Comments on ECF 3.0 Artifacts

	Commenter
	Comment
	Subcommittee Response

	Bergeron
	Many types and elements in the domain model have not been given definitions. This should be pursued by the TC as a medium-priority task (i.e., needs to be done, but shouldn't derail us).
	Agree. We will recruit domain experts to work with Scott to complete the definitions.

	Bergeron
	Suggest renaming of classes DevelopmentPolicyParameters and RuntimePolicyParameters in the CourtPolicy diagram to remove the plurals.
	Disagree. We've lumped a number of parameters into a single class (DevelopmentPolicyParameters), so the name seems appropriate.

	Bergeron
	Suggest changing cardinality of associations between CourtPolicyMessage and the two "parameters" classes (DevelopmentPolicyParameters and RuntimePolicyParameters) to 1..*. This will effect allowing courts to have multiple profiles.
	Agree, but recommend we accomplish it by adding an intervening class, called CourtPolicy, that is 1..1 with the two "parameters" classes, and 1..* with the message.

	Bergeron
	Suggest changing name of class FiduciaryCaseInformation in the CivilFiling diagram to something that avoids a narrowly-defined legal term of art.
	Disagree. While this is a legal term of art, it was chosen because it is the only term broad enough to capture the multiple relationships, e.g., trusts, guardianships, conservatorships, mental health commitments, foster parents, powers of attorney, living wills, etc., to which it applies.

	Bergeron
	Suggest changing name of MarriageInformation in the DomesticFiling diagram to DomesticLegalRelationship.
	Agree.

	Bergeron
	Suggest adding cardinality information for each attribute and association in the documentation.html file.
	Agree. Scott has agreed to do this.

	Durham
	A single Policy MDE for the entire system will become a large convoluted beast. It will be difficult to develop, maintain, manage, and consume.

Instead, we want to adopt a model where each MDE has its own policy to describe how *that* MDE behaves.

We need to think in terms of 'FilingReview-Policy', 'FilingAssembly-Policy', 'CourtRecord-Policy, etc
	Disagree. Court Policy consists of rules and requirements set forth by a court. All MDEs must abide by the court-established policies. An MDE may have additional rules that it establishes; for instance, a Filing Assembly MDE may wish to establish rules governing its exchanges with its clients. However, we believe that those rules are outside the scope of ECF 3.0. We have already addressed the requirements for informing all MDEs of the profile used by each MDE.

	Durham
	Just as each MDE has the potential to support one or more transactional processes, each MDE also has the potential to include query interfaces.
So, there should not be a singular 'QueryMDE' for the system....

Instead:
A 'FilingReviewMDE' should/can include query interfaces related to 'FilingReview' data.
Examples: 'GetFilingStatus', 'GetFiling', 'GetDocument', 'GetPolicy'

A 'CourtRecordMDE' should/can include query interfaces related to 'CourtRecord' data.

Examples: 'GetCase', 'GetDocument', 'GetPolicy'

A 'FilingAssemblyMDE' should/can include query interfaces related to 'FilingAssembly' data.

Examples: 'GetPolicy', 'Get??

A 'ServiceMDE' should/can includes query interfaces related to 'Service' data.

Examples: 'GetPolicy'
	Agree with the general point but disagree with the proposed solution. A filing assembly application will incorporate many of the queries we have defined. However, there is a business need for a singular Query MDE; some courts, such as King County, have chosen to implement all queries through a single vendor. Our architecture allows implementers to combine MDEs within applications. Therefore, the business need that you define can be met through the existing rules for implementation. But it would be more difficult for the inverse business need to be met if the queries were dispersed to other MDEs. And it would greatly complicate our architecture to disperse them as you suggest.

	Durham
	I think that ALL of our XML messages should be in SOAP format. I feel pretty strongly about this too.

I know that, many of you will quickie shake your heads 'No Way', though I am not entirely sure why.

One argument is that a SOAP message format would restrict us to a particular implementation profile. That is not true.

We must remember that SOAP messages, are merely an XML format for expressing function-and-argument.

(i.e. Remote Procedure Calls) At heart, it is an XML message, that includes 'action', and 'arguments', as well as being able to express 'caller' and 'recipient', and all other sorts of useful data.

By function-and-argument, I mean things like: 'GetCase (myGjxdmCaseId)' and 'ReviewFiling (myGjxdmFiling)'

SOAP messages are XML. And, just like any other XML message, SOAP messages can be exchanged between components, in any profile we like –

COM, CORBA, WebServices, eBXML, and, yes, sneaker net.

We need to understand: You don't have to implement WebServices to assemble OR parse SOAP messages. As with any XML message format, you can read and write SOAP messages, using standard XML tools. It is no more difficult than reading/writing the non-SOAP messages we are currently proposing to invent.

I think it would be quite silly and short-sighted of us to NOT use the well-defined SOAP format as our base for expressing function-and-args.

We will not be anywhere near as successful if we attempt to invent our OWN format for that purpose.

These UML-ish statements might help illustrate what I am advocating:

Instead of this:

 GjxdmMessage{ GetCase (myGjxdmCaseId) }

We have this:

 SoapMessage{ GetCase (myGjxdmCaseId) }

In COM, instead of this:

 COM-->Send(GjxdmMessage)

We have this:

 COM-->Send(SoapMessage)

In HTTP, instead of this:

 Http.Send(GjxdmMessage)

We have this:

 Http.Send(SoapMessage)

NOTE: The HTTP example, when implemented with WebServices/ebXM toolkits, can be simply thought of as:

 WebService-GetCase(myGjxdmCaseId)

...only because WebService toolkits nicely hide the 'HTTP.Send' part of the process.

No biggy.

In the end, exchanging SOAP messages is the same as exchanging XML.

SOAP *is* XML.
	Disagree. We do not believe that ECF 3.0 should impose this sort of orthodoxy on messaging profiles. The advocate for an http post profile prefers it because of the reduced overhead entailed. Just because http can support SOAP does not mean that we should require it to.
We agree with Shane that using SOAP for all profiles is advantageous in terms of interoperability. And we think that proponents of a profile should have to justify why they do not propose to incorporate SOAP. But we suggest postponing that decision to the discussion of specific profiles as they are proposed by a vendor or community of vendors.

