Clause Model Solution Proposal — “The Underlying Pattern”

Submitted by jharrop@speedlegal.com
Monday, July 07, 2003

Introduction

This proposal is based on concepts underlying the DTD which SpeedLegal (www.speedlegal.com) has
been shipping for the past 3 years to its clients in various geographies to mark up their contracts.

The key contribution provided by this proposal is the insight that the clause structures as exemplified in
the attachment to the Clause Model Requirements Document can be modeled by the following simple
pattern:

a "numbered object" comprising:
- a heading

- paragraphs of text (including lists)
- nested numbered objects

This proposal demonstrates that that simple pattern works, and highlights some of the variations we
might consider, while remaining true to the basic pattern

At its most basic, the pattern could be implemented as:
<IELEMENT NumberedObject (Heading?, ClauseBodyPara*, NumberedObject*)>

I will be submitting a DTD survey shortly which examines a variety of DTDs to see whether they
implement this pattern, and if so, how.

Element names

I'm relaxed as to what the element names end up being called. The element names contained in this
proposal are not an essential part of it. Indeed, they don't meet requirement 6.

I expect the DTD survey to offer some suggestions in this regard.

Note: in parts of this document, and in particular in the DTD and sample markup attached, I use
“Clause” in place of “NumberedObject”.

ClauseBodyPara

In this model, ClauseBodyPara is mixed content. It can contain the usual inline stuff, plus List (and, in
a full implementation, table). Put another way, List always lives inside a paragraph, not between
paragraphs.

It is worth considering whether the first ClauseBodyPara in a numbered object should have a different
name.

Constraints

With the simple pattern:
<IELEMENT NumberedObject (Heading?, ClauseBodyPara*, NumberedObject*)>

it is possible to have an empty NumberedObject, or one which contains nothing at this level (ie just a
nested NumberedObject).

Neither of those pathological cases appears in the attachment to the Clause Model Requirements
document, or for that matter, in the contracts and other business documents which I have reviewed.

For this reason, it is preferable to identify the sensible sub-models:

o Heading and nested NumberedObject
o ClauseBodyPara, with or without Heading and/or nested NumberedObject

That would look something like:

<IELEMENT NumberedObject (
(Heading, NumberedObject+)
| (Heading?, ClauseBodyPara*, NumberedObject™®)

>

Recursive versus non recursive

The proposed model is recursive.

As I've said, I can see arguments for moving to a non-recursive model. Namely:
- ease of writing stylesheets
- were it to prove to be the case that authors have other preferred terminology

Having said that, a recursive model assists in meeting requirement 9, and also has application
development benefits (requirement §).

Container for nested objects

This proposal puts the nested numbered objects in a container called "Subclauses".

<IELEMENT Clause (Heading?, ClauseBodyPara*, Subclauses?)>
<!ATTLIST Clause ID ID>

Equally, one could simplify/relax to something like:
<!IELEMENT Clause (Heading?, ClauseBodyPara*, Clause*)>

ie omit the extra container.

Lists versus Subclauses

There would be benefits in removing the distinction between List and Subclauses, and instead using a

common label (eg “SubStructure”):
o people sometimes argue about whether something is a List or Subclauses, and the distinction
can be fuzzy (particularly if the list items have headings);
o re-use and cut/paste would be easier.

Against this is the idea that Lists are a distinct concept, and sometimes are "and", sometimes "or"
(which could be captured as an attribute).

Clause Numbers

We'd expect a ClauseNumber element to also be available (probably optional), with a definition like:

<IELEMENT ClauseNumber (#PCDATA)>
<!ATTLIST ClauseNumber FullForm CDATA #REQUIRED>

where @FullForm might be "21.4.2", and the #PCDATA might be "(ii)" ie what is to appear in the
document.

So you'd get something like:

<IELEMENT Clause (ClauseNumber?, Heading?, ClauseBodyPara*, Subclauses*)>

Fit to Requirements

Summary of Requirement Fit

1. markup the core structures found | Meets
in documents like Attachment 1.

2. represent the structured hierarchy | Meets.
of the content

3. represent the benchmark Meets*. Note that an inline heading (eg in

contracts http://www.oasis-open.org/apps/org/workgroup/legalxml-
econtracts/download.php/2092/2.doc) is modelled in a
heading element outside the paragraph.

* The TC’s collection of benchmark contracts needs to be
completed and cleaned up.

4. define clause objects .. as self Meets.
contained objects

5. self contained markup of content | Meets, though an assessment of numbering and cross
so that [you can display the] text | references is deferred until requirement 11 is fully specified.
file to determine the terms of the
contract

6. must not use the following terms | Does Not Meet. Uses the word "clause". Easy to fix.
in element markup

7. permit the markup of contract Meets.
terms without inclusion of any

legal semantic markup or

annotation

8. as simple as practicable to User training/support: Meets — largely Query whether the
facilitate user training, support distinction between <list> and <subclauses> should be
and application development retained or not.

Application development: Meets

9. re-use content in different levels | Meets except where you wish to change content from a list
of the hierarchy, without having | to subclauses or vice versa. This probably should be fixed.
to change the names of the
elements

10. allow clauses or other content to | Outside the scope of this proposal. We have a mechanism
be incorporated into a document | for doing this in our application, but this proposal does not
by reference include it.

11. Once specific requirements for [Deferred until requirements fully developed]
these features are determined....

DTD and XML

Please see valid document, using a doctype with an internal subset only, attached (also provided as a
separate .xml file).

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE clausemodel_jharrop_proposal [
<l-- root element -->
<IELEMENT clausemodel_jharrop_proposal (Clause)+>
<I-- the model proper -->
<I[ELEMENT Clause ((ClauseNumber?, Heading, Subclauses) | (ClauseNumber?, Heading?, ClauseBodyPara*, Subclauses?))>
<IATTLIST Clause
ID ID #REQUIRED

<IELEMENT ClauseNumber (#PCDATA)>
<IATTLIST ClauseNumber
FullForm CDATA #REQUIRED

<I[ELEMENT Heading (#PCDATA)>

<I[ELEMENT Subclauses (Clause)+>

<I[ELEMENT ClauseBodyPara (#PCDATA | List)*>

<l-- Lists -->

<IELEMENT List (ListEntry)+>

<I[ELEMENT ListEntry (ListNumber?, Heading?, ListBodyPara*)>
<IATTLIST ListEntry

ID ID #REQUIRED

<IELEMENT ListNumber (#PCDATA)>
<IATTLIST ListNumber
FullForm CDATA #REQUIRED
>
<IELEMENT ListBodyPara (#PCDATA | List)*>
>
<clausemodel_jharrop_proposal>
<l--1. Provisions about the specification of colours in contracts -->
<Clause ID="colour_specs">
<ClauseNumber FullForm="1">1.</ClauseNumber>
<Heading>Provisions about the specification of colours in contracts</Heading>
<Subclauses>
<l--1.1 Spectrum colours-->
<Clause ID="colour_spectrum">
<ClauseNumber FullForm="1.1">1.1</ClauseNumber>
<Heading>Spectrum colours</Heading>
<ClauseBodyPara>Here is a contrived, complex list structure using the spectrum colours and one or two others:
<List>
<ListEntry ID="colours_inc_red">
<ListNumber FullForm="1.1.1">(a)</ListNumber>
<ListBodyPara>red,</ListBodyPara>
</ListEntry>
<ListEntry ID="colours_inc_orange">
<ListNumber FullForm="1.1.2">(b)</ListNumber>
<ListBodyPara>orange,</ListBodyPara>
</ListEntry>
<ListEntry ID="colours_inc_yellow">
<ListNumber FullForm="1.1.3">(c)</ListNumber>
<ListBodyPara>yellow,</ListBodyPara>
</ListEntry>
<ListEntry ID="colours_inc_green">
<ListNumber FullForm="1.1.4">(d)</ListNumber>
<ListBodyPara>green,</ListBodyPara>
</ListEntry>
<ListEntry ID="colours_inc_blue">
<ListNumber FullForm="1.1.5">(e)</ListNumber>
<ListBodyPara>blue, including:
<List>
<ListEntry ID="colours_inc_blue_pale">
<ListNumber FullForm="1.1.5.1">(i)</ListNumber>
<ListBodyPara>pale blue,</ListBodyPara>
</ListEntry>
<ListEntry ID="colours_inc_blue_dark">
<ListNumber FullForm="1.1.5.2">(ii)</ListNumber>
<ListBodyPara>dark blue,</ListBodyPara>
</ListEntry>
</List>
but excluding violet,
</ListBodyPara>
</ListEntry>
<ListEntry ID="colours_inc_indigo">
<ListNumber FullForm="1.1.6">(f)</ListNumber>
<ListBodyPara>indigo, and </ListBodyPara>
</ListEntry>
<ListEntry ID="colours_inc_violet">
<ListNumber FullForm="1.1.7">(g)</ListNumber>
<ListBodyPara>violet,</ListBodyPara>
</ListEntry>

</List>
from which all colours can be derived.
</ClauseBodyPara>
</Clause>
<l-- 1.2 CMYK colours -->
<Clause ID="colours_cmyk">
<ClauseNumber FullForm="1.2">1.2</ClauseNumber>
<Heading>CMYK colours</Heading>
<ClauseBodyPara>CMYK colours (cyan, magenta, yellow and black) are normally specified for inputs to colour printing processes.
</ClauseBodyPara>
</Clause>
<l-- 1.3 RGB colours -->
<Clause ID="colours_rgb">
<ClauseNumber FullForm="1.3">1.3</ClauseNumber>
<Heading>RGB colours</Heading>
<Subclauses>
<Clause ID="colours_rgb1">
<ClauseNumber FullForm="1.3.1">1.3.1</ClauseNumber>
<ClauseBodyPara>RGB colour (red, green, brown) specifications are used for computer screen displays.</ClauseBodyPara>
</Clause>
<Clause ID="colours_rgb2">
<ClauseNumber FullForm="1.3.2">1.3.2</ClauseNumber>
<ClauseBodyPara>Using only these 3 colours, you can specify any colour.</ClauseBodyPara>
</Clause>
<Clause ID="colours_rgb3">
<ClauseNumber FullForm="1.3.3">1.3.3</ClauseNumber>
<ClauseBodyPara>The number of colours you can specify depends on the colour depth available. For example:
<List>
<ListEntry ID="colours_rgb31">
<ListNumber FullForm="1.3.3.1">(a)</ListNumber>
<ListBodyPara>8 bit colour can render 256 colours</ListBodyPara>
</ListEntry>
<ListEntry ID="colours_rgb32">
<ListNumber FullForm="1.3.3.2">(b)</ListNumber>
<ListBodyPara>16 bit colour can render 65,536 colours.</ListBodyPara>
</ListEntry>
</List>
</ClauseBodyPara>
</Clause>
</Subclauses>
</Clause>
<l-- 1.4 Using black and white -->
<Clause ID="colours_blackwhite">
<ClauseNumber FullForm="1.4">1.4</ClauseNumber>
<Heading>Using black and white</Heading>
<Subclauses>
<Clause ID="colours_greyscale">
<ClauseNumber FullForm="1.4.1">1.4.1</ClauseNumber>
<Heading>Greyscale</Heading>
<ClauseBodyPara>The number of greys depends on the available colour depth, as for other colours.
</ClauseBodyPara>
</Clause>
<Clause ID="colours_mono">
<ClauseNumber FullForm="1.4.2">1.4.2</ClauseNumber>
<Heading>Black and white</Heading>
<ClauseBodyPara>This is really called monochrome. You can specify either:
<List>
<ListEntry ID="colours_mono_black">
<ListBodyPara>black, or</ListBodyPara>
</ListEntry>
<ListEntry ID="colours_mono_white">
<ListBodyPara>white.</ListBodyPara>
</ListEntry>
</List>
</ClauseBodyPara>
</Clause>
</Subclauses>
</Clause>
</Subclauses>
</Clause>
<l--2. Colour profiles-->
<Clause ID="colour_profiles">
<ClauseNumber FullForm="2">2.</ClauseNumber>
<Heading>Colour profiles</Heading>
<ClauseBodyPara>0One thing to remember is that when working with colours, always use a colour profile that is available for your display or

output device. This will ensure you achieve the most consistent results.
</ClauseBodyPara>
</Clause>

</clausemodel_jharrop_proposal>

