Three key points

What is the "extraneous markup" you speak of?
<extras>, <extra>, <background>, and <operative> are all extraneous given the adequacy of the XHTML 2.0 element set. <div> is good enough for the tasks held for the <extras> and <extra> elements. <section> by itself is good enough for the task held for the <operative> element. The <background> element has no technical purpose that I yet detect. The use of @property or @class attributes is good enough for identifying the functional purpose of a <p>, <h>, <table>, <section>, , or <div> element as it occurs in the contract document.

If the XHTML dialect provides adequate methods for achieving our objectives, then those methods should be adopted. Should they fall short, ONLY THEN should new elements or attributes be drafted.

The things you point to is semantic information which could be marked up, but which is out of scope of structural. For one way the party-related information could be marked up, please see appendix 3.

Then please remove Appendix 3 since it is out of scope for the SC. Pointedly, I say please remove all references to Dates and Parties made throughout the document. To include such information in your document – even in its content models – and to now call discussion about semantics “out-of-scope” – is causing us an unwelcome communication problem.

I'll respond to this comment if you propose an alternative model. You know my concerns with how your <area> elements can be combined in strange ways – that's the sort of thing i'm getting at. But i expect it applies equally to your proposed use of <div>.

Sure, to be provided, once I hear your thoughts about (g) and (h), and once I hear the TC’s thoughts about the key use case(s) that we’re after…. You know I think the SC has worked from a perspective tilted towards optimizing the ‘user experience’ during raw text entry of the contract, catering to a rather miniscule sub-population of users of our technical specifications. That was well and good for development of the <section> architecture, but I do believe it’s causing us problems as we move higher up the ladder towards integrated systems, knowledge-based systems, and sophisticated search engines.

Sure, I’d be delighted to contribute material addressing the needs of parties in a true document exchange – placing emphasis on communicating with technical staff responsible for fielding software applications that produce and consume standard LegalXML markup.

D. Highest Level Content Additions

1. Root element

2. top level contract structures

Peter Meyer and Jason Harrop propose "named containers", as follows:

instrument

(h*, extra?,(p* | (datearea, parties)), background?,

 operative, (signatures | extras)*)

Notes:
1. h*, so that it is possible to have a heading and a sub-heading. Which is which, and we can’t ensure that author will not, for instance split separate lines of a title into <h>s. My proposal (look in Dublin Core elements) completely avoids this problem.

I would be happy with a single h, but the sc decided on h*. If there are two headings, then deciding which one is actually _the_ title for some particular purpose is a semantic (or metadata) issue, not a structural one.

I do support multiple <h>, and it may be a metadata issue which is the title. I am worrying here about cross-references, which often include the applicable heading(s) for each part of its ‘path’.
2. The single <extra> at the beginning of the instrument content model is for the reference schedule sometimes found at the front of a contract. This element apparently may not contain “operative” contract language.. Does that mean that it’s not “signed”, ie accepted, by the offeree, that it has no force in the contract? Please provide a succint, functional definition for this element. I do provide a crisp definition for my use of a <div> for non-clause material:

Clearly it is part of the contract. It contains details which are provided for convenience at the front of the document, rather than the back. See http://www.usyd.edu.au/su/personnel/rem/policy/annexure2_goods_services_contract.doc

With much due respect, Jason, your definition is professionally insufficient – it should provide specific guidance about its consequent content model, Sorry, but the element name is meaningless in itself, it certainly has no precendent in law and, most important, extends the XHTML 2.0 dialect with little concrete justification.

Ultimately of course, the TC will decide whether your explanations are worthy enough to “improve” the XHTML 2.0 dialect with elements like <extra>.
”A <div> encapsulates all flowed material within the contract that is not a clause. A clause is material that is primarily numbered, but may optionally be titled. Non-clause material is primarily titled, but may be optionally numbered.”

3. The alternative [(p* | (datearea, parties))] is necessary to accommodate differences between the USA and UK approaches to date/parties. US users may simplify the structure to [instrument (h*, extra?, p*, background?, operative, (signatures | extras)*)] and put the content in a <p>, for example:

<p>This License Agreement is made this 12th day of January 2001, by and between the National Association of Realtors, an Illinois not-for-profit

corporation which has its principal place of business at 430 North Michigan Avenue, Chicago, Illinois 60611 ("NAR") and Larry Liquour ("Licensee").</p> This example doesn’t show the proposed “datearea” or “parties” elements both of which seem warranted (ie “12th…” and “NAR” and “L Liquor”)

This example is a US example. The US example only uses p, as stated above. The things you point to is semantic information which could be marked up, but which is out of scope of structural. For one way the party-related information could be marked up, please see appendix 3.

Then please remove Appendix 3 since it is out of scope for the SC. Please remove all references to Dates and Parties made throughout the document. To include such information in your document – even in its CONTENT MODELS – and then call discussion about it “out-of-scope” –.is causing us unwelcomed communication problems.
UK/ANZ users may simplify it to:
[instrument (h*, extra?, datearea, parties, background?, operative, (signatures | extras)*)>] with:

 datearea (h?, p*)

 parties (h?, (party | p)*)

 party (l | #PCDATA)*

See the sample in appendix 3. Note that <p> is included in <parties> for the case where "BETWEEN" and "AND" appear on lines by themselves. What’s the issue with an author using the <l> element in this situation? In my proposal, this “issue” of connector words is on a separate line or not is totally irrelevant…. Parties are found in the contract’s Dublin Core metadata.

You'll recall that when we each marked up the parties using our section element, you, Peter and I each did it a different way. You used <l>; I used ; and Peter (iirc) used multiple <p>.

I guess the problem with <l> is that it is like a line break (shift-enter in Word), rather than a new paragraph (ie with space after). Here, the user wants space after.

How the party information is marked up is out of scope of structural –appendix 3 was included only to give readers a more complete sense of how things might work. Then please remove all references to dates and party information.
Sorry if it looks like I wanted that appendix endorsed. That wasn't intended.

Seen in this light, your DC proposal is another way, though as you are aware one which other members of the sc didn't find attractive. Maybe, maybe NOT.
Discussion of these is properly part of a TC discussion of semantics and metadata. It is not necessary to discuss it as part of the structural markup. Then please remove all material engendering such discussion from the document.
As shown in appendix 2, the presentation options vary greatly in the way that the connecting words “BETWEEN” and “AND” are handled. A (complete) structural markup model (might require) one or more specific elements for these words so that a rendering application could create all the possible layout arrangements. Alternatively, tables could be used. Under my proposal, authors can even use tables to layout their non-clause content – to achieve the “look” they want. There is no need to worry about ”all possible layout arrangements”.

This model is hung up on the desire to parse the names of parties out of the contract language,

No, its not, though that it would be useful to be able to do that. I respectfully disagree – the contract language should be a “black box” insofar as semantics.
and therefore needs to worry about all the myriad ways that the contract language can be drafted, and formatted.

What it does regard as important is to make it easy for the author to draft their contract in an XML authoring tool. I am still waiting for your response to my section (g), which goes to the heart of the problems with your viewpoints.
That's why we've taken care to be able to represent the information as it is found in both the US and UK traditions.
Under my proposal, one simply looks in the contract’s associated metadata description.

Again, this is out of scope. Suffice to say that that description is not easy to create with off the shelf XML editing tools. I strongly disagree.
Jason Harrop and Peter Meyer consider that it is not desirable to try to define a generic element for these components because of their limited function. Rather, they propose that these connecting words can be generated in layouts by the rendering application, if so desired by the user. Under such an approach, the parties element might only contain a series of party elements. The words “BETWEEN” and “AND” or similar words would not be present in the markup (bending at least the rule the no contract language may be generated).
Yes, but if an organisation wishes to use a stylesheet to transform their documents, then who are we to stop them? We're not saying it has to be done this way. In any event, isn't secs 8.1.1-8.1.3 of XML-Signature Syntax and Processing an adequate description of the appropriate principles here?
Yes that’s an important link everyone should see. I will write later about my views on the its appplicability to us. Thanks for the link.
To illustrate how the complete model might look, possible inline markup for the party names and addresses is sketched out in that appendix. Party related markup is different from most other semantic markup, in that it is immediately and obviously useful in an authoring environment. There’s no debate about the need to mark up party names, the question is where… please justify why party-related information should be marked up within the contract’s language,

For ease-of-authoring, it is helpful if, having entered a party's name once, you don't have to type it again. This is important, since it prevents common typographical errors eg "Microsoft" and "Microstf". You’re discussing application design, and in a manner that doesn’t apply at all to DOCUMENT EXCHANGE, which is the TC’s raison d’etre IMO. You know, where I email you a file, and you want to use it for some purpose… Few need a standard with such selective markup – it’s confusing and inconsistent. It’s a nightmare for those wanting to field systems that include a complete metadata description of the contract – partial and inadequate markup in the contract itself, duplicated in markup located in an associated metadata file.
This is different to lots of other semantic information which is only useful for downstream applications once the contract is drafted and negotiated..
Parties are critical to a contract, and it is easy to justify marking them up in the document. It is not easy to justify putting the markup in some other document.

whereas other ‘semantic’ information is not. Words like “obvious” are not useful in a technical specification.

This is not a technical specification, yet. It is a discussion document.
4. <background> is for the recitals. Its content model is: [background (nr?, h?, section*)]. The recitals are made up of sections. There are typically no opening paragraphs between the recitals heading and the recitals. The implication is that this material is not “operative” for the contract, when it most surely is. Insofar as the element name, I have no idea what a “contract background” is – again, please give a crisp definition. Under my proposal, there is no need for such ambiguity – the <div> element is well-defined.

A large number (ie most) formal contract documents have background/recital sections which precede the operative provisions. In many USA documents, a recital starts with "WHEREAS".

Most lawyers will be immediately comfortable with this terminology.

The <background> element is particularly odious. It allows clauses in its content model. It’s not merely the “Whereas” paragraph…. I wish you would say why its content is not considered “operative” material – where’s the guideline for what goes where? And why does such preambulatory material need specific mark-up in the first place ? Where’s the justification for the corrective action of extending the XHTML 2.0 set of elements?
5. The content model for the operative clauses allows for one or more opening paragraphs before the clauses proper: [operative (nr?,h?,p*,section*)]. There is no justification provided for this element, nor any definition. I don’t see the need to specifically identify “operative clauses” – under my proposal, they are simply the <section> elements within the <instrument> element. Poor to have extraneous elements.

Again, the meaning of this container is clear to lawyers. I agree that it may be necessary to explain it further to people not familiar with contracts. I’d appreciate hearing that.
There are potentially lots of <section> elements in the <instrument> element – some of which are recitals (ie in <background>, and some of which are operative clauses. Allowing mutliple <section> elements in the <instrument> breaks encapsulation, likely problematic for XPATH expressions, e.g., cross references.
A separate container is useful. The beginning of D2 explained why:

It was noted that this high level structure is “real” to lawyers and others who work with contracts, and that XML representations of them serve a variety of purposes, including:

navigation of the document

control of clause numbers

generation of cross references

document styling, including page breaks

generation of content of running headers/footers

context for contents generation

Yes I saw those phrases – some hint of why each was included is necessary.
6. <extras> is for schedules/annexures etc.

The content model is simply: [extras (h?, extra*)]. The extras container carries an attribute which says whether its <extra> elements are (schedules | attachments | annexures | appendices | exhibits). "schedules" is proposed as the default.

Presumably the justification for using the antiquated device of a container like this is that it makes “numbering appendices much easier”…
It is useful to group like things together eg all schedules in one container; all annexures in another. Sorry, but such grouping elements fell from favor with intro of XPATH’s first(), count() and position() functions… so it is extraneous.
stylesheets can be easily written without reliance on a container element. And why is <extra> not a recursive element?

Because you don't need to be able to put a schedule inside a schedule. You have a specific idea of what a “schedule” is, Jason, that would be good to document in the report. And, who is to say that an author doesn’t want to put a schedule inside a schedule (see your comment to me, below) – it seems to me that an author could look at her schedule as consisting of parts, right?
Under my proposal (use <div>, which can be recursive) there is no need for any additional “container” element. Also, I have no clue what the functional differences are between the 5 types of “extras” so far identified.

Well a document will often have more than one of schedules, annexures etc. The author chooses. The difference needs to be identified. It must be possible to cross reference to Item 4 of Schedule 2, or to Appendix 3. Right, but what’s the functional objective achieved by having all these values? What distinguishes one from another?
The content model for extra is: [extra (nr?, h?, p*, (section* | instrument*))]. By means of <instrument>, a document can be attached in a schedule.

Using <div> as I propose, a legal instrument can quite naturally be embedded as an attachment. I note that ALL the content of <extra> is optional – troubling me because (a) empty elements are being said to be OK in the document What is wrong with an empty schedule, if that's the way the author wants it? Agreed.
 (b) there is no definition of “extra” that is being enforced by the content model….. under my proposal, the <h> element is mandatory for all <div> elements… as my definition says. I don't understand. The meaning is clear to the user, and the content model is defined and enforced, namely: extra (nr?, h?, p*, (section* | instrument*)) There is no functional definition provided. There is no justification for why this element is necessary to be added to those provided by XHTML 2.0 element set.
7. The model allows the signatures to come before the schedules and annexures, after them, or between them. This is inadequate – signatures can appear any where in the document, and can appear multiple times.
Initials at the bottom of each page is quite different to the formal signature blocks.Putting initials at the bottom of each page is part of the headers/ footers question, which the TC needs to discuss. My point is that the it’s not the content of signature areas, it’s their multiplicity and placement that is important to a standardized stylesheet that lays-out the contract for display or printing. I believe we should have one element -- <area> -- that is used in all cases, whether placed in the header or footer or adjacent to clauses, etc…
They can appear on the bottom of each page, and can appear adjacent to specific clauses.

I suspect "Adjacent to specific clauses" is where an amendment is/has been made. Again, a different case. Have you got an example document? As a TC we'll need to think about amending documents. Yes I have seen these in orignal contracts not amendments – my own mortgage agreement for instance, done to handle the “emphasis” requirement Dan’s spoken of several times.
There are many examples of multiple signature areas and signature “crosses”.

I believe the signature placeholder is in the correct positions for its intended purpose. Counter examples welcome.
Peter Meyer and Jason Harrop favour this "named container" approach since it makes it easy for authors to create contracts in XML using standard XML authoring tools.

How does it make it easier? Particularly when it is more likely ‘easiest’ to create an XHTML 2.0 document using the <div> element with standard XHTML authoring tools, i.e., without elements like “extras” and “extra” getting in the way.

The named containers we have suggested are easy for contract authors to identify with, and make it easy for those authors to choose the correct elements as they go along.

People may author contracts using XML editors – off the shelf or customised. Most contract authors are unlikely to use XHTML authoring tools, since these are designed for a different purpose (namely, authoring web pages). Deferred until your response to (g).
The alternative the sub-committee considered is a generic container:

[instrument (h*, struct*)
struct (nr?, h?, p*, (section* | struct* | instrument*))].

The alternative (as I am recalling it) before the TC is much closer to:

[instrument
(h*, div*, p*, section, div*, area*)

 div

(nr?, h+, p*, div*|section|instrument, area*)

]

For what it is worth, the alternative i have quoted above is what was in our 12 April document, presented at New Orleans, and in the presentation i believe you subsequently gave the TC.
We considered: instrument (h*, p*, section*, struct*), but decided it was better not to allow p* or section* directly within <instrument>. Unfortunately, this important conclusion is contradicted by your proposed <instrument> content model…

Because we have p* there?

Yes.
This conclusion applies in the context of the abstract struct model, not the named containers model. The named containers model has p* there specifically to handle the USA date/parties paragraphs, and doesn't nest it in a further container (which would be unnecessary). Understood, but it’s nevertheless contradictory.— you say “directly within <instrument>”, you don’t say “directly within <struct>”. Just a typo I’m sure.
The generic struct container would have to be recursive to represent both a schedules element and the schedule elements contained within it. The generic container would need to carry an attribute identifying whether it contains for example, operative clauses or a schedule or the recitals.

The critical problem with this approach is that it is not easy to stop someone doing this:

<struct class="schedules">

<struct class="operativeclauses"/>

</struct>

(ie putting the main operative clauses inside the schedules container, which should only

contain schedule elements) or, for example, from putting schedules or recitals inside their operative clauses.

Noone is suggesting to put “operative clauses” inside of a “schedules” via an attribute value or an element. I have repeatedly said there’s no need for an <operative> element – and certainly no need for an “operativeclauses’ attribute either. Placing a <section> element within the <instrument> is quite adequate to serve the function of identifying what you claim are ‘operative’ clauses for the instrument.

How does one tell the difference between a recital and an operative clause? One looks in the metadata description of the contract for that information, presuming we decide to include that but more importantly….. WHAT”S ACHIEVED BY KNOWING THIS? The fact that it may be styled differently is unquestionably a non-answer.
What attribute and attribute values are you proposing for <div>, and how do you prevent non-sensical nestings? To be provided.
A content model which permits this:

· makes life difficult for our TC, since we need to document the various possible forms of markup and how they are to be treated by processing tools. Of course the spec needs to document all attribute values,,,, I guess your concern is based on worrying about the layout considerations earlier alluded to, which I find easily avoidable.
I'll respond to this comment if you propose an alternative model. You know my concerns with how your <area> elements can be combined in strange ways – that's the sort of thing i'm getting at. But i expect it applies equally to your proposed use of <div>. To be provided, once I hear your thoughts about (g) and (h), and once I hear the TC’s thoughts about the key use case(s) that we’re after…. You know I think the SC has worked from a perspective heavily tilted towards the ‘user experience’ during raw text entry of the contract, somewhat ignoring user needs evident following exchange of the digital contract from party A to B. Should the TC agree, I’d be delighted to contribute what I can along those lines.
· makes life difficult for tool providers, since ease-of-use demands that they program around the unintended possibilities. Same issue – your statement is based on the presumption that we care to extract semantic information from contract language – I think we shouldn’t even try, for reasons outlined elsewhere.
See above. This has nothing to do with extracting semantic information – it is about authoring contracts which follow a normal predictable format.
· makes it hard for authors to use generic tools, since their desired alternatives are mixed up with non-sensical ones. Same issue – you want to extract semantic info from the contract language – I believe it’s folly to even try to do so. But the impact on authors is that they will be encumbered with providing (to them) extraneous markup that is totally meaningless to their tasks at hand. My proposal avoids that.
See above. What is the "extraneous markup" you speak of?
<extras>, <extra>, <background>, and <operative> are all extraneous given the adequacy of the XHTML 2.0 element set. <div> is good enough for the tasks held in mind for the <extras> and <extra> elements. <section> by itself is good enough for the task held in mind for the <operative> element. The <background> element has no technical purpose that I yet detect. The use of @property or @class is good enough for identifying functional purpose of a <p>, <section>, , or <div>.

The point is this: if the XHTML dialect provides totally adequate, time-tested methods for achieving your objectives, then those methods should be adopted. Should they fall short, ONLY THEN should new elements or attributes be drafted.
· makes life difficult for stylesheet developers, since they need to handle the unintended combinations authors will create when they use a generic tool. Same issues… Just look at the content models you’ve drafted as a direct result…. With its multiple variants – that’s not going to cause heartburn for XSL writers?
If by "multiple variants" you mean the USA and UK variants for date/parties introduction, well, a USA stylesheet author need only handle the USA case.

That's what the data looks like, so i don't apologise for it.
For these reasons, the structural model should where practical restrict valid content to

exclude non-sensical constructs. This gets into validation issues, a topic I posted a note about and will spare everyone repeating the arguments here.

If by this you mean using a stylesheet or Schematron for validation, instead of an XML parser, then again, you are imposing barriers to use of our standard that are unwarranted.

The model Peter and I have proposed can be validated in the usual way with an XML parser. What is the business case for an alternative approach?
Glad you brought up “business case”….. my central claim is that there is NO BUSINESS CASE for the 4 elements that you’re proposing because XHTML 2.0 provides an element that is quite adequate for achieving many of your objectives…. the <div> element. All this relates to (g) and (h), so I’d like to await your response to those comments.

<snip/>

In addition the named containers can readily be transformed to vanilla standards-compliant XHTML should one wish to do so for any reason. Sure, with XSLT almost anything can be transforned into anything else – this is an uncommunicative statement.

This statement communicates several things:

1. it is easy to do

2. it begs the question as to why you'd want vanilla XHTML, and i'd be interested to see this articulated. Precisely my point – the document fails to provide this, yet it’s touted as a benefit.
I suppose what gives me greatest pause with this proposal, is that NO function for the <div> element is defined at all.

See elsewhere in the Preliminary Report. Yes, the report says “we have to discuss this”, meaning the report is incomplete on the central issue that I’ve repeatedly raised: WHAT’S WRONG WITH <DIV> for <extras> and <extra> ?
It’s difficult to support a specification that seeks to eliminate one of the most useful and used elements in the HTML dialect.

We don't seek to eliminate it, but nor do we use it for any of the specific high-level contractual structures such as background/recitals, operative clauses, schedules etc.
It has a specific default meaning – a block-level element that contains flowed content – which I am proposing have the additional default styling of an implied “page-break”, and to use either @class or @property for typing it further.

I am also unimpressed by markup for partynames which contain no universal identifier for the parties named. That, I consider, is the proposal’s most fatal flaw – it pretends that these text strings are useful in their own right, declaring them of “obvious” signifcance to document exchange. But to what end? I don’t see how this aspect of their schema will enable anything.

If the most fatal flaw is appendix 3, which was included for illustrative purposes only and is recognised as out of scope, then i'm relieved.
I say they are of significance to the authoring process. But they are probably also useful for downstream use.
Lastly, I don’t detect much sense of a “technical architecture” driving the design of the proposed schema – meaning there is precious little foundation there for the TC to build upon over time.

You should be looking for a technical architecture in the following:

relationship of structural markup to styling mechanisms

relationship of structural layer to semantic and metainformation layers

easy mapping to plain vanilla XHTML

The high-level structure itself is driven by what contracts look like. As it should be.

Do you have any problems with the <section> architecture?
