Pruning XHTML2 for Contract clause structures

Draft 2: 18 January 2004

Author: jharrop@speedlegal.com

Summary

Assuming the TC is to use XHTML2 to represent the structure of a contract, it needs to consider to what extent to tailor XHTML2 to meet its needs.

It is useful to be able to identify what level of conformance the TC is seeking to achieve, and to articulate why. This paper seeks to identify the advantages and disadvantages pertaining to the “Host Language” and “Integration Set” levels.

This paper shows that there are various significant problems from both a software development and an authoring perspective, which, based on the current draft of XHTML 2, can't be addressed while retaining conformance at either of those 2 levels.

For this reason, it is suggested that if the TC is to use XHTML 2 as a foundation for its structural representation, we need to "prune" unwanted elements and attributes. What we end up with is what we might call a "Pruned” Host Language (or Integration Set).

Once you accept the need to prune elements and attributes, XHTML2 starts to look less daunting for lawyers and contract managers, and a better basis for software development.

As a side benefit, it is shown that a "simple paragraph" interpretation of the “Pruned” DTD presented here is available, and that this addresses certain other ease-of-use concerns which I have previously raised.

Statement of Purpose

The eContracts TC is considering using XHTML2 to represent contracts.

Assuming something based around XHTML2 is used, the TC needs to consider to what extent to tailor XHTML2 in order to make it a better fit for contracts, mindful that the more it is tailored, the less like XHTML2 it becomes.

The W3C has defined various levels of "conformance", including:

· "Host Language"

· "Integration Set"

This paper looks at what a DTD conforming at one of those levels would be like, asks whether that is a sufficiently good fit (primarily from both authoring and software development perspectives), and if not, what more can be done.

The reason it is important to consider what level of conformance we wish to target is that each level of conformance may have its own advantages and disadvantages. If we can identify and articulate these, then we can be clear in what we are gaining or losing by ensuring our DTD has a particular level of conformance.
Assumptions

This paper assumes something based on XHTML2 will be used to represent the structure of a contract. This assumption is not challenged or questioned in this paper – that is done elsewhere.

This document is based on the XHTML 2 draft of 6 May 2003.

Scope

This paper does not make any systematic attempt to identify elements or attributes which the TC may need to add eg for parties, signatures etc, since doing so is not necessary for the purpose at hand.

Representing Clauses in XHTML2

The XHTML2 element which corresponds to the TC's concept of an item (ie clause) is "section".

Armed with this, here is what some common clause structures should look like:

Example 1: A clause with a heading.

1.
Heading

Clause body. Clause body. Clause body. Clause body.Clause body. Clause body.Clause body. Clause body.
<section>

 <h>Heading</h>

 <p>Clause body ...</p>

</section>

Example 2: A clause without a heading.

1.
Clause body. Clause body. Clause body. Clause body.Clause body. Clause body.Clause body. Clause body
<section>

 <p>Clause body ...</p>

</section>

Example 3: A clause and subclauses, with headings.

1.
Heading

1.1
Sub Heading

Clause body. Clause body. Clause body. Clause body.Clause body. Clause body.Clause body. Clause body.

1.2
Sub Heading

Clause body. Clause body. Clause body. Clause body.Clause body. Clause body.Clause body. Clause body.
<section>

 <h>Heading</h>

 <section>

 <h>Sub Heading</h>

 <p>Clause body ...</p>

 </section>

 <section>

 <h>Sub Heading</h>

 <p>Clause body ...</p>

 </section>

</section>

Example 4: A clause and subclauses, without headings.

1.
Heading

1.1
Clause body. Clause body. Clause body. Clause body.Clause body. Clause body.Clause body. Clause body.

1.2
Clause body. Clause body. Clause body. Clause body.Clause body. Clause body.Clause body. Clause body.
<section>

 <h>Heading</h>

 <section>

 <p>Clause body ...</p>

 </section>

 <section>

 <p>Clause body ...</p>

 </section>

</section>

In each case, there could be a list in the clause body, either block or inline:

Example 5: A clause with a heading.

1.
Heading

Clause body containing a list:

(a) first list item

(b) second list item

More clause body.Clause body. Clause body.Clause body. Clause body.
<section>

 <h>Heading</h>

 <p>Clause body containing a list:

 first list item

 second list item

More clause body.Clause body. Clause body.Clause body. Clause body.

 </p>

</section>

Notice that example 5 uses markup (ie) to represent the list which is different from the markup used in examples 3 and 4 to represent subclauses (<section>). As has been shown in other papers, this is probably not a good idea, since it forces an author (or conversion program) to determine which structure they are marking up, and different authors are liable to make inconsistent decisions.

Notice further that the <p> element is a "grammatical" paragraph since it contains a block level list. This is to be distinguished from a simple paragraph of the type familiar to word processor users (see also WordML and OpenOffice DTD).

Ignoring for the moment such markup details, representing the above structures is the essence of what we want to do.

We don't need the entirety of XHTML2 to do this, so let's look at what subsets are available, starting with Host Language conformance.

Host Language Document Type Conformance

Definition

Host Language conformance is defined for XHTML1, but not for XHTML2 so far.

Assuming that it will follow the specification of XHTML1, with references to the Text module of XHTML1 replaced by the Block Text and Inline Text modules of XHTML2, the resulting definition would be something like:

1. The document type must be defined using one of the implementation methods defined by the W3C. ... The rest of this section refers to "DTDs" although other implementations are possible.

2. The DTD which defines the document type must have a unique identifier as defined in Naming Rules that uses the string "XHTML" in its first token of the public text description.

3. The DTD which defines the document type must include, at a minimum, the Structure, Block Text, Inline Text, Hypertext and List modules defined in this [XHTML 2.0] specification.

4. For each of the W3C-defined modules that are included, all of the elements, attributes, types of attributes (including any required enumerated value lists), and any required minimal content models must be included (and optionally extended) in the document type's content model. When content models are extended, all of the elements and attributes (along with their types or any required enumerated value lists) required in the original content model must continue to be required.

5. The DTD which defines the document type may define additional elements and attributes. However, these must be in their own XML namespace.

XHTML2 Host Language DTD

Based on these rules, taking the simplest possible Host Language DTD, we end up with:

<!-- Attributes -->

<!ENTITY % common
"%core; %i18n; %events; %edit; %embedding; %map; %style; %bi-direct;

%hypertext;">

<!ENTITY % core
"class

#NMTOKENS
#IMPLIED

 id

#ID

#IMPLIED

 title

%Text;
#IMPLIED">

<!ENTITY % i18n
"xml:lang
%LanguageCode;
#IMPLIED">

<!ENTITY % events
"defaultAction
(cancel

| perform)
perform

 event

#CDATA

#IMPLIED

 handler
#IDREF

#IMPLIED

 observer
#IDREF

#IMPLIED

 phase

(capture

| default)
default

 propagate
(stop

| continue)
continue

 target
#IDREF

[self]">

<!ENTITY % edit
"edit

(inserted

| deleted

| changed

| moved)
#IMPLIED

 datetime
%Datetime;
#IMPLIED">

<!ENTITY % embedding
"src

%URI;

#IMPLIED

 type

%ContentType;
#IMPLIED">

<!ENTITY % map

"usemap
%URI;

#IMPLIED

 ismap

(ismap)
#IMPLIED

 shape

(default

| rect

| circle

| poly)
default

 coords
%Coordinates;
#IMPLIED">

<!ENTITY % style
"style

#CDATA

#IMPLIED">

<!ENTITY % bi-direct
"dir

(ltr | rtl

| lro | rlo)
ltr">

<!ENTITY % hypertext
"href

%URI;

#IMPLIED

 cite

%URI;

#IMPLIED

 target
%HrefTarget;
#IMPLIED

 rel

%LinkTypes;
#IMPLIED

 rev

%LinkTypes;
#IMPLIED

 accesskey
%Character;
#IMPLIED

 navindex
%Number;
#IMPLIED

 xml:base
%URI;

#IMPLIED">

<!-- Content Sets / Entities -->

<!-- Unless specified, all elements contain the %common; attribute set -->

<!ENTITY % Heading
"(h | h1 | h2 | h3 | h4 | h5 | h6)">
<!-- h1-h6 may go -->

<!ENTITY % Block
"(address | blockcode | blockquote | div | p | pre | section)">

<!ENTITY % Inline
"(abbr | cite | code | dfn | em | kbd | l | quote | samp | span

| strong | sub | sup | var)">

<!ENTITY % List
"(dl | nl | ol | ul)">

<!ENTITY % Flow
"(%Heading; | %Block; | %Inline; | %List;)">

<!-- %List; is in the RelaxNG grammar, and section 11 (so ignore section 8 intro) -->

<!-- Structure Module -->

<!ELEMENT html
"head, body">

<!ELEMENT head
"title">

<!ELEMENT title
"(#PCDATA | %Inline;)*">

<!ELEMENT body
"(%Heading; | %Block; | %List;)*">

<!-- Block Module -->

<!ELEMENT address
"(#PCDATA | %Inline;)*">

<!ELEMENT blockcode
"(#PCDATA | %Flow;)*">

<!ELEMENT blockquote
"(#PCDATA | %Flow;)*">

<!ELEMENT div

"(#PCDATA | %Flow;)*">

<!ELEMENT h

"(#PCDATA | %Inline;)*">

<!ELEMENT h1

"(#PCDATA | %Inline;)*">
<!-- h1-h6 may go -->

<!ELEMENT h2

"(#PCDATA | %Inline;)*">

<!ELEMENT h3

"(#PCDATA | %Inline;)*">

<!ELEMENT h4

"(#PCDATA | %Inline;)*">

<!ELEMENT h5

"(#PCDATA | %Inline;)*">

<!ELEMENT h6

"(#PCDATA | %Inline;)*">

<!ELEMENT hr

"(EMPTY)">

<!ELEMENT p

"(#PCDATA | %Inline; | %List; | blockcode | blockquote | pre)*">

<!ELEMENT pre

"(#PCDATA | %Inline;)*">

<!ELEMENT section
"(#PCDATA | %Flow;)*">

<!-- Inline Module -->

<!ELEMENT abbr
"(#PCDATA | %Inline;)*">

<!ELEMENT cite
"(#PCDATA | %Inline;)*">

<!ELEMENT code
"(#PCDATA | %Inline;)*">

<!ELEMENT dfn

"(#PCDATA | %Inline;)*">

<!ELEMENT em

"(#PCDATA | %Inline;)*">

<!ELEMENT kbd

"(#PCDATA | %Inline;)*">

<!ELEMENT l

"(#PCDATA | %Inline;)*">

<!ELEMENT quote
"(#PCDATA | %Inline;)*">

<!ELEMENT samp
"(#PCDATA | %Inline;)*">

<!ELEMENT span
"(#PCDATA | %Inline;)*">

<!ELEMENT strong
"(#PCDATA | %Inline;)*">

<!ELEMENT sub

"(#PCDATA | %Inline;)*">

<!ELEMENT sup

"(#PCDATA | %Inline;)*">

<!ELEMENT var

"(#PCDATA | %Inline;)*">

<!-- Hypertext Module -->

<!ELEMENT a

"(#PCDATA | Inline)*">

<!-- List Module -->

<!ELEMENT dl

"(dt | dd)+">

<!ELEMENT dt

"(#PCDATA | %Inline;)*">

<!ELEMENT dd

"(#PCDATA | %Flow;)*">

<!ELEMENT label
"(#PCDATA | %Inline;)*">

<!ELEMENT nl

"(label , li+)">

<!ELEMENT ol

"(li)+">

<!ELEMENT ul

"(li)+">

<!ELEMENT li

"(#PCDATA | %Flow;)*">

Note the following points:

· To save space/time, I haven't actually attached the common attributes to each and every element, but this is required, so the DTD should be read as if that has been done.

· XHTML 2.0 includes XForms and XML Events, but, like Tables, these are not required for Host Language conformance. Although it is likely the TC will wish to use the XForms module, I have left it out since it is not relevant for present purposes.

· Points 4 and 5 in the Host Language Conformance definition allow us to add additional elements. These could be as simple as one for use of a defined term, or as complex as a signature block. No such elements have been included at this stage, since they are not relevant for present purposes.

· Nothing prevents us from adding additional modules, e.g. for schedules/annexures.

Advantages

The advantages of XHTML 2.0 Host Language Conformance would appear to be as follows:

1. [minor advantage] Even if there is no stylesheet, a web browser will be able to display a Host Language document, although it will probably display the raw text in any elements it doesn't recognise.

2. [advantage] Assist with market acceptance of TC work

3. [minor advantage] Willingness to learn XHTML2 amongst developers (but no familiarity, much less amongst contract managers or lawyers).

4. [advantage] XHTML2 includes an XForms module. XForms represents a possible way to tie the structural representation of a contract to the data which needs to be extracted from it for various downstream applications. To the extent that the TC uses XHTML2, XForms is a natural fit, which is good. Note however that the TC does not need to use an XHTML2 Host Language in order to be able to use XForms, should it wish to do so.

5. Content reuse from other XHTML 2.0 documents (and XHTML 1.0 documents, but only if lists are allowed outside the <p> element).

6. [minor advantage] We can assume there will be a class of editors that are designed specifically to make it easy to edit strictly conforming XHMTL 2.0 documents. We can speculate that there may also be a class of editors that are developed specifically to make it easy to edit XHTML 2.0 Host Language documents? It is probable that such editors would require some level of customisation before they are easy to use, presumably only for extensions (refer Host Language Conformance definition #4) and additions (refer Host Language Conformance definition #5). Query whether this would be less customisation than a generic editor (pre-configured by the vendor to work with XHTML2, DocBook etc) would need.

It would be interesting to quantify these advantages (and any other advantages I may have omitted), and identify which of them the TC regards as key.

Disadvantages

The disadvantages are as follows:

1. Many irrelevant and inappropriate elements and attributes make editing daunting and confusing for lawyers and contract managers, and processing unnecesarily complex for a variety of applications

The essence of Host Language conformance is that the DTD includes the Structure, Block, Inline, Hypertext and List modules , and for each of these modules, all of the elements, attributes, types of attributes and minimal content models must be included.

For the purposes of eContracts, the core modules contain many unnecessary and inappropriate elements, and attributes which makes authoring confusing/daunting for lawyers and contract managers.

These unnecessary and inappropriate elements and attributes also make things harder for software developers and integrators who may wish to provide tools or support for our standard.

For example:

· it will take more effort to create an easy to use XML editor, since you have to programmatically guide the user along the correct path (since the DTD invites them to stray), and programmatically hide things which shouldn't be there;

· it will take more effort to create styled output, since many more structures are possible. Some of these structures probably look identical, and its not clear how others should appear;

· conversion from Word to XML may be more difficult, since there are more choices to be made for what you are converting to;

· other custom software which parses eContracts XML and does something with it would also need to handle more cases than would otherwise be necessary.

How is a developer likely to handle this challenge?

Either they use a simplified DTD which does not have these problems, and ensure all the content conforms to this, or they accept the additional complexity. I personally would opt for the former (ie create my own simplified DTD). However, the problem with using a simplified DTD is handling incoming content from a third party who uses the full Host Language DTD, since if this content does anything which isn't permitted by the simplified DTD, then it will need to be converted (and it is unlikely this can be done transparently and automically with 100% satisfactory results).

Further, if the TC retains these unnecessary and inappropriate elements / attributes / content models, the TC also creates extra work for itself, since it will need to prepare guidelines as to how the DTD should be used. For example, “The grammar allows #PCDATA in a <section> element. This is appropriate where ...” or “Although the grammar allows #PCDATA in a <section> element, it is not recommended that this be done” .

In short, it is the proper role of the TC to promulgate a DTD which is general enough to represent content which is appropriate for contracts (or possibly contracts and other business documents), but no looser. Anything looser imposes unnecessary burdens on users and software developers alike, and amounts to a failure on the part of the TC.

Here are seven areas where a Host Language DTD introduces unnecessary problems.
1.1
Specification allows #PCDATA in <section> element

It is convenient to conceptualise <section> as a container element for any heading and paragraphs of text which make up the clause. So ordinarily, a clause looks like:

<section>

<h>

Optional heading

</h>

<p>

Clause content ...

</p>

...

</section>

However, XHTML 2.0 allows #PCDATA to be contained in a <section> element which means now that a clause without a heading could be represented as:

<section>

Clause content ...

</section>

This means that there are two ways to represent the same simple clause, which is bad.

1.2
Strange content model for element

A list item can contain #PCDATA, or <p>, so there are two ways to represent a simple list item, which is bad.

Further, a list item can contain <section>, which is also bad.

1.3 <section> element includes the %List; content set

By way of introduction, XHTML 2 distinguishes lists and sections with separate element names. We would be accepting this approach if we used an XHTML2 Host Language.

The TC's understanding of a list is that it is part of the "narrative text". As such, some members of the TC are attracted to "grammatical" paragraph models that allow it to be represented within the <p> element.

XHTML 2.0 allows this. That's not the problem of concern here. The problem here is that, based on the RelaxNG grammar and as stated explicitly in s11 of the draft the content set List is part of the Flow content set of the Block Text Module, which means that a list can occur outside <p> (ie. in a <section>) which is bad (given that <section> is what you ought to use there).

1.4
Irrelevent block content

The following block-level content is irrelevent for contract documents:

- <h1> to <h6>
- <blockcode>
- <pre>
- <address>

1.5
Irrelevent elements in the %Inline; content set

The following block-level content is irrelevent for contract documents:

· <abbr>, something which is an abbreviation

· <code>, a fragment of computer code

· <kbd>, text to be entered by a user, for example "To exit, type <kbd>QUIT</kbd>"

· <l>, semantic line of text

· <samp>, sample output from programs

· <sub>, subscript?

· <sup>, superscript?

· <var>, an instance of a variable or program argument

1.6
Inapplicable attributes

The common attributes (numbering some 29 in all) are attached to each and every element, even though they are largely unecessary in contracts. This sea of attributes will make it very difficult for users to find the few attributes which are actually useful.

So some or all of the following attributes should be removed entirely.

<!ENTITY % events
"defaultAction
(cancel

| perform)
perform

 event

#CDATA

#IMPLIED

 handler
#IDREF

#IMPLIED

 observer
#IDREF

#IMPLIED

 phase

(capture

| default)
default

 propagate
(stop

| continue)
continue

 target
#IDREF

[self]">

<!ENTITY % map

"usemap
%URI;

#IMPLIED

 ismap

(ismap)
#IMPLIED

 shape

(default

| rect

| circle

| poly)
default

 coords
%Coordinates;
#IMPLIED">

<!ENTITY % style
"style

#CDATA

#IMPLIED">

Some or all of the following attributes should be removed at least from inline elements (or possibly anything lower down than a section):

<!-- ENTITY % core -->

 id

#ID

#IMPLIED

 title

%Text;
#IMPLIED">

Do we need the hypertext attributes, when hypertext will really only be used for internal cross references and external citations?

<!ENTITY % hypertext
"href

%URI;

#IMPLIED

 cite

%URI;

#IMPLIED

 target
%HrefTarget;
#IMPLIED

 rel

%LinkTypes;
#IMPLIED

 rev

%LinkTypes;
#IMPLIED

 accesskey
%Character;
#IMPLIED

 navindex
%Number;
#IMPLIED

 xml:base
%URI;

#IMPLIED">

Query the TC's stance on languages other than English:

<!ENTITY % i18n
"xml:lang
%LanguageCode;
#IMPLIED">

<!ENTITY % bi-direct
"dir

(ltr | rtl

| lro | rlo)
ltr">

Query the TC's stance on change tracking:

<!ENTITY % edit
"edit

(inserted

| deleted

| changed

| moved)
#IMPLIED

 datetime
%Datetime;
#IMPLIED">

1.7
Multiplicity of list types

Finally, there are four types of list – dl, nl, ol, ul – when probably only one (ol) would suffice.

2. Structure module might need extension

Contracts include front matter (eg cover sheet, table of contents, parties names) before the recitals and operative clauses, and back matter (eg signature pages, schedules/annexures).

It is possible that the best way to accommodate this material is to extend the definition of <head> or <body>.

This in itself is not a problem, except that it may confuse off-the-shelf XHTML 2 editors.

Aside: It is worth noting here that the only difference between Host Language conformance and "Integration Set" conformance, is that in the latter, the Structure module is not required. Since I can't see any particular benefits one way or the other in this (except that it only looks like HTML if we keep the Structure module!), I don't discuss Integration Set conformance any further in this document.

Other observations

Some observations which i capture, but don't categorise as adavantages or disadvantages at this stage:

· Embedding attribute collection (6.6)

This is a mechanism for content reuse by reference. The TC needs to evaluate whether it is sufficient for its needs.

· Metainformation

It is not yet clear what clause (is <section>) level metainformation would look like.

Other XHTML 2.0 based approaches

The big problem which we can and should address is the large number of elements and attributes which are irrelevant and confusing.

If we removed these:
· authoring would start to look feasible for contract managers and lawyers;

· XML documents would be easier for software to process, since the data is more predictable. “Easier to process” includes customising an XML editor, styling the XML for output, and otherwise manipulating it programmatically.

I call this a "Pruned Host Language", since its a Host Language, except that some elements are missing.

The DTD (without any contract specific additions) would look something like [several hours work required here to clean it up and make it consistent, but it gives you a basic feel] :

<!-- Attributes – lots of unnecesary ones removed. -->

<!ENTITY % core
"class

#NMTOKENS
#IMPLIED

 id

#ID

#IMPLIED

>

<!ENTITY % embedding
"src

%URI;

#IMPLIED

 type

%ContentType;
#IMPLIED">

<!ENTITY % style
"style

#CDATA

#IMPLIED">

<!ENTITY % hypertext
"href

%URI;

#IMPLIED

 cite

%URI;

#IMPLIED

 target
%HrefTarget;
#IMPLIED

 rel

%LinkTypes;
#IMPLIED

 rev

%LinkTypes;
#IMPLIED

 accesskey
%Character;
#IMPLIED

 navindex
%Number;
#IMPLIED

 xml:base
%URI;

#IMPLIED">

<!-- Content Sets / Entities -->

<!ENTITY % Heading
"(h)"> <!-- h2-h6 removed -->

<!ENTITY % Block
"(blockquote | div | p | section)">

<!-- address, blockcode, pre removed -->

<!ENTITY % Inline
"(cite | dfn | em | quote | span | strong)">

<!-- abbr, code, kbd, l, samp, sub, sup, var removed -->

<!ENTITY % List
"(ol)">

<!-- dl, nl, ul removed -->

<!ENTITY % Flow
"(%Heading; | %Block; | %Inline;)">

<!-- Structure Module -->

<!ELEMENT html
"head, body">

<!ELEMENT head
"title">

<!ELEMENT title
"(#PCDATA | %Inline;)*">

<!ELEMENT body
"(%Heading; | %Block;)*">

<!-- Block Module -->

<!ELEMENT blockquote
"(#PCDATA | %Flow;)*">

<!ELEMENT div

"(#PCDATA | %Flow;)*">

<!ELEMENT h

"(#PCDATA | %Inline;)*">

<!ELEMENT p

"(#PCDATA | %Inline; | %List;)*">

<!ELEMENT section
"(%Flow;)*">

<!-- #PCDATA removed -->

<!-- Inline Module -->

<!ELEMENT cite
"(#PCDATA | %Inline;)*">

<!ELEMENT dfn

"(#PCDATA | %Inline;)*">

<!ELEMENT em

"(#PCDATA | %Inline;)*">

<!ELEMENT quote
"(#PCDATA | %Inline;)*">

<!ELEMENT span
"(#PCDATA | %Inline;)*">

<!ELEMENT strong
"(#PCDATA | %Inline;)*">

<!-- Hypertext module removed -->

<!-- List Module -->

<!ELEMENT ol

"(li)+">

<!ELEMENT li

"(h | p)*">

<!-- content model simplified -->

Discussion

· Attributes still need to be added (sparingly!) in the above DTD

· Where <blockquote> is allowed and/or its content model is yet to be considered

· Documents using this DTD/schema should be able to be opened in most XML editors which can handle XHTML2 Host Languages. If the editor really does read the grammar provided, the document should be able to be edited and saved without the author being able to do any of the things a Host Language would allow but our Pruned Host Language prohibits.

· Documents using this DTD/schema will be able to be viewed in web browsers etc as if they were Host Language documents.

· There will be some XHTML2 Host Language content which you can't cut/paste into the contract, since that content may contain structures we disallow (eg #PCDATA in <section>)

·
Advantages

The advantages of XHTML 2.0 “Pruned” Host Language Conformance would appear to be as follows:

1. “[minor advantage] Even if there is no stylesheet, a web browser will be able to display a Host Language document..”

ADVANTAGE RETAINED

2. “[advantage] Assist with market acceptance of TC work”

ADVANTAGE RETAINED

3. “[minor advantage] Willingness to learn XHTML2 amongst developers (but no familiarity, much less amongst contract managers or lawyers).”

ADVANTAGE RETAINED

4. “[advantage] XHTML2 includes an XForms module. XForms represents a possible way to tie the structural representation of a contract to the data which needs to be extracted from it for various downstream applications...”

ADVANTAGE RETAINED

5. “Content reuse from other XHTML 2.0 documents (and XHTML 1.0 documents, but only if lists are allowed outside the <p> element).”

AFFECTED TO SOME DEGREE – if the content to be re-used contains any of the material I propose we prune, then the content will need to be massaged to fit.

6. [minor advantage] .. We can speculate that there may also be a class of editors that are developed specifically to make it easy to edit XHTML 2.0 Host Language documents? ...

ADVANTAGE RETAINED, provided the editor in question performs grammar access on a schema which the user is able to modify (ie prune). If the schema can't be pruned, then the editor would still allow the elements/attributes we have pruned to be inserted.

In summary, the advantages are substantially retained.

Disadvantages

The seven disadvantages with Host Language Conformance identified in 1.1-1.7 can each be overcome by pruning appropriately.
List/sub-clause Continuum, and Paragraphs revisited

As noted briefly at the end of the "Representing Clauses in XHTML2" section above, XHTML2:

1. It uses different elements for lists and subclauses, forcing the user to choose

2. It uses a grammatical paragraph model, not a simple one.

I regard these characteristics as deficiencies, since they make things harder for end users who are used to a wordprocessing paradigm, and converting existing word processing documents much more challenging.

If we prune XHTML2, it doesn't have to be this way!

We've already disallowed lists from appearing outside the <p> element, and restricted so that it contains h | p only.

If we now regard <p> as being a simple paragraph, the list element () is used inside a paragraph for inline lists only.

Block lists and sub-clauses are represented using the section element.

If you didn't think it necessary to mark up inline lists (and weren't worried about further reducing the ability to paste arbitrary XHTML2 content into a contract), the could be dispensed with entirely.

Either way, this interpretation of the DTD is attractive to those concerned by the two problems identified at the beginning of this section.

Just to be absolutely clear however, embracing the concept of "pruning" XHTML2 does not commit you to this interpretation. It just so happens it falls out naturally, and we could impose these semantics if we wanted to.

Conclusion

Assuming we are to use an XHTML2-based approach, we need to define a "Pruned" Host Language (or Integration Set). 'Pruning" is necessary in order to simplify the content models to the point where they are usable by lawyers and contract managers. If we wished to do so, it would allow us to go one step further, and specify semantics which make things even simpler for users and conversion programs.

13 of 13

