

X-FETCH

PERFORMER
Benchmark Documentation

2.2

X-FETCH PERFORMER Benchmark Documentation

X-FETCH PERFORMER™ BENCHMARK DOCUMENTATION

General ...1

ABSTRACT..1
BACKGROUND ...1

Event-based parsing ..2
Object models ..2

Benchmark Report ...3
PLATFORM..3
ACRONYMS USED IN BENCHMARK GRAPHS ..3
BENCHMARK 1: BUILD AN OBJECT REPRESENTATION OUT OF XML DOCUMENT..............................4
BENCHMARK 2: WALK THROUGH AN OBJECT MODEL ..6
BENCHMARK 3: WRITE THE OBJECT MODEL BACK TO XML...7
BENCHMARK 4: MODIFY OBJECT MODEL..8
BENCHMARK 5: JAVA OBJECT SERIALIZATION ..9
BENCHMARK 6: JAVA OBJECT DE-SERIALIZATION ..10
BENCHMARK 7: SERIALIZED OBJECT’S SIZE ..11
BENCHMARK 8: CODE LENGTH COMPARISON ...12
STRESS TESTS ..13

Conclusions ..14
MORE INFORMATION..14
REFERENCES ..14

© 2003 Republica Corporation. All rights reserved

X-FETCH PERFORMER Benchmark Documentation

© 2003 Republica Corporation. All rights reserved

1

General

ABSTRACT

As XML[5] is applied on new fields of data processing, the performance and stability of XML tools must be
considered more carefully with IT decisions.

This document displays a performance comparison between the most common XML processing techniques
according to the benchmark package published in IBM Developerworks in September 20011.

BACKGROUND

There are two different approaches to XML handling:

1. Event-based string parsing (for example SAX[1]-parsing),
2. Using object models (like DOM[2]).

Both approaches have their pros and cons but none of them is universally (in all respects) better than the
other. Republica’s contribution to XML-based e-business is the combining of the best features of these
techniques in the EJB[3]-compatible X-FETCH PERFORMER.

The following paragraphs tell more about the two conventional approaches.

1 See http://www-106.ibm.com/developerworks/java/library/x-injava/

http://www-106.ibm.com/developerworks/java/library/x-injava/

X-FETCH PERFORMER Benchmark Documentation

© 2003 Republica Corporation. All rights reserved

2

•
•
•
•
•
•
•
•

Event-based parsing

Event-based parsing means that the XML-reading component (called XML parser) constructs an event
queue out of the input XML document. This queue is then interpreted by the application (ie. the component
that needs the information appearing in the document). This approach is fast and does not consume
memory: even the largest documents and data streams can be fluently processed.

The main cons in event-based parsing are:

Code complexity, which leads to losses in design and implementation resources.
XML document cannot be modified or new document cannot be generated.

Object models

To be able to generate or modify an XML document, one has to build an object representation of the
document. This means that all compounds appearing in XML (e.g. elements, attributes, processing
instructions) are stored in a data structure (usually tree-form), and modifications of that are (eventually)
rendered as modifications in the original XML document.

The process of forming the object representation out of a given XML document is called “parsing” and the
operation of producing XML string out of an object representation is called “serialization”.

Object models provide better access to data and tools for manipulating XML. However, object models
consume memory and they cannot operate on data streams.

X-FETCH PERFORMER provides access to data via both techniques, with the additional features:

XML Parsing and Generation
XML Validation (DTD and Schema)
XML Filtering and Content-based Routing (patent-pending technology)
Efficient Data Queries (XPath[4])
EJB Compatibility
Built-in Interfaces for SAX and DOM
User Manuals (containing also tutorials and examples with full Java source code)
On-line Helpdesk Support (contact email: helpdesk@republica.fi)

X-FETCH PERFORMER Benchmark Documentation

© 2003 Republica Corporation. All rights reserved

3

Benchmark Report

All results are average values of 10 separate tests. The XML document used in tests was periodic.xml (see
benchmark package in the Developerworks’ homepage2). The effects of external processes were minimized
by closing other applications before running the tests.

PLATFORM

Hardware Intel Pentium III, 500MHz processor with 128MB RAM
Operating System Windows 2000 Professional

Microsoft Corporation
Java Java version 1.3.1

Java HotSpot Client VM 1.3.1-b24
Sun Microsystems Inc.

ACRONYMS USED IN BENCHMARK GRAPHS

Crimson Crimson DOM 1.1.1, see
<http://xml.apache.org/crimson/index.html>

JDOM JDOM β 0.7 (using Crimson for parsing), see
<http://jdom.org/index.html>

Dom4j Dom4j, see
<http://dom4j.org/index.html>

Xerces DOM Xerces 1.4.2 DOM, see
<http://xml.apache.org/xerces-j/index.html>

Xerces Def Xerces 1.4.2 DOM, Deferred Node Expansion, see
<http://xml.apache.org/xerces-j/index.html>

Xerces 2 DOM Xerces 2 DOM, see
<http://xml.apache.org/xerces2-j/index.html>

Xerces 2 Def Xerces 2 DOM, Deferred Node Expansion, see
<http://xml.apache.org/xerces2-j/index.html>

EXML Electric XML, see
<http://www.themindelectric.com/exml/index.html>

XPP XML Pull Parser, see
<http://www.extreme.indiana.edu/xgws/xsoap/xpp/>

Performer X-FETCH PERFORMER 2.2, see <http://www.x-fetch.com>

2 See http://www-106.ibm.com/developerworks/java/library/x-injava/

http://xml.apache.org/crimson/index.html
http://jdom.org/index.html
http://dom4j.org/index.html
http://xml.apache.org/xerces-j/index.html
http://xml.apache.org/xerces-j/index.html
http://xml.apache.org/xerces2-j/index.html
http://xml.apache.org/xerces2-j/index.html
http://www.themindelectric.com/exml/index.html
http://www.extreme.indiana.edu/xgws/xsoap/xpp/
http://www.x-fetch.com/
http://www-106.ibm.com/developerworks/java/library/x-injava/

X-FETCH PERFORMER Benchmark Documentation

© 2003 Republica Corporation. All rights reserved

4

BENCHMARK 1: BUILD AN OBJECT REPRESENTATION OUT OF XML DOCUMENT

In this test case, all products formed an object representation out of given XML file (periodic.xml). The
average of 10 separate runs is used for the final comparison.

Both, elapsed time and memory consumption were measured.

Build, Time

0

50

100

150

200

250

Crim
so

n D
OM

JD
OM

DOM4J

Xerc
es

 D
OM

Xerc
es

 de
f

Xerc
es

 2
DOM

Xerc
es

 2
Def

EXML
XPP

Perf
orm

er

Ti
m

e
(m

ill
is

ec
on

ds
)

Build, Memory

0
100
200
300
400
500
600
700
800

Crim
so

n D
OM

JD
OM

DOM4J

Xerc
es

 D
OM

Xerc
es

 de
f

Xerc
es

 2
DOM

Xerc
es

 2
Def

EXML
XPP

Perf
orm

er

M
em

or
y

(k
ilo

by
te

s)

X-FETCH PERFORMER Benchmark Documentation

© 2003 Republica Corporation. All rights reserved

5

Build Results (sorted by time)
Name Time (milliseconds)

Xerces Def 83
Xerces 2 Def 84
XPP 86
EXML 103
DOM4J 119
Xerces DOM 119
JDOM 121
X-FETCH PERFORMER 122
Crimson 123
Xerces 2 Dom 199

Build Results (sorted by memory consumption)
Name Memory (bytes)

X-FETCH PERFORMER 517032
Xerces def 571544
Xerces 2 Def 571544
Crimson DOM 603256
JDOM 619880
Xerces DOM 627560
Xerces 2 DOM 627560
XPP 636304
DOM4J 708344
EXML 730696

X-FETCH PERFORMER Benchmark Documentation

© 2003 Republica Corporation. All rights reserved

6

BENCHMARK 2: WALK THROUGH AN OBJECT MODEL

In this case, the parsed object model was traversed through. Again, the times are averages of 10 separate
walks.

Walk

0
10

20
30
40

50
60

Crim
so

n D
OM

JD
OM

DOM4J

Xerc
es

 D
OM

Xerc
es

 de
f

Xerc
es

 2
DOM

Xerc
es

 2
Def

EXML
XPP

Perf
orm

er

Ti
m

e
(m

ill
is

ec
on

ds
)

Walk Results (sorted by time)
Name Time (milliseconds)

Xerces 2 DOM 6
EXML 6
X-FETCH PERFORMER 7
XPP 7
Xerces DOM 7
DOM4J 9
Crimson DOM 14
JDOM 15
Xerces 2 Def 46
Xerces Def 79

X-FETCH PERFORMER Benchmark Documentation

© 2003 Republica Corporation. All rights reserved

7

BENCHMARK 3: WRITE THE OBJECT MODEL BACK TO XML

In this case, a once parsed object model was serialized back to XML string. Averages of 10 separate tests
are displayed here.

Write

0
10
20
30
40
50
60
70
80
90

Crim
so

n D
OM

JD
OM

DOM4J

Xerc
es

 D
OM

Xerc
es

 de
f

Xerc
es

 2
DOM

Xerc
es

 2
Def

EXML
XPP

Perf
orm

er

Ti
m

e
(m

ill
is

ec
on

ds
)

Write (sorted by time)
Name Time (milliseconds)

X-FETCH PERFORMER 40
Xerces def 41
Xerces DOM 42
Xerces 2 DOM 42
Xerces 2 Def 42
DOM4J 45
EXML 46
XPP 50
Crimson DOM 53
JDOM 80

X-FETCH PERFORMER Benchmark Documentation

© 2003 Republica Corporation. All rights reserved

8

BENCHMARK 4: MODIFY OBJECT MODEL

In this case, the object model was traversed through and modified. White-space characters were normalized
and character data was wrapped into XML elements named <text>.

Modify

0
10
20
30
40
50
60
70

Crim
so

n D
OM

JD
OM

DOM4J

Xerc
es

 D
OM

Xerc
es

 de
f

Xerc
es

 2
DOM

Xerc
es

 2
Def

EXML
XPP

Perf
orm

er

Ti
m

e
(m

ill
is

ec
on

ds
)

Modify (sorted by time)
Name Time (milliseconds)

X-FETCH PERFORMER 20
XPP 22
EXML 33
Xerces 2 Def 44
Xerces DOM 46
Xerces def 46
Xerces 2 DOM 46
DOM4J 50
JDOM 51
Crimson DOM 59

X-FETCH PERFORMER Benchmark Documentation

© 2003 Republica Corporation. All rights reserved

9

BENCHMARK 5: JAVA OBJECT SERIALIZATION

Java language provides a way of writing an object into a stream (which can be directed to a file). This is
often used in EJB-environments when computing time must be divided between processes and objects are
“put-to-sleep” while waiting for other processes.

Note that only serializable document models can be used in EJB.

Object Serialization

0
50

100
150
200
250
300
350
400
450

JD
OM

DOM4J

Xerc
es

 D
OM

Xerc
es

 de
f

Xerc
es

 2
DOM

Xerc
es

 2
Def

EXML

Perf
orm

er

Ti
m

e
(m

ill
is

ec
on

ds
)

Object Serialization (sorted by time)

Name Time (milliseconds)
X-FETCH PERFORMER 164
EXML 176
JDOM 258
DOM4J 282
Xerces def 410
Xerces 2 Def 410
Xerces 2 DOM 419
Xerces DOM 422

X-FETCH PERFORMER Benchmark Documentation

© 2003 Republica Corporation. All rights reserved

10

BENCHMARK 6: JAVA OBJECT DE-SERIALIZATION

This test displays how fast a once serialized document object can be re-covered.

Object De-Serialization

0
50

100
150
200
250
300
350

JD
OM

DOM4J

Xerc
es

 D
OM

Xerc
es

 de
f

Xerc
es

 2
DOM

Xerc
es

 2
Def

EXML

Perf
orm

er

Ti
m

e
(m

ill
is

ec
on

ds
)

Object De-Serialization (sorted by time)
Name Time (milliseconds)

X-FETCH PERFORMER 154
EXML 175
DOM4J 257
JDOM 277
Xerces DOM 313
Xerces 2 DOM 313
Xerces 2 Def 321
Xerces def 322

X-FETCH PERFORMER Benchmark Documentation

© 2003 Republica Corporation. All rights reserved

11

BENCHMARK 7: SERIALIZED OBJECT’S SIZE

This chart displays the size of the serialized Java object.

Serialized Object's Size

0
50

100
150
200
250
300

JD
OM

DOM4J

Xerc
es

 D
OM

Xerc
es

 de
f

Xerc
es

 2
DOM

Xerc
es

 2
Def

EXML

Perf
orm

er

Si
ze

 (k
ilo

by
te

s)

Serialized Object’s Size (sorted by size)
Name Size (bytes)

X-FETCH PERFORMER 154438
JDOM 200774
DOM4J 216682
EXML 223095
Xerces DOM 282897
Xerces 2 DOM 282897
Xerces def 283191
Xerces 2 Def 283191

X-FETCH PERFORMER Benchmark Documentation

© 2003 Republica Corporation. All rights reserved

12

BENCHMARK 8: CODE LENGTH COMPARISON

We compared the code lines used in benchmark implementations for parsing, modifying and serializing XML.
As the graph shows, there were no significant differences between different object models.

A corresponding implementation using some event-based parser (like SAX or XNI[6]) would consume
hundreds of code lines.

Code Length

0
5

10
15
20
25
30
35

JD
OM

EXML

Perf
orm

er

Dom
4j

Crim
so

n

Xerc
es XPP

C
od

e
lin

es

Code length
Name Length (code lines)

JDOM 23
EXML 23
X-FETCH PERFORMER 24
Dom4j 25
Crimson 29
Xerces 30
XPP 33

X-FETCH PERFORMER Benchmark Documentation

© 2003 Republica Corporation. All rights reserved

13

STRESS TESTS

Finally, we ran the tests with inputs of different sizes to see how the object models behave with large
documents. In this case, the input material consisted of 500 up to 3000 invoices. X-FETCH PERFORMER
was the only one capable of accomplishing the tests (other models ran out of memory).

Stress Test

0
0,5

1
1,5

2
2,5

3
3,5

4
4,5

5

50
0

80
0

11
00

14
00

17
00

20
00

23
00

26
00

29
00

Number of Invoices

Time
(seconds)

Crimson

JDOM

dom4j

Xerces

XercesD

Xerces2

Xerces2D

EXML

XPP

Performer

Doubling the input up to 6000 invoices didn’t affect on X-FETCH PERFORMER’s performance: all material
was processed in less than 10 seconds (on normal workstation) and memory curve stayed constant. This
fact applies also on real world solutions: when the component is plugged into an existing XML invoicing
system, all clients gain better and faster service.

This is why we’ve chosen X-FETCH PERFORMER. By using X-FETCH PERFORMER in all XML
projects, Republica builds platform independent XML software guaranteed with stability and optimal
performance.

X-FETCH PERFORMER Benchmark Documentation

© 2003 Republica Corporation. All rights reserved

14

Conclusions

As we saw, X-FETCH PERFORMER finished first in most of the tests (in 7 out of 9). The reason for its
superior performance is the XML filtering features applied in the MAP script of the X-FETCH PERFORMER
benchmark: irrelevant information was filtered out at the building phase (which slowed down the build time
but improved the manipulation and memory management).

Because of X-FETCH PERFORMER’s ability of processing XML in small fragments, the stress test
emphasizes its benefits compared to other techniques.

When comparing the code length, there were no significant differences between the object models. X-
FETCH PERFORMER ranked 2nd with 24 code lines, just after the 23-lined JDOM and EXML
implementations.

MORE INFORMATION

For more information about X-FETCH components and concepts please contact our sales department at
sales@republica.fi

Republica Corp. Tel. +358 (0)403 011 130
Elimäenkatu 12-16D, 6th Floor Fax. +358 (0)403 011 131
FIN-00510 Helsinki info@republica.fi
Finland www.republica.fi

www.x-fetch.com

REFERENCES

[1] Simple API for XML, originally developed by David Megginson, see
<http://www.saxproject.org>

[2] Document Object Model, W3C’s specification, see
<http://www.w3.org/DOM/>

[3] Enterprise Java Beans, see
<http://java.sun.com/products/ejb/>

[4] XML Path Language, W3C’s specification, see
<http://www.w3.org/TR/xpath>

[5] Extensible Markup Language, W3C specification, see
<http://www.w3.org/XML/>

[6] Xerces Native Interface, see
<http://xml.apache.org/xerces2-j/xni.html>

www.republica.fi
www.x-fetch.com
http://www.saxproject.org/
http://www.w3.org/DOM/
http://java.sun.com/products/ejb/
http://www.w3.org/TR/xpath
http://www.w3.org/XML/
http://xml.apache.org/xerces2-j/xni.html

	X-FETCH PERFORMER™ BENCHMARK DOCUMENTATION
	Table Of Contents
	General
	ABSTRACT
	BACKGROUND
	Event-based parsing
	Object models

	Benchmark Report
	PLATFORM
	ACRONYMS USED IN BENCHMARK GRAPHS
	BENCHMARK 1: BUILD AN OBJECT REPRESENTATION OUT OF XML DOCUMENT
	BENCHMARK 2: WALK THROUGH AN OBJECT MODEL
	BENCHMARK 3: WRITE THE OBJECT MODEL BACK TO XML
	BENCHMARK 4: MODIFY OBJECT MODEL
	BENCHMARK 5: JAVA OBJECT SERIALIZATION
	BENCHMARK 6: JAVA OBJECT DE-SERIALIZATION
	BENCHMARK 7: SERIALIZED OBJECT’S SIZE
	BENCHMARK 8: CODE LENGTH COMPARISON
	STRESS TESTS

	Conclusions
	MORE INFORMATION
	REFERENCES

