
 1

This document is a proposed revision 1
of Section 8 of ebRS v1.0 (27 June 2001) 2

Submitted on behalf of the Registry Query Team 3
by Len Gallagher, Oct 12, 2001 4

8. Object(?) Query Management Service 5
 6
NOTE to EDITOR: Some changes will be needed to the introduction of Section 8, “Query Management”, 7
in the existing ebRS document to reflect the status of Section 8.1, Browse and Drill Down Query Support”, 8
and Section 8.3, “SQL Query Support”, after voting results are final. This proposal deals primarily with 9
Section 8.2, “Filter Query Support” and with the re-ordering the existing Section 8.4, “Ad Hoc Query 10
Request/Response”, to make it the new Section 8.1. 11

8.1 Ad Hoc Query Request/Response 12
 13
NOTE to EDITOR: This section is the result of the Query team’s decision to move Section 8.4, Ad Hoc 14
Query Request/Response”, to make it the new Section 8.1, and to change the name of 15
“ObjectQueryManager” to just “QueryManager”. I’ve copied the text from ebRS v1.0 and removed the 16
word “Object” as a qualifier of Query. This “Object” wording change will have ramifications in Appendix A 17
and in the RAWS proposal that will have to be addressed by the Editor. 18
 19
A client submits an ad hoc query to the ObjectQueryManager by sending an AdhocQueryRequest. The 20
AdhocQueryRequest contains a sub-element that defines a query in one of the supported Registry query 21
mechanisms. 22
The ObjectQueryManager sends an AdhocQueryResponse either synchronously or asynchronously back 23
to the client. The AdhocQueryResponse returns a collection of objects whose element type is in the set of 24
element types represented by the leaf nodes of the RegistryEntry hierarchy in [ebRIM]. 25

 26

 27
Figure 1: Submit Ad Hoc Query Sequence Diagram 28

For details on the schema for the business documents shown in this process refer to Error! Reference 29
source not found.. 30
 31

 2

8.2 Filter Query Support 32
FilterQuery is an XML syntax that provides simple query capabilities for any ebXML conforming Registry 33
implementation. Each query alternative is directed against a single class defined by the ebXML Registry 34
Information Model (ebRIM). The result of such a query is a set of instances of that class. A FilterQuery 35
may be a stand-alone query or it may be the initial action of a ReturnRegistryEntry query or a 36
ReturnRepositoryItem query. 37
A client submits a FilterQuery, a ReturnRegistryEntry query, or a ReturnRepositoryItem query to the 38
ObjectQueryManager as part of an AdhocQueryRequest. The ObjectQueryManager sends an 39
AdhocQueryResponse back to the client, enclosing the appropriate FilterQueryResponse, 40
ReturnRegistryEntryResponse, or ReturnRepositoryItemResponse specified herein. The sequence 41
diagrams for AdhocQueryRequest and AdhocQueryResponse are specified in Section 8.1. 42
Each FilterQuery alternative is associated with an ebRIM Binding that identifies a hierarchy of classes 43
derived from a single class and its associations with other classes as defined by ebRIM. Each choice of a 44
class pre-determines a virtual XML document that can be queried as a tree. For example, let C be a 45
class, let Y and Z be classes that have direct associations to C, and let V be a class that is associated 46
with Z. The ebRIM Binding for C might be as in Figure 2. 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64

Figure 2: Example ebRIM Binding 65

 66
Label1 identifies an association from C to Y, Label2 identifies an association from C to Z, and Label3 67
identifies an association from Z to V. Labels can be omitted if there is no ambiguity as to which ebRIM 68
association is intended. The name of the query is determined by the root class, i.e. this is an ebRIM 69
Binding for a CQuery. The Y node in the tree is limited to the set of Y instances that are linked to C by the 70
association identified by Label1. Similarly, the Z and V nodes are limited to instances that are linked to 71
their parent node by the identified association. 72
Each FilterQuery alternative depends upon one or more class filters, where a class filter is a restricted 73
predicate clause over the attributes of a single class. The supported class filters are specified in Section 74
8.2.9 and the supported predicate clauses are defined in Section Error! Reference source not found.. 75
A FilterQuery will be composed of elements that traverse the tree to determine which branches satisfy the 76
designated class filters, and the query result will be the set of root node instances that support such a 77
branch. 78
In the above example, the CQuery element will have three subelements, one a CFilter on the C class to 79
eliminate C instances that do not satisfy the predicate of the CFilter, another a YFilter on the Y class to 80
eliminate branches from C to Y where the target of the association does not satisfy the YFilter, and a 81
third to eliminate branches along a path from C through Z to V. The third element is called a branch 82
element because it allows class filters on each class along the path from C to V. In general, a branch 83
element will have subelements that are themselves class filters, other branch elements, or a full-blown 84
query on the terminal class in the path. 85

C

Y Z

V

Label1 Label2

Label3

 3

If an association from a class C to a class Y is one-to-zero or one-to-one, then at most one branch or filter 86
element on Y is allowed. However, if the association is one-to-many, then multiple filter or branch 87
elements are allowed. This allows one to specify that an instance of C must have associations with 88
multiple instances of Y before the instance of C is said to satisfy the branch element. 89
The FilterQuery syntax is tied to the structures defined in ebRIM. Since ebRIM is intended to be stable, 90
the FilterQuery syntax is stable. However, if new structures are added to the ebRIM, then the FilterQuery 91
syntax and semantics can be extended at the same time. 92
Support for FilterQuery is required of every conforming ebXML Registry implementation, but other query 93
options are possible. The Registry will hold a self-describing CPP that identifies all supported 94
AdhocQuery options. This profile is described in Section Error! Reference source not found.. 95
The ebRIM Binding paragraphs in Sections 8.2.2 through 8.2.6 below identify the virtual hierarchy for 96
each FilterQuery alternative. The Semantic Rules for each query alternative specify the effect of that 97
binding on query semantics. 98
The ReturnRegistryEntry and ReturnRepositoryItem services defined below provide a way to structure an 99
XML document as an expansion of the result of a RegistryEntryQuery. The ReturnRegistryEntry element 100
specified in Section 8.2.7 allows one to specify what metadata one wants returned with each registry 101
entry identified in the result of a RegistryEntryQuery. The ReturnRepositoryItem specified in Section 102
8.2.8 allows one to specify what repository items one wants returned based on their relationships to the 103
registry entries identified by the result of a RegistryEntryQuery. 104

105

 4

8.2.1 FilterQuery 105

Purpose 106
To identify a set of registry instances from a specific registry class. Each alternative assumes a specific 107
binding to ebRIM. The query result for each query alternative is a set of references to instances of the 108
root class specified by the binding. The status is a success indication or a collection of warnings and/or 109
exceptions. 110

Definition 111
 112
<!ELEMENT FilterQuery 113
 (RegistryEntryQuery 114
 | AuditableEventQuery 115
 | ClassificationNodeQuery 116
 | RegistryPackageQuery 117
 | OrganizationQuery)> 118
 119
<!ELEMENT FilterQueryResult 120
 (RegistryEntryQueryResult 121
 | AuditableEventQueryResult 122
 | ClassificationNodeQueryResult 123
 | RegistryPackageQueryResult 124
 | OrganizationQueryResult)> 125
 126
<!ELEMENT RegistryEntryQueryResult (RegistryEntryView*)> 127
 128
<!ELEMENT RegistryEntryView EMPTY > 129
<!ATTLIST RegistryEntryView 130
 id CDATA #REQUIRED 131
 name CDATA #REQUIRED 132
 contentURI CDATA #IMPLIED > 133
 134
<!ELEMENT AuditableEventQueryResult (AuditableEventView*)> 135
 136
<!ELEMENT AuditableEventView EMPTY > 137
<!ATTLIST AuditableEventView 138
 id CDATA #REQUIRED 139
 name CDATA #REQUIRED 140
 eventType CDATA #REQUIRED 141
 timestamp CDATA #REQUIRED > 142
 143
<!ELEMENT ClassificationNodeQueryResult (ClassificationNodeView*)> 144
 145
<!ELEMENT ClassificationNodeView EMPTY > 146
<!ATTLIST ClassificationNodeView 147
 id CDATA #REQUIRED 148
 name CDATA #REQUIRED 149
 code CDATA #REQUIRED 150
 parent CDATA #REQUIRED > 151
 152
<!ELEMENT RegistryPackageQueryResult (RegistryPackageView*)> 153
 154
<!ELEMENT RegistryPackageView EMPTY > 155
<!ATTLIST RegistryPackageView 156
 id CDATA #REQUIRED 157
 name CDATA #REQUIRED > 158

 5

 159
<!ELEMENT OrganizationQueryResult (OrganizationView*)> 160
 161
<!ELEMENT OrganizationView EMPTY > 162
<!ATTLIST OrganizationView 163
 id CDATA #REQUIRED 164
 name CDATA #REQUIRED > 165
 166
 167

Semantic Rules 168
1. The semantic rules for each FilterQuery alternative are specified in subsequent subsections. 169
2. Each FilterQueryResult is a set of XML elements to identify each instance of the result set. Each XML 170

attribute carries a value derived from the value of an attribute specified in the Registry Information 171
Model as follows: 172
a) id carries the value of the id attribute of the RegistryObject class, 173
b) name carries the value of the name attribute of the RegistryObjectClass, 174
c) contentURI, if present, carries the value of the contentURI attribute of the ExtrinsicObject class, 175
d) timestamp carries a character string literal value to represent the value of the timestamp attribute 176

of the AuditableEvent class, 177
e) code carries the value of the code attribute of the ClassificationNode class. 178

3. If an error condition is raised during any part of the execution of a FilterQuery, then the status 179
attribute of the XML RegistryResult is set to “failure” and no query result element is returned; instead, 180
a RegistryErrorList element must be returned with its highestSeverity element set to “error”. At least 181
one of the RegistryError elements in the RegistryErrorList will have its severity attribute set to “error”. 182

4. If no error conditions are raised during execution of a FilterQuery, then the status attribute of the XML 183
RegistryResult is set to “success” and an appropriate query result element must be included. If a 184
RegistryErrorList is also returned, then the highestSeverity attribute of the RegistryErrorList is set to 185
“warning” and the serverity attribute of each RegistryError is set to “warning”. 186

 187
 188

189

 6

8.2.2 RegistryEntryQuery 189

Purpose 190
To identify a set of registry entry instances as the result of a query over selected registry metadata. 191

ebRIM Binding 192
 193

 194

 195

 196

 197

 198

 199

 200

 201

 202

 203
 204

 205

Definition 206
 207
<!ELEMENT RegistryEntryQuery 208
 (RegistryEntryFilter?, 209
 SourceAssociationBranch*, 210
 TargetAssociationBranch*, 211
 HasClassificationBranch*, 212
 SubmittingOrganizationBranch?, 213
 ResponsibleOrganizationBranch?, 214
 ExternalIdentifierBranch*, 215
 ExternalLinkBranch*, 216
 HasSlotBranch*, 217
 HasAuditableEventBranch*)> 218
 219
<!ELEMENT SourceAssociationBranch 220
 (AssociationFilter?, 221
 (RegistryEntryFilter? | RegistryEntryQuery?))> 222
 223
<!ELEMENT TargetAssociationBranch 224
 (AssociationFilter?, 225
 (RegistryEntryFilter? | RegistryEntryQuery?))> 226
 227
<!ELEMENT HasClassificationBranch 228
 (ClassificationFilter?, 229

RegistryEntry

 Registry
 Entry

Association Classification Organization

Organization

Auditable
Event Association

Source

SubmittingOrganization

ResponsibleOrganization

Target

Registry
Entry

Registry
Entry

Classification
 Scheme

Target
Source

External
Link

External
Identifier

Slot

Path

Classification
 Node

Registry
 Entry

 Path
Element

 Slot
Element

 7

 FromSchemeBranch?, 230
 HasPathBranch?, 231
 LocalNodeBranch?, 232
 SubmittingOrganizationBranch?)> 233
 234
<!ELEMENT FromSchemeBranch 235
 (ClassificationSchemeFilter | RegistryEntryQuery)> 236
 237
<!ELEMENT HasPathBranch 238
 (PathFilter | XpathNodeExpression | PathElementFilter+)> 239
 240
<!ELEMENT XpathNodeExpression (#PCDATA)> 241
 242

Author’sNOTE: The HasPathBranch specifies 3 alternatives, each of which has flaws. PathFilter and 243
PathElementFilter depend upon the definition of new methods for the ClassificationNode and 244
Classification classes in ebRIM and the XpathNodeExpression depends upon a fully specified getPath() 245
method in the ClassificationNode class and a specification of an XPATH Expresssion. The PathFilter 246
option remains in the ebRS specification even if none of the supporting proposals are adopted, although 247
the levelNumber attribute is deleted if the getLevelNumber() proposal fails. The DEFAULT action for the 248
other two is that they remain in the specification if all of their supporting proposals pass, but are deleted if 249
any one of the supporting proposals for it fails when voted on by the full Registry TC. The supporting 250
proposals for each option are: 251
 252
PathFilter 253
 getLevelNumber() http://lists.oasis-open.org/archives/regrep-query/200110/pdf00001.pdf 254
 getPath() http://lists.oasis-open.org/archives/regrep-query/200110/pdf00006.pdf 255
 256
XpathNodeExpression 257
 getPath() http://lists.oasis-open.org/archives/regrep-query/200110/pdf00006.pdf 258
 XPATH Expression http://lists.oasis-open.org/archives/regrep-query/200110/pdf00007.pdf 259
 260
PathElementFilter 261
 getLevelNumber() http://lists.oasis-open.org/archives/regrep-query/200110/pdf00001.pdf 262
 getPathElements() http://lists.oasis-open.org/archives/regrep-query/200110/pdf00004.pdf 263
 264
It is possible that one or more of these alternatives will become superfluous with respect to the others, 265
with likely deletion of the less useful alternative(s) even if fully specified. 266

 267
<!ELEMENT LocalNodeBranch 268
 (ClassificationNodeFilter? | ClassificationNodeQuery?)> 269
 270
<!ELEMENT SubmittingOrganizationBranch 271
 (OrganizationFilter | OrganizationQuery)> 272
 273
<!ELEMENT ResponsibleOrganizationBranch 274
 (OrganizationFilter? | OrganizationQuery?)> 275
 276
<!ELEMENT ExternalIdentifierBranch 277
 (ExternalIdentifierFilter?, 278
 SubmittingOrganizationBranch?)> 279
 280
<!ELEMENT ExternalLinkBranch 281

 (ExternalLinkFilter)> 282
 283
<!ELEMENT HasSlotBranch 284
 (SlotFilter?, 285
 SlotElementFilter*)> 286
 287

 8

<!ELEMENT HasAuditableEventBranch 288
 (AuditableEventFilter? | AuditableEventQuery?)> 289
 290

 291

Semantic Rules 292
1. Let RE denote the set of all persistent RegistryEntry instances in the Registry. The following steps will 293

eliminate instances in RE that do not satisfy the conditions of the specified filters. 294
a) If a RegistryEntryFilter is not specified, or if RE is empty, then continue below; otherwise, let x be 295

a registry entry in RE. If x does not satisfy the RegistryEntryFilter as defined in Section 8.2.9, then 296
remove x from RE. 297

b) If a SourceAssociationBranch element is not specified, or if RE is empty, then continue below; 298
otherwise, let x be a remaining registry entry in RE. If x is not the source object of some 299
Association instance, then remove x from RE; otherwise, treat each SourceAssociationBranch 300
element separately as follows: 301
If no AssociationFilter is specified within the SourceAssociationBranch, then let AF be the set of 302
all Association instances that have x as a source object; otherwise, let AF be the set of 303
Association instances that satisfy the AssociationFilter and have x as the source object. If AF is 304
empty, then remove x from RE. If no RegistryEntryFilter or RegistryEntryQuery is specified within 305
SourceAssociationBranch, then let RET be the set of all RegistryEntry instances that are the 306
target object of some element of AF; otherwise, let RET be the set of RegistryEntry instances that 307
satisfy the RegistryEntryFilter or RegistryEentryQuery and are the target object of some element 308
of AF. If RET is empty, then remove x from RE. 309

c) If a TargetAssociationBranch element is not specified, or if RE is empty, then continue below; 310
otherwise, let x be a remaining registry entry in RE. If x is not the target object of some 311
Association instance, then remove x from RE; otherwise, treat each TargetAssociationBranch 312
element separately as follows: 313
If no AssociationFilter is specified within TargetAssociationBranch, then let AF be the set of all 314
Association instances that have x as a target object; otherwise, let AF be the set of Association 315
instances that satisfy the AssociationFilter and have x as the target object. If AF is empty, then 316
remove x from RE. If no RegistryEntryFilter or RegistryEntryQuery is specified within 317
TargetAssociationBranch, then let RES be the set of all RegistryEntry instances that are the 318
source object of some element of AF; otherwise, let RES be the set of RegistryEntry instances 319
that satisfy the RegistryEntryFilter or RegistryEntryQuery and are the source object of some 320
element of AF. If RES is empty, then remove x from RE. 321

d) If a HasClassificationBranch element is not specified, or if RE is empty, then continue below; 322
otherwise, let x be a remaining registry entry in RE. If x is not the classifiedObject of some 323
Classification instance, then remove x from RE; otherwise, treat each HasClassificationBranch 324
element separately as follows: 325
If no ClassificationFilter is specified within the HasClassificationBranch, then let CL be the set of 326
all Classification instances that have x as the classifiedObject; otherwise, let CL be the set of 327
Classification instances that satisfy the ClassificationFilter and have x as the classifiedObject. If 328
CL is empty, then remove x from RE and continue below. Otherwise, if CL is not empty, and if a 329
FromSchemeBranch is specified, then replace CL by the set of remaining Classification instances 330
in CL whose defining classification scheme satisfies the ClassificationSchemeFilter or the 331
RegistryEntryQuery immediately contained in the FromSchemeBranch. If the new CL is empty, 332
then remove x from RE and continue below. Otherwise, if CL remains not empty, and if a 333
HasPathBranch is specified, then replace CL by the set of remaining Classification instances in 334
CL that satisfy the PathFilter, the XpathNodeExpression, or every one of the PathElementFilter 335
elements immediately contained in the HasPathBranch. If the new CL is empty, then remove x 336
from RE and continue below. Otherwise, if CL remains not empty, and if a LocalNodeBranch is 337
specified, then replace CL by the set of remaining Classification instances in CL for which a local 338
node exists and for which that local node satisfies the ClassificationNodeFilter or the 339
ClassificationNodeQuery immediately contained in the LocalNodeBranch. . If the new CL is 340
empty, then remove x from RE and continue below. Otherwise, if CL remains not empty, and if a 341
SubmittingOrganizationBranch is specified, then replaceCL by the set of remaining Classification 342
instances in CL for which the submitting organization of that classification satisfies the 343

 9

OrganizationFilter or OrganizationQuery immediately contained in the 344
SubmittingOrganizationBranch. If the new CL is empty, then remove x from RE. 345

e) If a SubmittingOrganizationBranch element is not specified, or if RE is empty, then continue 346
below; otherwise, let x be a remaining registry entry in RE. If the submitting organization for x 347
does not satisfy the OrganizationFilter or OrganizationQuery immediately contained in the 348
SubmittingOrganizationBranch, then remove x from RE. 349

f) If a ResponsibleOrganizationBranch element is not specified, or if RE is empty, then continue 350
below; otherwise, let x be a remaining registry entry in RE. If x does not have a responsible 351
organization, then remove x from RE and continue below; otherwise, if an OrganizationFilter or 352
OrganizationQuery is specified within the ResponsibleOrganizationBranch and if the responsible 353
organization for x does not satisfy the OrganizationFilter or OrganizationQuery, then remove x 354
from RE. 355

g) If an ExternalIdentifierBranch element is not specified, or if RE is empty, then continue below; 356
otherwise, let x be a remaining registry entry in RE. If x is not linked to some ExternalIdentifier 357
instance, then remove x from RE; otherwise, treat each ExternalIdentifierBranch element 358
separately as follows: If an ExternalIdentifierFilter is not specified, then let EI be the set of 359
ExternalIdentifier instances that are linked to x; otherwise, let EI be the set of ExternalIdentifier 360
instances that satisfy the ExternalIdentifierFilter and are linked to x. If EI is empty, then remove x 361
from RE and continue below. Otherwise, if EI remains not empty, and if a 362
SubmittingOrganizationBranch is specified, replace EI by the set of remaining ExternalIdentifier 363
instances in EI for which the OrganizationFilter or OrganizationQuery immediately contained in 364
the SubmittingOrganizationBranch is valid. If the new EI is empty, then remove x from RE. 365

h) If an ExternalLinkBranch element is not specified, or if RE is empty, then continue below; 366
otherwise, let x be a remaining registry entry in RE. If x is not linked to some ExternalLink 367
instance, then remove x from RE; otherwise, treat each ExternalLinkBranch element separately 368
as follows: Let EL be the set of ExternalLink instances that satisfy the ExternalLinkFilter directly 369
contained in the ExternalLinkBranch and are linked to x. If EL is empty, then remove x from RE. 370

i) If a HasSlotBranch element is not specified, or if RE is empty, then continue below; otherwise, let 371
x be a remaining registry entry in RE. If x is not linked to some Slot instance, then remove x from 372
RE and continue below; otherwise, treat each HasSlotBranch element separately as follows: If a 373
SlotFilter is not specified within HasSlotBranch, then let SL be the set of all Slot instances for x; 374
otherwise, let SL be the set of Slot instances that satisfy the SlotFilter and are Slot instances for 375
x. If SL is empty, then remove x from RE and continue below. Otherwise, if SL remains not 376
empty, and if a SlotElementFilter is specified, replace SL by the set of remaining Slot instances in 377
SL for which every specified SlotElementFilter is valid. If SL is empty, then remove x from RE. 378

j) If a HasAuditableEventBranch element is not specified, or if RE is empty, then continue below; 379
otherwise, let x be a remaining registry entry in RE. If x is not linked to some AuditableEvent 380
instance, then remove x from RE; otherwise, treat each HasAuditableEventBranch element 381
separately as follows: If an AuditableEventFilter or AuditableEventQuery is not specified within 382
HasAuditableEventBranch, then let AE be the set of all AuditableEvent instances for x; otherwise, 383
let AE be the set of AuditableEvent instances that satisfy the AuditableEventFilter or 384
AuditableEventQuery and are auditable events for x. If AE is empty, then remove x from RE. 385

2. If RE is empty, then raise the warning: registry entry query result is empty; otherwise, return RE as 386
the result of the RegistryEntryQuery. 387

3. Return any accumulated warnings or exceptions as the StatusResult associated with the 388
RegistryEntryQuery. 389

Examples 390
A client wishes to establish a trading relationship with XYZ Corporation and wants to know if they have 391
registered any of their business documents in the Registry. The following query returns a set of registry 392
entry instances for currently registered items submitted by any organization whose name includes the 393
string "XYZ". It does not return any registry entry instances for superseded, replaced, deprecated, or 394
withdrawn items. 395

 396
<RegistryEntryQuery> 397
 <RegistryEntryFilter> 398

 10

 status EQUAL "Approved" -- code by Clause, Section Error! Reference 399
source not found. 400

 </RegistryEntryFilter> 401
 <SubmittingOrganizationBranch> 402
 <OrganizationFilter> 403
 name CONTAINS "XYZ" -- code by Clause, Section Error! Reference 404

source not found. 405
 </OrganizationFilter> 406
 </SubmittingOrganizationBranch> 407
</RegistryEntryquery> 408
 409

A client is using the United Nations Standard Product and Services Classification (UNSPSC) scheme and 410
wants to identify all companies that deal with products classified as "Integrated circuit components", i.e. 411
UNSPSC code "321118". The client knows that companies have registered their Collaboration Protocol 412
Profile (CPP) documents in the Registry, and that each such profile has been classified by UNSPSC 413
according to the products the company deals with. However, the client does not know if the UNSPSC 414
classification scheme is internal or external to this registry. The following query returns a set of approved 415
registry entry instances for CPP’s of companies that deal with integrated circuit components. 416

 417
<RegistryEntryQuery> 418
 <RegistryEntryFilter> 419
 objectType EQUAL "CPP" AND -- code by Clause, Section Error! Reference 420

source not found. 421
 status EQUAL "Approved" 422
 </RegistryEntryFilter> 423
 <HasClassificationBranch> 424
 <FromSchemeBranch> 425
 <ClassificationSchemeFilter> 426
 id EQUAL "urn:org:un:spsc:cs2001" -- code by Clause, Section Error! 427

Reference source not found. 428
 </ClassificationSchemeFilter> 429
 </FromSchemeBranch> 430
 <HasPathBranch> 431
 <PathFilter> 432
 code EQUAL "321118" 433
 </PathFilter> 434
 </HasPathBranch> 435
 <HasClassificationBranch> 436
</RegistryEntryQuery> 437

 438
A client application needs all items that are classified by two different classification schemes, one based 439
on "Industry" and another based on "Geography". Both schemes have been defined by ebXML and are 440
registered as "urn:ebxml:cs:industry" and "urn:ebxml:cs:geography", respectively. The following query 441
identifies registry entries for all registered items that are classified by Industry as any subnode of 442
"Automotive" and by Geography as any subnode of "Asia/Japan". 443
 444

<RegistryEntryQuery> 445
 <HasClassificationBranch> 446
 <FromSchemeBranch> 447
 <ClassificationSchemeFilter> 448
 id EQUAL "urn:ebxml:cs:industry" -- code by Clause, Section Error! 449

Reference source not found. 450
 </ClassificationSchemeFilter> 451
 </FromSchemeBranch> 452
 <HasPathBranch> 453
 <XpathExpression> 454
 getPath = “//Automotive” 455

 11

 </XpathExpression> 456
 </HasPathExpression> 457
 </HasClassificationBranch> 458
 <HasClassificationBranch> 459
 <FromSchemeBranch> 460
 <ClassificationSchemeFilter> 461
 id EQUAL "urn:ebxml:cs:geography" -- code by Clause, Section Error! 462

Reference source not found. 463
 </ClassificationSchemeFilter> 464
 </FromSchemeBranch> 465
 <HasPathBranch> 466
 <PathFilter> 467
 path STARTSWITH "/Geography-id/Asia/Japan" 468
 </PathFilter> 469
 </HasPathBranch> 470
 </HasClassificationBranch> 471
</RegistryEntryQuery> 472

 473
A client application wishes to identify all registry Package instances that have a given registry entry as a 474
member of the package. The following query identifies all registry packages that contain the registry entry 475
identified by URN "urn:path:myitem" as a member: 476
 477

<RegistryEntryQuery> 478
 <RegistryEntryFilter> 479
 objectType EQUAL "Package" -- code by Clause, Section Error! Reference 480

source not found. 481
 </RegistryEntryFilter> 482
 <SourceAssociationBranch> 483
 <AssociationFilter> 484
 associationType EQUAL "HasMember" -- code by Clause, Section Error! 485

Reference source not found. 486
 </AssociationFilter> 487
 <RegistryEntryFilter> 488
 id EQUAL "urn:path:myitem" -- code by Clause, Section Error! Reference 489

source not found. 490
 </RegistryEntryFilter> 491
 </SourceAssociationBranch> 492
</RegistryEntryQuery> 493

 494
A client application wishes to identify all RegistryEntry instances that are classified by some internal 495
classification scheme and have some given keyword as part of the name or description of one of the 496
classification nodes of that classification scheme. The following query identifies all such RegistryEntry 497
instances. The query takes advantage of the knowledge that the classification scheme is internal, and 498
thus that all of its nodes are fully described as ClassificationNode instances. 499
 500

<RegistryEntryQuery> 501
 <HasClassificationBranch> 502
 <LocalNodeBranch> 503
 <ClassificationNodeFilter> 504
 505
 name CONTAINS "transistor" OR -- code by Clause, Section Error! 506

Reference source not found. 507
 description CONTAINS "transistor" 508
 </ClassificationNodeFilter> 509
 </LocalNodeBranch> 510
 </HasClassificationBranch> 511
</RegistryEntryQuery 512

513

 12

8.2.3 AuditableEventQuery 513

Purpose 514
To identify a set of auditable event instances as the result of a query over selected registry metadata. 515

ebRIM Binding 516

Definition 517
 518

<!ELEMENT AuditableEventQuery 519
 (AuditableEventFilter?, 520
 RegistryEntryQuery*, 521
 InvokedByBranch?)> 522
 523
<!ELEMENT InvokedByBranch 524
 (UserFilter?, 525
 OrganizationQuery?)> 526

 527

Semantic Rules 528
1. Let AE denote the set of all persistent AuditableEvent instances in the Registry. The following steps 529

will eliminate instances in AE that do not satisfy the conditions of the specified filters. 530
 531

a) If an AuditableEventFilter is not specified, or if AE is empty, then continue below; otherwise, let x 532
be an auditable event in AE. If x does not satisfy the AuditableEventFilter as defined in Section 533
8.2.9, then remove x from AE. 534

b) If a RegistryEntryQuery element is not specified, or if AE is empty, then continue below; 535
otherwise, let x be a remaining auditable event in AE. Treat each RegistryEntryQuery element 536
separately as follows: 537
Let RE be the result set of the RegistryEntryQuery as defined in Section 8.2.2. If x is not an 538
auditable event for some registry entry in RE, then remove x from AE. 539

c) If an InvokedByBranch element is not specified, or if AE is empty, then continue below; otherwise, 540
let x be a remaining auditable event in AE. 541

Let u be the user instance that invokes x. If a UserFilter element is specified within the InvokedByBranch, 542
and if u does not satisfy that filter, then remove x from AE; otherwise, continue below. 543

AuditableEvent

RegistryEntry User

Organization

InvokedBy

 13

If an OrganizationQuery element is not specified within the InvokedByBranch, then continue 544
below; otherwise, let OG be the set of Organization instances that are identified by the 545
organization attribute of u and are in the result set of the OrganizationQuery. If OG is empty, then 546
remove x from AE. 547

2. If AE is empty, then raise the warning: auditable event query result is empty. 548
3. Return AE as the result of the AuditableEventQuery. 549
 550

Examples 551
A Registry client has registered an item and it has been assigned a URN identifier "urn:path:myitem". 552
The client is now interested in all events since the beginning of the year that have impacted that item. The 553
following query will return a set of AuditableEvent instances for all such events. 554
 555

<AuditableEventquery> 556
 <AuditableEventFilter> 557
 timestamp GE "2001-01-01" AND -- code by Clause, Section Error! 558

Reference source not found. 559
 registryEntry EQUAL "urn:path:myitem" 560
 </AuditableEventFilter> 561
</AuditableEventQuery> 562

 563
A client company has many registered objects in the Registry. The Registry allows events submitted by 564
other organizations to have an impact on your registered items, e.g. new classifications and new 565
associations. The following query will return a set of identifiers for all auditable events, invoked by some 566
other party, that had an impact on an item submitted by “myorg” and for which “myorg” is the responsible 567
organization. 568
 569

<AuditableEventQuery> 570
 <RegistryEntryQuery> 571
 <SubmittingOrganizationBranch> 572
 <OrganizationFilter> 573
 id EQUAL "urn:somepath:myorg" -- code by Clause, Section Error! 574

Reference source not found. 575
 </OrganizationFilter> 576
 </SubmittingOrganizationBranch> 577
 <ResponsibleOrganizationBranch> 578
 <OrganizationFilter> 579
 id EQUAL "urn:somepath:myorg" -- code by Clause, Section Error! 580

Reference source not found. 581
 </OrganizationFilter> 582
 </ResponsibleOrganizationBranch> 583
 </RegistryEntryQuery> 584
 <InvokedByBranch> 585
 <OrganizationQuery> 586
 <OrganizationFilter> 587
 id NOT_EQUAL "urn:somepath:myorg" -- code by Clause, Section 588

Error! Reference source not found. 589
 </OrganizationFilter> 590
 </OrganizationQuery> 591
 </InvokedByBranch> 592
</AuditableEventQuery> 593

594

 14

8.2.4 ClassificationNodeQuery 594

Purpose 595
To identify a set of classification node instances as the result of a query over selected registry metadata. 596

ebRIM Binding 597

 598

 599

 600

 601

 602

 603

 604

 605

 606

 607

 608

Definition 609
 610

<!ELEMENT ClassificationNodeQuery 611
 (ClassificationNodeFilter?, 612
 FromSchemeBranch?, 613
 HasPathBranch?, 614
 HasParentNodeBranch?, 615

 HasSubnodeBranch*)> 616
 617
<!ELEMENT HasParentNodeBranch 618
 (ClassificationNodeFilter?, 619
 HasPathBranch?, 620

 HasParentNodeBranch?)> 621
 622
<!ELEMENT HasSubnodeBranch 623
 (ClassificationNodeFilter?, 624
 HasPathBranch?, 625
 HasSubnodeBranch*)> 626

 627

Semantic Rules 628
1. Let CN denote the set of all persistent ClassificationNode instances in the Registry. The following 629

steps will eliminate instances in CN that do not satisfy the conditions of the specified filters. 630
a) If a ClassificationNodeFilter is not specified, or if CN is empty, then continue below; otherwise, let 631

x be a classification node in CN. If x does not satisfy the ClassificationNodeFilter as defined in 632
Section 8.2.9, then remove x from AE. 633

ClassificationNode

ClassificationNode ClassificationNode

 Path

Classification
 Scheme

RegistryEntry

FromScheme

HasParentNode HasSubnode

 15

b) If a FromSchemeBranch is not specified, or if CN is empty, then continue below; otherwise, let x 634
be a remaining classification node in CN. If the defining classification scheme of x does not 635
satisfy the ClassificationSchemeFilter or the RegistryEntryQuery immediately contained in the 636
FromSchemeBranch, then remove x from CN. 637

c) If a HasPathBranch is not specified, or if CN is empty, then continue below; otherwise, let x be a 638
remaining classification node in CN. If the path derived from x does not satisfy the PathFilter, the 639
XpathNodeExpression, or every one of the PathElementFilter elements immediately contained in 640
the HasPathBranch, then remove x from CN. 641

d) If a HasParentNodeBranch element is not specified, or if CN is empty, then continue below; 642
otherwise, let x be a remaining classification node in CN and execute the following paragraph 643
with n=x. 644

Let n be a classification node instance. If n does not have a parent node (i.e. if n is a base level 645
node), then remove x from CN and continue below; otherwise, let p be the parent node of n. If a 646
ClassificationNodeFilter element is directly contained in the HasParentNodeBranch and if p does 647
not satisfy the ClassificationNodeFilter, then remove x from CN. If a HasPathBranch element is 648
directly contained in HasParentNodeBranch and if the path derived from p does not satisfy the 649
PathFilter, the XpathNodeExpression, or every one of the PathElementFilter elements 650
immediately contained in the HasPathBranch, then remove x from CN. 651

If another HasParentNode element is directly contained within this HasParentNode element, then 652
repeat the previous paragraph with n=p. 653

e) If a HasSubnodeBranch element is not specified, or if CN is empty, then continue below; 654
otherwise, let x be a remaining classification node in CN. If x is not the parent node of some 655
ClassificationNode instance, then remove x from CN; otherwise, treat each HasSubnodeBranch 656
element separately and execute the following paragraph with n = x. 657

Let n be a classification node instance. If a ClassificationNodeFilter is not specified within the 658
HasSubnodeBranch element then let CNC be the set of all classification nodes that have n as 659
their parent node; otherwise, let CNC be the set of all classification nodes that satisfy the 660
ClassificationNodeFilter and have n as their parent node. If CNC is empty, then remove x from 661
CN; otherwise, let c be any member of CNC. If a HasPathBranch element is directly contained in 662
the HasSubodeBranch and if the path derived from c does not satisfy the PathFilter, the 663
XpathNodeExpression, or every one of the PathElementFilter elements immediately contained in 664
the HasPathBranch, then remove x from CN. If CNC is empty then remove x from CN; otherwise, 665
let y be an element of CNC and continue with the next paragraph. 666

If the HasSubnode element is terminal, i.e. if it does not directly contain another HasSubnode 667
element, then continue below; otherwise, repeat the previous paragraph with the new 668
HasSubnode element and with n = y. 669

2. If CN is empty, then raise the warning: classification node query result is empty. 670
3. Return CN as the result of the ClassificationNodeQuery. 671
 672

Examples 673
 674
A client application wishes to identify all of the classification nodes in the first three levels of a 675
classification scheme hierarchy. The client knows that the URN identifier for the underlying classification 676
scheme is “urn:ebxml:cs:myscheme”. The following query identifies all nodes at the first three levels. 677

 678
<ClassificationNodeQuery> 679
 <FromSchemeBranch> 680

 <ClassificationSchemeFilter> 681
 id EQUAL “urn:ebxml:cs:myscheme” -- code by Clause, Section Error! 682

Reference source not found. 683
 </ClassificationSchemeFilter> 684
</FromSchemeBranch> 685
<HasPathBranch> 686
 <PathFilter> 687

 16

 levelNumber LE “3” 688
 </PathFilter> 689
</HasPathBranch> 690

 </ClassificationNodeQuery> 691
 692
If, instead, the client wishes all levels returned, they could simply delete the HasPathBranch element from 693
the query. 694
 695
By assuming that the "path" of a node is known, and the URN of the classification scheme it comes from, 696
one could get all nodes at the next level below that node as follows: 697
 698
 <ClassificationNodeQuery> 699
 <FromSchemeBranch> 700
 <ClassificationSchemeFilter> 701
 id EQUAL "urn:some:known:scheme" 702
 </ClassificationSchemeFilter> 703
 </FromSchemeBranch> 704
 <HasParentBranch> 705
 <HasPathBranch> 706
 <PathFilter> 707
 path EQUAL "KnownPathOfGivenNode" 708
 </PathFilter> 709
 </HasPathBranch> 710
 </HasParentBranch> 711
 </ClassificationNodeQuery> 712
 713
If instead, one wanted ALL nodes in the subtree beneath the given node, then the following query could 714
be used: 715
 716
 <ClassificationNodeQuery> 717
 <FromSchemeBranch> 718
 <ClassificationSchemeFilter> 719
 id EQUAL "urn:some:known:scheme" 720
 </ClassificationSchemeFilter> 721
 </FromSchemeBranch> 722
 <HasParentBranch> 723
 <HasPathBranch> 724
 <PathFilter> 725
 path STARTSWITH "KnownPathOfGivenNode" 726
 </PathFilter> 727
 </HasPathBranch> 728
 </HasParentBranch> 729
 </ClassificationNodeQuery> 730

731

 17

8.2.5 RegistryPackageQuery 731
 732
NOTE to Registry TC: With the proposed re-structuring of ebRIM to make Package a subtype of 733
RegistryEntry, a RegistryPackageQuery may be superfluous because the Package class has no 734
attributes and no methods beyond those specified for RegistryEntry. There is nothing that can be done 735
with this RegisrtyPackageQuery that can’t also be done in a straight-forward manner with just a 736
RegistryEntryQuery. For example, see the penultimate example of Section 8.2.2, “RegistryEntryQuery”, or 737
the last example of Section 8.2.7, “ReturnRegistryEntry”. The possible deletion of RegistryPackageQuery 738
was not considered by the Query Team! It should be considered by the Registry TC. The DEFAULT 739
action is that this section will be deleted as unnecessary. 740

Purpose 741
To identify a set of registry package instances as the result of a query over selected registry metadata. 742

ebRIM Binding 743

Definition 744
 745
<!ELEMENT RegistryPackageQuery 746
 (PackageFilter?, 747
 HasMemberBranch*)> 748
 749
<!ELEMENT HasMemberBranch 750
 (RegistryEntryQuery?)> 751

 752

Semantic Rules 753
1. Let RP denote the set of all persistent Package instances in the Registry. The following steps will 754

eliminate instances in RP that do not satisfy the conditions of the specified filters. 755
a) If a PackageFilter is not specified, or if RP is empty, then continue below; otherwise, let x be a 756

package instance in RP. If x does not satisfy the PackageFilter as defined in Section 8.2.9, then 757
remove x from RP. 758

b) If a HasMemberBranch element is not directly contained in the RegistryPackageQuery, or if RP is 759
empty, then continue below; otherwise, let x be a remaining package instance in RP. If x is an 760
empty package, then remove x from RP; otherwise, treat each HasMemberBranch element 761
separately as follows: 762

 763
If a RegistryEntryQuery element is not directly contained in the HasMemberBranch element, then 764
let PM be the set of all RegistryEntry instances that are members of the package x; otherwise, let 765
RE be the set of RegistryEntry instances returned by the RegistryEntryQuery as defined in 766
Section 8.2.2 and let PM be the subset of RE that are members of the package x. If PM is empty, 767
then remove x from RP. 768

Package

RegistryEntry

HasMember

 18

2. If RP is empty, then raise the warning: registry package query result is empty. 769
3. Return RP as the result of the RegistryPackageQuery. 770
 771

Examples 772
A client application wishes to identify all package instances in the Registry that contain an Invoice 773
extrinsic object as a member of the package. 774
 775
 <RegistryPackageQuery> 776
 <HasMemberBranch> 777
 <RegistryEntryQuery> 778
 <RegistryEntryFilter> 779
 objectType EQ “Invoice” -- code by Clause, Section Error! Reference 780

source not found. 781
 </RegistryEntryFilter> 782
 </RegistryEntryQuery> 783
 </HasMemberBranch> 784
 </RegistryPackageQuery> 785
 786
A client application wishes to identify all package instances in the Registry that are not empty. 787
 788

<RegistryEntryQuery> 789
 <HasMemberBranch/> 790
</RegistryEntryQuery> 791
 792

A client application wishes to identify all package instances in the Registry that are empty. Since the 793
RegistryPackageQuery is not set up to do negations, clients will have to do two separate 794
RegistryPackageQuery requests, one to find all packages and another to find all non-empty packages, 795
and then do the set difference themselves. Alternatively, they could do a more complex 796
RegistryEntryQuery and check that the packaging association between the package and its members is 797
non-existent. 798
Note: A registry package is an intrinsic RegistryEntry instance that is completely determined by its 799
associations with its members. Thus a RegistryPackageQuery can always be re-specified as an 800
equivalent RegistryEntryQuery using appropriate “Source” and “Target” associations. However, the 801
equivalent RegistryEntryQuery is often more complicated to write. 802

803

 19

8.2.6 OrganizationQuery 803

Purpose 804
To identify a set of organization instances as the result of a query over selected registry metadata. 805

ebRIM Binding 806

 807

 808

 809

 810

 811

 812

 813

 814

 815

 816

 817

 818

Definition 819
 820
<!ELEMENT OrganizationQuery 821
 (OrganizationFilter?, 822
 SubmitsRegistryEntry*, 823
 HasParentOrganization?, 824
 InvokesEventBranch*)> 825
 826
<!ELEMENT SubmitsRegistryEntry (RegistryEntryQuery?)> 827
 828
<!ELEMENT HasParentOrganization 829
 (OrganizationFilter?, 830
 HasParentOrganization?)> 831
 832
<!ELEMENT InvokesEventBranch 833
 (UserFilter?, 834
 AuditableEventFilter?, 835
 RegistryEntryQuery?)> 836

Semantic Rules 837

1. Let ORG denote the set of all persistent Organization instances in the Registry. The following steps 838
will eliminate instances in ORG that do not satisfy the conditions of the specified filters. 839

Submits

Organization

Organization

HasParent

RegistryEntry
User

AuditableEvent

InvokesEvent

RegistryEntry

 20

a) If an OrganizationFilter element is not directly contained in the OrganizationQuery element, or if 840
ORG is empty, then continue below; otherwise, let x be an organization instance in ORG. If x 841
does not satisfy the OrganizationFilter as defined in Section 8.2.9, then remove x from RP. 842

b) If a SubmitsRegistryEntry element is not specified within the OrganizationQuery, or if ORG is 843
empty, then continue below; otherwise, consider each SubmitsRegistryEntry element separately 844
as follows: 845

If no RegistryEntryQuery is specified within the SubmitsRegistryEntry element, then let RES be 846
the set of all RegistryEntry instances that have been submitted to the Registry by organization x; 847
otherwise, let RE be the result of the RegistryEntryQuery as defined in Section 8.2.2 and let RES 848
be the set of all instances in RE that have been submitted to the Registry by organization x. If 849
RES is empty, then remove x from ORG. 850

c) If a HasParentOrganization element is not specified within the OrganizationQuery, or if ORG is 851
empty, then continue below; otherwise, execute the following paragraph with o = x: 852

Let o be an organization instance. If an OrganizationFilter is not specified within the 853
HasParentOrganization and if o has no parent (i.e. if o is a root organization in the Organization 854
hierarchy), then remove x from ORG; otherwise, let p be the parent organization of o. If p does 855
not satisfy the OrganizationFilter, then remove x from ORG. 856
If another HasParentOrganization element is directly contained within this HasParentOrganization 857
element, then repeat the previous paragraph with o = p. 858

d) If an InvokesEventBranch element is not specified within the OrganizationQuery, or if ORG is 859
empty, then continue below; otherwise, consider each InvokesEventBranch element separately 860
as follows: 861
If an UserFilter is not specified, and if x is not the submitting organization of some AuditableEvent 862
instance, then remove x from ORG. If an AuditableEventFilter is not specified, then let AE be the 863
set of all AuditableEvent instances that have x as the submitting organization; otherwise, let AE 864
be the set of AuditableEvent instances that satisfy the AuditableEventFilter and have x as the 865
submitting organization. If AE is empty, then remove x from ORG. If a RegistryEntryQuery is not 866
specified in the InvokesEventBranch element, then let RES be the set of all RegistryEntry 867
instances associated with an event in AE; otherwise, let RE be the result set of the 868
RegistryEntryQuery, as specified in Section 8.2.2, and let RES be the subset of RE of entries 869
submitted by x. If RES is empty, then remove x from ORG. 870

2. If ORG is empty, then raise the warning: organization query result is empty. 871
3. Return ORG as the result of the OrganizationQuery. 872
 873

Examples 874
A client application wishes to identify a set of organizations, based in France, that have submitted a 875
PartyProfile extrinsic object this year. 876
 877
 <OrganizationQuery> 878
 <OrganizationFilter> 879
 country EQUAL “France” -- code by Clause, Section Error! Reference 880

source not found. 881
 </OrganizationFilter> 882
 <SubmitsRegistryEntry> 883
 <RegistryEntryQuery> 884
 <RegistryEntryFilter> 885
 objectType EQUAL “CPP” -- code by Clause, Section Error! Reference 886

source not found. 887
 </RegistryEntryFilter> 888
 <HasAuditableEventBranch> 889
 <AuditableEventFilter> 890
 timestamp GE “2001-01-01” -- code by Clause, Section Error! 891

Reference source not found. 892
 </AuditableEventFilter> 893
 </HasAuditableEventBranch> 894

 21

 </RegistryEntryQuery> 895
 </SubmitsRegistryEntry> 896
 </OrganizationQuery> 897
 898
A client application wishes to identify all organizations that have XYZ, Corporation as a parent. The client 899
knows that the URN for XYZ, Corp. is urn:ebxml:org:xyz, but there is no guarantee that subsidiaries of 900
XYZ have a URN that uses the same format, so a full query is required. 901

 902
<OrganizationQuery> 903
 <HasParentOrganization> 904
 <OrganizationFilter> 905
 id EQUAL “urn:ebxml:org:xyz” -- code by Clause, Section Error! Reference 906

source not found. 907
 </OrganizationFilter> 908
 </HasParentOrganization> 909
</OrganizationQuery> 910

911

 22

8.2.7 ReturnRegistryEntry 911

Purpose 912
To construct an XML document that contains selected registry metadata associated with the registry 913
entries identified by a RegistryEntryQuery. NOTE: Initially, the RegistryEntryQuery could be the identifier 914
for a single registry entry. 915

Definition 916
 917

<!ELEMENT ReturnRegistryEntry 918
 (RegistryEntryQuery, 919
 WithClassifications?, 920
 WithSourceAssociations?, 921
 WithTargetAssociations?, 922
 WithAuditableEvents?, 923
 WithExternalIdentifiers?, 924
 WithExternalLinks?)> 925
 926
<!ELEMENT WithClassifications (ClassificationFilter?)> 927
<!ELEMENT WithSourceAssociations (AssociationFilter?)> 928
<!ELEMENT WithTargetAssociations (AssociationFilter?)> 929
<!ELEMENT WithAuditableEvents (AuditableEventFilter?)> 930
<!ELEMENT WithExternalIdentifiers (ExternalIdentifierFilter?)> 931
<!ELEMENT WithExternalLinks (ExternalLinkFilter?)> 932
 933
<!ELEMENT ReturnRegistryEntryResult 934
 (RegistryEntryMetadata*)> 935
 936
<!ELEMENT RegistryEntryMetadata 937
 (RegistryEntry, 938
 Classification*, 939
 SourceAssociations?, 940
 TargetAssociations?, 941
 AuditableEvent*, 942
 ExternalIdentifier*, 943
 ExternalLink*)> 944
 945
<!ELEMENT SourceAssociations (Association*)> 946
<!ELEMENT TargetAssociations (Association*)> 947

Semantic Rules 948
1. The RegistryEntry, Classification, Association, AuditableEvent, and ExternalLink elements contained 949

in the ReturnRegistryEntryResult are defined by the ebXML Registry schema specified in Appendix A. 950
2. Execute the RegistryEntryQuery according to the Semantic Rules specified in Section 8.2.2, and let R 951

be the result set of registry entry instances. Let S be the set of warnings and errors returned. If any 952
element in S is an error condition, then stop execution and return the same set of warnings and errors 953
along with the ReturnRegistryEntryResult. 954

3. If the set R is empty, then do not return a RegistryEntryMetadata subelement in the 955
ReturnRegistryEntryResult. Instead, raise the warning: no resulting registry entry. Add this warning to 956
the error list returned by the RegistryEntryQuery and return this enhanced error list with the 957
ReturnRegistryEntryResult. 958

4. For each registry entry E referenced by an element of R, use the attributes of E to create a new 959
RegistryEntry element as defined in Appendix A. Then create a new RegistryEntryMetadata element 960
as defined above to be the parent element of that RegistryEntry element. 961

5. If no With option is specified, then the resulting RegistryEntryMetadata element has no Classification, 962
SourceAssociations, TargetAssociations, AuditableEvent, or ExternalData subelements. The set of 963

 23

RegistryEntryMetadata elements, with the Error list from the RegistryEntryQuery, is returned as the 964
ReturnRegistryEntryResult. 965

6. If WithClassifications is specified, then for each E in R do the following: If a ClassificationFilter is not 966
present, then let C be any classification instance linked to E; otherwise, let C be a classification 967
instance linked to E that satisfies the ClassificationFilter (Section 8.2.9). For each such C, create a 968
new Classification element as defined in Appendix A. Add these Classification elements to their 969
parent RegistryEntryMetadata element. 970

7. If WithSourceAssociations is specified, then for each E in R do the following: If an AssociationFilter is 971
not present, then let A be any association instance whose source object is E; otherwise, let A be an 972
association instance that satisfies the AssociationFilter (Section 8.2.9) and whose source object is E. 973
For each such A, create a new Association element as defined in Appendix A. Add these Association 974
elements as subelements of the WithSourceAssociations and add that element to its parent 975
RegistryEntryMetadata element. 976

8. If WithTargetAssociations is specified, then for each E in R do the following: If an AssociationFilter is 977
not present, then let A be any association instance whose target object is E; otherwise, let A be an 978
association instance that satisfies the AssociationFilter (Section 8.2.9) and whose target object is E. 979
For each such A, create a new Association element as defined in Appendix A. Add these Association 980
elements as subelements of the WithTargetAssociations and add that element to its parent 981
RegistryEntryMetadata element. 982

9. If WithAuditableEvents is specified, then for each E in R do the following: If an AuditableEventFilter is 983
not present, then let A be any auditable event instance linked to E; otherwise, let A be any auditable 984
event instance linked to E that satisfies the AuditableEventFilter (Section 8.2.9). For each such A, 985
create a new AuditableEvent element as defined in Appendix A. Add these AuditableEvent elements 986
to their parent RegistryEntryMetadata element. 987

10. If WithExternalIdentifiers is specified, then for each E in R do the following: If an 988
ExternalIdentifierFilter is not present, then let I be any external identifier instance linked to E; 989
otherwise, let I be any external identifier instance linked to E that satisfies the ExternalIdentifierFilter 990
(Section 8.2.9). For each such I, create a new ExternalIdentifier element as defined in Appendix A. 991
Add these ExternalIdentifier elements to their parent RegistryEntryMetadata element. 992

11. If WithExternalLinks is specified, then for each E in R do the following: If an ExternalLinkFilter is not 993
present, then let L be any external link instance linked to E; otherwise, let L be any external link 994
instance linked to E that satisfies the ExternalLinkFilter (Section 8.2.9). For each such D, create a 995
new ExternalLink element as defined in Appendix A. Add these ExternalLink elements to their parent 996
RegistryEntryMetadata element. 997

12. If any warning or error condition results, then add the code and the message to the 998
RegistryResponse element that includes the RegistryEntryQueryResult. 999

13. Return the set of RegistryEntryMetadata elements as the content of the ReturnRegistryEntryResult. 1000
 1001

Examples 1002
A customer of XYZ Corporation has been using a PurchaseOrder DTD registered by XYZ some time ago. 1003
Its URN identifier is "urn:com:xyz:po:325". The customer wishes to check on the current status of that 1004
DTD, especially if it has been superceded or replaced, and get all of its current classifications. The 1005
following query request will return an XML document with the registry entry for the existing DTD as the 1006
root, with all of its classifications, and with associations to registry entries for any items that have 1007
superceded or replaced it. 1008

 1009
<ReturnRegistryEntry> 1010
 <RegistryEntryQuery> 1011
 <RegistryEntryFilter> 1012
 id EQUAL "urn:com:xyz:po:325" -- code by Clause, Section Error! 1013

Reference source not found. 1014
 </RegistryEntryFilter> 1015
 </RegistryEntryQuery> 1016
 <WithClassifications/> 1017
 <WithSourceAssociations> 1018

 24

 <AssociationFilter> -- code by Clause, Section Error! 1019
Reference source not found. 1020

 associationType EQUAL "SupersededBy" OR 1021
 associationType EQUAL "ReplacedBy" 1022
 </AssociationFilter> 1023
 </WithSourceAssociations> 1024
</ReturnRegistryEntry> 1025

 1026
A client of the Registry registered an XML DTD several years ago and is now thinking of replacing it with 1027
a revised version. The identifier for the existing DTD is "urn:xyz:dtd:po97". The proposed revision is not 1028
completely upward compatible with the existing DTD. The client desires a list of all registered items that 1029
use the existing DTD so they can assess the impact of an incompatible change. The following query 1030
returns an XML document that is a list of all RegistryEntry elements that represent registered items that 1031
use, contain, or extend the given DTD. The document also links each RegistryEntry element in the list to 1032
an element for the identified association. 1033
 1034
 1035
 <ReturnRegistryEntry> 1036
 <RegistryEntryQuery> 1037
 <SourceAssociationBranch> 1038
 <AssociationFilter> -- code by Clause, Section Error! Reference 1039

source not found. 1040
 associationType EQUAL "Contains" OR 1041
 associationType EQUAL "Uses" OR 1042
 associationType EQUAL "Extends" 1043
 </AssociationFilter> 1044
 <RegistryEntryFilter> -- code by Clause, Section Error! Reference 1045

source not found. 1046
 id EQUAL "urn:xyz:dtd:po97" 1047
 </RegistryEntryFilter> 1048
 </SourceAssociationBranch> 1049
 </RegistryEntryQuery> 1050
 <WithSourceAssociations> 1051
 <AssociationFilter> -- code by Clause, Section Error! 1052

Reference source not found. 1053
 associationType EQUAL "Contains" OR 1054
 associationType EQUAL "Uses" OR 1055
 associationType EQUAL "Extends" 1056
 </AssociationFilter> 1057
 </WithSourceAssociations> 1058
 </ReturnRegistryEntry> 1059
 1060
A user has been browsing the registry and has found a registry entry that describes a package of core-1061
components that should solve the user's problem. The package URN identifier is "urn:com:cc:pkg:ccstuff". 1062
Now the user wants to know what's in the package. The following query returns an XML document with a 1063
registry entry for each member of the package along with that member's Uses and HasMemberBranch 1064
associations. 1065
 1066
 <ReturnRegistryEntry> 1067
 <RegistryEntryQuery> 1068
 <TargetAssociationBranch> 1069
 <AssociationFilter> -- code by Clause, Section Error! Reference 1070

source not found. 1071
 associationType EQUAL "HasMember" 1072
 </AssociationFilter> 1073
 <RegistryEntryFilter> -- code by Clause, Section Error! Reference 1074

source not found. 1075

 25

 id EQUAL "urn:com:cc:pkg:ccstuff" 1076
 </RegistryEntryFilter> 1077
 </TargetAssociationBranch> 1078
 </RegistryEntryQuery> 1079
 <WithSourceAssociations> 1080
 <AssociationFilter> -- code by Clause, Section Error! Reference 1081

source not found. 1082
 associationType EQUAL "HasMember" OR 1083
 associationType EQUAL "Uses" 1084
 </AssociationFilter> 1085
 </WithSourceAssociations> 1086
 </ReturnRegistryEntry> 1087

1088

 26

8.2.8 ReturnRepositoryItem 1088

Purpose 1089
To construct an XML document that contains one or more repository items, and some associated 1090
metadata, by submitting a RegistryEntryQuery to the registry/repository that holds the desired objects. 1091
NOTE: Initially, the RegistryEntryQuery could be the URN identifier for a single registry entry. 1092
 1093
NOTE to EDITOR: During the Query Team’s discussion of this proposal there was support for deleting the 1094
“WithDescription” option from the ReturnRepositoryItem XML element, but no vote to take that action. The 1095
strikeout in the Description and Semantic Rules sections below, if retained, would achieve that deletion. 1096

Definition 1097
 1098
<!ELEMENT ReturnRepositoryItem 1099
(RegistryEntryQuery, 1100
 RecursiveAssociationOption?, 1101
 WithDescription?)> 1102
 1103
<!ELEMENT RecursiveAssociationOption (AssociationType+)> 1104
<!ATTLIST RecursiveAssociationOption 1105
 depthLimit CDATA #IMPLIED > 1106
 1107
<!ELEMENT AssociationType EMPTY > 1108
<!ATTLIST AssociationType 1109
 role CDATA #REQUIRED > 1110
 1111
<!ELEMENT WithDescription EMPTY > 1112
 1113
<!ELEMENT ReturnRepositoryItemResult 1114
 (RepositoryItem*)> 1115
 1116
<!ELEMENT RepositoryItem 1117
 (ClassificationSchemeRepresentation 1118
 | RegistryPackageElements 1119
 | ExtrinsicObjectFile 1120
 | WithdrawnObject 1121
 | ExternalRegistryItem)> 1122
<!ATTLIST RepositoryItem 1123
 id CDATA #REQUIRED 1124
 name CDATA #REQUIRED 1125
 objectType CDATA #REQUIRED 1126
 status CDATA #REQUIRED 1127
 stability CDATA #REQUIRED 1128
 contentURI CDATA #IMPLIED 1129
 description CDATA #IMPLIED #REQUIRED > 1130
 1131
<!ELEMENT ClassificationSchemeRepresentation 1132

 (ClassificationNode+)> 1133
 1134
<!ELEMENT RegistryPackageElements 1135
 (RegistryObject*)> 1136
 1137
<!ELEMENT ExtrinsicObjectFile EMPTY > 1138
<!ATTLIST ExtrinsicObjectFile 1139
 contentURI CDATA #REQUIRED > -- REF to attached file 1140
 1141
<!ELEMENT WithdrawnObject EMPTY > 1142
 1143

 27

 <!ELEMENT ExternalRegistryItem EMPTY > 1144
 1145
 1146

Semantic Rules 1147
1. If the RecursiveOption element is not present , then set Limit=0. If the RecursiveOption element is 1148

present, interpret its depthLimit attribute as an integer literal. If the depthLimit attribute is not present, 1149
then set Limit = -1. A Limit of 0 means that no recursion occurs. A Limit of -1 means that recursion 1150
occurs indefinitely. If a depthLimit value is present, but it cannot be interpreted as a positive integer, 1151
then stop execution and raise the exception: invalid depth limit; otherwise, set Limit=N, where N is 1152
that positive integer. A Limit of N means that exactly N recursive steps will be executed unless the 1153
process terminates prior to that limit. 1154

2. Set Depth=0. Let Result denote the set of RepositoryItem elements to be returned as part of the 1155
ReturnRepositoryItemResult. Initially Result is empty. Semantic rules 4 through 10 determine the 1156
content of Result. 1157

3. If the WithDescription element is present, then set WSD="yes"; otherwise, set WSD="no". 1158
4. Execute the RegistryEntryQuery according to the Semantic Rules specified in Section 8.2.2, and let R 1159

be the result set of registry entry instances. Let S be the set of warnings and errors returned. If any 1160
element in S is an error condition, then stop execution and return the same set of warnings and errors 1161
along with the ReturnRepositoryItemResult. 1162

5. Execute Semantic Rules 6 and 7 with X as a set of registry references derived from R. After 1163
execution of these rules, if Depth is now equal to Limit, then return the content of Result as the set of 1164
RepositoryItem elements in the ReturnRepositoryItemResult element; otherwise, continue with 1165
Semantic Rule 8. 1166

6. Let X be a set of RegistryEntry instances. For each registry entry E in X, do the following: 1167
a) If E references a repository item in this registry, then create a new RepositoryItem element, with 1168

values for its attributes derived as specified in Semantic Rule 7. 1169
1) If E.objectType="ClassificationScheme", then put the classification scheme nodes 1170

described by E as a ClassificationSchemeRepresentation subelement of this 1171
RepositoryItem. 1172

2) If E.objectType="Package", then put the package members described by E as a 1173
RegistryPackageElements subelement of this RepositoryItem. 1174

3) Otherwise, i.e., if the repository item referenced by E has an unknown internal structure, 1175
then attach the file that represents that structure to the ReturnRepositoryItemResult. 1176
Create a new ExtrrinsicObjectFile as the subelement of this RepositoryItem and set the 1177
contentURI attribute to reference the attached file. 1178

b) If E references a registered object in some other registry, then create a new RepositoryItem 1179
element, with values for its attributes derived as specified in Semantic Rule 7, and create a new 1180
ExternalRegistryItem element as the subelement of this RepositoryItem. 1181

c) If E describes a repository item that has since been withdrawn, then create a new RepositoryItem 1182
element, with values for its attributes derived as specified in Semantic Rule 7, and create a new 1183
WithdrawnObject element as the subelement of this RepositoryItem. 1184

7. Let E be a registry entry and let RO be the RepositoryItem element created in Semantic Rule 6. Set 1185
the attributes of RO to the values derived from the corresponding attributes of E. If WSD="yes", 1186
include the value of the description attribute; otherwise, do not include it. Insert this new 1187
RepositoryItem element into the Result set. 1188

8. Let R be defined as in Semantic Rule Error! Reference source not found.. Execute Semantic Rule 1189
9 with Y as the set of RegistryEntry instances referenced by R. Then continue with Semantic rule 10. 1190

9. Let Y be a set of references to RegistryEntry instances. Let NextLevel be an empty set of 1191
RegistryEntry instances. For each registry entry E in Y, and for each AssociationType of the 1192
RecursiveAssociationOption, do the following: 1193
a) Let Z be the set of target items E' linked to E under Association instances having E as the source 1194

object, E' as the target object, and with the associationType of the association equal to the value 1195
of the role attribute of that AssociationType. 1196

b) Add the elements of Z to NextLevel. 1197
10. Let X be the set of new registry entries that are in NextLevel but are not yet represented in the Result 1198

set. 1199

 28

Case: 1200
a) If X is empty, then return the content of Result as the set of RepositoryItem elements in the 1201

ReturnRepositoryItemResult element. 1202
b) If X is not empty, then execute Semantic Rules 6 and 7 with X as the input set. When finished, 1203

add the elements of X to Y and set Depth=Depth+1. If Depth is now equal to Limit, then return 1204
the content of Result as the set of RepositoryItem elements in the ReturnRepositoryItemResult 1205
element; otherwise, repeat Semantic Rules 9 and 10 with the new set Y of registry entries. 1206

11. If any exception, warning, or other status condition results during the execution of the above, then 1207
return appropriate RegistryError elements in the RegistryResult associated with the 1208
ReturnRepositoryItemResult element created in Semantic Rule 5 or Semantic Rule 10. 1209

Examples 1210
A registry client has found a registry entry for a core-component item. The item's URN identity is 1211
"urn:ebxml:cc:goodthing". But "goodthing" is a composite item that uses many other registered items. The 1212
client desires the collection of all items needed for a complete implementation of "goodthing". The 1213
following query returns an XML document that is a collection of all needed items. The query follows all 1214
“Uses” and “ValidatesTo” association types through an arbitrary number of recursive steps to return every 1215
repository item in this registry that is needed by “goodthing”. 1216
 1217
 <ReturnRepositoryItem> 1218
 <RegistryEntryQuery> 1219
 <RegistryEntryFilter> -- code by Clause, Section Error! Reference 1220

source not found. 1221
 id EQUAL "urn:ebxml:cc:goodthing" 1222
 </RegistryEntryFilter> 1223
 </RegistryEntryQuery> 1224
 <RecursiveAssociationOption> 1225
 <AssociationType role="Uses" /> 1226
 <AssociationType role="ValidatesTo" /> 1227
 </RecursiveAssociationOption> 1228
 </ReturnRepositoryItem> 1229
 1230
A registry client has found a reference to a core-component routine ("urn:ebxml:cc:rtn:nice87") that 1231
implements a given business process. The client knows that all routines have a required association to 1232
their defining UML specification. The following query returns both the routine and its UML specification as 1233
a collection of two items in a single XML document. 1234
 1235
 <ReturnRepositoryItem> 1236
 <RegistryEntryQuery> 1237
 <RegistryEntryFilter> -- code by Clause, Section Error! Reference 1238

source not found. 1239
 id EQUAL "urn:ebxml:cc:rtn:nice87" 1240
 </RegistryEntryFilter> 1241
 </RegistryEntryQuery> 1242
 <RecursiveAssociationOption depthLimit="1" > 1243
 <AssociationType role="ValidatesTo" /> 1244
 </RecursiveAssociationOption> 1245
 </ReturnRepositoryItem> 1246
 1247
A user has been told that the 1997 version of the North American Industry Classification System (NAICS) 1248
is stored in a registry with URN identifier "urn:nist:cs:naics-1997". The following query would retrieve the 1249
complete classification scheme, with all 1810 nodes, as an XML document that contains all of the 1250
ClassificationNode instances for the ClassificationScheme instance identified by that URN. 1251
 1252
 <ReturnRepositoryItem> 1253
 <RegistryEntryQuery> 1254

 29

 <RegistryEntryFilter> -- code by Clause, Section Error! 1255
Reference source not found. 1256

 id EQUAL "urn:nist:cs:naics-1997" 1257
 </RegistryEntryFilter> 1258
 </RegistryEntryQuery> 1259
 </ReturnRepositoryItem> 1260
 1261
 1262

1263

 30

8.2.9 Registry Filters 1263

Purpose 1264
To identify a subset of the set of all persistent instances of a given registry class. 1265

Definition 1266
 1267
<!ELEMENT RegistryObjectFilter (Clause)> 1268
 1269
<!ELEMENT RegistryEntryFilter (Clause)> 1270
 1271
<!ELEMENT ExtrinsicObjectFilter (Clause)> 1272
 1273
<!ELEMENT PackageFilter (Clause)> 1274
 1275
<!ELEMENT OrganizationFilter (Clause)> 1276
 1277
<!ELEMENT ClassificationSchemeFilter (Clause)> 1278
 1279
<!ELEMENT ClassificationNodeFilter (Clause)> 1280
 1281
<!ELEMENT AssociationFilter (Clause)> 1282
 1283
<!ELEMENT ClassificationFilter (Clause)> 1284
 1285
<!ELEMENT ExternalLinkFilter (Clause)> 1286
 1287
<!ELEMENT ExternalIdentifierFilter (Clause)> 1288
 1289
<!ELEMENT SlotFilter (Clause)> 1290
 1291
<!ELEMENT AuditableEventFilter (Clause)> 1292
 1293
<!ELEMENT UserFilter (Clause)> 1294
 1295
<!ELEMENT PathFilter (Clause)> 1296
 1297
<!ELEMENT PathElementFilter (Clause)> 1298
 1299
<!ELEMENT SlotElementFilter (Clause)> 1300

 1301

Semantic Rules 1302
1. The Clause element is defined in Section Error! Reference source not found., Clause. 1303
2. For every RegistryObjectFilter XML element, the leftArgument attribute of any containing 1304

SimpleClause shall identify a public attribute of the RegistryObject UML class defined in [ebRIM]. If 1305
not, raise exception: object attribute error. The RegistryObjectFilter returns a set of identifiers for 1306
RegistryObject instances whose attribute values evaluate to True for the Clause predicate. 1307

3. For every RegistryEntryFilter XML element, the leftArgument attribute of any containing SimpleClause 1308
shall identify a public attribute of the RegistryEntry UML class defined in [ebRIM]. If not, raise 1309
exception: registry entry attribute error. The RegistryEntryFilter returns a set of identifiers for 1310
RegistryEntry instances whose attribute values evaluate to True for the Clause predicate. 1311

4. For every ExtrinsicObjectFilter XML element, the leftArgument attribute of any containing 1312
SimpleClause shall identify a public attribute of the ExtrinsicObject UML class defined in [ebRIM]. If 1313
not, raise exception: extrinsic object attribute error. The ExtrinsicObjectFilter returns a set of 1314

 31

identifiers for ExtrinsicObject instances whose attribute values evaluate to True for the Clause 1315
predicate. 1316

5. For every PackageFilter XML element, the leftArgument attribute of any containing SimpleClause 1317
shall identify a public attribute of the Package UML class defined in [ebRIM]. If not, raise exception: 1318
package attribute error. The PackageFilter returns a set of identifiers for Package instances whose 1319
attribute values evaluate to True for the Clause predicate. 1320

6. For every OrganizationFilter XML element, the leftArgument attribute of any containing SimpleClause 1321
shall identify a public attribute of the Organization or PostalAddress UML classes defined in [ebRIM]. 1322
If not, raise exception: organization attribute error. The OrganizationFilter returns a set of identifiers 1323
for Organization instances whose attribute values evaluate to True for the Clause predicate. 1324

7. For every ClassificationSchemeFilter XML element, the leftArgument attribute of any containing 1325
SimpleClause shall identify a public attribute of the ClassificationNode UML class defined in [ebRIM]. 1326
If not, raise exception: classification scheme attribute error. The ClassificationSchemeFilter returns a 1327
set of identifiers for ClassificationScheme instances whose attribute values evaluate to True for the 1328
Clause predicate. 1329

8. For every ClassificationNodeFilter XML element, the leftArgument attribute of any containing 1330
SimpleClause shall identify a public attribute of the ClassificationNode UML class defined in [ebRIM]. 1331
If not, raise exception: classification node attribute error. The ClassificationNodeFilter returns a set of 1332
identifiers for ClassificationNode instances whose attribute values evaluate to True for the Clause 1333
predicate. 1334

9. For every AssociationFilter XML element, the leftArgument attribute of any containing SimpleClause 1335
shall identify a public attribute of the Association UML class defined in [ebRIM]. If not, raise exception: 1336
association attribute error. The AssociationFilter returns a set of identifiers for Association instances 1337
whose attribute values evaluate to True for the Clause predicate. 1338

10. For every ClassificationFilter XML element, the leftArgument attribute of any containing SimpleClause 1339
shall identify a public attribute of the Classification UML class defined in [ebRIM]. If not, raise 1340
exception: classification attribute error. The ClassificationFilter returns a set of identifiers for 1341
Classification instances whose attribute values evaluate to True for the Clause predicate. 1342

11. For every ExternalLinkFilter XML element, the leftArgument attribute of any containing SimpleClause 1343
shall identify a public attribute of the ExternalLink UML class defined in [ebRIM]. If not, raise 1344
exception: external link attribute error. The ExternalLinkFilter returns a set of identifiers for 1345
ExternalLink instances whose attribute values evaluate to True for the Clause predicate. 1346

12. For every ExternalIdentiferFilter XML element, the leftArgument attribute of any containing 1347
SimpleClause shall identify a public attribute of the ExternalIdentifier UML class defined in [ebRIM]. If 1348
not, raise exception: external identifier attribute error. The ExternalIdentifierFilter returns a set of 1349
identifiers for ExternalIdentifier instances whose attribute values evaluate to True for the Clause 1350
predicate. 1351

13. For every SlotFilter XML element, the leftArgument attribute of any containing SimpleClause shall 1352
identify a public attribute of the Slot UML class defined in [ebRIM]. If not, raise exception: slot attribute 1353
error. The SlotFilter returns a set of identifiers for Slot instances whose attribute values evaluate to 1354
True for the Clause predicate. 1355

14. For every AuditableEventFilter XML element, the leftArgument attribute of any containing 1356
SimpleClause shall identify a public attribute of the AuditableEvent UML class defined in [ebRIM]. If 1357
not, raise exception: auditable event attribute error. The AuditableEventFilter returns a set of 1358
identifiers for AuditableEvent instances whose attribute values evaluate to True for the Clause 1359
predicate. 1360

15. For every UserFilter XML element, the leftArgument attribute of any containing SimpleClause shall 1361
identify a public attribute of the User UML class defined in [ebRIM]. If not, raise exception: auditable 1362
identity attribute error. The UserFilter returns a set of identifiers for User instances whose attribute 1363
values evaluate to True for the Clause predicate. 1364

16. Path is a derived, non-persistent class based on the ClassificationNode and Classification classes 1365
from ebRIM. The visible attributes of the Path class are “path”, “code”, and “levelNumber”. Each is 1366
derived from the corresponding attribute or method defined in ebRIM for a ClassificationNode or 1367
Classification instance. The getPath() method acts on a ClassificationNode or Classification instance 1368
to produce a character string, i.e. path, that can be queried by the predicates of a StringClause 1369
element. The getCode() method on a Classification instance returns a string value, i.e. code: (i) if an 1370
internal classification, returns the code attribute of the referenced ClassificationNode, and (ii) if an 1371

 32

external classification, returns the classification value submitted by the classifier (ebRIM definitions 1372
needed!). The getPathDepth() method acts on a ClassificationNode or Classification instance to 1373
produce an integer that identifies the level of the referenced node and that can be queried by the 1374
predicates of an IntClause element. For an external Classification instance, getPathDepth() may 1375
return void since the depth of the node referenced by that classification may not be known if it wasn’t 1376
supplied by the classifier. For every PathFilter XML element, the leftArgument attribute of any 1377
containing SimpleClause shall identify a public attribute of the Path class just defined. If not, raise 1378
exception: path attribute error. The PathFilter returns a set of Path instances whose attribute values 1379
evaluate to True for the Clause predicate. 1380

17. PathElement is a derived, non-persistent class based on the ClassificationNode and Classification 1381
classes from ebRIM. [NOTE: There is a pending proposal to add a getPathElements() method to the 1382
ClassificationNodeClass. This query option depends upon that method.] The set of persistent 1383
PathElement instances is the Collection of ClassificationNode instances returned by the 1384
getPathElements() method.The visible attributes of each PathElement instance are “levelNumber” 1385
and “code”. The levelNumber is the integer returned by the getLevelNumber() method and code is the 1386
value of the code attribute of a ClassificationNode instance or the result of the getCode() method of a 1387
Classification instance. Each is a character string. The dynamic instances of PathElement are derived 1388
from the getPathElements() method defined in ebRIM for a ClassificationNode or Classification 1389
instance. This method returns a set of level/value pairs for each ClassificationNode or Classification 1390
instance. For an external Classification instance, getPathElements() may return void since the 1391
explicit structure of the node referenced by that classification may not be known if it wasn’t supplied 1392
by the classifier. For every PathElementFilter XML element, the leftArgument attribute of any 1393
containing SimpleClause shall identify a public attribute of the PathElement class just defined. If not, 1394
raise exception: path element attribute error. The PathElementFilter returns a set of PathElement 1395
instances whose attribute values evaluate to True for the Clause predicate. 1396

18. SlotElement is a derived, non-persistent class based on the Slot class from ebRIM. There is one 1397
SlotEelement instance for each “value” in the “values” list of a Slot instance. The visible attribute of 1398
PathElement is“value”. [NOTE to EDITOR: There is a pending proposal to modify the “values” 1399
attribute of a Slot instance to be just a single “value”. If that proposal passes then everything dealing 1400
with SlotElement and SlotElementFilter can be deleted from this specification.] It is a character string. 1401
The dynamic instances of SlotElement are derived from the “values” attribute defined in ebRIM for a 1402
Slot instance. For every SlotElementFilter XML element, the leftArgument attribute of any containing 1403
SimpleClause shall identify the “value” attribute of the SlotElement class just defined. If not, raise 1404
exception: slot element attribute error. The SlotElementFilter returns a set of Slot instances whose 1405
“value” attribute evaluates to True for the Clause predicate. 1406

 1407

Example 1408
The following is a complete example of RegistryEntryQuery combined with Clause expansion of 1409
RegistryEntryFilter to return a set of RegistryEntry instances whose objectType attibute is “CPP” and 1410
whose status attribute is “Approved”. 1411
 1412
 <RegistryEntryQuery> 1413
 <RegistryEntryFilter> 1414
 <Clause> 1415
 <CompoundClause connectivePredicate="And" > 1416
 <Clause> 1417
 <SimpleClause leftArgument="objectType" > 1418
 <StringClause stringPredicate="equal" >CPP</StringClause> 1419
 </SimpleClause> 1420
 </Clause> 1421
 <Clause> 1422
 <SimpleClause leftArgument="status" > 1423
 <StringClause stringPredicate="equal" >Approved</StringClause> 1424
 </SimpleClause> 1425
 </Clause> 1426
 </CompoundClause> 1427

 33

 </Clause> 1428
 </RegistryEntryFilter> 1429
 </RegistryEntryQuery> 1430
 1431
 1432

8.2.10 XML Clause Constraint Representation 1433
 1434
NOTE to EDITOR: This proposal makes no changes to Section 8.2.10, so that section remains in the 1435
ebRS specification as currently worded in ebRS v1.0. 1436
 1437

1438

 34

8.3 SQL Query Support 1438
 1439
NOTE to EDITOR: Section 8.3, “SQL Query Support”, is an optional alternative for AdhocQueryRequest. 1440
It’s implementation is not required for conformance to this specification. There is discussion to move it to 1441
a non-normative Appendix, but at present no action has been recommended so it remains as Section 8.3. 1442
There have been no recommended changes to its content. The DEFAULT action is that this section 1443
remains. 1444
 1445
 1446

8.4 Ad Hoc Query Request/Response 1447
 1448
NOTE to EDITOR: Section 8.4, “Ad Hoc Query Request/Response”, from the existing ebRS document is 1449
recommended to be moved as a new Section 8.1 under Query Management. If that recommendation is 1450
approved by the Registry TC, then this place-holder section should be deleted from the proposal. 1451
 1452
 1453

8.5 Content Retrieval 1454
 1455
NOTE to EDITOR: Section 8.5, “Content Retrieval”, of the existing ebRS specification has not yet been 1456
addressed by the Query Team. It should be retained in the re-structured Section 8 as currently worded. 1457
 1458
 1459

8.6 Query and Retrieval: Typical Sequence 1460
 1461
NOTE to EDITOR: Section 8.6, “Query and Retrieval: Typical Sequence”, of the existing ebRS 1462
specification has not yet been addressed by the Query Team. It should be retained in the re-structured 1463
Section 8 as currently worded. 1464
 1465
 1466

8.7 Browse and Drill Down Query Support 1467
 1468
NOTE to EDITOR: Section 8.1, “Browse and Drill Down Query Support”, of the existing ebRS v1.0 is 1469
recommended to be deleted in favor of Filter Query. If that deletion proposal is adopted by the Registry 1470
TC, then this place-holder Section titled “Browse and Drill Down Query Support”, should be deleted 1471
entirely. The DEFAULT action is that this section is deleted. 1472
 1473

