1009

1010
1011
1012

1013

1014
1015
1016
1017

1018

1019
1020
1021

1022

7 Contracts

OBIX Contracts are used to define inheritance in OBIX Objects. A Contract is a template, defined as an
OBIX Object, that is referenced by other Objects. These templates are referenced using the is attribute.
Contracts solve several important problems in OBIX:

Semantics Contracts are used to define “types” within OBIX. This lets us collectively agree on
common Object definitions to provide consistent semantics across vendor
implementations. For example the A1arm Contract ensures that Client software can
extract normalized alarm information from any vendor’s system using the exact

same Object structure.

Defaults Contracts also provide a convenient mechanism to specify default values. Note that
when serializing Object trees to XML (especially over a network), defaults are

typically not allowed, in order to keep Client processing simple.

OBIX will be used to interact with existing and future control systems based on
statically-typed languages such as Java or C#. Contracts provide a standard
mechanism to export type information in a format that all OBIX Clients can
consume.

Type Export

Table 7-1. Problems addressed by Contracts.

The benefit of the Contract design is its flexibility and simplicity. Conceptually Contracts provide an
elegant model for solving many different problems with one abstraction. One can define new abstractions
using the OBIX syntax itself. Contracts also give us a machine readable format that Clients already know
how to retrieve and parse —the exact same syntax is used to represent both a class and an instance.

7.1 Contract Terminology

Common terms that are useful for discussing Contracts are defined in the following Table. Contracts are
the templates or prototypes used as the foundation of the OBIX type system. They may contain both
syntactical and semantic behaviors.

Term Definition

Contract Definition | A reusable Object definition expressed as a standard OBIX Object.

Contract, A list of one or more URIs to [Contract Objects. The list of URIs is separated by

the space character. It is used as the value of the is, of, in and out
attributes.

Contract Element | A single URI in a Contract.

Implements When an Objectjncludes a Contract Element in a2 Contract, the Object is said

to implement the Contract. This means that the Object is inheriting both the
structure and semantics of the specified Contract.

An Object which implements a Contract or Contract Element is said to be an
implementation of that Contract.

Implementation

Table 7-2. Contract terminology.

obix-v1.1-wd41
Standards Track Draft

Working Draft 41
Copyright © OASIS Open 2015. All Rights Reserved.

22 April 2015
Page 35 of 76

Deleted: List

William Cox 4/29/2015 10:38 PM
William Cox 4/29/20 0:20 PM

Comment [4]: These appear to be the only
use of type “contract” — see diagram update.

N William Cox 4/22/2015 11:45 PM

Comment [5]: Used only in this section and
7.6.1

William Cox 4/29/201

0:38 PM

} William Cox 4/29/2015 10:38 PM

Deleted: specifies

i William Cox 4/29/2015 10:38 PM

William Cox 4/29/2015 10:38 PM
Deleted: List

1028 7.2 Contract List
1029 The syntax of a Contract s a list of URI references to other OBIX Objectsl. The Contract Elements within

1030 the Contract MUST be separated by the space character (Unicode 0x20). Just like the href attribute,a William Cox 4/29/2015 10:38 PM

1031 | Contract Element URI MAY be an absolute URI, Server relative, or even a fragment, The URIs withina
1032 | Contractynay be individually scoped with an XML namespace prefix (see “Namespace Prefixes in RN\ \/illiam Cox 4/29/2015 10:38 PM

1033 Contract Lists” in the [OBIX Encodings] document). W\ m
1034 LA Contract is not an obix:1ist type described in Section 4.3.2. Itis a string with special structure and iIIiam Cox 4/29/2015 10:38 PM
1035 semantics regarding the space-separated URIs,| " | Deleted: list

1036 The Contract is used as the value of the is, of, in and out attributes. An example of a point that I William Cox 4/29/2015 10:38 PM

1037 implements multiple Contracts and advertises this through its Contract js: Deleted: can

1038 <real val="70.0" name="setpoint" is="obix:Point obix:WritablePoint acme:Setpoint"/> William Cox 4/29/2015 10:38 PM
1039 From this example, we can see that this 'setpoint’ Object implements the Point and WritablePoint Deleted: reference

1040 Contracts that are described in this specification (Section 13). It also implements a separate Contract William Cox 4/29/2015 10:16 PM

1041 defined with the acme namespace called Setpoint. A consumer of this Object can rely on the fact that it
1042 | has all of the syntactical and semantic behaviors of each of these Contracts, and pne can interact with correct.

1043 any of these behaviors. William Cox 4/29/2015 10:38 PM

1044 Anexample of an obix:1ist that uses Contract List in its of attribute to describe the type of items Deleted: List

1045 contained in the obix:1ist is: William Cox 4/29/2015 10:38 PM

1046 <list name="Logged Data" of="obix:Point obix:History"> Deleted: List

1047 <real name="spaceTemp"/> William Cox 4/22/2015 11:41 PM

1048 <str val="Whiskers on Kittens"/> " "

1049 <str val="Bright Copper Kettles"/> C_on)ment [7:!" Why Is,,ﬂ.-'e type not Contract
1050 <str val="Warm Woolen Mittens"/> List instead of “contract” in the schema?
1051 </list> William Cox 4/29/2015 10:38 PM

Deleted: group of

1052 7.3 Is Attribute
1053 | An Object defines the Contract it implements via the is attribute. The value of the is attribute is a DItEd: List -
1054 | Contract, If the is attribute is unspecified, then the following rules are used to determine the implied) LT CX RIS TEs P
1055 | Contract Elements: \) Deleted: List

N William Cox 4/29/2015 10:38 PM
1056 e Ifthe Object is an item inside a 1ist or feed, then the Contract Element specified by the of A\
1057 attribute is used. >

Bl William Cox 4/29/2015 10:38 PM
1058 * If the Object overrides (by name) an Object specified in one of its Contract Elements, then the " | Deleted: Contracts
1059 Contract,of the overridden Object is used. i William Cox 4/29/2015 10:38 PM
1060 e Ifall the above rules fail, then the respective Contract Element is used. For example, an obj m

1061 element has an implied Contract of obix:obj and real an implied Contract of obix:real. William Cox 4/29/2015 10:38 PM
1062 Element names such as bool, int, or str are abbreviations for implied Contracts. However if an Object

1063 implements one of the primitive types, then it MUST use the correct OBIX type name. If an Object William Cox 4/29/2015 10:38 PM
1064 implements obix:int, then it MUST be expressed as <int />, and MUST NOT use the form <obj Deleted: List

William Cox 4/29/2015 10:38 PM
William Cox 4/29/2015 10:38 PM
Deleted: List

William Cox 4/29/2015 10:38 PM
Deleted: primitive

" This implies that self-referential or loops in references in Contract Elements is forbidden. NEED
CONFORMANCE CLAUSE.

obix-v1.1-wd41 Working Draft 41 22 April 2015
Standards Track Draft Copyright © OASIS Open 2015. All Rights Reserved. Page 36 of 76

1083
1084

1085

1086

1087
1088
1089

is="obix:int"/>. An Object MUST NOT implement multiple value types, such as implementing both
obix:bool and obix:int.

7.4 Contract Inheritance

7.4.1 Structure vs Semantics

Contracts are a mechanism of inheritance — they establish the classic “is a” relationship. In the abstract
sense a Contract allows inheritance of a type. One can further distinguish between the explicit and implicit

Contract:

Explicit Contract

Defines an object structure which all implementations must conform
with. This can be evaluated quantitatively by examining the Object
data structure.

Implicit Contract

Defines semantics associated with the Contract. The implicit Contract
is typically documented using natural language prose. It is
qualitatively interpreted, rather than quantitatively interpreted.

Table 7-3. Explicit and Implicit Contracts.

For example when an Object implements the Alarm Contract, one can immediately infer that it will have
a child called timestamp. This structure is in the explicit contract of A1arm and is formally defined in its
encoded definition. But semantics are also attached to what it means to be an Alarm Object: that the
Object is providing information about an alarm event. These subjective concepts cannot be captured in
machine language; rather they can only be captured in prose.

When an Object declares itself to implement a Contract it MUST meet both the explicit Contract and the
implicit Contract. An Object MUST NOT put obix:Alarmin its Contract unless it really represents an
alarm event. Interpretation of Implicit Contracts generally requires that a human brain be involved, i.e.,
they cannot in general be consumed with pure machine-to-machine interaction.

7.4.2 Overriding Defaults

A Contract’s named children Objects are automatically applied to implementations. An implementation
may choose to override or default each of its Contract’s children. If the implementation omits the child,
then it is assumed to default to the Contract’s value. If the implementation declares the child (by name),
then it is overridden and the implementation’s value SHOULD be used. Let’s look at an example:

<obj href="/def/television">

<bool name="power"

val="false"/>

<int name="channel" val="2" min="2" max="200"/>

</obj>

<obj href="/livingRoom/tv" is="/def/television">
<int name="channel" val="8"/>

<int name="volume"
</obj>

val="22"/>

In this example a Contract Object is identified with the URI “/def/television”. It has two children to store
power and channel. The living room TV instance includes “/def/television” in its Contract via the is
attribute. In this Object, channel is overridden to 8 from its default value of 2. However since power was
omitted, it is implied to default to false.

An override is always matched to its Contract via the name attribute. In the example above it was clear
that ‘channel’ was being overridden, because an Object was declared with a name of ‘channel’. A second
Object was also declared with a name of ‘volume’. Since volume wasn’t declared in the Contract, it is
assumed to be a new definition specific to this Object.

obix-v1.1-wd41
Standards Track Draft

Working Draft 41 22 April 2015
Copyright © OASIS Open 2015. All Rights Reserved. Page 37 of 76

William Cox 4/29/2015 10:38 PM
Deleted: List

William Cox 4/29/2015 10:38 PM

Deleted: List

1124

1125
1126
1127

1128
1129

1130
1131

1132
1133

1134

1135
1136
1137
1138

1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151

1152

11563
1154
1155

1156

1157

1158
1159
1160
1161

1162

7.4.3 Attributes and Facets

Also note that the Contract’s channel Object declares a min and max Facet. These two Facets are also
inherited by the implementation. Almost all attributes are inherited from their Contract including Facets,
val, of, in, and out. The href attribute is never inherited. The null attribute inherits as follows:

1. Ifthe null attribute is specified, then its explicit value is used;
2. Ifaval attribute is specified and nul1l is unspecified, then null is implied to be false;

3. If neither a val attribute or a nul1l attribute is specified, then the nul1 attribute is inherited from
the Contract;

4. Ifthe null attribute is specified and is true, then the val attribute is ignored.
This allows us to implicitly override a null Object to non-null without specifying the nul1 attribute.

7.5 Override Rules

Contract overrides are REQUIRED to obey the implicit and explicit Contract. Implicit means that the
implementation Object provides the same semantics as the Contract it implements. In the example above
it would be incorrect to override channel to store picture brightness. That would break the semantic
Contract.

Overriding the explicit Contract Element means to override the value, Facets, or Contract, However one
can never override the Object to be an incompatible value type. For example if the Contract specifies a
child as real, then all implementations must use real for that child. As a special case, obj may be
narrowed to any other element type.
One must also be careful when overriding attributes to never break restrictions the Contract has defined.
Technically this means the value space of a Contract can be specialized or narrowed, but never
generalized or widened. This concept is called covariance. Returning to the example from above:

<int name="channel" val="2" min="2" max="200"/>
In this example the Contract has declared a value space of 2 to 200. Any implementation of this Contract
must meet this restriction. For example it would an error to override min to —100 since that would widen
the value space. However the value space can be narrowed by overriding min to a number greater than 2
or by overriding max to a number less than 200. The specific override rules applicable to each Facet are
documented in section 4.2.7.

7.6 Multiple Inheritance
An Object’s Contract may specify multiple Contract Element URIs which it implements. This is actually

quite common - even required in many cases. There are two terms associated with the implementation of
multiple Contracts:

Flattening | Contract SHOULD always be flattened when specified. This comes into play when a

Contract Element has its own Contract (Section 7.6.1).

Mixins The mixin design specifies the exact rules for how multiple Contracts are merged
together. This section also specifies how conflicts are handled when multiple
Contracts contain children with the same name (Section 7.6.2).

Table 7-4. Contract inheritance.

7.6.1 Flattening

It is common for Contract Objects themselves to implement Contracts, just like it is common in OO
languages to chain the inheritance hierarchy. However due to the nature of accessing OBIX documents
over a network, it is often desired to minimize round trip network requests which might be needed to
“learn” about a complex Contract hierarchy. Consider this example:

<obj href="/A" />

obix-v1.1-wd41 Working Draft 41 22 April 2015
Standards Track Draft Copyright © OASIS Open 2015. All Rights Reserved. Page 38 of 76

William Cox 4/29/2015 10:38 PM
Deleted: List

; William Cox 4/29/2015 10:38 PM
William Cox 4/29/2015 10:38 PM

AN William Cox 4/29/2015 10:38 PM
| Deleted: Lists

N William Cox 4/29/2015 10:38 PM
Deleted: List

<obj href="/B" is="/A" />

<obj href="/C" is="/B" />

<obj href="/D" is="/C" />
In this example if an OBIX Client were reading Object D for the first time, it would take three more
requests to fully learn what Contracts are implemented (one for C, B, and A). Furthermore, if the Client
was just looking for Objects that implemented B, it would difficult to determine this just by looking at D.

Because of these issues, Servers are REQUIRED to flatten their Contract inheritance hierarchy into a list
when specifying the is, of, in, or out attributes. In the example above, the correct representation would
be:

<obj href="/A" />

<obj href="/B" is="/A" />

<obj href="/C" is="/B /A" />

<obj href="/D" is="/C /B /A" />

This allows Clients to quickly scan D’s Contract jo see that D implements C, B, and A without further

requests.

Because complex Servers often have a complex Contract hierarchy of Object types, the requirement to
flatten the Contract hierarchy can lead to a verbose Contract, Often many of these Contracts Elements

are from the same namespace. For example:

<obj name="VSD1" href="acme:VSD-1" is="acmeObixLibrary:VerySpecificDevicel
acmeObixLibrary:VerySpecificDeviceBase acmeObixLibrary:SpecificDeviceType
acmeObixLibrary:BaseDevice acmeObixLibrary:BaseObject"/>

To save space, Servers MAY choose to combine the Contract Elements from the same namespace and

present the Contract with the namespace followed by a colon, then a brace-enclosed list of Contract

names:

<real name="writableReal" is="obix:{Point WritablePoint}"/>

<obj name="vsdl" href="acme:VSD-1" is="acmeObixLibrary:{VerySpecificDevicel
VerySpecificDeviceBase SpecificDeviceType BaseDevice BaseObject}"/>

Clients MUST be able to consume this form of the Contract and expand it to the standard form.

7.6.2 Mixins

Flattening is not the only reason a Contract might contain multiple Contract Elements. OBIX also supports

the more traditional notion of multiple inheritance using a mixin approach as in the following example:

<obj href="acme:Device">
<str name="serialNo"/>
</obj>

<obj href="acme:Clock" is="acme:Device">
<op name="snooze"/>
<int name="volume" val="0"/>

</obj>

<obj href="acme:Radio" is="acme:Device ">
<real name="station" min="87.0" max="107.5"/>
<int name="volume" val="5"/>

</obj>

<obj href="acme:ClockRadio" is="acme:Radio acme:Clock acme:Device"/>

In this example ClockRadio implements both Clock and Radio. Via flattening of Clock and Radio,
ClockRadio also implements Device. In OBIX this is called a mixin — Clock, Radio, and Device are
mixed into (merged into) ClockRadio. Therefore ClockRadio inherits four children: serialNo,
snooze, volume, and station. Mixins are a form of multiple inheritance akin to Java/C# interfaces
(remember OBIX is about the type inheritance, not implementation inheritance).

Note that Clock and Radio both implement Device. This inheritance pattern where two types both
inherit from a base, and are themselves both inherited by a single type, is called a “diamond” pattern from
the shape it takes when the class hierarchy is diagrammed. From Device, ClockRadio inherits a child
named serialNo. Furthermore notice that both Clock and Radio declare a child named volume. This

obix-v1.1-wd41 Working Draft 41 22 April 2015
Standards Track Draft Copyright © OASIS Open 2015. All Rights Reserved. Page 39 of 76

William Cox 4/29/2015 10:38 PM
|

William Cox 4/29/2015 10:38 PM
Deleted: List
William Cox 4/29/2015 10:38 PM
Deleted: List

William Cox 4/29/2015 10:38 PM
Deleted: List

William Cox 4/29/2015 10:25 PM
Comment [8]: Note that this is additional

conformance requirements on the string; not in
the schema IMO.

William Cox 4/29/2015 10:38 PM
Deleted: List

William Cox 4/29/2015 10:38 PM

Deleted: List

William Cox 4/29/2015 10:38 PM
Deleted: URIs

1231
1232

1233
1234
1235

1236
1237
1238

1239
1240
1241
1242
1243
1244

1245
1246
1247
1248
1249
1250

1251

1252
1253
1254
1255

1256
1257
1258
1259
1260

1261

1262
1263
1264

1265
1266
1267

1268
1269
1270
1271
1272
1273
1274

1275
1276
1277
1278
1279

naming collision could potentially create confusion for what serialNo and volume mean in
ClockRadio.

OBIX solves this problem by flattening the Contract’s children using the following rules:
1. Process the Contract definitions in the order they are listed
2. If a new child is discovered, it is mixed into the Object’s definition

3. If a child is discovered that has already been processed via a previous Contract definition, then
the previous definition takes precedence. However it is an error if the duplicate child is not
Contract compatible with the previous definition (see Section 7.7).

In the example above this means that Radio.volume is the definition used for ClockRadio.volume,
because Radio has a higher precedence than Clock (it is first in the Contract). Thus

ClockRadio.volume has a default value of “5”. However it would be invalid if Clock.volume were
declared as str, since it would not be Contract compatible with Radio’s definition as an int — in that
case ClockRadio could not implement both Clock and Radio. It is the Server vendor’s responsibility
not to create incompatible name collisions in Contracts.

The first Contract Element in a Contract is given special significance since its definition trumps all others.

In OBIX this Contract Element is called the Primary Contract Element. For this reason, the Primary
Contract Element SHOULD implement all the other Contracts specified in the Contract, (this actually
happens quite naturally by itself in many programming languages). This makes it easier for Clients to bind
the Object into a strongly typed class if desired. Contracts MUST NOT implement themselves nor have
circular inheritance dependencies. |

7.7 Contract Compatibility

A Contract which is covariantly substitutable with another Contract,is said to be Contract compatible.

William Cox 4/29/2015 10:38 PM
Deleted: List

; William Cox 4/29/2015 10:38 PM
) William Cox 4/29/2015 10:38 PM
N R William Cox 4/29/2015 10:38 PM

h William Cox 4/29/2015 10:27 PM
C t [9]: Here's the requirement to avoid

Contract compatibility is a useful term when talking about mixin rules and overrides for lists and
operations. It is a concept similar to previously defined override rules — however, instead of the rules
applied to individual Facet attributes, it is applied to an entire Contract,

RN \illiam Cox 4/29/2015 10:38 PM
_(Deleted: List

A Contract X is compatible with Contract,Y, if and only if X narrows the value space defined by Y. This

means that X can narrow the set of Objects which implement Y, but never expand the set. Contract
compatibility is not commutative (X is compatible with Y does not imply Y is compatible with X).
Practically, this can be expressed as: X can add new URIs to Y’s Contract Elements, but never take any

away.

7.8 Lists and Feeds

Implementations derived from 1ist or feed Contracts inherit the of attribute. Like other attributes an
implementing Object can override the of attribute, but only if Contract compatible - a Server SHOULD
include all of the URIs in the Contract’s of attribute, but it MAY add additional ones (see Section 7.7).

Lists and Feeds also have the special ability to implicitly define the Contract of their contents. In the

" | Deleted: List

following example it is implied that each child element has a Contrac{,of /def/MissingPerson without

actually specifying the is attribute in each list item:

<list of="/def/MissingPerson'">
<obj> <str name="fullName" val="Jack Shephard"/> </obj>
<obj> <str name="fullName" val="John Locke"/> </obj>
<obj> <str name="fullName" val="Kate Austen"/> </obj>
</list>
If an element in the list or Feed does specify its own is attribute, then it MUST be Contract compatible
with the of attribute.

If an implementation wishes to specify that a list should contain references to a given type, then the
implementation SHOULD include obix:ref inthe of attribute. This MUST be the first URI in the of
attribute. For example, to specify that a list should contain references to obix:History Objects (as
opposed to inline History Objects):

<list name="histories" of="obix:ref obix:History"/>

obix-v1.1-wd41
Standards Track Draft

Working Draft 41
Copyright © OASIS Open 2015. All Rights Reserved.

22 April 2015
Page 40 of 76

recursion.

William Cox 4/29/2015 10:38 PM

Deleted: List

A William Cox 4/29/2015 10:38 PM

William Cox 4/29/2015 10:38 PM

Deleted: List

William Cox 4/29/2015 10:38 PM
|
WiIIiam Cox 4/29/2015 10:38 PM
Deleted: list

William Cox 4/29/2015 10:38 PM

I William Cox 4/29/2015 10:38 PM
Deleted: List

In many cases a Server will implement its own management of the URI scheme of the child elements of a
list. For example, the href attribute of child elements may be a database key, or some other string
defined by the Server when the child is added. Servers will not, in general, allow Clients to specify this
URI during addition of child elements through a direct write to a list's subordinate URI.

Therefore, in order to add child elements to a list which supports Client addition of list elements, Servers
MUST support adding list elements by writing to the 1ist URI with an Object of a type that matches the
list's Contract. Servers MUST return the written resource (including any Server-assigned href) upon
successful completion of the write.

For example, given a 1ist of <real> elements, and presupposing a Server-imposed URI scheme:

<list href="/a/b" of="obix:real" writable="true"/>
Writing to the list URI itself will replace the entire list if the Server supports this behavior:
WRITE /a/b

<list of="obix:real">
<real name="foo" val="10.0"/>
<real name="bar" val="20.0"/>
</list>

returns:

<list href="/a/b" of="obix:real">

<real name="foo" href="1" val="10.0"/>
<real name="bar" href="2" val="20.0"/>
</list>

Writing a single element of type <real> will add this element to the list.
WRITE /a/b

<real name="baz" val="30.0"/>

returns:
<real name="baz" href="/a/b/3" val="30.0"/>

while the list itself is now:

<list href="/a/b" of="obix:real">

<real name="foo" href="1" val="10.0"/>

<real name="bar" href="2" val="20.0"/>

<real name="baz" href="3" val="30.0"/>

</list>
Note that if a Client has the correct URI to reference a list child element, this can still be used to modify
the value of the element directly:

WRITE /a/b/3

<real name="baz2" val="33.0"/>

returns:

<real name="baz2" href="/a/b/3" val="33.0"/>

and the list has been modified to:

<list href="/a/b" of="obix:real">

<real name="foo" href="1" val="10.0"/>
<real name="bar" href="2" val="20.0"/>
<real name="baz" href="3" val="33.0"/>
</list>

obix-v1.1-wd41 Working Draft 41 22 April 2015
Standards Track Draft Copyright © OASIS Open 2015. All Rights Reserved. Page 41 of 76

Page 35: [1] Deleted

William Cox 4/29/15 10:38 PM

Contract

Contracts are the templates or prototypes used as the foundation of the
OBIX type system. They may contain both syntactical and semantic
behaviors.

