
Domain Model for Identity Management
This document introduces entities and relationships common to the domain of identity
management.

Each of the following subsections presents a subset of the domain model, beginning with the most
familiar:

● The first subsection below presents Person, Account and Service.
● The next subsection below presents Organization, Group and Role.
● A third subsection below presents AccountType and AccountAttribute.

A final subsection entitled “SIMPLEST Relationships” discusses how the SIMPLEST Schema uses
object classes and attributes to represent these entities and relationships.

SIMPLEST-domain-model.odt Page 1 of 8

Organization

Person

Account

Service

Group

Role

AccountType

AccountAttribute

(0,1)

 (0,1)

 (0,1)

(0,N)

 (0,N)

 (0,N)

(1,N)

nests(0,N) nests(0,N)

(0,N)

nests(0,N)

 (0,1)

belongs-to

 (0,N)

member-of

performs(0,N)

owns

 (0,N)

 (0,N)

defines

 (1)

defines (0,N)

confers

 (0,N)

impliesValueFor

 (0,N)

hasValueFor

 (0,N)

 (0,N)

 (0,N)

is-of(0,N) (1)

 (0,N)
defines

(0,N)

(1,N)

1
2

4
5
6
7
8

9
10

1

1.1. Person, Account and Service

The Person and Account schema entities are fundamental to Identity Management. An instance of
Person normally represents a human being. An instance of Account normally represents a person
within the scope of a particular computer system or application. Each person may own (that is,
may be responsible for) any number of accounts. At most one person may own each
account.

A Service is a computer system or application that defines accounts. A service may define any
number of accounts. Exactly one service defines each account.

The concept of a Service is closely related to SPML's concept of a Target. A Service is a physical
endpoint for provisioning, whereas a Target is a logical endpoint for provisioning that a provider
exposes to requesters. An SPML provider may expose a service as a target. On the other hand,
rather than expose an actual service, an SPML provider may expose as a target an abstract
collection of services or (may expose as a target) a functional description that is more like a role. In
short: A service may be a target, but a target is not necessarily a service.

SIMPLEST-domain-model.odt Page 2 of 8

Person

Account

Service

 (0,1)

owns

 (0,N)

 (0,N)

defines

 (1)

11
12
13
14
15

16
17

18
19
20
21
22
23

2

1.2. Organization, Group and Role

The Organization schema entity is ubiquitous in directory services (and therefore is common in
identity management systems). An instance of Organization usually represents the management
structure of a corporate entity—that is, an entity that consists of more than one person. The most
common management structure is a hierarchy: Each organization may nest any number of
organizations. Exactly one organization nests each organization (except the topmost, which
none nests).

Persons are “leaf” nodes in an organizational hierarchy. Each person may belong to at most one
organization. Any number of persons may belong to each organization.

The Group schema entity usually represents an arbitrary collection of persons. (A group need not
contain persons, but typically does.) Each person may be a member of any number of groups.
Any number of persons may be a member of each group. Classically (as derived from Unix
groups) a group cannot contain other groups, but many modern systems and applications allow
this. Many modern groups may form hierarchies—or may form structures more flexible than
hierarchies. Each group may contain any number of groups. Any number of groups may
contain each group. Whoever contains groups is responsible for preventing cycles—that is, a
group must not contain itself directly or indirectly. The most important difference between Group
and Organization or Role is semantic: Group membership is assumed to be orthogonal to (that is, a
dimension independent of) both organizational hierarchy and job function.

The Role schema entity represents a job function that a person may perform. Like group
membership, role membership is not exclusive. Each person may perform any number of
roles. Any number of persons may perform each role. Like organizations, roles may be nested
to form a hierarchy. Each role may nest any number of roles. At most one role may nest each
role. However, role is assumed to be orthogonal to organization. That is, a role hierarchy
represents (a taxonomy of job function that is) a dimension independent of management hierarchy.
The semantic difference between Group and Role is that group membership is generally “shallow”--
that is, group membership entails little or no data beyond the fact of membership. Role
membership is usually “deeper”: a role may confer specific types of access to specific services.
The section entitled “AccountType and AccountAttribute” discusses this further.

Organization

Person

Group

Role

(0,1)

 (0,1)

(0,N)

nests(0,N) nests(0,N)

(0,N)

nests(0,N)

 (0,1)

belongs-to

 (0,N)

member-of

performs(0,N)

 (0,N)

 (0,N)

SIMPLEST-domain-model.odt Page 3 of 8

Organization

Person

Group

Role

(0,1)

 (0,1)

(0,N)

nests(0,N) nests(0,N)

(0,N)

nests(0,N)

 (0,1)

belongs-to

 (0,N)

member-of

performs(0,N)

 (0,N)

 (0,N)

25
26
27
28
29
30

31
32

33
34
35
36
37
38
39
40
41
42

43
44
45
46
47
48
49
50
51
52

3

1.3. AccountType and AccountAttribute

This section describes the entities and relationships that are the least well-formalized in the
industry. Nonetheless, almost every commercial identity management system has some notion of
the schema (that is, a defined set of attributes) for accounts on a service. Furthermore, any identity
management system that allows a person to own multiple accounts on a single service, and that
allows a role to specify (that a person who performs the role should own an account on) a particular
service, must have some notion of different types of accounts. A note at the end of this section
discusses this in more detail.

A service may define more than one type of account. (That is, the identity management system may
define specific account types that are available on a service.) Each account type represents a
named category of account. For example, the “default” type of account may imply only basic or
standard access to that service, whereas an “administrator” account may imply additional access.
(The underlying system or application that the Service represents may not define specific
categories of account, or may define categories that differ from those that the identity management
system chooses to expose.) Each service may define any number of account types. At least
one service must define each account type.

A service may define a set of account attributes. Each AccountAttribute represents a managed
characteristic of accounts on that Service. The identity management system models these
attributes explicitly—e.g., in order to enable special policy or control. The identity management
system may map these attributes to native—i.e., service-specific—characteristics of an account .
(Accounts on that service may have additional characteristics that are not managed, or that are not
modeled explicitly.) Each service may define any number of account attributes. At least one
service must define each account attribute.

A role often confers some type of account. (That is, each job function that is modeled as a role
often requires that the person be granted some level of access—or some specific type of access—

SIMPLEST-domain-model.odt Page 4 of 8

Person

Account

Service

Role

AccountType

AccountAttribute

 (0,1)

(0,N)

 (0,N)

 (0,N)

(1,N)

nests(0,N)

 (0,1)performs(0,N)

owns

 (0,N)

 (0,N)

defines

 (1)

defines (0,N)

confers

 (0,N)

impliesValueFor

 (0,N)

hasValueFor

 (0,N)

is-of(0,N) (1)

 (0,N)
defines

(0,N)

(1,N)

53
54
55
56
57
58
59

60
61
62
63
64
65
66
67

68
69
70
71
72
73
74

75
76

4

to a particular service.) In the simplest case, a role specifies that any person who performs the role
should have at least basic access to a service. That unqualified assignment of access to a service
—the “default” type of account—confers a normal or standard account for that service. In some
cases, however, a role may confer a specific type of account—for example, an “administrator”
account. Each role may confer any number of account types. Any number of roles may
confer each account type.

Each type of account (for example, an “administrator” account type) may imply a set of values for
(each of any number of) attributes that grant additional access on the service. (An “administrator”
account-type might be allowed to affect resources that are not available to other accounts, might be
allowed to affect resources that are owned by other accounts, or might be allowed to change the
characteristics of other accounts.) Each account type may imply values for any number of
account attributes. Any number of account types may imply values for each account
attribute.

Every account is of some account type. By default, an account is an instance of the default account
type for the service that defines the account. (If a Person owns a particular account because the
person performs a role that confers a specific account type, then the account must reflect its
account type in order to maintain the association with the role. Otherwise, it may not be clear which
accounts a Person should keep when that Person's roles change. See the note below at the end of
this section.) Every account is of some account type. Any number of accounts may be of
each account type.

NOTE: Identity management systems differ in the extent to which each supports Role-Based
Access Control and (identity management systems also differ) in the manner in which each
supports it. However, the fact that a role implies a specific type of account for a service (rather than
conferring privileges onto whatever accounts for that service that person owns) becomes clear
when a role (or when the set of roles that a particular person performs) implies more than one type
of account for the same service. This is especially clear when a person must use each type of
account for a distinct purpose.

Imagine the following situation:

● An “HRUser” role implies a normal “user” account on the “HR” service.
● An “HRAdministrator” role implies a special “administrator” account on the “HR” service.
● A person who has both roles—and who is therefore both an administrator and a user—

must use the special “administrator” account to perform all administrative functions and
must user the normal “user” account to perform all “end-user” functions. This enables the
company to keep a clean audit log of who did what when—and in what capacity.

If the person gains a “GlobalAdmin” role that also implies a special “administrator” account on the
“HR” service, then there should be no net change (even if that person subsequently loses the
“HRAdministrator” role). If the person loses both the “HRAdministrator” role and the “GlobalAdmin”
role, that person should lose the special “administrator” account on the “HR” service but that person
should keep the normal “user” account.

SIMPLEST-domain-model.odt Page 5 of 8

77
78
79
80
81
82

83
84
85
86
87
88
89

90
91
92
93
94
95
96

97
98
99
100
101
102
103

104

105
106
107
108
109
110

111
112
113
114
115

5

1.4. SIMPLEST Relationships
SIMPLEST defines an object class to represent each of the schema entities in the domain model
for identity management. SIMPLEST defines (for each of these object classes) attributes that
represent relationships between (instances of) these object classes. Reworking the domain model
to show relationships in terms of attributes yields the following diagram.

Person, Account and Service.

SIMPLEST defines Person, Account and Service as object classes. SIMPLEST uses attributes of
these object classes to represent relationships between (instances of) Person and Account. An
instance of Person may expose an “Accounts-All” attribute. The “Accounts-All” attribute may have
multiple values. Each value of the “Accounts-All” attribute identifies an instance of Account for
which the person is responsible. SIMPLEST also represents the inverse relationship: an instance
of Account may expose an “Person-Owner” attribute. The “Person-Owner” attribute may have at
most one value. Any value of the “Person-Owner” attribute identifies the (instance of Person that
represents the) person who is responsible for the account.

SIMPLEST-domain-model.odt Page 6 of 8

Organization

Person

Account

Service

Group

Role

AccountType

AccountAttribute

Groups-Children /
Groups-Parents

Organizations-Children /
Organization-Parent

Organization-Direct /
Persons-Direct Roles-Children /

Role-Parent

Accounts-All /
Person-Owner

Accounts /
Serv ice

AccountTy pes-All /
Role

Groups-Direct /
Persons-Direct

AccountTy pes /
 Serv ice

Roles-Direct

AccountTy pe

AccountAttributes / Serv ice

116
117
118
119

120

121

122
123
124
125
126
127
128
129

6

NOTE: Many identity management systems conflate (that is, do not distinguish between) Person
and Account. The SIMPLEST schema distinguishes between Person (an identity independent of
any system or application) and Account (an identity in the context of a specific system or
application). An SPML requester or provider that uses the SIMPLEST schema SHOULD clearly
distinguish clearly between Person and Account.

SIMPLEST similarly uses attributes to represent relationships between (instances of) Account and
Service. An instance of Account always has a “Service” attribute that contains a single value. The
value of the “Service” attribute identifies the (Service object that represents the) system or
application that defines the account.

NOTE: SIMPLEST could expose an “Accounts” attribute on the Service object-class that would
allow a service to refer to every account that it defines. However, this would scale poorly because
an “Accounts” attribute may have a very large number of values.

Organization, Group and Role.

SIMPLEST represents the hierarchical nesting of organizations using the “Organization-Parent” and
“Organizations-Children” attributes of Organization. SIMPLEST allows an instance of Person to
refer to an instance of Organization using the “ou” attribute (A.K.A. “Organization-Direct”).

NOTE: SIMPLEST Organization could also expose a “Persons-Direct” attribute that would allow an
organization to refer to each person that the organization contains. However, this approach tends
to scale poorly because a “Persons-Direct” attribute may have a large number of values. This
approach also introduces a requirement to synchronize the “Persons-Direct” attribute with any
inverse attribute such as the “Organization-Direct” attribute of the Person object class. It is usually
better simply to have each instance of Person refer to an instance of Organization.

SIMPLEST allows group nesting using the “Groups-Parents” and “Groups-Children” attributes of
Group. SIMPLEST allows a person to refer to any number of groups by means of the “Groups-
Direct” attribute of Person. This approach scales better than having a Group refer to each of its
members—see the discussion of “Persons-Direct” above in this section.

SIMPLEST allows a role nesting using the “Role-Parent” and “Roles-Children” attributes of Role.
The “Roles-Direct” attribute of Person allows a person to refer to any number of roles. This
approach scales better than having a Role refer to each of its members—see the discussion of
“Persons-Direct” above in this section.

NOTE: Group and Role are sometimes conflated--much as Person and Account are sometimes
conflated. SIMPLEST therefore defines the Group and Role schema entities with many of the
same attributes. Nonetheless, an SPML requester or provider that uses the SIMPLEST schema
SHOULD clearly distinguish clearly between Group and Role.

AccountType and AccountAttribute.

SIMPLEST defines AccountAttribute as an object class. Each Service may expose a multi-valued
attribute called “AccountAttributes”. Each value of “AccountAttributes” identifies an instance of
AccountAttribute that the Service defines. Each AccountAttribute defines a managed characteristic
of accounts on that service.

NOTE: An instance of Account may have attributes that correspond to instances of
AccountAttribute, but this relationship is implicit—no attribute represents a relationship between
Account and AccountAttribute. Instead, an instance of account may simply have attributes that
correspond by name to AccountAttributes that the Service defines.

SIMPLEST also defines a “AccountType” as an object class. Each Service may expose a multi-
valued attribute called “AccountTypes”. Each value of “AccountTypes” identifies an instance of
AccountType that the Service defines. Each instance of AccountType defines a category of
account on that service. Each instance of Account has a single-valued “AccountType” attribute that
identifies the type of the account.

SIMPLEST-domain-model.odt Page 7 of 8

130
131
132
133
134

135
136
137
138

139
140
141

142

143
144
145

146
147
148
149
150
151

152
153
154
155

156
157
158
159

160
161
162
163

164

165
166
167
168

169
170
171
172

173
174
175
176
177

7

NOTE: An instance of AccountType may imply a set of values for an AccountAttribute, but this
relationship is implicit—no attribute represents a relationship between AccountType and
AccountAttribute. Instead, an instance of AccountType may simply have attributes that correspond
by name to AccountAttributes that the Service defines.

SIMPLEST-domain-model.odt Page 8 of 8

178

179
180
181
182

8

	Domain Model for Identity Management
	1.1. Person, Account and Service
	1.2. Organization, Group and Role
	1.3. AccountType and AccountAttribute
	1.4. SIMPLEST Relationships

