Security Module

The ebXML Message Service, by its very nature, presents certain security risks. A Message Service may be at risk by means of:

· Unauthorized access

· Data integrity and/or confidentiality attacks (e.g. through man-in-the-middle attacks)

· Denial-of-Service and spoofing

Each security risk is described in detail in the ebXML Technical Architecture Risk Assessment Technical Report [ebRISK].

Each of these security risks may be addressed in whole, or in part, by the application of one, or a combination, of the countermeasures described in this section. This specification describes a set of profiles, or combinations of selected countermeasures, selected to address key risks based upon commonly available technologies. Each of the specified profiles includes a description of the risks that are not addressed. See Appendix C, Supported Security Services for a table of security profiles.

Application of countermeasures SHOULD be balanced against an assessment of the inherent risks and the value of the asset(s) that might be placed at risk.

Security Element

An ebXML Message can be digitally signed and/or encrypted to provide security countermeasures. Message signature and encryption support is specified in the Web Services Security [WSS10] and Web Services Security SOAP Messages with Attachments Profile [WSS-SWA].

Zero or one Security elements per target, belonging to the Web Services Security [WSS10] defined namespace, MAY be present as a child of the SOAP Header. The Security element MUST be namespace qualified in accordance with Web Services Security [WSS10]. The structure and content of the Security element MUST conform to the Web Services Security [WSS10] specification and the Web Services Security SOAP Messages with Attachments Profile [WSS-SWA].

To promote interoperability the security element MUST conform to the WS-I Basic Security Profile Version 1.0 [WSIBSP10], and WS-I Attachments Profile Version 1.0 [WSIAP10].

To promote interoperability the Web Services Security X.509 Certificate Token Profile [WSSX509] MUST be supported. Web Services Security Username Token Profile [WSSUTP]and Web Services Security SAML Token Profile [WSSSAML] SHOULD be supported.

Signing Messages

An ebXML Message is signed using [WSS10] following these steps:

Create a Security element as prescribed by Web Services Security [WSS10]

Create a BinarySecurityToken element specifying

EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#Base64Binary"

ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3"

Add the BinarySecurityToken as a child element of the Security element.

Create a KeyInfo element containing a SecurityTokenReference as prescribed in Web Services Security [WSS10]. The SecurityTokenReference should reference the BinarySecurityToken element created above.

Create a SignedInfo element with SignatureMethod, CanonicalizationMethod and Reference elements for the SOAP Envelope as prescribed by Web Services Security [WSS10].

Canonicalize and then calculate the SignatureValue over SignedInfo based on algorithms specified in SignedInfo as prescribed by Web Services Security [WSS10].

Construct the Signature element that includes the SignedInfo, KeyInfo and SignatureValue elements as presecribed in Web Services Security [WSS10].

Include the Signature Element within the Security element created above.

Recommended use of a BinarySecurityToken with ValueType of x509-token-profile, EncodingType – Base64Binary.

The RECOMMENDED canonicalization method applied to the data to be signed is

<CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/10/xml-exc-c14n#"/>

described in [XMLC14N].

The SignatureMethod element SHALL be present and SHALL have an Algorithm attribute. The RECOMMENDED value for the Algorithm attribute is:

<SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1"/>

This RECOMMENDED value SHALL be supported by all compliant ebXML Message Service software implementations.

It is REQUIRED that compliant MSH implementations support Detached Signatures as defined by the XML Signature Specification [XMLDSIG].

It is RECOMMENDED that the eb:Message Container Element, and the SOAP Body are included in the signature.

A MSH implementation MAY support Enveloped Signatures as defined by the XML Signature Specification. Enveloped Signatures add an additional level of security in preventing the addition of XML elements to the SOAP Header. Enveloped Signatures may limit the ability of intermediaries to process messages.

Signing SOAP with Attachments Messages

An ebXML Message that contains attachments is signed using [WSS10] and [WSS-SWA] following these steps:

Create a Security element as prescribed by Web Services Security [WSS10]

Create a BinarySecurityToken element specifying

EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#Base64Binary"

ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3"

Add the BinarySecurityToken as a child element of the Security element.

Create a KeyInfo element containing a SecurityTokenReference as prescribed in Web Services Security [WSS10]. The SecurityTokenReference should reference the BinarySecurityToken element created above.

Create a SignedInfo element with SignatureMethod, CanonicalizationMethod and Reference elements for the SOAP Envelope as prescribed by Web Services Security [WSS10]. Reference elements for each attachment should be created as prescribed by Web Services Security SOAP Messages with Attachments Profile [WSS-SWA].

Canonicalize and then calculate the SignatureValue over SignedInfo based on algorithms specified in SignedInfo as prescribed by Web Services Security [WSS10].

Construct the Signature element that includes the SignedInfo, KeyInfo and SignatureValue elements as presecribed in Web Services Security [WSS10].

Include the Signature Element within the Security element created above.

It is REQUIRED that compliant MSH implementations support the Attachment-Content-Only transform. It is RECOMMENDED that compliant MSH implementations support the Attachment-Complete transform.

It is RECOMMENDED that the eb:Message Container Element, and all MIME Body parts of included payloads are included in the signature.

Example of digitally signed ebXML SOAP Message:

Mime-Version: 1.0

Content-Type: multipart/related; type="text/xml"; boundary="----=_Part_0_1379543.1127798483498"

SOAPAction: ""

Content-Length: 5120

------=_Part_0_1379543.1127798483498

Content-Type: text/xml

Content-Transfer-Encoding: binary

<?xml version="1.0" encoding="UTF-8"?>

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:xsd="http://www.w3c.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <soap:Header xmlns:eb="http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-3_0.xsd">

 <eb:Message eb:version="3.0" id="ebMessage" soap:mustUnderstand="1">

 <eb:UserMessage eb:syncresp="false">

 <eb:MessageInfo>

 <eb:Timestamp>2005-09-27T05:21:22.790Z</eb:Timestamp>

 <eb:MessageId>UUID-2@example.com</eb:MessageId>

 <eb:RefToMessageId>UUID-1@example.com</eb:RefToMessageId>

 </eb:MessageInfo>

 <eb:PartyInfo>

 <eb:From>

 <eb:PartyId>uri:example.com</eb:PartyId>

 <eb:Role>http://rosettanet.org/roles/Buyer</eb:Role>

 </eb:From>

 <eb:To>

 <eb:PartyId eb:type="someType">QRS543</eb:PartyId>

 <eb:Role>http://rosettanet.org/roles/Seller</eb:Role>

 </eb:To>

 </eb:PartyInfo>

 <eb:CollaborationInfo>

 <eb:AgreementRef>http://www.oasisopen.org/cpa/123456</eb:AgreementRef>

 <eb:Service eb:type="someType">QuoteToCollect</eb:Service>

 <eb:Action>NewPurchaseOrder</eb:Action>

 <eb:ConversationId>98ecfc09-258e-4a3a-84eb-d4feff74bad4</eb:ConversationId>

 </eb:CollaborationInfo>

 <eb:MessageProperties>

 <eb:Property name="ProcessInst">PurchaseOrder:123456</eb:Property>

 <eb:Property name="ContextID">987654321</eb:Property>

 </eb:MessageProperties>

 <eb:PayloadInfo>

 <eb:Partref eb:id="ID15543211127798482834"

 eb:idref="cid:PO_Image">

 <eb:Description xml:lang="en-US">PO Image</eb:Description>

 </eb:Partref>

 </eb:PayloadInfo>

 </eb:UserMessage>

 </eb:Message>

 <wsse:Security soap:mustUnderstand="1"

 xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"

 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">

 <wsse:BinarySecurityToken

 EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#Base64Binary"

 ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3"

 wsu:Id="signingCert">

 ...

 </wsse:BinarySecurityToken>

 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

 <ds:SignedInfo>

 <ds:CanonicalizationMethod Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>

 <ds:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>

 <ds:Reference URI="#ebMessage">

 <ds:Transforms>

 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>

 </ds:Transforms>

 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

 <ds:DigestValue>eCceIU7ecssA33b3iGWC2GaVn50=</ds:DigestValue>

 </ds:Reference>

 <ds:Reference URI="cid:PO_Image">

 <ds:Transforms>

 <ds:Transform

 Algorithm="http://docs.oasis-open.org/wss/2004/XX/oasis-2004XX-wss-swa-profile-1.0#Attachment-Content-Only-Transform"

 />

 </ds:Transforms>

 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

 <ds:DigestValue>R4hCV4K4I5QZdSsrP4KrLu46hFo=</ds:DigestValue>

 </ds:Reference>

 </ds:SignedInfo>

 <ds:SignatureValue> EcCFIir0Cn4YapNNiaoWg2sKNVE8lMqmcKW/Li21aOh9g8cVJgZ6OY/V/Sa0VrTpX3aJKbYW Q7W0q1RFAVOaefpEFVrLbmBnEMH5UfHTH4t3NQSofxB8YUUkKEY12JuVh2nSx+P5SFVKAGBh

 C0Xf66/LO3/fExKttPfYoFsozTg= </ds:SignatureValue>

 <ds:KeyInfo>

 <wsse:SecurityTokenReference

 xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">

 <wsse:Reference URI="#signingCert"/>

 </wsse:SecurityTokenReference>

 </ds:KeyInfo>

 </ds:Signature>

 </wsse:Security>

 </soap:Header>

 <soap:Body/>

</soap:Envelope>

------=_Part_0_1379543.1127798483498

Content-Type: image/jpeg

Content-Transfer-Encoding: base64

Content-Disposition: attachment; filename=empty.jpg

Content-Id: <PO_Image>

/9j/4AAQSkZJRg==

------=_Part_0_1379543.1127798483498--

Encrypting Messages

An ebXML Message is encrypted using [WSS10] following these steps:

Create a Security element as prescribed by Web Services Security [WSS10].

Create a BinarySecurityToken element specifying

EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#Base64Binary"

ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3"

Add the BinarySecurityToken as a child element of the Security element.

Create an EncryptedKey as a child element of the Security Element. The EncryptedKey element SHOULD contain a DataReference to each EncryptedData element that was encrypted using that key. The EncryptedKey element SHOULD contain a KeyInfo element that contains a SecurityToken reference sub-element that references the attached BinarySecurityToken.

Locate data items to be encrypted.

Encrypt the data items as follows: For each XML element or element content within the target SOAP envelope, encrypt it according to the processing rules of the XML Encryption specification [XMLENC]. Each selected original element or element content MUST be removed and replaced by the resulting EncryptedData element.

Create a DataReference element referencing the generated EncryptedData elements. Add the created DataReference element to the ReferenceList.

A MSH Implementation may encrypt the eb:Message Container Element. The eb:PartyInfo section may be used to aid in message routing before decryption has occurred. It is RECOMMENDED that the eb:PartyInfo section not be encrypted.

The EncryptionMethod element SHALL be present and SHALL have an Algorithm attribute. The RECOMMENDED value for the Algorithm attribute is:

<EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>

This RECOMMENDED value SHALL be supported by all compliant ebXML Message Service software implementations.

Example of an encrypted ebXML SOAP Message

[[[Include example]]]

Encrypting SOAP with Attachments Messages

An ebXML Message is encrypted using [WSS10] and [WSS-SWA] following these steps:

Create a Security element as prescribed by Web Services Security [WSS10].

Create a BinarySecurityToken element specifying

EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#Base64Binary"

ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3"

Add the BinarySecurityToken as a child element of the Security element.

Create an EncryptedKey as a child element of the Security Element. The EncryptedKey element SHOULD contain a DataReference to each EncryptedData element that was encrypted using that key. The EncryptedKey element SHOULD contain a KeyInfo element that contains a SecurityToken reference sub-element that references the attached BinarySecurityToken.

Locate data items to be encrypted.

When encrypting both attachments and primary SOAP envelope content perform the attachment processing first.

Encrypt each attachment part using XML Encryption according to the rules of XML Encryption.

Set the EncryptedData Type attribute to a URI that specifies what was encrypted (MIME content or the entire MIME part including headers).

Set the EncryptedData MimeType attribute to match the attachment MIME part Content-Type header before encryption.

Set the EncryptedData Encoding attribute to reflect the attachment content encoding, as visible to the security layer at the time of encryption.

Set the EncryptedData CipherReference to the same reference URL for the attachment that was used before encryption. This MUST be a CID scheme URL referring to the attachment part Content-ID. Ensure this MIME header is in the part conveying the cipher data after encryption.

Include the MIME Part Reference Transform in the CipherReference Transforms list.

Prepend the EncryptedData element to the Security element.

Update the attachment MIME part replacing the original content with the cipher text generated by the XML encryption step.

Update the attachment MIME part header MIME content-type and Content-Length appropriate to the cipher data.

Repeat steps for each additional attachment.

Encrypt the SOAP Header data items as follows: For each XML element or element content within the target SOAP envelope, encrypt it according to the processing rules of the XML Encryption specification [XMLENC]. Each selected original element or element content MUST be removed and replaced by the resulting EncryptedData element.

Create a DataReference element referencing the generated EncryptedData elements. Add the created DataReference element to the ReferenceList.

Example of an encrypted ebXML SOAP Message

Mime-Version: 1.0

Content-Type: multipart/related; type="text/xml"; boundary="----=_Part_1_2615756.1127856554320"

SOAPAction: ""

Content-Length: 5133

------=_Part_1_2615756.1127856554320

Content-Type: text/xml

Content-Transfer-Encoding: binary

<?xml version="1.0" encoding="UTF-8"?>

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:xsd="http://www.w3c.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <soap:Header xmlns:eb="http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-3_0.xsd">

 <eb:Message eb:version="3.0" id="ebMessage" soap:mustUnderstand="1">

 <eb:UserMessage eb:syncresp="false">

 <eb:MessageInfo>

 <eb:Timestamp>2005-09-27T21:29:14.078Z</eb:Timestamp>

 <eb:MessageId>UUID-2@example.com</eb:MessageId>

 <eb:RefToMessageId>UUID-1@example.com</eb:RefToMessageId>

 </eb:MessageInfo>

 <eb:PartyInfo>

 <eb:From>

 <eb:PartyId>uri:example.com</eb:PartyId>

 <eb:Role>http://rosettanet.org/roles/Buyer</eb:Role>

 </eb:From>

 <eb:To>

 <eb:PartyId eb:type="someType">QRS543</eb:PartyId>

 <eb:Role>http://rosettanet.org/roles/Seller</eb:Role>

 </eb:To>

 </eb:PartyInfo>

 <eb:CollaborationInfo>

 <eb:AgreementRef>http://www.oasisopen.org/cpa/123456</eb:AgreementRef>

 <eb:Service eb:type="someType">QuoteToCollect</eb:Service>

 <eb:Action>NewPurchaseOrder</eb:Action>

 <eb:ConversationId>532a065a-c76b-4625-b341-abff793fceee</eb:ConversationId>

 </eb:CollaborationInfo>

 <eb:MessageProperties>

 <eb:Property name="ProcessInst">PurchaseOrder:123456</eb:Property>

 <eb:Property name="ContextID">987654321</eb:Property>

 </eb:MessageProperties>

 <eb:PayloadInfo>

 <eb:Partref eb:id="ID33275091127856554083"

 eb:idref="cid:PO_Image">

 <eb:Description xml:lang="en-US">PO Image</eb:Description>

 </eb:Partref>

 </eb:PayloadInfo>

 </eb:UserMessage>

 </eb:Message>

 <wsse:Security soap:mustUnderstand="1"

 xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"

 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">

 <wsse:BinarySecurityToken

 EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#Base64Binary"

 ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3"

 wsu:Id="encryptionCert"

 >...</wsse:BinarySecurityToken>

 <enc:EncryptedKey xmlns:enc="http://www.w3.org/2001/04/xmlenc#">

 <enc:EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5"

 xmlns="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"/>

 <KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#">

 <wsse:SecurityTokenReference>

 <wsse:Reference URI="#encryptionCert"/>

 </wsse:SecurityTokenReference>

 </KeyInfo>

 <CipherData xmlns="http://www.w3.org/2001/04/xmlenc#">

 <CipherValue>KPQFgMkwhFvhescBV5qKN7aaELihOsM3cUQZnqOPOZiG7KuVQ8F/Aog9m0ewpQX9qYyTT3eW+2GxaCOalRzfjbbmCudQDyCbSTKi6wIFbAKVT6QkCwk4g8M0L889jWeCIJLI96oaQPm8sW/wlfAppIF3Ny0ZF0bTNcWZKr6SpOk=</CipherValue>

 </CipherData>

 <ReferenceList xmlns="http://www.w3.org/2001/04/xmlenc#">

 <DataReference URI="#encrypted-attachment"/>

 </ReferenceList>

 </enc:EncryptedKey>

 <EncryptedData Id="encrypted-attachment" MimeType="image/jpeg"

 Type="http://docs.oasis-open.org/wss/2004/XX/oasis-2004XX-wss-swa-profile-1.0#Attachment-Content-Only"

 xmlns="http://www.w3.org/2001/04/xmlenc#">

 <EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>

 <CipherData>

 <CipherReference URI="cid:PO_Image">

 <Transforms>

 <Transform

 Algorithm="http://docs.oasis-open.org/wss/2004/XX/oasis-2004XX-wss-swa-profile-1.0#Attachment-Content-Only-Transform"

 xmlns="http://www.w3.org/2000/09/xmldsig#"/>

 </Transforms>

 </CipherReference>

 </CipherData>

 </EncryptedData>

 </wsse:Security>

 </soap:Header>

 <soap:Body/>

</soap:Envelope>

------=_Part_1_2615756.1127856554320

Content-Type: application/octet-stream

Content-Transfer-Encoding: base64

Content-Id: <PO_Image>

Content-Description: WSS XML Encryption message; type="image/jpeg"

lf5EDuFy0S1Sn4yF9vsJdc2Z0z3G28WB

------=_Part_1_2615756.1127856554320--

Signing and Encrypting Messages

An ebXML Message is signed and encrypted using [WSS10] and [WSS-SWA] following these steps:

When both signature and encryption are required of the MSH, sign first and then encrypt.

[[[Include steps required to sign and encrypt]]]

Example of a digitally signed and encrypted ebXML SOAP Message:

Mime-Version: 1.0

Content-Type: multipart/related; type="text/xml"; boundary="----=_Part_2_12064590.1127798486163"

SOAPAction: ""

Content-Length: 7825

------=_Part_2_12064590.1127798486163

Content-Type: text/xml

Content-Transfer-Encoding: binary

<?xml version="1.0" encoding="UTF-8"?>

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:xsd="http://www.w3c.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <soap:Header xmlns:eb="http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-3_0.xsd">

 <eb:Message eb:version="3.0" id="ebMessage" soap:mustUnderstand="1">

 <eb:UserMessage eb:syncresp="false">

 <eb:MessageInfo>

 <eb:Timestamp>2005-09-27T05:21:25.926Z</eb:Timestamp>

 <eb:MessageId>UUID-2@example.com</eb:MessageId>

 <eb:RefToMessageId>UUID-1@example.com</eb:RefToMessageId>

 </eb:MessageInfo>

 <eb:PartyInfo>

 <eb:From>

 <eb:PartyId>uri:example.com</eb:PartyId>

 <eb:Role>http://rosettanet.org/roles/Buyer</eb:Role>

 </eb:From>

 <eb:To>

 <eb:PartyId eb:type="someType">QRS543</eb:PartyId>

 <eb:Role>http://rosettanet.org/roles/Seller</eb:Role>

 </eb:To>

 </eb:PartyInfo>

 <eb:CollaborationInfo>

 <eb:AgreementRef>http://www.oasisopen.org/cpa/123456</eb:AgreementRef>

 <eb:Service eb:type="someType">QuoteToCollect</eb:Service>

 <eb:Action>NewPurchaseOrder</eb:Action>

 <eb:ConversationId>913bd37c-7e07-43b9-9e38-912993b5a1bb</eb:ConversationId>

 </eb:CollaborationInfo>

 <eb:MessageProperties>

 <eb:Property name="ProcessInst">PurchaseOrder:123456</eb:Property>

 <eb:Property name="ContextID">987654321</eb:Property>

 </eb:MessageProperties>

 <eb:PayloadInfo>

 <eb:Partref eb:id="ID147733261127798485937"

 eb:idref="cid:PO_Image">

 <eb:Description xml:lang="en-US">PO Image</eb:Description>

 </eb:Partref>

 </eb:PayloadInfo>

 </eb:UserMessage>

 </eb:Message>

 <wsse:Security soap:mustUnderstand="1"

 xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"

 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">

 <wsse:BinarySecurityToken

 EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#Base64Binary"

 ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3"

 wsu:Id="signingCert"

 >....</wsse:BinarySecurityToken>

 <wsse:BinarySecurityToken

 EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#Base64Binary"

 ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3"

 wsu:Id="encryptionCert"

 >…</wsse:BinarySecurityToken>

 <enc:EncryptedKey xmlns:enc="http://www.w3.org/2001/04/xmlenc#">

 <enc:EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5"

 xmlns="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"/>

 <KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#">

 <wsse:SecurityTokenReference>

 <wsse:Reference URI="#encryptionCert"/>

 </wsse:SecurityTokenReference>

 </KeyInfo>

 <CipherData xmlns="http://www.w3.org/2001/04/xmlenc#">

 <CipherValue>…</CipherValue>

 </CipherData>

 <ReferenceList xmlns="http://www.w3.org/2001/04/xmlenc#">

 <DataReference URI="#encrypted-attachment"/>

 </ReferenceList>

 </enc:EncryptedKey>

 <EncryptedData Id="encrypted-attachment" MimeType="image/jpeg"

 Type="http://docs.oasis-open.org/wss/2004/XX/oasis-2004XX-wss-swa-profile-1.0#Attachment-Content-Only"

 xmlns="http://www.w3.org/2001/04/xmlenc#">

 <EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>

 <CipherData>

 <CipherReference URI="cid:PO_Image">

 <Transforms>

 <Transform

 Algorithm="http://docs.oasis-open.org/wss/2004/XX/oasis-2004XX-wss-swa-profile-1.0#Attachment-Content-Only-Transform"

 xmlns="http://www.w3.org/2000/09/xmldsig#"/>

 </Transforms>

 </CipherReference>

 </CipherData>

 </EncryptedData>

 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

 <ds:SignedInfo>

 <ds:CanonicalizationMethod Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>

 <ds:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>

 <ds:Reference URI="#ebMessage">

 <ds:Transforms>

 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>

 </ds:Transforms>

 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

 <ds:DigestValue>GJ5dxvdbx4K1elmaJqt7/Nq8CDM=</ds:DigestValue>

 </ds:Reference>

 <ds:Reference URI="cid:PO_Image">

 <ds:Transforms>

 <ds:Transform

 Algorithm="http://docs.oasis-open.org/wss/2004/XX/oasis-2004XX-wss-swa-profile-1.0#Attachment-Content-Only-Transform"

 />

 </ds:Transforms>

 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

 <ds:DigestValue>R4hCV4K4I5QZdSsrP4KrLu46hFo=</ds:DigestValue>

 </ds:Reference>

 </ds:SignedInfo>

 <ds:SignatureValue>

 hy3/4oi1jQ8OcMc+HTvWG9OLI0MzBwVK00lqd/KJOlpJinscMfkdLSWGddnwM3StVCuynldw

 ZH5ABiX9ibm7A8lJhvrMX3eNVc/L0sWqsXHxIfzXDraHhpenS8YF7lRoCHsBohdsXLvaTGtB

 TTlWm4OvXTQZ6tearcQCRgZ47Y8= </ds:SignatureValue>

 <ds:KeyInfo>

 <wsse:SecurityTokenReference

 xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">

 <wsse:Reference URI="#signingCert"/>

 </wsse:SecurityTokenReference>

 </ds:KeyInfo>

 </ds:Signature>

 </wsse:Security>

 </soap:Header>

 <soap:Body/>

</soap:Envelope>

------=_Part_2_12064590.1127798486163

Content-Type: application/octet-stream

Content-Transfer-Encoding: base64

Content-Id: <PO_Image>

Content-Description: WSS XML Encryption message; type="image/jpeg"

bV9+jqVzrhq6mJ1GaxoJUTga+i5bxqel

------=_Part_2_12064590.1127798486163--

Securing the PullRequest Signal

Authentication:

A Sending MSH MUST be able to authenticate a Receiving MSH that sends a PullRequest. MSH support for this feature is a requirement, though its use is optional. It is RECOMMENDED to achieve authentication in a way that does not depend on the parties that may be using this MSH. In other words, authentication of a Receiving MSH SHOULD be possible regardless of the security requirements that are specific to the parties using this MSH. For example, even if these parties decide to not use any security for exchanging messages (this could be indicated by a CPA or some other form of agreement), the Receiving MSH may still need to be authenticated when doing pulling, or when sending any other MSH-level signal.

When authentication is required for a particular Receiving MSH, it is RECOMMENDED that the Sending MSH uses security at SOAP protocol level. In case a Receiving MSH is not able to use SOAP level security, a password-based authentication MAY be used, e.g. as in the HTTP Basic Access Authentication scheme [RFC2617]. In that case a secure communication protocol SHOULD be used (example: TLS, SSL)

Authorization:

The processing of a PullRequest signal received by a Sending MSH is authorized based on internal information that the Sending MSH maintains, that associates a list of endpoint information about pre-authorized Receiving MSHs, with the pipes on which these are allowed to initiate message transfer.

Username / Password option

In constrained environments where full support for WSS and management of XML digital signatures are not possible, an authentication alternative that is based on the simplest mechanism possible - namely a combination of a username/password – MUST be supported. Username and password for the PullRequest signal MUST use the WSS username/password token.

An example of PullRequest signal that is authenticated as above is:

<wsse:Security xmlns:wsse="…" xmlns:wsu="…">

 <wsse:UsernameToken wsu:Id="#TokenID">

 <wsse:Username>hamid</wsse:Username>

 <wsse:Password>SomePassword</wsse:Password>

 </wsse:UsernameToken>

</wsse:Security>

<eb:Message eb:version="3.0" SOAP:mustUnderstand="1" >

 <eb:SignalMessage>

 <wsse:SecurityTokenReference>

 <wsse:Reference URI="#TokenID" />

 </wsse:SecurityTokenReference>

 <eb:MessageInfo> …. </eb:MessageInfo>

 <eb:PullRequest eb:pipeId="…" />

 </eb: SignalMessage>

</eb:Message>

Notes:

· The attribute /wsse:Security/wsse:UsernameToken/wsse:Password/@Type is absent as it defaults to a password of type text. Users should not be required to handle a password of digest type.

· The value of the wsse:UserName element is an implementation issue. The “user” may represent the MSH itself, or may represent a party using the MSH. In the latter case, there is no requirement that this user name be identical to some eb:From/PartyId value.

BinaryToken Option

This option requires a more complete implementation of WSS. The syntax for the PullRequest signal would be the same: a <wsse:SecurityTokenReference> element is introduced inside the <eb:SignalMessage> element. The following is a sample listing using an X509 certificate:

<wsse:Security soap:mustUnderstand="1" xmlns:wsse="…"

 xmlns:wsu="…">

 <wsse:BinarySecurityToken wsu:Id="signingCert"

 EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#Base64Binary"

 ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3">

 ...

 </wsse:BinarySecurityToken>

 <ds:Signature xmlns:ds="…"> … </ds :Signature>

</wsse:Security>

<eb:Message eb:version="3.0" SOAP:mustUnderstand="1" >

 <eb:SignalMessage>

 <wsse:SecurityTokenReference>

 <wsse:Reference URI="#signingCert" />

 </wsse:SecurityTokenReference>

 <eb:MessageInfo> …. </eb:MessageInfo>

 <eb:PullRequest eb:pipeId="…" />

 </eb: SignalMessage>

</eb:Message>

Preventing Repeat Attacks

Malignant duplication and reuse of a PullRequest signals could lead to transfer of user messages to an unauthorized destination in spite of valid claims in the signal message. In order to prevent this attack, it is RECOMMENDED to (1) use At-Most-Once reliability so that duplicate elimination would eliminate PullRequest duplicates, (2) enforce the integrity of reliability headers by proper in compliance with WSS.

Countermeasure Technologies

Persistent Digital Signature

The only available technology that can be applied to the purpose of digitally signing an ebXML Message (the ebXML SOAP Header and Body and its associated payload objects) is provided by technology that conforms to the Web Services Security [WSS10] and Web Services Security SOAP Messages with Attachments Profile [WSS-SWA]. An XML Signature conforming to these specifications can selectively sign portions of an XML document(s), permitting the documents to be augmented (new element content added) while preserving the validity of the signature(s).

If signatures are being used to digitally sign an ebXML Message then Web Services Security [WSS10] and Web Services Security SOAP Messages with Attachments Profile [WSS-SWA] MUST be used to bind the ebXML SOAP Header and Body to the ebXML Payload Container(s) or data elsewhere on the web that relate to the message.

An ebXML Message requiring a digital signature SHALL be signed following the process defined in this section of the specification and SHALL be in full compliance with Web Services Security [WSS10] and Web Services Security SOAP Messages with Attachments Profile [WSS-SWA].

Persistent Signed Receipt

An ebXML Message that has been digitally signed MAY be acknowledged with an Acknowledgment Message that itself is digitally signed in the manner described in the previous section. The Acknowledgment Message MUST contain a [WSS10] Reference element list consistent with those contained in the [WSS10] Signature element of the original message.

Non-persistent Authentication

Non-persistent authentication is provided by the communications channel used to transport the ebXML Message. This authentication MAY be either in one direction or bi-directional. The specific method will be determined by the communications protocol used. For instance, the use of a secure network protocol, such as TLS [RFC2246] or IPSec [RFC2402] provides the sender of an ebXML Message with a way to authenticate the destination for the TCP/IP environment.

Non-persistent Integrity

A secure network protocol such as TLS [RFC2246] or IPSec [RFC2402] MAY be configured to provide for digests and comparisons of the packets transmitted via the network connection.

Persistent Confidentiality

Persistent confidentiality is provided by technology that conforms to the Web Services Security [WSS10] and Web Services Security SOAP Messages with Attachments Profile [WSS-SWA]. Encryption conforming to these specifications can provide persistent, selective confidentiality of elements within an ebXML Message including the SOAP Header.

Non-persistent Confidentiality

A secure network protocol, such as TLS [RFC2246] or IPSEC [RFC2402], provides transient confidentiality of a message as it is transferred between two ebXML adjacent MSH nodes.

Persistent Authorization

Persistent authorization MAY be provided using Web Services Security: SAML Token Profile.

Non-persistent Authorization

A secure network protocol such as TLS [RFC2246] or IPSEC [RFC2402] MAY be configured to provide for bilateral authentication of certificates prior to establishing a session. This provides for the ability for an ebXML MSH to authenticate the source of a connection and to recognize the source as an authorized source of ebXML Messages.

Security Considerations

Implementers should take note, there is a vulnerability present even when an Web Services Security is used to protect to protect the integrity and origin of ebXML messages. The significance of the vulnerability necessarily depends on the deployed environment and the transport used to exchange ebXML messages.

The vulnerability is present because ebXML messaging is an integration of both XML and MIME technologies. Whenever two or more technologies are conjoined there are always additional (sometimes unique) security issues to be addressed. In this case, MIME is used as the framework for the message package, containing the SOAP Envelope and any payload containers. Various elements of the SOAP Envelope make reference to the payloads, identified via MIME mechanisms. In addition, various labels are duplicated in both the SOAP Envelope and the MIME framework, for example, the type of the content in the payload. The issue is how and when all of this information is used.

Specifically, the MIME Content-ID: header is used to specify a unique, identifying label for each payload. The label is used in the SOAP Envelope to identify the payload whenever it is needed. The MIME Content-Type: header is used to identify the type of content carried in the payload; some content types may contain additional parameters serving to further qualify the actual type. This information is available in the SOAP Envelope.

The MIME headers are not protected, even when a Web Services Security based digital signature and/or Web Services Security based encryption is applied. Thus, an ebXML message may be at risk depending on how the information in the MIME headers is processed as compared to the information in the SOAP Envelope.

The Content-ID: MIME header is critical. An adversary could easily mount a denial-of-service attack by mixing and matching payloads with the Content-ID: headers. As with most denial-of-service attacks, no specific protection is offered for this vulnerability. However, it should be detected since the digest calculated for the actual payload will not match the digest included in the SOAP Envelope when the digital signature is validated.

The presence of the content type in both the MIME headers and SOAP Envelope is a problem. Ordinary security practices discourage duplicating information in two places. When information is duplicated, ordinary security practices require the information in both places to be compared to ensure they are equal. It would be considered a security violation if both sets of information fail to match.

An adversary could change the MIME headers while a message is en route from its origin to its destination and this would not be detected when the security services are validated. This threat is less significant in a peer-to-peer transport environment as compared to a multi-hop transport environment. All implementations are at risk if the ebXML message is ever recorded in a long-term storage area since a compromise of that area puts the message at risk for modification.

The actual risk depends on how an implementation uses each of the duplicate sets of information. If any processing beyond the MIME parsing for body part identification and separation is dependent on the information in the MIME headers, then the implementation is at risk of being directed to take unintended or undesirable actions. How this might be exploited is best compared to the common programming mistake of permitting buffer overflows: it depends on the creativity and persistence of the adversary.

Thus, an implementation could reduce the risk by ensuring that the unprotected information in the MIME headers is never used except by the MIME parser for the minimum purpose of identifying and separating the body parts. This version of the specification makes no recommendation regarding whether or not an implementation should compare the duplicate sets of information nor what action to take based on the results of the comparison.

