The Clause Model Pattern
A Survey of Existing DTDs

jharrop@speedlegal.com
Draft 1: Tuesday, July 08, 2003

Introduction

The eContracts TC needs a grammar which captures clause structure: see http://www.oasis-
open.org/committees/download.php/2390/ClauseModel-Requirements-1.pdf

The Clause Model Requirements document includes an example of the type of material we need to be able
to represent. Essentially, we need a model which provides a "numbered object" comprising:

- a heading
- paragraphs of text (including lists)
- nested numbered objects

It is the regularity of this ordering which creates the structure which it is valuable to model.

For example, the content model for this numbered object can and should say that if a heading appears, the
heading must come first.

Ideally, we would re-use an appropriate model from an existing DTD. Re-use would confer several
benefits:

- less effort in design process

- higher quality, since existing DTDs have already been through a release process
- easier to identify shortcomings in the model

- existing tool support (editing environments, stylesheets etc)

- existing body of skilled users

Needless to say, the benefits of reuse should not be overstated. One of the reasons there are so many XML
DTD’s and schemas is that the benefits of having a model which is a great fit for a particular problem
domain often outweigh the inconvenience of an inconvenient fit provided by some pre-existing DTD.

In particular, the benefits of existing tool support are easily overstated, since provided we use common
patterns in our DTD, many existing tools can be readily customised using their built in facilities for doing
that.

This document examines various document types, seeking to identify models we might re-use.

XHTML

OpenOffice

WordML

Docbook

UBL

5629A

LSSA XML Schema

Europe Lex

DITA

NLM Journal Publishing DTD

A key question for consideration is whether we can use a strict subset of a given DTD, or, at least, fit
entirely within the extension mechanisms it provides. If we can’t do this, our documents will not be valid
against the original DTD, and some interoperability will be lost.

This document is a work in progress. Comments are welcome.
For most of these DTDs, my observations are based on a quick examination of the DTD itself — something

in the order of 1-2 hours. I do not work with any of them regularly, and therefore might well have missed
something. Corrections therefore will not come as a surprise.

Summary

None of the DTDs examined provide a complete “off-the-shelf” solution to our needs.
The rest of this section categorises them broadly, and attempts to identify what they might offer us.

DTD’s with a parameter entity based extension/customisation mechanism:
- XHTML Modularization

- DocBook

- NLM Journal Publishing

With the exception of DocBook (which offer both recursive and explicitly numbered sections), these DTDs
provide recursive models.

These DTDs offer some candidate names for our numbered object:
- div (xhtml)

- secl-5, or section (DocBook)
sec (NLM Journal Publishing)

but, except for DocBook, can’t quite model the attachment.

There is little to be said for adopting the whole of one of these DTDs, and then customising it down to the
small subset which we need. Better to start with the core piece we need (perhaps drawing on these DTDs
for naming inspiration), and consider whether an extension/customization mechanism could/should be
bolted on (note that the Clause Model Requirements Document contains no such requirement).

Moving on, IBM’s Darwin Information Typing Architecture (DITA) stands out because of its unique
specialization mechanism. Although DITA as it stands makes title compulsory, it appears to be worthy of
more detailed examination. Potentially, it offers an alternative approach to a “one size fits all” name for
our numbered object.

5629A does not have an extension/customisation mechanism, and given its specialized target audience, is
not suitable for our purposes.

Word processor DTD/XSD:

- OpenOffice

- WordML

These don’t offer anything of particular value for the basic clause model, although they may be of
assistance for requirement 11. In particular, their styling/numbering mechanisms are to be avoided.

Finally, several of the efforts surveyed do not provide input which is relevant to our clause modeling
exercise:

- UBL

- LSSA XML Schema

- Europe LexData / LexML

Details

XHTML
XHTML Abstract Modules

The modularization of XHTML defines XHTML modules and a general modularization methodology in
order to ease the development of document types that are based upon XHTML.

Appendix E explains how to develop a DTD from the modules: http://www.w3.org/TR/xhtml-
modularization/dtd_developing.html#s_developingdtds

The modularization includes Text and List modules:

http://www.w3.org/TR/xhtml-modularization/abstract modules.html#s_textmodule

http://www.w3.org/TR/xhtml-modularization/abstract modules.html#s_listmodule

The Text module defines:
- Block Structural (div, p)
- Block Phrasal (h1-h6, blockquote, pre)
- Inline Structural (br, span)

- Inline Phrasal

The List module defines:
-ol, ul: (li)+
-l
- dl: (dt | dd)+

(see appendix F: http://www.w3.org/TR/xhtml-modularization/dtd_module defs.html#a_dtdsupport

Of interest:
- div, 1i, dt: (#PCDATA | %Flow.mix;)*
- hl, p, span, dd: (#PCDATA | %Inline.mix;)*

As a guide, the Document Model Modules for XHTML Basic 1.0 and XHTML 1.1 (xhtml-basic10-model-
1.mod, xhtml11-model-1.mod) defines:

- Flow.mix: (Heading, List, Block Structural, Block Phrasal, Table, Inline Structural, Inline Phrasal)

- Inline.mix: (Inline Structural, Inline Phrasal)

The element which comes closest to modeling our numbered object is or <div>.

 and <div> are close since they use Flow.mix which can contain a heading, paragraphs of text, and nest
themselves.

 and <div> are not close enough:

- they can directly contain #PCDATA (#PCDATA should only be allowed in the heading and the
paragraphs of text).

- they do not mandate that if a heading is to appear, it appears first.

These objections could be overcome by redefining them. At the very least, if we were using <div> for the
numbered object, we’d want to redefine <div> to disallow #PCDATA. ie div (%Flow.mix;)*

We could use <p> for the paragraphs of text.

XHTML is clean because it clearly distinguishes between block and inline - inline can never contain block.
However, this means <p> can’t represent a paragraph which contains a sentence which includes a list
(which is bad).

In addition, there is still an uncomfortable mixture of recursive and non-recursive here.

If we favoured a recursive model (that is, the container for the numbered object has the same name (eg
<div>) at each level), then a heading (if one appears) in each level should also have the same name (eg
<heading>). Instead of defining <heading>, we could use <h1> irrespective of level (ie and remove <h2> -
<h6>).

Alternatively, if we favoured a non-recursive model, we'd keep h1-h6, and replace div with div1-div6.

Summary:
Pattern Candidate Elements Comments
Numbered object container <div> - #PCDATA allowed

- Doesn’t enforce order (eg
heading first)

- could use instead, since its
exactly the same

Heading? <h1> - Use <h1> at each level if we
want a recursive model. Delete
<h2>-<h6>

Paragraph* <p> - Doesn’t meet requirement 2:
Needs to be redefined to allow a
list, unless we can live without
lists inside sentences.

List* - better than <div>, since
 provides a container

Container for nested [none] - Unless we used for the
numbered objects? numbered object, in which case
the container would be

Numbered <div> See comments above
object™®

Consideration

Additional infrastructure
provided by DTD

End user skill set

Developer skill set

Tool support — editing
environment

Tool support — stylesheets

Extension mechanism

Is DTD being actively developed
under an open process?

Position in Lifecyle

Licence terms

For
o 1images, tables

o CSS (though this can be
used with other XML)

o widespread familiarity
with HTML

o widespread tool support

o widespread tool support
o display in web browsers

This DTD includes a well
conceived extension mechanism.

o A document type based
on XHTML modules
could be defined.

o Yes, W3C

o W3C Recommendation
10 April 2001

o [to be completed]

Against

o

No familiarity. Unless we
redefine <div> to specify order
(h1?, p*, div*) , things are hard
for the user.

o low familiarity with
XHTML modularization

o catalog file support
desirable in editing tool

However, not quite a strict subset
of XHTML, since <p> needs to
allow a list inside it (and then
there’s the material which comes
before and after the clause model
— the so-called top and tail).

We want to make our content model easy to understand so as to fuel acceptance, which suggests we'd want
to present it as a single file (rather than a complex abstraction). In other words, presenting as our primary
deliverable a DTD which uses XHTML modules would be a mistake. That is not to say that that could not
be a secondary deliverable. To the extent that this comment is valid, it applies to certain of the other
DTDs (eg DocBook, DITA, and the Journal Publishing DTD).

Key Contribution Value

CSS

low, since this can work with other DTDs as well

easy to transform to HTML low, since:

- this is becoming less necessary since

browsers become able to display XML

- a transform to HTML is simple enough
anyway

OpenOffice
office.mod:
<IENTITY % body includes "...text:tracked-changes,%text-

decls;,text:h|text:p|text:list|table:table|draw:page]
text:section|text:table-of-content| ..."

<IELEMENT office:body %body;>

text.mod
http://xml.openoffice.org/source/browse/xml/xmloff/dtd/text.mod?rev=1.54&content-type=text/x-cvsweb-

markup

All text is included in the paragraph elements, which may be either a plain paragraph text:p or a header
text:h. I understand a third paragraph element numbered-paragraph will also be introduced following work
in OASIS Open Office TC.

<IENTITY % inline-text "(#PCDATA | %inline-text-elements;)*">
<IELEMENT text:p %inline-text;>, so lists aren’t allowed in a text:p paragraph (violating requirement 2).

<!IELEMENT text:h %inline-text;>
<IATTLIST text:h text:level %positivelnteger; "1"> (yuck)

First, consider text:section as a candidate for our numbered object. Failing that, text:list (see below).

<IENTITY % sectionAttr "text:name CDATA #REQUIRED
text:style-name %styleName; #IMPLIED

text:protected %boolean; 'false' ">

<IELEMENT text:section ((text:section-source|office:dde-source)?, %sectionText;) >
where %sectionText; is something like:

(text:hjtext:p|text:list| table:table|text:section|text:table-of-content|text:illustration-index|text:table-
index|text:object-index|text:user-index|text:alphabetical-index|text:bibliography|text:index-title|text:change
| text:change-start | text:change-end)*

<IATTLIST text:section %sectionAttr;>

<IATTLIST text:section text:display (true|none|condition) "true">
<IATTLIST text:section text:condition %formula; #IMPLIED>
<IATTLIST text:section text:protection-key CDATA #IMPLIED>

<!ATTLIST text:section text:is-hidden %boolean; #IMPLIED>

<!ELEMENT text:section-source EMPTY>

<IATTLIST text:section-source xlink:href %string; #IMPLIED>
<IATTLIST text:section-source xlink:type (simple) #FIXED "simple">
<!IATTLIST text:section-source xlink:show (embed) #FIXED "embed">
<IATTLIST text:section-source text:section-name %string; #IMPLIED>
<IATTLIST text:section-source text:filter-name %string; #IMPLIED>

So note in passing that text:section-source addresses requirement 10 (incorporate content by reference).
From the OASIS Open Office TC work, I understand 2 models for lists will be supported.
The first approach is <text:list> - the number of <list> ancestor elements determines the paragraph's level.

Something like:

<IENTITY % list-items "((text:list-header,text:list-item*)|text:list-item+)">
<!ELEMENT text:list %list-items;>

<IELEMENT text:list-header (text:p|text:h)+>
<IELEMENT text:list-item (text:p|text:h|text:list)+>

So, the way to represent clause structure in Open Office might be to use <text:list>:
- list-header is not useful, since it is a header on the list, not each list item
- list-item permits a text:p or a text:list to come before a text:h ! It also permits more than one text:h

- since tables and images don't appear in the content model for lists or text:p or text:h, the model would
need to be extended.

As such, text:list is not a particularly good fit for our needs.
The second approach to lists (noted for completeness) is a <numbered-paragraph> that has an attribute
specifying the level of the numbering. This approach is not useful to us, since the original document

structure is not maintained (requirement 2).

OpenOffice may have something to contribute for footnotes/endnotes, table of contents, change tracking
etc, but that can be considered later.

Summary:
Pattern Candidate Elements Comments
Numbered object container <text:section> - also partially addresses

requirement 10 (incorporate
content by reference)

- Doesn’t enforce order (eg
heading first)

- better than text:list though,
since it would allow tables

Heading?
Paragraph*

List*

Container for nested
numbered objects?

Numbered
object*

item>

<text:h>

<text:p>

<text:list>
<text:list-

[none]

<text:section>

- Doesn’t meet requirement 2:
Needs to be redefined to allow a
list, unless we can live without
lists inside sentences.

Conclusion: a document type based on OpenOffice modules could be defined. However, not quite a strict
subset, since, as similar to XHTML, <text:p> needs to allow a list inside it.

Consideration

Additional infrastructure
provided by DTD

End user skill set

Developer skill set

Tool support — editing
environment

Tool support — stylesheets
Extension mechanism

Is DTD being actively developed
under an open process?

For

images, tables

style and numbering
mechanism

footnotes/endnotes,
table of contents,
change tracking

content by reference

widespread support in
generic tools (albeit not
WYSIWYG)

To be determined.

Yes, Oasis

Against

o

No familiarity. Unless we
redefine <text:section> to specify
order (text:h?, text:p*,
text:section*) , things are hard
for the user.

o little familiarity

o catalog file support
desirable in editing tool

Position in Lifecyle o Pre-existing
specification submitted
to Oasis

o TC making relatively
minor alterations to that

specification
Licence terms Can freely modify under:
o LGPL, or

o Sun Industry Standards
Source License Version

1.1
Key Contribution Value
? ?

WordML and friends

WordML, is part of the XML format used in Word 2003 where no customer defined schema has been
specified. The structure and design of the Microsoft Word XML document schema is similar to RTF.

The schema http://schemas.microsoft.com/office/word/2003/2/wordml (not DTD) can be found in the
publicly available Microsoft Word XML Content Development Kit Beta 2 which can be
downloaded from http://download.microsoft.com/download/4/9/7/49799b71-5502-
40c6-b7ce-c791f87f65cd/xmlcdkb2.msi

Sample documents contained in the Content Development Kit (eg DocLibrary\OfficeML\Contract.xml)
declare various namespaces:

xmlIns:w="http://schemas.microsoft.com/office/word/2003/2/wordm|"
xmins:v="urn:schemas-microsoft-com:vml"
xmlns:w10="urn:schemas-microsoft-com:office:word"
xmlins:SL="http://schemas.microsoft.com/schemalLibrary/2003/2/core"
xmlIns:aml="http://schemas.microsoft.com/aml/2001/core"
xmlins:wx="http://schemas.microsoft.com/office/word/2003/2/auxHint"
xmlIns:o="urn:schemas-microsoft-com:office:office"

but the CDK only includes a schema and documentation for wordml.

The paragraph element p contains a paragraph properties element pPr, and elements for “runs of text” r.
The text itself appears in a t element in the r.

For example:

<w:p>
<w:pPr>properties go here</w:pPr>
<w:r>
<w:t>This clause is a single paragraph</w:t>
</w:r>
</w:p>

According to XMLCDK.doc, “A Paragraph element can also contain another Paragraph element — for
example, if a paragraph contains an inline textbox, that textbox may be made up of multiple paragraphs.”.
However, it appeared to me from the WordML schema that neither w:p nor w:r can contain a nested w:p.

Interestingly, DocLibrary\OfficeML\Contract.xml uses <wx:sect> and <wx:sub-section>, but there is no
documentation | could find for the auxHint schema..Nevertheless, the document at
http://www.xmlw.ie/aboutxml/wordml.htm suggests that <wx:sub-section> can be nested, which is good

for our purposes.

According to XMLCDK.doc, “Lists are actually just Paragraphs. A list element is an individual paragraph
that references a particular list style and the list level.”

Summary:
Pattern

Numbered object container

Heading?

Paragraph*

List*

Container for nested
numbered objects?

Numbered
object*
Considerations:
Consideration
Strict subset of DTD

Candidate Elements

<wx:sub-section>

<w:p>
<w:pPr>properties go
here</w:pPr>
<w:r>
<w:t>My Heading</w:t>

<w:p>
<w:pPr>properties go
here</w:pPr>
<w:r>

<w:t>My Paragraph</w:t>

<w:p>
<w:pPr>properties go
here</w:pPr>
<w:r>
<w:t>My list item</w:t>

[none]

<wx:sub-section>

For

Comments

- no documentation so this is
somewhat speculative

- no special element for heading?

- Doesn’t meet requirement 2:
unless the list items were
assumed to be block level, and
the paragraph containing the list
was represented by wx:sub-
section; which is not good
enough (the same sort of ugliness
could address the deficiency in
XHTML and OpenOffice)

Against
o Not possible

Additional infrastructure
provided by DTD

End user skill set

Developer skill set

Tool support — editing
environment

images, tables

style and numbering
mechanism

footnotes/endnotes,
table of contents,
change tracking

content by reference

No familiarity. Hard for the user,
since the format is verbose and
there is no distinction between
heading and paragraph..

o little/no familiarity

o limited support (other
than in certain versions

of Word 2003)
Tool support — stylesheets
Extension mechanism To be determined
Is DTD being actively developed No
under an open process?
Position in Lifecyle Will be implemented in
Office 2003

Licence terms Unknown

Key Contribution Value

? ?

Conclusion: WordML is not a good basis for our clause model. Depending on clarification of the licence
terms, it may be worth consulting for some of the items in requirement 11 (eg footnotes).

Docbook

http://www.oreilly.com/catalog/docbook/chapter/book/section.html summarises the position in the

following terms:

”Section is one of the top-level sectioning elements in a component. There are three types of sectioning

elements in DocBook:

* Explicitly numbered sections, Sectl...SectS, which must be properly nested and can only be five levels
deep.

* Recursive Sections, which are an alternative to the numbered sections and have unbounded depth.

* SimpleSects, which are terminal. SimpleSects can occur as the "leaf" sections in either recursive sections
or any of the numbered sections, or directly in components.

Sections may be more convenient than numbered sections in some authoring environments because they
can be moved around in the document hierarchy without renaming.”

So let us examine “explicitly numbered sections” and “recursive sections” in turn. 1 don’t consider
simplesect any further than to note its definition:

<IELEMENT simplesect %ho; ((%osect.title.content;), (%divcomponent.mix;)+)
%ubiq.inclusion;>

Explicitly Numbered Sections

<IELEMENT sectl %ho; (sectlinfo?, (%sect.title.content;), (%nav.class;)*,
(((%divcomponent.mix;)+,
((%refentry.class;)* | sect2* | simplesect®))
| (%refentry.class;)+ | sect2+ | simplesect+), (%onav.class;)*)

and similar for sect2-sect5.

where:

<IENTITY % divcomponent.mix

"%]ist.class; |%admon.class;
|%linespecific.class; |%synop.class;
|%para.class; |%informal.class;
|%formal.class; |%compound.class;
|%genobj.class; |%descobj.class;
|%ndxterm.class; |beginpage

%forms.hook;
%local.divcomponent.mix;">

<IENTITY % local.informal.class "">
<IENTITY % informal.class
"address|blockquote
|graphic|graphiccojmediaobjectjmediaobjectco
|informalequation
[informalexample
[informalfigure
[informaltable %local.informal.class;">

<IENTITY % local.para.class "">
<IENTITY % para.class
"formalparalpara|simpara %local.para.class;">

The para.class entity defines three types of paragraph: formalpara, para, and simpara.

<IELEMENT formalpara %ho; (title, (Yondxterm.class;)*, para)>
<IELEMENT para %ho; (%para.char.mix; | %opara.mix;)*>

<IELEMENT simpara %ho; (%para.char.mix;)*>

Para is a normal paragraph, and can include lists since it uses %para.mix:

<IENTITY % local.para.mix "">
<!IENTITY % para.mix
"%list.class; |%admon.class;
|%linespecific.class;
|%informal.class;
|%formal.class;
%Ilocal.para.mix;">

A formalpara can have a title, but we probably don’t need that, since a section provides the title.
A simpara can’t have a list in it, since it doesn’t use %para.mix.

So, we’d probably use <para>.

<IENTITY % local.list.class "">

<IENTITY % list.class

"calloutlist|glosslist|itemizedlistjorderedlist|segmentedlist
|simplelist|variablelist %local.list.class;">

An itemized list:

<IELEMENT itemizedlist %ho; (blockinfo?, (%formalobject.title.content;)?,
(%listpreamble.mix;)*, listitem+)>

is sufficient for our purposes.

The content model for listitem includes the three types of paragraph, ItemizedList and Table. To put a
heading on a list item, we’d use formalpara?

Summary for “explicitly numbered sections”:

Pattern Candidate Elements Comments
Numbered object container sec(n)
Heading? title
Paragraph* para
List* itemizedlist Need to use formalpara to put a

heading on a list item.

Container for nested [none]
numbered objects?

Numbered sec(n+1)
object*

Recursive sections

This is the other model DocBook offers us.

<!ENTITY % local.section.class "">
<!ENTITY % section.class "section %local.section.class;">

<!ELEMENT section %ho; (

sectioninfo?,
(%osect.title.content;),
(%onav.class;)*,

(

((%divcomponent.mix;)+, ...)
...|(%section.class;)+

)s)

%ubiq.inclusion;>

so we can do:

<section>
<title>....</title>
<para>...</para>
<para>...</para>
<section>....</section>
<section>....</section>

</section>

Summary for “recursive sections”:

Pattern Candidate Elements
Numbered object container section
Heading? title
Paragraph* para
List* itemizedlist
Container for nested [none]
numbered objects?
Numbered section
object*

Considerations applicable to both sectioning models:

Consideration For

Strict subset of DTD o Possible

Comments

Need to use formalpara to put a

heading on a list item.

Against

o

Additional infrastructure
provided by DTD

End user skill set

o 1images, tables o no change tracking?

o (style and numbering
mechanism is left to
stylesheets)

o footnotes/endnotes,
table of contents

No familiarity in our target user

group.
Developer skill set Well documented DTD o
Tool support — editing o
environment
Tool support — stylesheets A set of stylesheets exists
Extension mechanism DocBook is designed to be easy
to modify
Is DTD being actively developed o Yes, Oasis:
under an open process? http://www.oasis-
open.org/committees/tc
_home.php?wg_abbrev
=docbook
Position in Lifecyle o Reaching end of lifecycle.
Refactoring/re-thinking is likely
to commence soon:
http://www.xmlhack.com/read.ph
p?item=1990
Licence terms o
Key Contribution Value
? ?

UBL

UBL is about creating standard payloads for ebXML. "concrete standard XML syntax for business"

- The 20% of documents and business objects actually used by 80% of electronic business partners:

Procurement

Purchase Order, P.O. Response, P.O. Change

Materials management

Advance Ship Notice, Planning Schedule, Goods Receipt

Payment

Commercial Invoice, Remittance Advice

Transport/logistics
Consignment Status Request, Consignment Status Report,
Bill of Lading

Catalogs
Price Catalog, Product Catalog

Statistical reports

Accounting Report

- Library of standard XML business information entities (BIEs)
- Context methodology to make the standard documents interoperate across industries

Library Content SC: Defines business documents and a library of XML and ebXML CCTS based building
blocks (chair: Tim McGrath <tmcgrath@portcomm.com.au>)

The Op70 Library Content public review (http://www.oasis-open.org/committees/ubl/lcsc/0p70/)
addresses the trading cycle from Order to Invoice between Buyer and Seller. It includes specifications for:
Order

Order Response (simple)

Order Response (complex)

Order Cancellation

Despatch Advice

Receipt Advice

Invoice

Only passing reference is made to legal contract/trading partner agreement (section 5.3.4, 5.3.5). However,
the Order.xsd references cat:Contract, cat:SalesConditions and cat:DeliveryTerms, where cat is UBL's
CommonAggregateTypes namespace.

I found Java classes representing these types at www.softml.net: they are not useful for present purposes.
[Note: some of the other types will worth exploring further for our semantic/non-structural work eg
PaymentTerms, Item, DeliverySchedule.]

In conclusion, UBL has nothing to offer us by way of assistance with our clause model.
Interestingly, Annex D.4 "Formatting specifications and stylesheets" says:

"This section contains examples of formatting specifications and "stylesheets" that can be used to display
instances of UBL schemas in human-readable form. Presentational semantics have not been formalized in
this version of the UBL schema library, and they may never be formalized due to differing international
requirements and conventions for the presentation of information found in business documents."

The sample stylesheets use XSLT and XSL-FO.

5629A

5629A Core DTD

from http://www.defence.gov.au/dps/dpstoc.html

SUBGRP (Sub Group)

"Identifies a sub group of numbered paragraphs [PARAO] within the body of the document. A Sub Group
is the structural container analogous to a Small Shoulder Paragraph Heading, a upper-lower case left
aligned shoulder heading. The reason a separate container element is used for small shoulder headings is
that according to 5629 A numbered paragraphs may have in-line or small shoulder headings, and that small

shoulder headings apply until the next heading of equal or greater weight. Thus, several numbered
paragraphs may occur within a subgroup, and a separate container is required in order to avoid an infinitely
recursive structure. A subgroup is used to introduce a number of paragraphs relating to the same subject.”

<IELEMENT SUBGRP (TITLE,SHORTTITLE?,PARAO+)>

Note that any SUBGRP doesn’t directly allow nested objects after PARAO, so any nesting will need to be
inside PARAO.

PARAQO (Primary Paragraph)

"Identifies a primary numbered paragraph in the document's structure. According to the standard: The
paragraph is essentially a unit of thought. It shall be homogenous in subject matter and sequential in
treatment. Where desirable, paragraphs may be broken down into sub-paragraphs which themselves may be
broken down into sub-sub-paragraphs. This structural container envelopes all the components of the
numbered paragraph including: warnings, cautions, notes, the title (if applicable) and text of the paragraph,
and any subparagraphs or procedural steps. The [TITLE] of the numbered paragraph is generally intended
for inline paragraph titles and will generally appear after any warnings, cautions or notes that may need to
precede the title and/or text of numbered this paragraph. When the applicable publishing standard allows
the use of Small Shoulder Paragraph Headings these are to apply until the next heading of equal or greater
level. Thus, in effect a paragraph heading may apply to more than one numbered paragraph - so Small
Shoulder Paragraph Headings have been implemented as Sub Group [SUBGRP] structural containers that
may hold a number of (numbered) paragraphs, ie [PARAO]s."

<IELEMENT PARAO

(
(
(
(TITLE,SHORTTITLE?, WARNING*,CAUTION* NOTE*)

I(
(

(WARNING+,CAUTION*, NOTE*)
[(CAUTION+,NOTE¥)
INOTE+
)
J(TITLE,SHORTTITLE?)?
)
)?
,PARA+NOTE*
, (STEP1,STEP1+)?
),
(SUBPARA1.GRP|[SUBPARAT1)*
>

Note the hierarchy is non recursive - SUBPARA1-SUBPARAJ3 are the respective levels of subordinate
paragraph, and a .GRP container is available but optional (!).

PARA (Paragraph Text)

"Identifies a basic unit of paragraph text. This is a low level textual container that basically corresponds to
a blob of text. It may occasionally be preceded by inline items such as paragraph or figure numbers and/or
inline titles."

<IELEMENT PARA
(#PCDATA|CHANGE|XREF|INDXFLAG|VERBATIM|EMPHASIS|APPLICABIL|GRAPHIC|

EXTREF|FIGURE|TABLE)*>
So tables and graphics appear inside a paragraph.
5629a seems to say:
"1. Clause Title

Clause Body text paragraph of words of words of words of words of words of words of words of words
of words of words of words of words of words of words of words"

should be modelled as:

<SUBGROUP>
<TITLE>Clause Title</TITLE>

<PARAO>

<PARA>Clause Body text paragraph of words of words of words of words of words of words of words
of words of words of words of words of words of words of words of words</PARA>
</PARA(O>
</SUBGROUP>

as compared to:

"1. [Clause Title] Clause Body text paragraph of words of words of words of words of words of words of
words of words of words of words of words of words of words of words of words"

which should be modelled as:

<PARAO>

<TITLE>ClauseTitle</TITLE>

<PARA>Clause Body text paragraph of words of words of words of words of words of words of words
of words of words of words of words of words of words of words of words</PARA>
</PARA(O>

However, it seems a bit odd to use SUBGROUP this way, since the nested objects live inside PARAO.
Accordingly, we won’t, and we leave the location of the heading to the output stylesheets to determine.

What about lists? STEP1 is about as close as we get.
STEP1 (First Level Procedural Step)

"Identifies a first level procedural step. A step is a single operation in a sequence of events, such as in
maintenance instructions. Further breakdowns within the sequence are identified by second level steps, ie
[STEP2]. A step is treated as a sub-paragraph [SUBPARA1] for presentation purposes, and second level
steps as sub-sub-paragraphs."

STEP2 (Second Level Procedural Step)
"Identifies a second level procedural step. A step is a single operation in a sequence of events, such as in
maintenance instructions. Some Australian Defence DTDs (not 5629A) allow further breakdowns within

the sequence which are identified by third level steps, ie [STEP3]. A second level step is treated as a sub-
sub-paragraph [SUBPARAZ2] for presentation purposes, and third level steps as sub-sub-sub-paragraphs."

STEP1 appears to be as close as we get to a list:

- again, the hierarchy is non recursive
- paragraph text can't continue after the list (1)

Pattern Candidate Elements Comments
Numbered object container PARAO
Heading? TITLE
Paragraph* PARA
List* STEP1 Doesn’t meet requirement 2,

since not only can a list not go
inside a paragraph, but paragraph
level text can’t follow the list.

Container for nested SUBPARA1.GRP Optional, but to be avoided since
numbered objects? its HEADING element is
mandatory.
Numbered SUBPARALI
object*

I don’t consider 5629A any further.

LSSA XML Schema

The (UK) Legal Software Suppliers Association (LSSA)'s XML Schema for the Legal Profession (Ver 2.1)
defines common data components (eg address, person, organisation, party). It does not purport to include a
clause model.

http://www.legaltechnologyinsider.com/Issa/xmlstuff.htm

Europe Lex
LexData / LexML

Different philosophy, apparently not proposing to develop a clause model:

"Having observed the great difficulties in the USA in achieving general standard structures, it has been
concluded that in Europe it would be irrealistic [sic] to strive for one structure per document type. The
European legal landscape is .. too diverse to undertake, with any chance of success, a similar attempt as in
the USA. Rather the view is, that it is better to allow and encourage a greater number of standard structures
to be created. Structures which are created for very specific, actual and practical purposes. So more of a
bottom up approach. On the one hand, each of these structures may cover a smaller amount of legal data,
on the other hand each structure is likely to be of more direct practical use. From an organisational point of
view an added advantage is that smaller communities, with similar interests, can agree on a standard
structure more quickly. This approach is promoted by LEXML, the European Forum for XML in the legal
domain. Other parts of the world will take their policy decisions concerning the standardisation process in
the legal domain. Beyond doubt we will be faced with a wide variety of structures for legal data."

http://www.lexdata.org/general.htm

Perhaps DITA (referenced below) would be a way forward for them.

NLM Journal Publishing
http://dtd.nlm.nih.gov/publishing/

The American National Center for Biotechnology Information (NCBI), a center of the National Library of
Medicine (NLM), created the Journal Publishing Document Type Definition (DTD) with the intent of
providing a common format for the creation of journal content in XML.

"-//NLM//DTD Journal Publishing DTD v1.0 20030210//EN"
Delivered as file "journalpublishing.dtd"

<IENTITY % body-model "(%para-level;)*, (%osec-level;)*" >
<IELEMENT body (%body-model;) >
<IELEMENT sec (%Yosec-model;) >

where

<IENTITY % sec-model "title, (%opara-level;)*,
(Yosec-level;)*,
(%osec-back-matter-elements;)*" >

<IENTITY % sec-opt-title-model
"title?, (%opara-level;)*,
(Yosec-level;)*,

(%osec-back-matter-elements;)*" >
<IENTITY % sec-level "%sec.class;" >
<IENTITY % sec.class "sec" >

So <sec> has a title, para-level stuff, and then nested <sec>.

The title is not optional unless the alternative model is employed

<IENTITY % sec-opt-title-model
"label?, title?, (%opara-level;)*,
(Yosec-level;)*,
(%Yosec-back-matter-elements;)*" >

And sec-opt-title-model is not used in the Journal Publishing DTD (unlike the Archiving and Interchange
DTD) therefore we'd need to use some other subset of the Archive and Interchange DTD in order to get
optional title.

<IELEMENT title (#PCDATA %struct-title-elements;)* >
where:

<IENTITY % struct-title-elements
"| %break.class; | %simple-phrase;" >

<l-- PARAGRAPH-LEVEL ELEMENTS >

<l-- Elements that may be used at the same structural level as a paragraph, for example
inside a Section Note: There a major overlap between this parameter entity and that for the elements
that are at the same level as a paragraph. Inline elements appear only inside a paragraph, but block
elements such as quotes and lists may appear either within a paragraph or at the same level as a
paragraph. This serves a requirement in a repository DTD, since some incoming material will have
restricted such elements to only inside a paragraph, some incoming material will have restricted them to
only outside a paragraph and some may allow them in both places. Thus the DTD must allow for them to
be in either or both. -->
<IENTITY % para-level "%block-display.class; | %block-math; |

%list.class; | %omath.class; |

%para.class;" >
<l-- PARAGRAPH CLASS -->
<l-- Information for the reader that is at the same structural level as a Paragraph ~ -->
<IENTITY % para.class "p | %rest-of-para.class;" >

<IENTITY % rest-of-para.class
" disp-quote | speech | statement |
verse-group" >

<!IELEMENT p (#PCDATA | %inside-para;)* > per "-//NLM//DTD Archiving and
Interchange DTD Suite Paragraph-Like Elements v1.0 20021201//EN"
Delivered as file "para.ent"

<IENTITY % inside-para "%block-display.class; | %eblock-math; |
%citation.class; | Y%oemphasis.class; |
%inline-display.class; |
%inline-math; | %inpara-address; |
%link.class; | %list.class; |
%math.class; | %rest-of-para.class; |
%phrase.class; | %subsup.class;" >

"-//NLM//DTD Archiving and Interchange DTD Suite List Class Elements v1.0 20021201//EN"
Delivered as file "list.ent"

<IENTITY % list.class "def-list | list" >

<IENTITY % def-list-model
"label?, title?, term-head?, def-head?,

def-item*, def-list*" >
<IELEMENT def-list (%def-list-model;) >
<IELEMENT def-item (term, def*) >
<IENTITY % list-model "label?, title?, list-item+" >
<IELEMENT list (%list-model;) >
<IELEMENT list-item (p | %list.class;)+ >

so list-item can't have a title

Pattern
Numbered object container

Heading?

Paragraph*
List*

Container for nested
numbered objects?

Numbered
object*
Consideration
Strict subset of DTD

Additional infrastructure
provided by DTD

End user skill set

Developer skill set

Tool support — editing
environment

Tool support — stylesheets

Extension mechanism

Is DTD being actively developed
under an open process?

Position in Lifecyle

Candidate Elements
sec

title

list

[none]

sec

For

o Strict subset of
exchange model is
possible (ie gives us
optional title)

o [TBD]

Well constructed DTD

A set of stylesheets exists

The Suite has been set up to be
extended using a new DTD file
and a new DTD-specific
customization module to redefine
the many Parameter Entities.

o Notreally (?), but the
site hosts a mailing list.

Comments

Need to employ sec-opt-title-
model (from the exchange
version) to make this optional.

- list items can’t have headings

- lists can be nested

Against

o Except for headings on
list items

No familiarity in our target user
group. This DTD is more likely
to be adopted in
academic/research than in
corporate business community

o

o

v1.0, Feb 2003

Licence terms o “These DTDs and the
Suite are in the public
domain. An
organization that wants
to create its own DTD
from the Suite may do
so without permission

from NLM.”
Key Contribution Value
? ?

DITA

Darwin Information Typing Architecture (DITA) is an XML architecture for extensible technical
information, created by IBM in order to represent its technical documents.

http://www.ibm.com/developerworks/xml/library/x-dita4/
A document is made up of a number of fopics.
A topic is "a chunk of information consisting of a heading and some text, optionally divided into sections".
It provides the title, metadata and structure for the content. Happily, a topic may include one or more child
topics in its include zone:
http://www-106.ibm.com/developerworks/xml/library/x-dita3/topic_structure.html
So DITA looks attractive in that it appears to model our "numbered object".
However, two potential problems need looking at:
3 Ytitle; is required — can it be defined as title?, so that it becomes optional
«3 %body; is required — can it be defined with optional contents, so that it becomes optional
Title and body are both required (see

news://news.software.ibm.com/ibm.software.developerworks.xml.dita Michael Priestly reply to my post
entitled “Specialisation, %title and %body”)

Nevertheless, it remains interesting in the way that it is designed to be extended. This at least opens the
possibility of using terminology suitable for contracts in contracts (eg 'clause’) and terminology suitable for
judgements in court documents (eg submission, reasoning, finding of fact, finding of law), and terminology
suitable for other types of business documents in those business documents. (To be clear, we could just as
easily decide to use one container name in all of those types of business documents)

There are two types of specialisation:
e topic specialisation: defining different types of topics

e domain specialisation: essentially, semantics/terminology which can be used in a topic (although
emphasis is also handled this way)

Pattern

Numbered object container

Heading?
Paragraph*

List*

Container for nested
numbered objects?

Numbered
object*
Consideration
Strict subset of DTD

Additional infrastructure
provided by DTD

End user skill set

Developer skill set

Tool support — editing
environment

Tool support — stylesheets

Extension mechanism

Is DTD being actively developed
under an open process?

Position in Lifecyle

Candidate Elements

Comments

topic Or, define our own using topic
specialization.
title Mandatory ®.
body Mandatory ®.
p
ol - list items can’t have headings
li - lists can be nested
[none]
topic
For Against
o o Title and body are not
optional
o [TBD] o
No familiarity in our target user
group. Nevertheless, the
specialization mechanism means
that we could use meaningful
element names. Also, the DTD
is likely to be adopted in the
technical writing division of
some corporate users of our
work.
Well constructed DTD o
o
A set of stylesheets exists
Two notions:
- topic specialization
- domain specialisation
o Not really (?), but the
site hosts a newsgroup.
o Initial release March 2001;

Release 1.2, June 2003

Licence terms o the IBM Darwin
Information Typing
Architecture
Specification
Agreement grants a
royalty free licence to
modify the
Specifications.
Distribution is permitted
under certain

conditions.
Key Contribution Value
topic and domain Worth exploring further.

specialization architecture

Colophon

This document was created using OpenOffice 1.1 beta on Linux and transferred to and from Word 2000 as
necessary. Published to pdf using http://sourceforge.net/projects/pdfcreator

