[image: image1.png]UN/CEFACT
DRAFT

United Nations Centre for Trade Facilitation and Electronic Business

UN/CEFACT eBTWG – Electronic Business Architecture (UEB Architecture)

Working Draft

UN/CEFACT/CSG/eBTWG
Electronic Business Architecture
Revision 0.50

05 June 2002

Table of Contents

1UN/CEFACT eBTWG – Electronic Business Architecture (UEB Architecture)

1Table of Contents

31.0 Status of this Document

32.0 Introduction

32.1 Summary of Contents of Document

42.2 Audience

42.3 Related Documents

53.0 Objectives

53.1 Goals of the UEB Architecture

53.2 Requirements

53.3 Caveats and Assumptions

63.4 Design Conventions for UN/CEFACT eBTWG Electronic Business Specifications

64.0 Overview

115.0 Phases

115.1 Implementation Phase

135.2 Discovery Phase

145.3 Design Phase

195.4 Runtime Phase

21Component Constraints

226.0 Modeling Methodology

226.1 Introduction

266.2 Formal Functionality

266.3 Interfaces

276.4 Non Normative Implementation Details

277.0 Business Process, Collaborations, Commitments and Schemas.

277.1 Introduction

287.2 Formal Functionality

287.3 Interfaces

307.4 Non Normative Implementation Details

318.0 Core Components

318.1 Introduction

338.2 Functional Requirements

348.3 Interfaces to other Components

358.4 Implementation Details (Non Normative)

379.0 Trading Partner Profiles and Agreements

379.1 Introduction

379.2 Trading Partner Profile and Agreement Formal Functionality

389.3 Trading Partner Agreement Specific Formal Functionality

399.4 Trading Partner Profile and Agreement Interfaces

409.5 Non-Normative Implementation Details.

4010.0 Registry

4010.1 Introduction

4210.2 Formal Functionality

4510.3 Interfaces

4510.4 Non Normative Implementation Details

4611.0 Messaging

4611.1 Introduction

4711.2 Formal Functionality

4811.3 Interfaces

4911.4 Non-Normative Implementation Details

5012. 0 References

5013 .0 Disclaimer

5014.0 Contact Information

5014.1 Project Team Membership

52Copyright Statement

1.0 Status of this Document

This document specifies an eBTWG WORK IN PROGRESS - NOT FOR IMPLEMENTATION - for the UN/CEFACT eBusiness community.

Distribution of this document is limited to Architecture team members.

The document formatting is based on the eBTWG Standard format.

This version: http://www.ebtwg.org/projects/documentation/architecture/eBTWG_Architecture_v0.50.doc

Previous version: http://www.ebtwg.org/projects/documentation/architecture/eBTWG_Architecture_v0.49.doc

2.0 Introduction

2.1 Summary of Contents of Document

The goal of the UN/CEFACT eBTWG Electronic Business Architecture (heretofore: UEB Architecture) specification describes a high level architecture for an infrastructure to facilitate electronic business on a global scale in a secure, reliable and consistent manner. This document abstracts architectural components in order to facilitate both Extensible Markup Language (XML) and other structured information exchanges such as Electronic Data Interchange (EDI) formats like EDIFACT.

This Architecture document shall be considered a superset of the Electronic Business XML (ebXML) Technical Architecture v 1.04, and serves to complement and extend that document. This extension to the ebXML architecture shall provide input for revision to the ebXML v 1.04 architecture.
The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this document, are to be interpreted as described in RFC 2119 [Bra97].

The following conventions are used throughout this document:

· Capitalized Italics words are defined in the UEB Architecture Glossary. [EDITORS NOTE; add reference to Glossary]
· [NOTES: are used to further clarify the discussion or to offer additional suggestions and/or resources]
· [EDITORS NOTES: expressed in red font are used to express works items that need attention by the team]

2.2 Audience

The immediate audience considered for this document is the UN/CEFACT (United Nations Centre for Facilitation of Electronic Business) eBTWG project teams, and their successors, OASIS (Organization for the Advancement of Structured Information Systems) Technical Committees (with relatedebXML work), other electronic business groups working under the UN/CEFACT umbrella, and software implementers. Secondary audiences include, but are not limited to, international standards bodies and topical industry organizations.

2.3 Related Documents

Documents:

1. ebXML Technical Architecture v 1.04

2. etc…

Normative References:

[EDITORS NOTE: Revise once rest of document is complete]

1. UMM, UN/CEFACT Modeling Methodology (UMM) TMWG/N090/Division 10

2. ISO/IEC 14662, Open-EDI Reference Model (via ebXML TA v1.04)

3. UN/EDIFACT Architecture, ref 1509735, www.unece.org/cefact/

4. OO-eb, (OO-EDI Demonstration Project, Preliminary Technical Report,

CEFACT/TMWG/N088, 25 Feb '99), ANSI ASC X12/SITG

5. RFC 2119: Keywords for use in RFC's to Indicate Requirement Levels, www.ietf.org/rfc/rfc2119.txt

6. ebXML TA v 1.04

7. ebXML Requirements Document v1.06

8. W3C XML v1.0 Second Edition Specification

3.0 Objectives

3.1 Goals of the UEB Architecture

In May of 2001, the ebXML initiative was delivered as a series of Specifications, Technical Reports and White Papers, to UN/CEFACT and OASIS to address the needs of business
 on a global basis. While ebXML has rapidly gained attention, continuing work within UN/CEFACT and the existence of EDI require a more flexible
 electronic business architecture that maintains a technology-neutral perspective where possible. This eBTWG architecture incorporates the use of several UN/CEFACT electronic business initiatives in addition to that of XML.

This architecture SHALL use modeling techniques described in the UN/CEFACT Modeling Methodology (UMM). Modeling is the basis for the business process areas of the architecture.

The UN/CEFACT eBTWG architecture attempts to define functional requirements and component interfaces in a more precise manner than that described in the ebXML Technical Architecture v 1.04.
This Architecture defines the different perspectives of electronic business conforming to the four phases of Implementation, Design, Discovery and Runtime. Because this Architecture is modular, this document notes the minimal functional requirements, constraints and interfaces for each component.

3.2 Requirements

The work of the UN/CEFACT eBTWG Architecture team is governed by the processes adopted and approved by eBTWG
. Accordingly, the architecture group has defined a set of requirements that are available at http://www.ebtwg.org. This architecture addresses requirements specified in the ebXML Requirements Document v 1.06 (www.ebxml.org). Other requirements are noted herein. The architecture shall use UMM ontology to describe its elements.

3.3 Caveats and Assumptions

This specification is designed to provide a high level overview of the UN/CEFACT eBTWG electronic business architecture, and as such, does not provide the level of detail required to build Applications, eBusiness components, and/or related services. Please refer to each of the respective specifications for more detail.

The normal process for fully developing a UN/CEFACT Specification includes a full implementation of the subject of the specification. The eBTWG Steering Committee unanimously agreed that implementations provided by individual project teams would be sufficient to meet this requirement without an independent implementation of the architecture specification;therefore, no such implementation was delivered as part of the approval process for this document.

3.4 Design Conventions for UN/CEFACT eBTWG Electronic Business Specifications

In order to facilitate a consistent capitalization and naming convention across specifications designed to use this Architecture, "Upper Camel Case" (UCC) and "Lower Camel Case" (LCC) Capitalization styles SHOULD be used. UCC style capitalizes the first character of each word and compounds the name. LCC style capitalizes the first character of each word except the first word.

1) Any XML DTD, XML Schema and XML instance documents SHOULD have the effect of producing XML instance documents such that:

· Element names SHALL be in UCC convention (example:
<UpperCamelCaseElement/>).

· Attribute names SHALL be in LCC convention (example: <UpperCamelCaseElement lowerCamelCaseAttribute="Whatever"/>).

4.0 Overview

Some of the key feature capabilities of this architecture are:

· Platform-independence.

· Event driven Architecture.

· Facilitation of multiple concurrent implementations.
· Component based architecture allowing eBusiness components to be added, deleted or modified.

· Allows proprietary protocol support, including custom extensions for industry standards. This refers to, but is not constrained by, electronic message payloads.

· Custom workflow, information and syntax definitions are allowed in support of unique business rules and requirements, as may be defined by users.

· Incremental phased implementation.

· Business to business interoperability.

Figure 1 (below) shows high-level relationships between components of this architecture. The model is provided as a description of components, processes and the necessary relationships for facilitation of the Requirements as described in Section 3.2.

By using this model, readers are provided with an overview of the processes and steps that MAY be required to configure and deploy eBusiness Applications and supporting architecture components.

Figure 1 introduces the following concepts and underlying architecture:

1. Standard methodologies and mechanisms for modeling a Business Process and its’ associated information models. (UMM – UN/CEFACT Modeling Methodology including proposed changes to N090).

2. A methodology to analyze associated information models (from item 1 above) and discover abstractions of relevant information for globally reusable components (Core Components).

3. A standard methodology for converting artifacts derived from item 1 (above) to specific syntaxes including, but not limited to, XML and EDI.

4. A mechanism for the capture and storage of information about each participant including:

· The Business Processes they support.

· The Business Service Interfaces they offer in support of the Business Processes.

· The Business Messages that are exchanged between respective Business Service Interfaces including Business Information Entities used in such exchanges.

· Underlying Business Intent of Trading Partners

· Business Collaboration Rules and details of commitments which arise from business activities.

· The technical configuration of the supported transport, security and encoding protocols.

(Trading Partner Profile)

5. A standardized mechanism and methodology for registering the aforementioned information so that it may be subsequently discovered and retrieved by using a standardized communication protocol and query syntax (Registry).

6. A mechanism for describing the execution of a mutually agreed upon business agreement which can be derived from information provided by item 4 (above). (Trading Partner Agreement)
7. A standardized business Messaging Service framework that enables secure and reliable exchange of electronic messages
.

The following required concepts and components are specifically associated with the Business Information described above:

1. A mechanism for the capture of context rules, and a format for declaring Business Context (Context Declaration) in a syntax that may be interpreted by both application and human actors.

2. A mechanism for representing contextually modified Core Components (Business Information Entities).

3. A mechanism for declaring which Core Components or BIE’s will be used to build a Business Message during the Design Phase (Core Component Assembly Document).
4. A mechanism to express associations such as semantics between Core Components and those components from other taxonomies including EDI and XML vocabularies.

The following diagram covers the four phases expressed later within this architecture. These include Implementation Phase, Design Phase, Discovery Phase and Run-time Phase. The phases are discussed independently and in greater detail in section 5.0.

There are five distinct views of the architecture that logically group activities and components. They are expressed in the following diagram as Business Domain View (BDV), Business Requirements View (BRV) – moving forward with Business entities as a concept, Business Transaction View (BTV), Business Service View (BSV) and one technical/implementation view- the Implementation Functional View (IFV). These five views are aligned with UMM.

 [EDITORS NOTE: Change Diagram –

· “Message” to “Payload”

· “UMM” is on top of BDV – outside domain

· New revisable figure 1 to come from John Yunker]

[image: image2.wmf]

The purpose of the diagram is to show the relationship of work products created using the specifications to the workgroups described in Figure 1. The Business Domain View (BDV) identifies the Common Business Processes that will be used by the Trading Partners. In the BRV, Monitored Commitments are composed of related common business processes (business collaborations) and Business Entity Types.

In the diagram above, UMM is used to model all aspects of real-world business objectives and activities during the “Design Phase”. In this phase

Graphs of common business process (business collaborations), monitored commitments, and business entities are modeled. The business models are used to construct two main artifacts during the Runtime Phase – Business Process Schemas (BPS) and Assembly Documents (ASDOC) (BPS and ASDOC are referenced by a Registry mechanism).

A BPSS is an XML expression of a business process instance that declares the choreography of messages between two or more parties. It is derived by applying consistent methodology converting the UML expression of a business process to an XML expression. At a higher level, there is a Business Collaboration that governs the execution of any BPSS instances. During the Design Phase, the business information is bound to the BPSS instance by an Assembly Document, a container with instructions to build the final business-message instance (PAYLOAD).

An Assembly Document may reference one or more Business Information Entities (BIE), which are created from Core Components contextually adopted for use within specific Business Processes. While BIE’s are Core Components that are context specific to certain Business Processes, they may be further contextually constrained during a subsequent part of the Design Phase when geographic and industry information become apparent (during the CPA formation process). Like the BPS, the BIE may be referenced from within a Registry.

During the Implementation Phase, trading partners create a Trading Partner Profile Protocol document that captures all technical and eBusiness capabilities about the particular trading partner. When the CPP document is created, it MAY be referenced via a Registry system. The trading partner may enter into the Discovery Phase and locate the CPP document of another Trading Partner from the Registry. Through the intersection of two CPP documents, the Trading Partner MAY discover a business process that is supported by both Trading Partners. By binding the BPS to two or more CPP documents, the Trading Partner creates a Collaboration Protocol Agreement (CPA), a service level agreement on how the two partners collaborate. This process creates a set of Context rules that are specific to the business process within the realm of both trading partners. Alternatively, a Trading Partner may derive the Business Context by designing a Business Collaboration that is an intersection of the Trading Partners’ CPP document and a profile of a Trading Partner that may be suitable for the collaboration.

By applying the Business Context to BIE’s or Core Components, a final context and syntax specific representation of the Business Payload gets created for each business-message step (PAYLOAD) defined and referenced by the BPS. This final business-message metadata, constrains the structure of the final payload, yet still requires instance data for each individual message. If the PAYLOAD is expressed in XML, the same rules for converting UML to XML SHALL be applied to create the final PAYLOAD instance.

At the point of definition of the final PAYLOAD, trading partners may enter into the Runtime Phase whereby they exchange instances of messages with one another.

5.0 Phases

The following section describes in detail the phases of the architecture. These are only intended to provide different views of this architecture. While there may be specific dependencies between components of different phases, there is no underlying requirement to complete the phases in any specific order. While in a particular phase, users may deem necessary to switch to other phases to complete certain activities as required.

This architecture uses four phases – Implementation, Discovery, Design and Runtime. The Design phase may be distilled into two logical views – UMM modeling of Business Processes and Associated Information, using a metamodel, and the second, designing and configuring specific Business Collaborations. The first Design stage creates a series of standard artifacts, and the second yields artifacts that are specific to individual business collaborations.

5.1 Implementation Phase

[image: image3.png]Trading Parner

1

Builds 1 Aoquids 1

Communicates

Assembly Document

Business Information Entity

[P L —
"
| i .
| [o o Comparent a6
| Sretostons opaone
[3
s
|
|

Business Prosess and Associated Information Models

During the implementation phase, Trading Partners become knowledgeable of the UN/CEFACT and related ebXML Specifications. They acquire the necessary resources to build a Registry Client Interface. [Implementation note: this may be done by building it themselves or purchasing software]. In doing so, they acquire the capabilities to query compliant Registries, which allows them to locate Business Processes and/or Core Component. Each Business Process references associated information manifested as an Assembly Document. The Assembly Document provides the metadata for each Business Message Payload. The Assembly Documents are written as XML files and are built using a special set of context specific Core Components called Business Information Entities. Alternatively, a set of temporary, fixed payloads may be adopted to jump start implementation. Such fixed payloads SHOULD be built using UMM.

During the next steps of the Implementation Phase, Trading Partners make a decision to support certain Business Processes and decide what protocol model to use to implement that business process. They also need to configure their systems to support certain communication, security and transport protocols. All the details of these supported Business Processes and technical configuration details are captured in a document called a Trading Partner Profile (see section 9 – “Trading Partner Profiles”).

The partners specialize these artifacts to their application by making certain optional process transitions and information entities that were required optional, as well as specifying additional elements or actions. (e.g. the last context that is applied is “Organization A”)

[image: image4.png]1 1z] TedingPaerpofie |00 uss 1 Business Process
Trading Partner Documant Specitcation
o
T . —
References
o
i
P——— Paylosd Metadata
ntertace
1
. e

Tansport Potocal and

ddress

Securty Protosol

Y

Technical Configuraion
Details

As an alternative implementation scenario, a Trading Partner MAY decide to use their own business processes, modeled using UMM (see “Design Time”).

In the last steps of the Implementation Phase, a Trading Partner may decide to use their Registry Client Interface to have a compliant registry manage their Trading Partner Profile.

[image: image5.png]Trading Parner

s

Trading Partner Pofile

Managed by

e

1

Regity

5.2 Discovery Phase

The Discovery Phase covers all discovery and retrieval of information about other Trading Partners from the Registry. It is important to distinguish between calls to the Registry during this phase as opposed to those during the Implementation Phase to discover infrastructure related resources.

[image: image6.png]Trading Parner
1
s
Gueres
Registy Client Interface | — = | Regity
1
4
Registy Information Mods!
e
s
s Core Component’ CC
Business Process Schema Trading Partner Pofile
9 Aggreaate
I I
L 1 1.2 Business nformation | 1.7

ssembly Document T

A Trading Partner who has implemented a Registry Client Interface can now begin the process of discovery and retrieval of other Trading Partners who have registered their profiles with a Registry. One possible discovery method MAY be to request the Trading Partner Profile of another Trading Partner. The information about where to locate the Trading Partner Profile is located in the Registry Information Model (RIM).

The received Trading Partner Profile MAY contain references to business processes. Such references SHALL be done by a Globally Unique Identifier (GUID) which can be subsequently used by the first Trading Partner to query the Registry for a reference to the Business Process Schema. Although a GUID reference is required, other reference methods may be additionally used.

5.3 Design Phase

During the Design Phase, Trading Partners design and/or configure a Business Collboration and its’ associated business information. This may involve the initial creation of a new Business Process to the modification of an existing Business Process so that it is contextually and syntax specific. It is likely that this phase will require several round trips to the Registry. Any registry lookups constitute a reversion to the Discovery Phase.

Some of the activities that may be undertaken during this phase include:

1. Designing Business Processes and their associated information models.

2. Modeling business collaborations, patterns and commitments.

3. Configuring business information so it is context specific.

4. Negotiating a Trading Partner Agreement by binding two or more Trading Partner Profile documents and a BP together.

5. Working with XML or other specific syntax representations of eBusiness Artifacts.

Artifacts that may be used during this phase include:

1. Business Process and Associated Information Models.

2. Context Rules Messages (XML declarations of contexts)

3. Trading Partner Profile instances.

4. Trading Partner Agreement instances.

The Business Process Information (BPI) Meta Model, as defined in UMM N090, is the meta-model for both the Business Information Model and Business Process Model. These two models will be produced during the design phase, using UMM and form together the “Business Process & Associated Information Model”.

[image: image7.png]BP1 Matamodel

|
[[————
|
|

Business Prosess and Associated Information Models

|
Business Procass Modsl |
|
|

Business Information Model

The Business Information Model SHALL reference all meta-information associated with a specific Business Process. The Business Information Model references Business Entities, Business Information Entities, and Business Information Objects to accomplish that task. A Business Entity is used in the business process models to represent a business artifact. Business entities have states that are referenced in business process start, end, success, fail and transition conditions.

A Business Information Entity (BIE) is a Core Component that is contextually specific to a certain business process, although further contextual constraints may be imposed upon it subsequent to when two Trading Partners create a Trading Partner Agreement Document.

During the Design Phase, when a Business Process is modeled and designed, the associated business information used SHOULD be from the Core Component Catalog.
 When the designer of the process uses a Core Component within a specific Business Process, they MAY modify or constrain the Core Component specifically for that Business Process. At that time, the Core Component becomes a Business Information Entity.

Business Information Entities MAY be described using the same XML Schema as Core Components, since their meta-information model is identical.

Assembly Documents show what information should be included in a specific transactional step of a business process.

[image: image8.png]Business Information Model

Business Document

T o
N N
. 5
Business Information Entity Assembly Document
' T
. .
. .
Core Component
Contat Core Component | — — — LR Eaneeent
o
0

Core Component Catalog

Business Process Model

The Business Process Model describes the Business Roles, Business Collaborations (including the Business Roles used in each Business Collaboration) and any monitorable commitments that are used or created from the Business Process. Each Business Collaboration is a choreography of Business Transactions, where each Business Transaction involves some Business Roles and one or more Business Payloads.

[image: image9.png]Trading Parner

Trading Partner Pofile

Business Sevice Interace

Registy Client Interace

Managed by

Regity

The Business Collaboration is transformed into a Business Process Schema, which MAY be stored in a Registry.

Trading Partner Agreement and Final Context Rules Generation

One of the most important aspects undertaken during the Design Phase is the generation of a bilateral (or multilateral) Trading Partner Agreement. During this process, two or more trading partners decide they want to enter into a Business Collaboration. During the Design of their Business Collaboration, they generate a Trading Partner Agreement. Several Contexts may not be known until the time that this agreement is generated including geo-political, industrial and language constraints.

When the Trading Partner Agreement is generated, a refinement to the Business Context may be generated. By applying the Business Context against the Assembly Document (hence the BIE’s), the final business document metadata can be generated. The final business document metadata MUST be bound to the Business Process before the Trading Partner Agreement is agreed to by both parties. Once a Trading Partner Agreement is finalized, no further modification of information requirements can be made.

[image: image10.png]Tading PartnerProfile |~ Business Process schema [
2.0 e e
Assembly Document
4
. . o

Trading Partner Agresment

[Business nformation

Basio usiness

Basic Core Compenents Information Entites

Business

Agaregate Core Aggregate Business

Context Components nformation Entities

<cntarenoss>

1.2 Finat Business Document

Metadata

5.4 Runtime Phase

The Runtime Phase covers the execution of a Business Process Schema, governed by a Trading Partner Agreement. During the RunTime Phase, ebXML Messages are being exchanged between Trading Partners. These messages have already been defined during the Design Phase and require no further modifications or constraints.

Some Runtime artifacts include:

· Trading Partner Agreement Documents

· Business Process Schemas

· Business Message Payload Metadata

· Messages Instances and associated Error messages.

· BPS Guard condition messages.

· Business Service Interfaces

[image: image11.png]Trading Partner Agresment

Business Prosess Schema

e

Trading Parner

Final Business Documant
Metadata

Runtime Stadk

Send recsive

Trading Parner

Runtime Stadk

 Functional Service View: Run Time Phase

[Implementation Note: There is no Runtime access to the Registry. If it becomes necessary to make calls to the Registry during the Runtime Phase, this SHALL be considered as a reversion to the Discovery Phase. Likewise, if it becomes necessary to re-design aspects of a Business Collaboration and/or any related Business Information, it SHALL be considered a reversion to the Design Phase.]

During the Runtime Phase, Message Payload instances are exchanged.

[image: image12.png]Trading Partner Agresment
prm—
Py
e
Business Prosess Schema
s
Final Business Documant | 1
Metadata prST—
.
Instance Data (Businese | _<<builds>>

nformation)

Business Mesage Payload

<<Reterences>

s senttors

Technical Configuration
et

<<goverms>>

Business Sevics ntefaoe

s santtors

Messaging Handler Senice

s santtors

v

Exemal Systems

5.4.1 Runtime Stack (Non-normative)

The Runtime Stack MAY have a minimal set of components that facilitate the functionality of this Phase. The Runtime Stack Diagram is intended to aide developers and implementers.

[image: image13.png]Business Collabaration
Rules

Business Prosess 55
Intances

Business Collaboration
Manager

Trading Partner Agresments

Business Procass
Exeeution Engine

Messaging Senice

An assumption exists for a well-defined API between each layer of the stack to keep the implementation agnostic to underlying technology. This is a place where Web Services may be implemented

Component Constraints

[Editors NOTE: Each of the subsequent sections is written to cover 4 very specific topics for each component grouping:

*.1 Introduction

This section should be 1-5 paragraphs to introduce the component. It should not contain any reasons why or implementation details

*.2 - Functional Requirements

This section must contain the minimal functional requirements of this component in order that it allows the entire infrastructure to operate as a cohesive unit and perform its intended and stated functions. This section should be brief and concentrate on only those requirements which are expressed as “MUST”, “SHALL” or “MAY” according to RFC 2119.

Include such things as:

syntax it must be expressed in

what the thing must accomplish

can there be multiple instances of the thing in the system

Think of both XML and EDI problems

*.3 - Interfaces

This section should deal with the interfaces that this component has to other components and specify during which phase that interface exists. (eg Runtime, Design time). No implementation details.

*.4 - Non Normative Implementation Details

This last section contains non-normative details.

6.0 Modeling Methodology

6.1 Introduction
Real-world business components must have counterparts in the electronic business infrastructure in order for the UEB Infrastructure to be capable of facilitating all aspects of business electronically. Modeling business-activities, captures all details of business collaboration and the information associated with the collaborations. This section deals primarily with Design and Implementation Phases of the UEB Architecture.

The UEB Architecture breaks down all aspects of Business Collaborations into two sub-groups, the Business Operational View (BOV) and the Functional Service View (FSV), as per the Open-edi Reference Model, ISO/IEC 14662. The figure below shows this logical sub-grouping.

[image: image14.wmf]Business Operational View

Functional Service View

Comply with

Covered by

Comply with

Covered by

Business aspects

of

business transactions

Information technology

aspects of

business transactions

BOV RELATED

STANDARDS

FSV RELATED

STANDARDS

Viewed

as

Interrelated

B

U

S

I

N

E

S

S

T

R

A

N

S

A

C

T

I

O

N

S

Business Operational View

Functional Service View

Comply with

Covered by

Comply with

Covered by

Business aspects

of

business transactions

Information technology

aspects of

business transactions

BOV RELATED

STANDARDS

FSV RELATED

STANDARDS

Viewed

as

Interrelated

B

U

S

I

N

E

S

S

T

R

A

N

S

A

C

T

I

O

N

S

The BOV addresses semantics of business data during transaction and associated data interchanges. The BOV also also addresses the architecture for business transactions, including operational conventions, agreements, arrangements, mutual obligations and requirements. These items apply specifically to the business needs of Trading Partners that are Actors within the infrastructure.

The BOV MAY be further decomposed into other modeling artifacts that include, but are not limited to, Business Processes, Business Collaborations, Business Object Types Library, Business Transactions and their related Business Information (documents) and Business Commitments that are capable of being monitored. Analysis through the modeling process identifies Business Process and Information Models that are likely candidates for re-use and standardization. The UEB Architecture approach looks for standard, reusable components at all levels in business process and information models from which to further construct new models. This approach facilitates interoperability through its reuse of well-understood models and sub-models.
The FSV addresses the supporting services meeting the mechanistic needs of this architecture. The FSV focuses on the information technology aspects of functional capabilities, Business Service Interfaces, Protocols and Messaging Services. This includes, but is not limited to, capabilities for implementation, discovery, deployment and runtime scenarios, user Interfaces, data transfer, infrastructure Interfaces, and protocols for enabling interoperability of different vocabulary deployments from disparate organizations.

Business Process and Information Modeling methodology SHALL be the UN/CEFACT Modeling Methodology (UMM) that utilizes UML.

[EDITORS NOTE: Because there is no way to enforce the use of modelling during the Runtime Phase, modelling can not be enforced as a prerequisite for participation in a Business Collaboration governed by this Architecture.]

Business Modeling, Requirements, Analysis and Design workflows are needed to understand the business needs in order to produce business scenarios, business objects and areas of business collaboration. The use and relationships of the methods, patterns and model artifacts are defined within each workflow. The final deliverables of the Modeling workflows are shown in the figure below.

[image: image15.png]Business
Knowledge

Business

Comman
Librares | PIoces Business
4 Pracesses

Padkages

. Business
ueiness || pnomation
Entities T

Bu:

Business Domsin
ttacts

Business Service
rttacts

Business Procass
rea
(Package Disgram)

siness Process and Information Model

Business Requirements Busines=Transaction
ttacts ttscts
Business Procass o
Decompasition Jabarato

(Use Case Diagram) ettty ooty

Semios Collaboration
(Seauence Diagram)

Leval 1 Businass
Procesces
(Use Caze Disgram)

Business Process
ctity Model
Gactiviy Graph)

Business Transaction
Gactiiy Graph)

Final Business
Mescage
(Clase Disgram)

Business Procass
Dessiption

(Use Caze Daseription
Template)

v
Conceptus Busness
Cotishorston use Gocumant Cisss

(Use Case Disgram) Diagram)

Business
Collabaration
(Wse case

Realization Diagram)

&P, BouC BC
Dessiptions
(Use case
Dessiption Template)

REA Modal
(clas Disgram)

Business Entity Statas
(State Diagram)

[EDITORS NOTE: Check with John Yunker]

Business Collaboration Knowledge is captured in the Core Library
. The Core Library contains data and process definitions, including relationships and cross-references, as expressed in business terminology that MAY be tied to an accepted industry classification scheme or taxonomy. The Core Library is the bridge between the specific business or industry language, and the knowledge expressed by the models in a more generalized context neutral language.

The first phase defines the requirements artifacts that describe the problem using Use Case Diagrams and Descriptions. If Core Library entries are available from a Registry, they will be utilized, otherwise new Core Library entries will be created and registered in a Registry.

The second phase (analysis) creates activity and sequence diagrams (as defined in the UN/CEFACT Modeling Methodology specification) describing the Business Processes. Class Diagrams capture the associated information parcels (business documents). The analysis phase reflects the business knowledge contained in the Core Library. The class diagram is a free-structured data diagram. During this phase, Actors will have access to artifacts in the Business Object Type Library.

6.2 Formal Functionality

Business Modeling Artifacts SHALL be capable of being discovered and shared by other Actors within the infrastructure to facilitate reusability.

The Models MUST be capable of being expressed in a single unified Syntax.

The Models SHALL contain all the information required to facilitate the Design and Discovery Phases. This may include discovering relationships between processes and information, retrieving associated items from a Registry. The Models MUST also contain all the information needed by the Runtime Phase to execute a specific Business Collaboration instance.
Multiple Actors within the system SHALL be capable of working on models independently of each other yet must still be capable of understanding every model.

Modeling SHALL NOT be based on the premise that it will be used only in a manner that is specific to one syntax at Runtime, such as XML or EDI, for the business payloads of messages.

6.3 Interfaces

Modeling and modeling artifacts are used in the Implementation, Design and Discovery Phases of the Architecture.

Modeling SHALL capture the semantics of all components of the architecture therefore it has an implied interface to every other component within the architecture.

The resultant models SHALL be capable of Registry reference, therefore an implied interface to the Registry exists.

During the modeling process, modelers SHOULD have access to Core Components, Business Information Objects and Business Information Entities.
6.4 Non Normative Implementation Details

Modeling should ideally be uncomplicated and presented in an easily human understandable form.

Currently, modeling SHALL use the UMM (which utilizes UML), though conceivable that this Architecture may be adopted and used with other standard modeling methodologies.

Using a single modeling methodology will improve the quality of artifacts by ensuring they are developed consistently.

Aligning the goals of two or more Trading Partners from a top-down perspective will aide the alignment of other Business Collaboration activities.

7.0 Business Process, Collaborations, Commitments and Schemas.
7.1 Introduction
The Business Process and Information Model consists of artifacts that capture details of specific business scenarios using a consistent modeling methodology. The Business Process and Information Models are used during the Design Phase, to build a Business Collaboration Model.

A Business Collaboration Model describes in detail how Trading Partners assume roles, relationships, and responsibilities, to facilitate interaction with other Trading Partners. This interaction between roles takes place as a choreographed set of business transactions. Each business transaction is expressed as an exchange of electronic Business Documents and signals. Business Documents MAY be composed from re-useable Business Information Entities (see “Relationships to Core Components Interfaces” below).
The Business Collaboration Model is expressed as a special Runtime artifact called a Business Process Schema (BPS) and MAY be stored in a Registry. Trading Partners may bi-laterally establish the durations of Business Collaborations. In instances of longer running Business Collaborations, certain commitments between two or more Trading Partners MAY be monitored. Examples of such monitored commitments are as follows:

a) Collaboration patterns.

b) The states of a commitment.

c) Auditable logs of the transactions.

Certain events may trigger new instances of a Business Process Schema to be executed. Some of these events may be based on the results of monitoring commitments.

7.2 Formal Functionality
The information contained in the Business Process and Associated Information Model (BPAIM) MUST be capable of being displayed in forms which will allow both humans and applications access to the information.

The BPAIM SHALL be capable of being referenced from a Registry. Business Processes MAY be registered in a Registry in order to accomplish discovery and retrieval.

To be capable of being executed during the Runtime Phase, a Business Process SHALL be rendered in a syntax that may be parsed by an application.

BPS’s MUST be capable of carrying all the information required by the Runtime execution engine. The BPS may contain, but is not limited to, the following items:

· Information on the choreography for the exchange of transactions. (e.g. the prescribed sequence of Message exchanges between two Trading Partners executing that transaction.)

· References to the information required for the construction of the Business Document Payloads (possibly DTD’s or Schemas).

· Definition of the roles for each participant in a Business Process.
· Definition of the Roles allowable within the Business Collaboration and responsibilities and constraints for assuming each Role.
· All the information necessary to build or constrain error and exception handling.
A Business Process:

· Provides contextual drivers for constraining Core Components during the Design Phase (though not all).
· Provides the framework for establishing CPAs.
7.3 Interfaces

Relationship to Core Components

At Design Time, a Business Process Schema instance SHOULD specify the constraints for exchanging business data with other Trading Partners. The business information MAY be comprised of components of the ebXML Core Library. A Business Process document SHALL reference the Core Components directly or indirectly via an Assembly Document.

At Runtime, a BPS SHALL fully constrain the Business Message Payload for each step of executing the Business Collaboration.

The mechanism for interfacing with the Core Components and Core Library SHALL vary depending upon the type of syntax used. The two primary candidates for syntx are EDI and XML.

Relationship to a Registry System

A Business Process and Associated Information Model SHALL be capable of being referenced through a Registry query.

Relationship to Trading Partner Profile and Trading Partner Agreement
A Trading Partner Profile instance defines that partner’s functional and technical capability to support zero, one, or more Business Process Schemas and one or more roles in each process.

The agreement between two Trading Partners defines the actual commitments under which the two partners will conduct Business Collaborations. This includes a reference to the actual Business Process Schema(s) they have agreed to execute. At the time a Trading Partner Agreement is finalized, the Business Message Payloads must also be agreed upon and static (not subject to change).

A BPS document contains a number of parameters to configure the Business Collaboration. The values of these parameters SHALL be considered to be default values or recommendations. When a Trading Partner Agreement is created, the Trading Partners MAY decide to accept the default parameters in the BPS or they MAY agree on values of these parameters that better reflect their needs. At Runtime, parameters specified in the Trading Partner Agreement MAY assume precedence over choices specified in the referenced BPS document. For more details on this, please see the non-normative implementation section of the Trading Partner Agreements herein.

The BPS SHALL be capable of being referenced from the Trading Partner Agreement and/or Trading Partner Profile by way of an identifier that is:

a) Globally unique

b) Includes a reference to which Registry can provide the correct Metadata about the BPS

Relationship to Messaging

The Business Process Schema will govern choreography of business messages and signals. The ebXML Message Service Specification, one of the possible messaging specifications that may be used within this Architecture, provides the infrastructure for message / signal identification, typing, and integrity; as well as placing any one message in sequence with respect to other messages in the choreography.

A BPS MUST contain all the information required to govern the choreography of messages necessary to execute a specific Business Collaboration.

A BPS SHALL contain information for error and exception handling routines that MAY occur during the execution of a Business Collaboration.

A BPS, in conjunction with a Trading Partner Agreement, MUST be capable of relaying technical configuration details to the messaging engine (ie . – security details, time outs, etc.).

The Business Process Schema execution engine MUST be capable of receiving signals from the messaging engine at Runtime that will relay information about the state of a given Business Collaboration instance as requirements dictate.

7.4 Non Normative Implementation Details
During the Design Phase, a BPS instance SHALL be capable of referencing the business information in a way that it is uniquely identifiable, to aide in the Discovery Phase. The reference may be either direct or indirectly available via the associated Assembly Document.

The type of reference used by the Trading Partner Profile and Trading Partner Agreement documents to locate the Registry containing the metadata necessary to retrieve a BPS MAY be accomplished by use of a Globally Unique Identifier(GUID). The Globally Unique Identifier SHOULD contain three items:

1. The URI for the Registry
2. An Identifier which is unique within that Registry
3. The protocol used to query the Registry (It is recommended that the OASIS ebXML Registry Services Specification(RSS) and Registry Information Model are used; additionally, it is suggested that the RSS be used in conjunction with a standardized registry transport layer protocol, such as the ebXML Messaging Handler Service (MHS) specification.)
BCP MAY provide the specification of business dialogues that are defined in compliance to UN/CEFACT UMM N090R10.

There are no formal requirements to mandate the use of a modeling language to compose new Business Collaborations; however, if a modeling language is used to develop Business Collaborations, it SHALL be the UN/CEFACT Modeling Methodology (UMM) (which is dependant upon the Unified Modeling Language (UML)). This mandate ensures that a single, consistent modeling methodology is used to create new Business Collaborations. One of the benefits to using a single consistent modeling methodology is model comparison to avoid duplication of existing Business Collaborations.

The deliverables of the UN/CEFACT eBTWG Business Process groups MAY be considered candidates that meet the needs of this architecture.

8.0 Core Components

8.1 Introduction

A Core Component (CC) is a Design Phase artifact. Each Basic Core Component is a semantic atomic building block that is used as a basis to constructing electronic business messages. The Core Component captures information about real-world business concepts. The Core Component is meant to be a reusable object for electronic business. In order to achieve reusability, a Core Component is abstracted to a context-neutral level.

The Core Component MAY be modified or constrained for use within a particular Business Collaboration instance. During the Design Phase only, a Business Context MAY be used to constrain the Core Component to a specificadaptation of the Business Collaboration. Once constrained or modified by a Business Context, it is called a Business Information Entity (BIE).

[image: image16.png]Core
Components

Constraints

I

Business
Information
Entity

Context
Categories

Context

Syt neutal

Syriax bound

N

An initial set of Core Components, grouped together as a Core Component Library, are required to enable the functionality of the Design Phase. Users may adopt and/or extend components from that Core Component Library.
There are two basic types of Core Components:

1. Basic Component – A simple, singular Core Component that has a non-divisible semantic meaning. (NOTE: the term used by the UN/CEFACT teams to describe this type of Core Component is “Basic Core Component”)
2. Aggregate Core Component – A collective or packaged Core Component. Packaging of Core Component concepts MAY occur in the Design Phase.

A Core Component MAY be bound to a specific Business Collaboration during the Design Phase.

NOTE: There are specific Context Drivers or categories for which contexts may be used to constrain or modify Core Components. These may evolve over time. To view the latest Context Drivers, please review the work of the UN/CEFACT Core Components groups.

The table below gives a brief introduction to how a Core Component may be specifically constrained for inclusion in a specific Business Collaboration. It is meant to be an example only.

	Original Core

Component
	Used in

Business Collaboration
	Could Become BIE

	Monetary. Amount
	
	Invoice Monetary. Amount

	Address
	
	“ShipFrom” Address Element

A BIE may be further modified prior to multiple Trading Partners designing a Trading Partner Agreement. The Business Context is finalized when a specific Business Process is bound to a Trading Partner Agreement;for example, it would not be possible to know the geo-political Context Driver until the geographical information is available from both Trading Partner Profiles. Once a Trading Partner Agreement has been finalized, it is not possible to modify or constrain the Business Message Payloads any further, without changing the Trading Partner Agreement.

[image: image17.png]CORE BUSINESS SPECIFIC

Core Component Type
trpe of
is defined in
Gonted a5
Basio Business nformation
Basic Core Campanent Flbuii
contined in
is defined in
comted sz | Basic Businass nformation
Aggregate Core Componsnt e
contains iz containg iz
contained in builds contained in

Busines Mescage
Paylosd metadata

CORE COMPONENT LIBRARY

At Trading Partner Agreement design time, Business Context Driver information MAY be discovered from the Trading Partner Profiles or the Registry Information Model data.

Design rules SHALL be used to represent the BIE (a modeling artifact) into a desired syntax, such as extensible Markup Language (XML) or Electronic Data Interchange (EDI).

One or more BIE’s SHALL be used for designing a Business Message Payload or syntax specialized message. BIE’s SHALL NOT be bound to a specific syntax.
8.2 Functional Requirements
Core Components + BIEs + Business Contexts SHALL be storable and retrievable using a Registry mechanism.]
A Core Component or BIE, SHALL be capable of providing semantic information about itself.

It SHALL be possible to construct an Aggregate Core Component using other Core Components, which MAY include Aggregated and Basic Core Components. Aggregate Core Components SHALL contain references to the components they are composed of. The same is also true for Business Information Entities.

A Core Component, via the Registry Information Model, SHALL be capable of associating BIE’s that MAY be used based on specific Business Contexts. This is not a requirement of the Core Component directly.

A BIE or aggregate BIE SHALL reference the Core Component or aggregates that were used as the basis for creating the BIE.

A BIE SHALL be capable of containing references that indicate semantic equivalence to elements of other taxonomies.
Either directly or via the Registry Information Model, a Core Component or BIE SHOULD contain a reference to where the artifact physically resides, who maintains it and who may be contacted to suggest modifications or constraints (Data Steward).

1. The BIE MAY contain references on how it may be expressed in a specific syntax (eg. EDI or XML). This may be done by using an assembly schema - an artifact which constrains how the component may be physically represented in a specific syntax such as XML.

A + CC too BIE SHOULD be capable of expressing enumerated lists or impose datatype constraints for values. These would be details of constraints on values allowable for each component. An example of this, may be to allow only integer values for components which represent numerical data.

Core Components and BIE’s MUST contain information about their Core Component Type.

Core Components MAY be associated with other artifacts during all phases described within this architecture. It is RECOMMENDED that these relationships are stored in the Registry Information Model.

· Core Components + BIEs SHALL be capable of being realized in XML syntax. This does not mean that instances may only be in XML Format.
A Core Component SHALL be able to be uniquely identified. + BIE + Business Context.
8.3 Interfaces to other Components
A Core Component or Business Information Entity MAY be referenced indirectly or directly from a Business Collaboration. This MAY be done via an intermediary document (Assembly Document) that describes how to construct a Business Message Payload during the Design Phase. The Assembly Document MAY specify a single, or group of Core Components, or Business Information Entities (required or optional) as part of a Business Message Payload instance.

A Core Component or Business Information Entity SHALL interface with a Registry mechanism by way of being storable, searchable and retrievable in such a mechanism.

The Business Message Payload Metadata MUST have a way to reference each Core Component or BIE used within instances of the Business Message Payload.

8.4 Implementation Details (Non Normative)
[image: image18.png]Trading Parner Trading Partner

Prafile Prafile

is bound to

Busines Proces Schema d L} Tiating Patiner Agareement (a——)
creates
references A
Busines Content
Business Document
CC - Assembly Document
T input
input v
. Busines Document
ety Tool

Business Information
Entity (BIE)

1.

1

Core Component

Core Component Type

Assemblesdasument)

l it

Business Document Tamplate
METADATA)

The Core Component work being done by the Core Component related UN/CEFACT eBTWG groups is a RECOMMENDED candidate for use within this Architecture.
UN/CEFACT Core Component team SHOULD deliver a starter set of Core Components for Trading Partners to use within this Architecture. This starter set SHOULD be developed using a normalized process of discovery and analysis. In order to continually develop the Core Component Library, the discovery and analysis for Core Components SHALL include the capability to define a new Core Component (Basic or Aggregate). One of the goals of the discovery and analysis process SHOULD be to avoid duplication of existing Core Components.

The Registry Information Model classification schemes SHOULD be used to express how a Core Component or Business Information Entity is part of a lexicon or Core Component Library.

9.0 Trading Partner Profiles and Agreements

9.1 Introduction

To facilitate the process of conducting eBusiness, potential Trading Partners need a mechanism to publish information about the Business Processes they support along with specific technology implementation detailing their capabilities. This is accomplished through the use of a Trading Partner Profile. The Trading Partner Profile is a document that allows a Trading Partner to express their supported Business Processes and Business Service Interfaces in a standardized manner.

A special business agreement called a Trading Partner Agreement, is a document derived from the intersection of two or more Trading Partner Profiles. The Trading Partner Agreement serves as a formal agreement between two or more Trading Partners wishing to enter into a Business Collaboration.

An ebXML Collaboration Protocol Agreement (CPA) is a technical agreement and is not intended to capture any legal agreement between two Trading Partners however, entering into a CPA MAY have legal implications. Trading Partners MAY rely on external documents to capture the legal details of their Business Collaborations. Capturing the details of any legal agreements between Trading Partners is outside the scope of this architecture.

A Trading Partner MAY have one or more Trading Partner Agreements.

9.2 Trading Partner Profile and Agreement Formal Functionality
1. A Trading Partner Profiles and Trading Partner Agreements SHALL be capable of describing the specific technical capabilities that a Trading Partner supports. This SHALL include, but is not limited to the following:

a) The details of their Business Service Interface that include details of one or more communication endpoints (URI, Port information, protocol and messaging format).

b) Details of Security Protocols that the Trading Partner supports and implementation information.

c) Information that points at technical error handling routines including how the Trading Partner handles malformed messages, re-routing capabilities, time-outs, and what constitutes an unrecoverable error.

The Trading Partner Profile MUST be capable of containing a list of Business Process Schemas supported by the Trading Partner. The BPS instances SHALL be capable of being referenced via a Unique Identifier. Additionally, the Trading Partner Profile and Agreements SHOULD be capable of providing details of the physical location of each Business Process Schema and the details of the protocols that may be used to retrieve a copy of the Business Process Schema.

The Trading Partner Profile and Trading Partner Agreement SHALL be capable of identifying the Roles that the Trading Partner is capable of, or will assume responsibility of, for each Business Process Schema.

The Trading Partner Profiles and Agreements SHOULD contain a reference to information, in a structured and known format that MAY be used to provide Business Context information. This information MAY include the physical address of the Trading Partner (used for the geo-political Context Driver).

Both Trading Partner Profiles and Trading Partner Agreements MAY provide information for one or more physical contacts that may be reached via conventional techniques (eg. telephone or email).

Business and industrial classifications for each trading partner and references to the Classification Schemes used to classify the Trading Partner. This MAY be done via the Registry and careful attention should be taken not to duplicate any information available as Registry Information Model.

A Trading Partner Profile SHALL contain details of how a Trading Partner Agreement is proposed, and engaged by other Trading Partners.

Both the Trading Partner Profile and Trading Partner Agreement MUST be capable of providing a way to uniquely identify each Trading Partner.

The Trading Partner Profile definition SHALL provide for selection of choices in all instances where there may be multiple selections (e.g. HTTP or SMTP transport). In cases where multiple choices exist, a methodology SHALL have the capability to select and bind localized configuration preferences to each BPSS instance.

9.3 Trading Partner Agreement Specific Formal Functionality

The Trading Partner Agreement MUST be capable of describing the specific technical capabilities that two or more Trading Partners will support during the cycle of a particular Business Collaboration.

A Trading Partner Agreement MUST be able to reference any long running commitments that MUST be monitored during the course of the Business Collaboration.

The Trading Partner Agreement SHALL be able to reference the Trading Partner Profile used by each Trading Partner as the basis for creating the Trading Partner Agreement.

A Trading Partner Agreement is meant to be a static artifact. If it becomes necessary to change of modify a Trading Partner Agreement, both Trading Partners should enter into a new Trading Partner Agreement.

A Trading Partner Agreement MAY be referenced from a Registry however it SHALL NOT be prescribed.

9.4 Trading Partner Profile and Agreement Interfaces
Interface to Business Process

A Trading Partner Profile SHALL be capable of referencing and uniquely identifying one or more Business Processes supported by the Trading Partner. The Trading Partner Profile SHALL reference the roles within a Business Process that the user is capable of assuming;examples of which include, a role could be the notion of a “Seller” and “Buyer” within a “Purchasing” Business Process. There SHALL be a mechanism to reference the role descriptions in the Trading Partner Profiles and Agreements with the roles described in the Business Process Schema.

Both Trading Partner Profiles and Agreements SHALL be capable of being stored and retrieved from a Registry hence an implied relationship with a Registry. Both Trading Partner Profiles and Trading Partner Agreements SHALL be capable of pointing to other artifacts via a reference to a Registry Managed Object.

A Trading Partner Agreement MUST contain information describing binding details that are used to send and receive Business Message Payloads.

A Trading Partner Agreement governs the Business Service Interface used by a Trading Partner by constraining a set of parameters to a subset agreed to by all Trading Partners, who will then execute such an agreement.

Trading Partner Agreement’s have Interfaces to Trading Partner Profile’s in that the profile is derived through a process of constraining the Trading Partners capabilities into what the Trading Partner agree they “will” do. The physical detail of this interface SHALL be via a mechanism to uniquely identify the Trading Partner Profile used as the basis for creation of the Trading Partner Agreement.

9.5 Non-Normative Implementation Details.

The OASIS CPP-A Technical Committees’ working specification(s) is the RECOMMENDED candidate to meet the needs of this Architecture. The terminology used to describe a Trading Partner Profile is “Collaborative Protocol Profile” or CPP and the Trading Partner Agreement is called a “Collaborative Protocol Agreement” or CPA.

The process of formation, proposing and acceptance of a Trading Partner Agreement SHOULD be formally described and constrained by normalizing rules for negotiations and choosing options in instances where multiple choices are available.

Each Trading Partner SHOULD register their CPP(s) in a Registry Service, thus providing a means for allowing other Trading Partners to discover details about them.

A Trading Partner Agreement is negotiated after the Discovery and Retrieval Phase and is essentially a technical agreement of the Messaging Services and Business Process Schema related information that two or more Trading Partners agree to use for exchanging business information. If any parameters contained within an accepted Trading Partner Agreement change after the agreement has been executed, a new Agreement SHOULD be negotiated between Trading Partners.

10.0 Registry

10.1 Introduction
The UEB Architecture makes extensive use of Registry systems. The Registry provides a set of services that enable the managing and sharing of information. A Registry is a component that maintains an interface to metadata for a registered item (called a “RegistryObject”). Access to a Registry is provided through Interfaces (APIs) exposed by Registry Services.

[image: image19.png]Registy Object

is reteranoed

is tetaranoable from

Registy Information

o P Hodel
is sonstrainad by
Registy Information
1 1
“dminisative
nformation

4 4

Managed Object Managed Object
naged Ot Adminishation Interace raged Ob
1 0.1 1

Registy Client Interace

bd o

Registy Semvices

Communicates

Standardized Transpart
Frotocal

it

Standardized Transpart
Fratocal

The Interfaces described by this architecture can generally be broken down into three general categories:

1. The Object Manager – this Interface is a series of defined methods that allow registry users to manage objects referenced by the Registry. This MAY include classifying objects, declaring associations, updating, superceding or deleting references to managed objects, and modifying any metadata associated with a specific managed object through that objects lifecycle.

Note: A Registry Object’s location is not tightly bound to the Registry itself. A Registry Object may physically reside in a separate location.

2. The Object Query Manager – this interface is a series of defined methods and return types for querying the Registry metadata about Managed Objects.

3. The Administration Manager – this is an optional, RECOMMENDED collection of methods that SHOULD BE defined for managing registry properties such as permissions of Registry Users. It is generally reserved for a special type of registry actor called a Registry Administrator or “RA”.

The Registry is not tightly coupled to any specific Registry Client. Although Registries may use any number of communication techniques and extend their functionality to include other interfaces other than those defined herein, Registries must meet the minimal functional requirements described herein in order to fit within this architecture.

The basic architecture of the Registry and Registry Client is shown below.

[image: image20.png]Reasity Clisnt

Requesty

Response

A Registry Client is a specialized software component used to send messages to, and receive responses from. registries using known Registry Services. For purposes of interoperability, registries operating within a specific infrastructure SHOULD use the same set of Registry Services.

A Repository is a location where Registry Objects physically reside. A Registry may use an internal Repository for this location, but no such relationship is mandated by this specification.

Implementation Note: Generally, having a Repository and Registry on the same physical server may impose limits of scalability. Implementers are strongly urged to consider the maximum number of concurrent users when designing such systems.

10.2 Formal Functionality
A Registry SHALL be capable of referencing Registry Items expressed in syntax using both multi-byte and single-byte character sets.

A Registry SHALL use a system for uniquely identifying all Registry Objects.

A Registry Object Query Manger Interface SHALL return either zero or one positive matches in response to a contextual query for a unique identifier value. In such cases where two or more positive results are displayed for such queries, an error message MUST be reported to the Registry Authority.

A Registry MUST store persistent metadata about each Managed Object through that managed objects’ lifecycle. This metadata is referred to as the Registry Information Model (RIM).

The Registry Information Model SHALL be structured to allow information associations that identify, name, description, administrative and access status, persistence and mutability, classify, declare file representation type, and identify the submitting and responsible organizations for each Registry Object.

A Registry SHALL allow one or more classification schemes to be used to classify each registry object in line with the requirements of registry users.

A Registry SHALL allow one or more associations to be made between Registry Objects. Such Associations SHALL be able to reference Registry Objects in other Registry systems that adhere to this specification. Associations SHALL be capable of being bi-directional.

The Registry Interfaces serve as an application-to-registry access mechanism. This introduces the concept of a Registry Client, a specialized application that is capable of sending Messages that conform to the Registries API.

[image: image21.png]Registy Client Interace

Commanicates
witn

Regity

 Human-to-registry interactions SHALL be built as a layer over the Registry Client (e.g. a Web browser) using the standardized Registry Services. If another Human to Registry communication mechanism is implemented (eg. Registry Service and Transport mechanism) it shall exist in addition to and not as a replacement to the standardized Registry Services.

The Registry Interface SHALL be designed to be independent of the underlying network protocol stack (e.g. HTTP/SMTP over TCP/IP). Specific instructions on how to interact with the Registry Interface MAY be contained in the payload of a Business Message.

All Registries that conform to this architecture specification SHALL support one standard communication protocol. This MAY be supplemented with other communication protocols as long as the standard protocol is present.

Note – please see non normative implementation details (section 10.4) for RECOMMENDED communication protocol.

Registry Services functionality SHALL also include:

· A standardized set of messages between the Registry and Registry Clients to describe all messages and returns types, including errors, that occur between the Registry Interfaces and the Registry Clients.
· A set of standard functional processes involving the Registry and Registry Clients.

· A set of error responses and conditions with remedial actions.

· A standardized error management system for recovering from errors.

Any of the Registry Interfaces used within this Architecture MAY generate error messages in response to certain events. A Registry Client SHOULD be capable of receiving and interpreting those error messages.

Registry Services MAY exist to create, modify, and delete Registry Objects and their metadata.

Appropriate security protocols SHALL be available to offer authentication and protection for the Registry access.

No methods MAY be part of a Registry Interface that are capable of any of the following:

a. Results in returns that are so large that it could result in a denial of service type attack;

b. May use a large percentage of Registry Services for processing that the end effect is rendering the Registry unavailable to other Registry Clients;

c. That may result in unsuspecting users waiting unreasonably long times for network conveyance of the Return message.

It is up to individual Registry Operators to decide what constitutes “unreasonable” for interpretation of the above.

Unique Identifiers (UIDs) SHALL be assigned to all items within an ebXML Registry System. UID keys are REQUIRED references for all Registry content. Universally Unique Identifiers (UUIDs) MAY be used in conjunction with a Registries URI to ensure that Registry entries are truly globally unique, and thus when systems query a Registry for a UUID, one and only one result SHALL be retrieved.
Components in ebXML MUST facilitate multilingual support. A UID reference is particularly important here as it provides a language neutral reference mechanism. To enable multilingual support, the ebXML specification SHALL be compliant with Unicode and ISO/IEC 10646 for character set and UTF-8 or UTF-16 for character encoding.

10.3 Interfaces
Messaging:

The query syntax used by the Registry access mechanisms is independent of the physical implementation of the backend system.

It is RECOMMENDED that a Messaging Service Specification that meets the requirements of the Messaging Service prescribed in section 11 herein, MAY serve as the default transport mechanism for all communication into and out of the Registry.

Business Process:
Business Processes are published and retrieved via Registry Services.

Core Components:
Core Components are published and retrieved via Registry Services.

Any item with metadata: XML elements provide standard metadata about the item being managed through Registry Services. Since this Architecture relies on distributed Registries, each Registry MAY interact with and cross-reference another Registry.
10.4 Non Normative Implementation Details

To facilitate the discovery process, browse and drill down queries MAY be used for human interactions with a Registry (e.g. via a Web browser). A user SHOULD be able to browse and traverse the content based on the available Registry classification schemes.

The work of the ebXML Registry group [insert normative reference here] is HIGHLY RECOMMENDED for use within this Architecture. That work has been specifically designed for meeting the requirements of this architecture.

The work of UDDI [insert normative reference here] SHOULD be examined with a perspective towards being used for the functionality described herein.

A Registry MAY support multiple concurrent classification schemes to meet the needs of businesses.

Registry Items and their metadata MAY also be addressable as XML based URI references using only HTTP for direct access.
Examples of extended Registry Services functionality may be deferred to a subsequent phase of the ebXML initiative. This includes, but is not limited to transformation services, workflow services, quality assurance services and extended security mechanisms.

A Registry Service MAY have multiple deployment models as long as the Registry Interfaces are compliant with this architecture.

The Business Process and Information Meta Model for an ebXML Registry Service may be an extension of the existing OASIS Registry/Repository Technical Specification, specifically tailored for the storage and retrieval of business information, whereas the OASIS model is a superset designed for handling extended and generic information content.
11.0 Messaging

11.1 Introduction

The Message Service mechanism provides a standard way to exchange business Messages among Trading Partners. The Messaging Service MUST provide a reliable means to exchange business Messages without relying on proprietary technologies and solutions. A Message contains structures for a Message Header (necessary for routing and delivery) and a Payload section.

The Messaging Service is conceptually broken down into three parts: (1) an abstract Service Interface, (2) functions provided by the Messaging Service Layer, and (3) the mapping to underlying transport service(s). The relation of the abstract Interface, Messaging Service Layer, and transport service(s) are shown in Figure 15 below.

[image: image22.wmf]Abstract ebXML Messaging Service Interface

EbXML Messaging Service Layer maps

the abstract interface to the underlying

transport service

Transport Service(s)

Figure 15 - Messaging Service Logical Breakdown

The following diagram depicts a logical arrangement of the functional modules that exist within the ebXML Messaging Services architecture. These modules are arranged in a manner to indicate their inter-relationships and dependencies. This architecture diagram illustrates the flexibility of the ebXML Messaging Service, reflecting the broad spectrum of services and functionality that may be implemented in an ebXML system.

[image: image23.wmf]HTTP

SMTP

IIOP

FTP

…

ebXML Applications

Messaging Service Interface

Messaging Service

Authentication, authorization and

repudiation services

Header Processing

Encryption, Digita

l Signature

Message Packaging Module

Delivery Module

Send/Receive

Transport Mapping and Binding

Figure 16 - The Messaging Service Architecture

11.2 Formal Functionality

The ebXML Messaging Service provides a secure, consistent and reliable mechanism to exchange ebXML Messages between users of the ebXML infrastructure over various transport Protocols (possible examples include SMTP, HTTP/S, FTP, etc.).

The ebXML Messaging Service prescribes formats for all Messages between distributed ebXML Components including Registry mechanisms and compliant user Applications.

The ebXML Messaging Service does not place any restrictions on the content of the payload.

The ebXML Messaging Service supports simplex (one-way) and request/response (either synchronous or asynchronous) Message exchanges.

The ebXML Messaging Service supports sequencing of payloads in instances where multiple payloads or multiple Messages are exchanged between Trading Partners.

The ebXML Messaging Service Layer enforces the "rules of engagement" as defined by two Trading Partners in a Collaboration Protocol Agreement (including, but not limited to security and Business Process functions related to Message delivery). The Collaboration Protocol Agreement defines the acceptable behavior by which each Trading Partner agrees to abide. The definition of these ground rules can take many forms including formal Collaboration Protocol Agreements, interactive agreements established at the time a business transaction occurs (e.g. buying a book online), or other forms of agreement. There are Messaging Service Layer functions that enforce these ground rules. Any violation of the ground rules result in an error condition, which is reported using the appropriate means.

The ebXML Messaging Service performs all security related functions including:

· Identification

· Authentication (verification of identity)

· Authorization (access controls)

· Privacy (encryption)

· Integrity (message signing)

· Non-repudiation

· Logging

11.3 Interfaces

The ebXML Messaging Service provides ebXML with an abstract Interface whose functions, at an abstract level, include:

· Send – send an ebXML Message – values for the parameters are derived from the ebXML Message Headers.

· Receive – indicates willingness to receive an ebXML Message.

· Notify – provides notification of expected and unexpected events.

· Inquire – provides a method of querying the status of the particular ebXML Message interchange.

The ebXML Messaging Service SHALL interface with internal systems including:

· Routing of received Messages to internal systems
· Error notification

The ebXML Messaging Service SHALL help facilitate the Interface to an ebXML Registry.

11.4 Non-Normative Implementation Details
ebXML Message Structure and Packaging

Figure 17 below illustrates the logical structure of an ebXML Message.

[image: image24.wmf] Transport Envelope (SMTP, HTTP, etc.)

 ebXML Message Envelope (MIME multipart/related)

 ebXML Header Envelope

 ebXML Header Document

ebXML Payload Envelope

Payload Document(s)

ebXML

Payload

Container

Manifest

Header

ebXML

Header

Container

Figure 17 - ebXML Message Structure

An ebXML Message consists of an optional transport Protocol specific outer Communication Protocol Envelope and a Protocol independent ebXML Message Envelope. The ebXML Message Envelope is packaged using the MIME multipart/related content type. MIME is used as a packaging solution because of the diverse nature of information exchanged between Partners in eBusiness environments. For example, a complex Business Transaction between two or more Trading Partners might require a payload that contains an array of business documents (XML or other document formats), binary images, or other related Business Information.

12. 0 References

[EDITORS NOTE: Inquire to STC about reference section in template.]

This section defines ...[used to outline more or all details of this specific specification].

13 .0 Disclaimer

The views and specification expressed in this document are those of the authors and are not necessarily those of their employers. The authors and their employers specifically disclaim responsibility for any problems arising from correct or incorrect implementation or use of this design.

14.0 Contact Information

eBTWG Chair - Klaus-Dieter Naujok, knaujok@home.com

14.1 Project Team Membership

Project Team Leader - Duane Nickull, XML Global Technologies, duane@xmlglobal.com
Project Team Co-Leader - Marion Royal, GSA, marion.royal@gsa.gov

Project Editor – Moshe Silverstein, iWay Software, Moshe_Silverstein@iWaySoftware.com

Project Team –Ted Osinski, UCC, tosinski@uc-council.org
Ho Beom Jang, KTNET, hbjang@ktnet.co.kr

Monica J. Martin, Certivo, mmartin@certivo.net

Aynur Unal, e2Open, aynur@2open.com

Kenji Itoh, JASTPRO, kenji.itoh@jastpro.or.jp

Jasmine Jang, KIEC, jasmine@kiec.or.kr

Kyle McNabb, Vignette

Art Krylovetski, Certivo

Hans H. Eriksen, Danish Standards Association, hhe@ds.dk

Per Hjartoy, Actius

John Yunker

Dave Welsch

Matt McKenzie, matt@xmlglobal.com

Doug Bunting, drb24@cornell.edu , dougb62@yahoo.com

Copyright Statement

Copyright © [ebXML | UN/CEFACT] 2001. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to [(ebXML, UN/CEFACT, or OASIS,) | UN/CEFACT,] except as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by [ebXML | UN/CEFACT] or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and [ebXML | UN/CEFACT] DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Appendix “A”

UN/CEFACT ebTWG Project Teams and OASIS Technical Committees relationships.

Figure 1 (below) shows high-level relationships between the project teams working on components of this architecture. This model is provided to describe their relationships that are necessary to facilitate the Working Requirements as described in this document.

[image: image25.png]—

pr—

o)

Camatamate>>

oo

pr—

e
sors
<oueh
[
contppaion>
V2
cra

<casqement>>

arss

<apaleer

<nembonp>

<antersnoes>

arivEs

Caatines>

<mfighsion

<cparsisance

<peristanca> !

P e—

5

<canprssion>

; N
>

cc

cer

pafistanoe>>
s

UEB High-level Overview

� The needs of businesses, on which the ebXML Technical Architecture v 1.04 is based, are described in the ebXML Requirements Document v 1.06 at http://www.ebxml.org.

� Also it is possible that through modeling new Components are discovered. Please see section on Core Components.

� Core Library: is BOV of the Core Component Library (CC) and Business Process Catalogue (BP-CAT).

�PAGE \# "'Page: '#'�'" ��This paragraph was covered above in generic terms (1st para). [DN] this sentence is from a UN/CEFACT template. We have to use it.

�PAGE \# "'Page: '#'�'" ��

�PAGE \# "'Page: '#'�'" ��I think this should be a list of documents… as the heading describes. No need for an intro, the heading is self-explanatory.

�PAGE \# "'Page: '#'�'" ��“Abstract” was far too obtuse a term, I think flexible works better.

�PAGE \# "'Page: '#'�'" �� This may be changed based on the reorg or CEFACT Tuesday in Geneva. I have posted to the list.

�PAGE \# "'Page: '#'�'" ��Does this need to be italicized? [DN] No.

�PAGE \# "'Page: '#'�'" ��No need for this [DN] technically – yes. Politically – we need to say it. <sigh>

UN/CEFACT eBTWG Electronic Business Architecture Specification Page 3 of 53
Copyright © [ebXML | UN/CEFACT] 2002. All Rights Reserved.

_1064336681.vsd

_1083365497.doc
[image: image1.png]i '

CommenusineszProcess

i

e

!

essage

i e ——— [Ty [
' <ty
i i k>
i | P b
<<ealizg>> L i
H I CoreComponent
Bpss H s
<t |
[———] |
oo AR ! <crediize>> |
T ; H <requireent>> T “"""Q‘F”
T i H Assembly Document i BusinessInformation Entty
I} <crkalize>> <<refersfices>> ! i
<chater t T e . ' -
I CollaborationProtocol Profile ! B T
i [y | i
[i |
! wusnessrommonttpet | | [zsv]
A ! ahaizg>
<ctpr ! '
i ey ol | !
g I |
| [!
<ty | |
i <chatzers ! CorsCompenenReatzion
Wenserdos RegsryBy i

_1038227176.vsd

_1038388001.vsd

_1038224284.vsd

