
obix-v1.1-wd41 Working Draft 41 22 April 2015
Standards Track Draft Copyright © OASIS Open 2015. All Rights Reserved. Page 35 of 76

7 Contracts 1009

OBIX Contracts are used to define inheritance in OBIX Objects. A Contract is a template, defined as an 1010
OBIX Object, that is referenced by other Objects. These templates are referenced using the is attribute. 1011
Contracts solve several important problems in OBIX: 1012

Semantics Contracts are used to define “types” within OBIX. This lets us collectively agree on
common Object definitions to provide consistent semantics across vendor
implementations. For example the Alarm Contract ensures that Client software can
extract normalized alarm information from any vendor’s system using the exact
same Object structure.

Defaults Contracts also provide a convenient mechanism to specify default values. Note that
when serializing Object trees to XML (especially over a network), defaults are
typically not allowed, in order to keep Client processing simple.

Type Export OBIX will be used to interact with existing and future control systems based on
statically-typed languages such as Java or C#. Contracts provide a standard
mechanism to export type information in a format that all OBIX Clients can
consume.

Table 7-1. Problems addressed by Contracts. 1013

The benefit of the Contract design is its flexibility and simplicity. Conceptually Contracts provide an 1014
elegant model for solving many different problems with one abstraction. One can define new abstractions 1015
using the OBIX syntax itself. Contracts also give us a machine readable format that Clients already know 1016
how to retrieve and parse –the exact same syntax is used to represent both a class and an instance. 1017

7.1 Contract Terminology 1018

Common terms that are useful for discussing Contracts are defined in the following Table. Contracts are 1019
the templates or prototypes used as the foundation of the OBIX type system. They may contain both 1020
syntactical and semantic behaviors. 1021

Term Definition

Contract Definition A reusable Object definition expressed as a standard OBIX Object.

Contract A list of one or more URIs to Contract Objects. The list of URIs is separated by
the space character. It is used as the value of the is, of, in and out
attributes.

Contract Element A single URI in a Contract.

Implements When an Object includes a Contract Element in a Contract, the Object is said
to implement the Contract. This means that the Object is inheriting both the
structure and semantics of the specified Contract.

Implementation An Object which implements a Contract or Contract Element is said to be an
implementation of that Contract.

Table 7-2. Contract terminology. 1022

William Cox� 4/29/2015 10:38 PM
Deleted: Contract1023 ... [1]

William Cox� 4/29/2015 10:20 PM
Comment [4]: These appear to be the only
use of type “contract” – see diagram update.

William Cox� 4/29/2015 10:38 PM
Deleted: List1024

William Cox� 4/22/2015 11:45 PM
Comment [5]: Used only in this section and
7.6.1

William Cox� 4/29/2015 10:38 PM
Deleted: specifies1025
William Cox� 4/29/2015 10:38 PM
Deleted: its1026
William Cox� 4/29/2015 10:38 PM
Deleted: List1027

obix-v1.1-wd41 Working Draft 41 22 April 2015
Standards Track Draft Copyright © OASIS Open 2015. All Rights Reserved. Page 36 of 76

7.2 Contract List 1028

The syntax of a Contract is a list of URI references to other OBIX Objects1. The Contract Elements within 1029
the Contract MUST be separated by the space character (Unicode 0x20). Just like the href attribute, a 1030
Contract Element URI MAY be an absolute URI, Server relative, or even a fragment. The URIs within a 1031
Contract may be individually scoped with an XML namespace prefix (see “Namespace Prefixes in 1032
Contract Lists” in the [OBIX Encodings] document). 1033
A Contract is not an obix:list type described in Section 4.3.2. It is a string with special structure and 1034
semantics regarding the space-separated URIs. 1035
The Contract is used as the value of the is, of, in and out attributes. An example of a point that 1036
implements multiple Contracts and advertises this through its Contract is: 1037

<real val="70.0" name="setpoint" is="obix:Point obix:WritablePoint acme:Setpoint"/> 1038
From this example, we can see that this 'setpoint' Object implements the Point and WritablePoint 1039
Contracts that are described in this specification (Section 13). It also implements a separate Contract 1040
defined with the acme namespace called Setpoint. A consumer of this Object can rely on the fact that it 1041
has all of the syntactical and semantic behaviors of each of these Contracts, and one can interact with 1042
any of these behaviors. 1043
An example of an obix:list that uses Contract List in its of attribute to describe the type of items 1044
contained in the obix:list is: 1045

<list name="Logged Data" of="obix:Point obix:History"> 1046
 <real name="spaceTemp"/> 1047
 <str val="Whiskers on Kittens"/> 1048
 <str val="Bright Copper Kettles"/> 1049
 <str val="Warm Woolen Mittens"/> 1050
</list> 1051

7.3 Is Attribute 1052

An Object defines the Contract it implements via the is attribute. The value of the is attribute is a 1053
Contract. If the is attribute is unspecified, then the following rules are used to determine the implied 1054
Contract Elements: 1055

• If the Object is an item inside a list or feed, then the Contract Element specified by the of 1056
attribute is used. 1057

• If the Object overrides (by name) an Object specified in one of its Contract Elements, then the 1058
Contract of the overridden Object is used. 1059

• If all the above rules fail, then the respective Contract Element is used. For example, an obj 1060
element has an implied Contract of obix:obj and real an implied Contract of obix:real. 1061

Element names such as bool, int, or str are abbreviations for implied Contracts. However if an Object 1062
implements one of the primitive types, then it MUST use the correct OBIX type name. If an Object 1063
implements obix:int, then it MUST be expressed as <int/>, and MUST NOT use the form <obj 1064

1 This implies that self-referential or loops in references in Contract Elements is forbidden. NEED
CONFORMANCE CLAUSE.

William Cox� 4/29/2015 10:38 PM
Deleted: List attribute 1065
William Cox� 4/29/2015 10:38 PM
Deleted: URIs1066
William Cox� 4/29/2015 10:38 PM
Deleted: list1067
William Cox� 4/29/2015 10:38 PM
Deleted: can1068
William Cox� 4/29/2015 10:38 PM
Deleted: reference1069

William Cox� 4/29/2015 10:38 PM
Deleted: List 1070

William Cox� 4/29/2015 10:16 PM
Comment [6]: Not sure whether this is
correct.

William Cox� 4/29/2015 10:38 PM
Deleted: List1071

William Cox� 4/29/2015 10:38 PM
Deleted: group of 1072

William Cox� 4/22/2015 11:41 PM
Comment [7]: Why is the type not Contract
List instead of “contract” in the schema?

William Cox� 4/29/2015 10:38 PM
Deleted: List1073
William Cox� 4/29/2015 10:38 PM
Deleted: List 1074
William Cox� 4/29/2015 10:38 PM
Deleted: I1075
William Cox� 4/29/2015 10:38 PM
Deleted: Contracts1076
William Cox� 4/29/2015 10:38 PM
Deleted: List1077
William Cox� 4/29/2015 10:38 PM
Deleted: List1078
William Cox� 4/29/2015 10:38 PM

Deleted: List1079
William Cox� 4/29/2015 10:38 PM

Deleted: Contracts1080
William Cox� 4/29/2015 10:38 PM

Deleted: List1081
William Cox� 4/29/2015 10:38 PM

Deleted: primitive 1082

obix-v1.1-wd41 Working Draft 41 22 April 2015
Standards Track Draft Copyright © OASIS Open 2015. All Rights Reserved. Page 37 of 76

is="obix:int"/>. An Object MUST NOT implement multiple value types, such as implementing both 1083
obix:bool and obix:int. 1084

7.4 Contract Inheritance 1085

7.4.1 Structure vs Semantics 1086

Contracts are a mechanism of inheritance – they establish the classic “is a” relationship. In the abstract 1087
sense a Contract allows inheritance of a type. One can further distinguish between the explicit and implicit 1088
Contract: 1089

Explicit Contract Defines an object structure which all implementations must conform
with. This can be evaluated quantitatively by examining the Object
data structure.

Implicit Contract Defines semantics associated with the Contract. The implicit Contract
is typically documented using natural language prose. It is
qualitatively interpreted, rather than quantitatively interpreted.

Table 7-3. Explicit and Implicit Contracts. 1090

For example when an Object implements the Alarm Contract, one can immediately infer that it will have 1091
a child called timestamp. This structure is in the explicit contract of Alarm and is formally defined in its 1092
encoded definition. But semantics are also attached to what it means to be an Alarm Object: that the 1093
Object is providing information about an alarm event. These subjective concepts cannot be captured in 1094
machine language; rather they can only be captured in prose. 1095
When an Object declares itself to implement a Contract it MUST meet both the explicit Contract and the 1096
implicit Contract. An Object MUST NOT put obix:Alarm in its Contract unless it really represents an 1097
alarm event. Interpretation of Implicit Contracts generally requires that a human brain be involved, i.e., 1098
they cannot in general be consumed with pure machine-to-machine interaction. 1099

7.4.2 Overriding Defaults 1100

A Contract’s named children Objects are automatically applied to implementations. An implementation 1101
may choose to override or default each of its Contract’s children. If the implementation omits the child, 1102
then it is assumed to default to the Contract’s value. If the implementation declares the child (by name), 1103
then it is overridden and the implementation’s value SHOULD be used. Let’s look at an example: 1104

<obj href="/def/television"> 1105
 <bool name="power" val="false"/> 1106
 <int name="channel" val="2" min="2" max="200"/> 1107
</obj> 1108
 1109
<obj href="/livingRoom/tv" is="/def/television"> 1110
 <int name="channel" val="8"/> 1111
 <int name="volume" val="22"/> 1112
</obj> 1113

In this example a Contract Object is identified with the URI “/def/television”. It has two children to store 1114
power and channel. The living room TV instance includes “/def/television” in its Contract via the is 1115
attribute. In this Object, channel is overridden to 8 from its default value of 2. However since power was 1116
omitted, it is implied to default to false. 1117
An override is always matched to its Contract via the name attribute. In the example above it was clear 1118
that ‘channel’ was being overridden, because an Object was declared with a name of ‘channel’. A second 1119
Object was also declared with a name of ‘volume’. Since volume wasn’t declared in the Contract, it is 1120
assumed to be a new definition specific to this Object. 1121

William Cox� 4/29/2015 10:38 PM
Deleted: List 1122

William Cox� 4/29/2015 10:38 PM
Deleted: List 1123

obix-v1.1-wd41 Working Draft 41 22 April 2015
Standards Track Draft Copyright © OASIS Open 2015. All Rights Reserved. Page 38 of 76

7.4.3 Attributes and Facets 1124

Also note that the Contract’s channel Object declares a min and max Facet. These two Facets are also 1125
inherited by the implementation. Almost all attributes are inherited from their Contract including Facets, 1126
val, of, in, and out. The href attribute is never inherited. The null attribute inherits as follows: 1127

1. If the null attribute is specified, then its explicit value is used; 1128
2. If a val attribute is specified and null is unspecified, then null is implied to be false; 1129

3. If neither a val attribute or a null attribute is specified, then the null attribute is inherited from 1130
the Contract; 1131

4. If the null attribute is specified and is true, then the val attribute is ignored. 1132
This allows us to implicitly override a null Object to non-null without specifying the null attribute. 1133

7.5 Override Rules 1134

Contract overrides are REQUIRED to obey the implicit and explicit Contract. Implicit means that the 1135
implementation Object provides the same semantics as the Contract it implements. In the example above 1136
it would be incorrect to override channel to store picture brightness. That would break the semantic 1137
Contract. 1138
Overriding the explicit Contract Element means to override the value, Facets, or Contract. However one 1139
can never override the Object to be an incompatible value type. For example if the Contract specifies a 1140
child as real, then all implementations must use real for that child. As a special case, obj may be 1141
narrowed to any other element type. 1142
One must also be careful when overriding attributes to never break restrictions the Contract has defined. 1143
Technically this means the value space of a Contract can be specialized or narrowed, but never 1144
generalized or widened. This concept is called covariance. Returning to the example from above: 1145

<int name="channel" val="2" min="2" max="200"/> 1146
In this example the Contract has declared a value space of 2 to 200. Any implementation of this Contract 1147
must meet this restriction. For example it would an error to override min to –100 since that would widen 1148
the value space. However the value space can be narrowed by overriding min to a number greater than 2 1149
or by overriding max to a number less than 200. The specific override rules applicable to each Facet are 1150
documented in section 4.2.7. 1151

7.6 Multiple Inheritance 1152

An Object’s Contract may specify multiple Contract Element URIs which it implements. This is actually 1153
quite common - even required in many cases. There are two terms associated with the implementation of 1154
multiple Contracts: 1155

Flattening Contract SHOULD always be flattened when specified. This comes into play when a
Contract Element has its own Contract (Section 7.6.1).

Mixins The mixin design specifies the exact rules for how multiple Contracts are merged
together. This section also specifies how conflicts are handled when multiple
Contracts contain children with the same name (Section 7.6.2).

Table 7-4. Contract inheritance. 1156

7.6.1 Flattening 1157

It is common for Contract Objects themselves to implement Contracts, just like it is common in OO 1158
languages to chain the inheritance hierarchy. However due to the nature of accessing OBIX documents 1159
over a network, it is often desired to minimize round trip network requests which might be needed to 1160
“learn” about a complex Contract hierarchy. Consider this example: 1161

<obj href="/A" /> 1162

William Cox� 4/29/2015 10:38 PM
Deleted: List1163

William Cox� 4/29/2015 10:38 PM
Deleted: List 1164
William Cox� 4/29/2015 10:38 PM
Deleted: to implement1165
William Cox� 4/29/2015 10:38 PM
Deleted: Lists 1166
William Cox� 4/29/2015 10:38 PM
Deleted: List 1167

obix-v1.1-wd41 Working Draft 41 22 April 2015
Standards Track Draft Copyright © OASIS Open 2015. All Rights Reserved. Page 39 of 76

<obj href="/B" is="/A" /> 1168
<obj href="/C" is="/B" /> 1169
<obj href="/D" is="/C" /> 1170

In this example if an OBIX Client were reading Object D for the first time, it would take three more 1171
requests to fully learn what Contracts are implemented (one for C, B, and A). Furthermore, if the Client 1172
was just looking for Objects that implemented B, it would difficult to determine this just by looking at D. 1173
Because of these issues, Servers are REQUIRED to flatten their Contract inheritance hierarchy into a list 1174
when specifying the is, of, in, or out attributes. In the example above, the correct representation would 1175
be: 1176

<obj href="/A" /> 1177
<obj href="/B" is="/A" /> 1178
<obj href="/C" is="/B /A" /> 1179
<obj href="/D" is="/C /B /A" /> 1180

This allows Clients to quickly scan D’s Contract to see that D implements C, B, and A without further 1181
requests. 1182
Because complex Servers often have a complex Contract hierarchy of Object types, the requirement to 1183
flatten the Contract hierarchy can lead to a verbose Contract. Often many of these Contracts Elements 1184
are from the same namespace. For example: 1185

<obj name="VSD1" href="acme:VSD-1" is="acmeObixLibrary:VerySpecificDevice1 1186
acmeObixLibrary:VerySpecificDeviceBase acmeObixLibrary:SpecificDeviceType 1187
acmeObixLibrary:BaseDevice acmeObixLibrary:BaseObject"/> 1188

To save space, Servers MAY choose to combine the Contract Elements from the same namespace and 1189
present the Contract with the namespace followed by a colon, then a brace-enclosed list of Contract 1190
names: 1191

<real name="writableReal" is="obix:{Point WritablePoint}"/> 1192
 1193
<obj name="vsd1" href="acme:VSD-1" is="acmeObixLibrary:{VerySpecificDevice1 1194
VerySpecificDeviceBase SpecificDeviceType BaseDevice BaseObject}"/> 1195

Clients MUST be able to consume this form of the Contract and expand it to the standard form. 1196

7.6.2 Mixins 1197

Flattening is not the only reason a Contract might contain multiple Contract Elements. OBIX also supports 1198
the more traditional notion of multiple inheritance using a mixin approach as in the following example: 1199

<obj href="acme:Device"> 1200
 <str name="serialNo"/> 1201
</obj> 1202
 1203
<obj href="acme:Clock" is="acme:Device"> 1204
 <op name="snooze"/> 1205
 <int name="volume" val="0"/> 1206
</obj> 1207
 1208
<obj href="acme:Radio" is="acme:Device "> 1209
 <real name="station" min="87.0" max="107.5"/> 1210
 <int name="volume" val="5"/> 1211
</obj> 1212
 1213
<obj href="acme:ClockRadio" is="acme:Radio acme:Clock acme:Device"/> 1214

In this example ClockRadio implements both Clock and Radio. Via flattening of Clock and Radio, 1215
ClockRadio also implements Device. In OBIX this is called a mixin – Clock, Radio, and Device are 1216
mixed into (merged into) ClockRadio. Therefore ClockRadio inherits four children: serialNo, 1217
snooze, volume, and station. Mixins are a form of multiple inheritance akin to Java/C# interfaces 1218
(remember OBIX is about the type inheritance, not implementation inheritance). 1219
Note that Clock and Radio both implement Device. This inheritance pattern where two types both 1220
inherit from a base, and are themselves both inherited by a single type, is called a “diamond” pattern from 1221
the shape it takes when the class hierarchy is diagrammed. From Device, ClockRadio inherits a child 1222
named serialNo. Furthermore notice that both Clock and Radio declare a child named volume. This 1223

William Cox� 4/29/2015 10:38 PM
Deleted: List 1224

William Cox� 4/29/2015 10:38 PM
Deleted: List1225

William Cox� 4/29/2015 10:38 PM
Deleted: Contracts1226
William Cox� 4/29/2015 10:38 PM
Deleted: List 1227
William Cox� 4/29/2015 10:25 PM
Comment [8]: Note that this is additional
conformance requirements on the string; not in
the schema IMO.

William Cox� 4/29/2015 10:38 PM
Deleted: List 1228

William Cox� 4/29/2015 10:38 PM
Deleted: List 1229
William Cox� 4/29/2015 10:38 PM
Deleted: URIs1230

obix-v1.1-wd41 Working Draft 41 22 April 2015
Standards Track Draft Copyright © OASIS Open 2015. All Rights Reserved. Page 40 of 76

naming collision could potentially create confusion for what serialNo and volume mean in 1231
ClockRadio. 1232
OBIX solves this problem by flattening the Contract’s children using the following rules: 1233

1. Process the Contract definitions in the order they are listed 1234
2. If a new child is discovered, it is mixed into the Object’s definition 1235
3. If a child is discovered that has already been processed via a previous Contract definition, then 1236

the previous definition takes precedence. However it is an error if the duplicate child is not 1237
Contract compatible with the previous definition (see Section 7.7). 1238

In the example above this means that Radio.volume is the definition used for ClockRadio.volume, 1239
because Radio has a higher precedence than Clock (it is first in the Contract). Thus 1240
ClockRadio.volume has a default value of “5”. However it would be invalid if Clock.volume were 1241
declared as str, since it would not be Contract compatible with Radio’s definition as an int – in that 1242
case ClockRadio could not implement both Clock and Radio. It is the Server vendor’s responsibility 1243
not to create incompatible name collisions in Contracts. 1244
The first Contract Element in a Contract is given special significance since its definition trumps all others. 1245
In OBIX this Contract Element is called the Primary Contract Element. For this reason, the Primary 1246
Contract Element SHOULD implement all the other Contracts specified in the Contract (this actually 1247
happens quite naturally by itself in many programming languages). This makes it easier for Clients to bind 1248
the Object into a strongly typed class if desired. Contracts MUST NOT implement themselves nor have 1249
circular inheritance dependencies. 1250

7.7 Contract Compatibility 1251

A Contract which is covariantly substitutable with another Contract is said to be Contract compatible. 1252
Contract compatibility is a useful term when talking about mixin rules and overrides for lists and 1253
operations. It is a concept similar to previously defined override rules – however, instead of the rules 1254
applied to individual Facet attributes, it is applied to an entire Contract. 1255
A Contract X is compatible with Contract Y, if and only if X narrows the value space defined by Y. This 1256
means that X can narrow the set of Objects which implement Y, but never expand the set. Contract 1257
compatibility is not commutative (X is compatible with Y does not imply Y is compatible with X). 1258
Practically, this can be expressed as: X can add new URIs to Y’s Contract Elements, but never take any 1259
away. 1260

7.8 Lists and Feeds 1261

Implementations derived from list or feed Contracts inherit the of attribute. Like other attributes an 1262
implementing Object can override the of attribute, but only if Contract compatible - a Server SHOULD 1263
include all of the URIs in the Contract’s of attribute, but it MAY add additional ones (see Section 7.7). 1264

Lists and Feeds also have the special ability to implicitly define the Contract of their contents. In the 1265
following example it is implied that each child element has a Contract of /def/MissingPerson without 1266
actually specifying the is attribute in each list item: 1267

<list of="/def/MissingPerson"> 1268
 <obj> <str name="fullName" val="Jack Shephard"/> </obj> 1269
 <obj> <str name="fullName" val="John Locke"/> </obj> 1270
 <obj> <str name="fullName" val="Kate Austen"/> </obj> 1271
</list> 1272

If an element in the list or Feed does specify its own is attribute, then it MUST be Contract compatible 1273
with the of attribute. 1274

If an implementation wishes to specify that a list should contain references to a given type, then the 1275
implementation SHOULD include obix:ref in the of attribute. This MUST be the first URI in the of 1276
attribute. For example, to specify that a list should contain references to obix:History Objects (as 1277
opposed to inline History Objects): 1278

<list name="histories" of="obix:ref obix:History"/> 1279

William Cox� 4/29/2015 10:38 PM
Deleted: List1280

William Cox� 4/29/2015 10:38 PM
Deleted: list1281
William Cox� 4/29/2015 10:38 PM
Deleted: specific1282
William Cox� 4/29/2015 10:38 PM
Deleted: List1283
William Cox� 4/29/2015 10:27 PM
Comment [9]: Here’s the requirement to avoid
recursion.

William Cox� 4/29/2015 10:38 PM
Deleted: List 1284
William Cox� 4/29/2015 10:38 PM
Deleted: List1285
William Cox� 4/29/2015 10:38 PM
Deleted: List1286
William Cox� 4/29/2015 10:38 PM
Deleted: List 1287
William Cox� 4/29/2015 10:38 PM
Deleted: List1288
William Cox� 4/29/2015 10:38 PM
Deleted: list1289

William Cox� 4/29/2015 10:38 PM
Deleted: List 1290
William Cox� 4/29/2015 10:38 PM
Deleted: List1291

obix-v1.1-wd41 Working Draft 41 22 April 2015
Standards Track Draft Copyright © OASIS Open 2015. All Rights Reserved. Page 41 of 76

In many cases a Server will implement its own management of the URI scheme of the child elements of a 1292
list. For example, the href attribute of child elements may be a database key, or some other string 1293
defined by the Server when the child is added. Servers will not, in general, allow Clients to specify this 1294
URI during addition of child elements through a direct write to a list’s subordinate URI. 1295
Therefore, in order to add child elements to a list which supports Client addition of list elements, Servers 1296
MUST support adding list elements by writing to the list URI with an Object of a type that matches the 1297
list’s Contract. Servers MUST return the written resource (including any Server-assigned href) upon 1298
successful completion of the write. 1299
For example, given a list of <real> elements, and presupposing a Server-imposed URI scheme: 1300

<list href="/a/b" of="obix:real" writable="true"/> 1301
Writing to the list URI itself will replace the entire list if the Server supports this behavior: 1302
WRITE /a/b 1303

<list of="obix:real"> 1304
 <real name="foo" val="10.0"/> 1305
 <real name="bar" val="20.0"/> 1306
</list> 1307

returns: 1308
<list href="/a/b" of="obix:real"> 1309
 <real name="foo" href="1" val="10.0"/> 1310
 <real name="bar" href="2" val="20.0"/> 1311
</list> 1312

Writing a single element of type <real> will add this element to the list. 1313

WRITE /a/b 1314
<real name="baz" val="30.0"/> 1315

returns: 1316
<real name="baz" href="/a/b/3" val="30.0"/> 1317

while the list itself is now: 1318
<list href="/a/b" of="obix:real"> 1319
 <real name="foo" href="1" val="10.0"/> 1320
 <real name="bar" href="2" val="20.0"/> 1321
 <real name="baz" href="3" val="30.0"/> 1322
</list> 1323

Note that if a Client has the correct URI to reference a list child element, this can still be used to modify 1324
the value of the element directly: 1325
WRITE /a/b/3 1326

<real name="baz2" val="33.0"/> 1327
returns: 1328

<real name="baz2" href="/a/b/3" val="33.0"/> 1329
and the list has been modified to: 1330

<list href="/a/b" of="obix:real"> 1331
 <real name="foo" href="1" val="10.0"/> 1332
 <real name="bar" href="2" val="20.0"/> 1333
 <real name="baz" href="3" val="33.0"/> 1334
</list> 1335

Page 35: [1] Deleted William Cox 4/29/15 10:38 PM

Contract Contracts are the templates or prototypes used as the foundation of the
OBIX type system. They may contain both syntactical and semantic
behaviors.

