetMessage
	
	Retrieve response message

	TestAssertion
	
	Verify Acceptance or Rejection message was returned

	End Thread
	
	

	Join
	name=’thread_01’
	

	End Thread
	
	

Table 9 – Abstract representation of Test Case Thread execution flow

1.1.2.1 Semantics of Thread Execution:

 A “main” Thread is invoked, which contains two sub-threads (01, 02 and 03) and their test operations. It is a RECOMMENDED practice that a “main” Thread be used to control execution of the entire Test Case. Within this main Thread, two sub-threads (thread_01_ and thread_02) are invoked “in parallel” using the Split operation. Thread_01 sends the Purchase Order message to the candidate application. Thread_02 “listens” for any incoming error messages.

Continued execution of the Test Case is predicated upon the successful finish of Thread_01 (no explicit exits or system exceptions). The Join test operation determines if thread_01 has completed. If it has, then execution continues with thread_03 (a GetMessage test operation which retrieves a business Acceptance or Rejection message).

Logical execution of the Test Case would continue based upon the result of this TestAssertion operation in thread_03. Generally, if a TestAssertion operation fails, Test Case execution ceases, and the Test Case final result is “fail”.

Assuming that thread_03’s TestAssertion operation “passes” (a business Acceptance or Rejection message is received), the next Join operation will hold execution of the Test Case until “thread_02” (which has been constantly checking for any error messages during execution of threads 01 and 03) completes. If that TestAssertion is true, then workflow will run to its logical conclusion, setting the final Test Case state to “pass”.

1.1.3 Test Case #3: Conditional Branching Scenario

This Test Case illustrates a scenario in branching of Test Case logic is dependent upon the outcome of a TestAssertion operation. The Test Driver (acting in the role of the “Buyer”) sends a Request for Quote document to the candidate business application (the “Seller”). The Seller responds with an Approval or Rejection message. An error MAY occur at any point after the initial of the initial Request for Quote, and must be caught by the Test Driver.

Below is a table illustrating (in an abstract way) how test Threads would be constructed and executed:

Table 11 – Abstract representation of Test Case Thread execution flow

	Test Operation
	Argument(s)
	Description

	Thread
	name='main'
	

	PutMessage
	
	Construct a basic message header with a Request for Quote

	Split
	
	Run this Thread concurrently while all other test processing occurs

	Thread
	name='thread_01'
	

	GetMessage
	stepDuration=’300’
	Get all received messages from the MessageStore

	TestAssertion
	
	Verify No Error is present

	End Thread
	name=’thread_01’
	

	End Split
	
	

	GetMessage
	
	Retrieve Response message

	TestAssertion
	
	Verify that message is an 'Approval' message

	WhenTrue
	
	If it is

	Thread
	name='thread_02'
	Execute the Approval processing Thread

	TestAssertion
	
	Validate approval document'

	GetMessage
	
	Retrieve Quote message

	TestAssertion
	
	Validate that message is a 'Quote'

	PutMessage
	
	Send Approval of Quote message

	End Thread
	name='thread_02'
	

	End WhenTrue
	
	

	TestAssertion
	
	Test if message is a Rejection message

	WhenTrue
	
	If it is

	Thread
	name='thread_03'
	Execute the Rejection processing Thread

	GetMessage
	
	Retrieve response message

	TestAssertion
	
	Verify that message is an 'alternative' to Acceptance or Rejection message

	End Thread
	name='thread_03'
	

	End WhenTrue
	
	

	Join
	name=thread_01
	Make sure no errors have occurred during the transaction

	End Thread
	name='main'
	

1.1.3.1 Semantics of Thread Execution:

 A “main” Thread is invoked, which contains three sub-threads (01, 02 and 03) and their test operations. It is a RECOMMENDED practice that a “main” Thread be used to control execution of the entire Test Case

The main Thread executes a simple Request for Quote request to the candidate business application.

Following the PutMessage test operation one sub-thread (thread_01) is invoked “in parallel” using the Split operation. This thread constantly checks for any received messages throughout the execution of the entire Test Case.

Next, the main Thread does a GetMessage test operation to retrieve any response messages from the Test Driver Message Store.

Continued execution of the Test Case is predicated upon the successful retrieval of either an Approval or a Rejection message from the candidate application.

This can be expressed as two boolean expressions, whose true result causes the execution of a sub-thread of test operations (either Acceptance thread_02 or Rejection thread_03). Again, continued execution of the Test Case is predicated on the results of the TestAssertion operations within each Thread.

Lastly, execution completes by passing control back to the main via the Join operation, which ends the “error checking thread_01”, then ends Test Case execution. Completion of this logical workflow indicates a “pass” result for the Test Case.

1.1.4 The following rules specify how a Test Driver determines if a he Test Case evaluates to a value of “pass, fail, or undetermined”.

The Test Case has a final state of “pass” if:

The workflow executes to a normal conclusion. This normal conclusion can occur in 3 ways.

(1) The Test Case workflow executes to a successful conclusion without any system exceptions. In this case, that would mean i completing the final PutMessage operation (which sends a signal Acknowledgment message to the candidate business application) without generating any exceptions.

(2) An explicit “exit” statement is included with a TestAssertion operation, telling the Test Driver to exit with a final state of “pass” if either a boolean “true” or (possibly) a “false” result isreturned by that operation.

The Test Case has a final state of “fail” if:

(1) A TestAssertion result is “false”, and no explicit instruction to continue, or explicit exit instruction with a result of “pass” or “undetermined” is with that TestAssertion operation(i.e. this is the “default” behavior for a TestAssertion operation).l

(2) The Test Driver is explicitly instructed to exit Test Case execution with a final Test Case result of “fail”, based upon the result of a TestAssertion operation. For example, if neither a “Confirmation” or “Rejection” message was received by the Test Driver, it would (by default) set the final Test Case state to “fail”, and immediately cease execution.

The Test Case has a final state of “undetermined” if:

A Test Driver exception condition (as defined for a particular individual test operation) occurs in the workflow. For example, a protocol error occurring in a PutMessage or GetMessage test operation will generate such an exception.

OR

The last executed TestAssertion operation in the workflow explicitly exitest the the Test Case with a final state of “undetermined”. . A test writer MAY wish to set this type of exit condition if the TestAssertion operation is being used to determine if some “precondition” must be present prior to performing another Test Assertion that will ultimately determine the final Test Case result.

