
 1

OASIS ebXML Registry Technical Committee 1
 2
Subject: RegistryEntry: Issues re Attributes and Methods 3
Version: 1 4
Author: Len Gallagher 5
Date: 22 October 6
Type: ebRIM Issue Paper with Proposals 7
 8
Introduction 9
 10
This is an issues paper that focuses on a single Registry class, namely RegistryEntry. I believe that the RegistryEntry 11
class is the most important class in our model because it represents objects that a submitting organization (SO) 12
wishes to have registered. In order to register an object, the SO must create a RegistryEntry instance to describe it. 13
The RegistryEntry instance will hold the name and description of the registered object, its registration 14
characteristics, and pointers to other registry instances that give additional metadata related to the registered object. 15
 16
What I’d like to do at the upcoming face-to-face meeting is have a discussion restricted to just the attributes and 17
methods of this class. In the figure below I’ve included all existing attributes and methods, including those inherited 18
from RegistryObject, as well as those proposed by other proposals to be considered at this meeting. If we can come 19
to agreement on the intended purpose of each of these, then we should be able to make rapid progress towards a 20
solution agreeable to all. After discussion of the issues for each attribute or method, I often make one or more 21
proposals to clarify its intended interpretation. 22
 23
RegistryEntry class Diagram 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50

51

Re gis tryEntry
id : UUID
urn : URN
name : LongName
description : String(256)
objectType : LongName
accessControlPolicy : UUID
userVersion : ShortName
majorVersion : Integer
minorVersion : Integer
s tatus : String(32)
expiration : Times tamp
stability : String(32)
repos itoryItemURL : URL
isExternal : Boolean
isOpaque : Boolean
mimeType : String(128)

getAssociatedObjects() : Collection
getAssociations() : Collection
getSourceAssociations() : Collection
getTargetAssociations() : Collection
getAuditTrail() : Collection
getClassificationNodes() : Collection
getClassifications() : Collection
getExternalIdentifiers () : Collection
getExternalLinks() : Collection
getOrganizations(String type) : Collection
getPackages() : Collection
getTargetRegis tryEntries (String : associationType) : Collection
getSourceRegistryEntries(String : associationType) : Collection
getSlots() : Collection of Slot
getSubmittingOrganization() : Organization
getResponsibleOrganization() : Organization

 2

Attribute Discussion 52
 53
id:UUID 54
This attribute is the persistent object identifier for each persistent RegistryEntry instance. It is a fixed-length 55
identifier (i.e. 128 bits) that can be used for internal associations as well as for external references to specific 56
RegistryEntry instances. Its fixed-length nature makes it easy to optimize for those purposes. Its global uniqueness 57
makes it easy to share metadata references among cooperating Registries while retaining their individual uniqueness. 58
However, I think it is problematic to use this “id” as a way to reference the “repository item” described by a 59
RegistryEntry instance. If different Registries have different RegistryEntry instances that point to the same 60
“repository item”, then they will want to have a common, shared identifier for it. I think we need a new attribute, 61
“urn” or something analogous, to serve as a human-friendly, globally-unique name that can be used as a surrogate 62
identifier for that “repository item”. This issue is discussed further with “urn” just below. 63
 64
urn:URN 65
The issue of the desirability of having a new “urn” attribute for RegistryEntry (and Organization) is discussed in the 66
Query Team paper http://lists.oasis-open.org/archives/regrep-query/200109/msg00062.html. This paper contains the 67
outline of a proposal to add a new “urn” attribute to the RegistryEntry and Organization classes. Since this proposal 68
is beyond the scope of just query, I’ve distributed it to the whole Registry TC. Acceptance of this proposal would 69
allow different Registry implementations to all have different RegistryEntry instances, with different “id” attributes, 70
that still all describe and reference the same “repository item” using the same “urn”. For example, Registries in 71
many different industries could each reference NAICS or UNSPSC using the same URN, independently of whether 72
the taxonomies of these schemes are “internal” or “external”. 73
Proposal: Add “urn” as a new RegistryEntry attribute as described by the above referenced paper. 74
 75
name:LongName (128 characters) 76
This is the descriptive name supplied by the SO. The RA has no control over this name and in the absence of 77
profanity will normally accept whatever the SO submits. Thus we can make no assumptions about this name. It may 78
or may not be unique within some context. It may or may not include version information. It might even include 79
some terms that are copyright protected. 80
 81
description:String(256) 82
This is the description of the “repository item” referenced by the RegistryEntry instance. The RA has no control 83
over this description and in the absence of profanity will normally accept whatever the SO submits. 84
 85
objectType:LongName(128 characters) 86
This is an inherited attribute from RegistryObject. In all classes except RegistryEntry and its sub-classes it identifies 87
the type of the class, but in RegistryEntry it is an enumeration that identifies the “type” of the “repository item” 88
described by the RegistryEntry instance. The valid values are presented in Section 6.3.6 of ebRIM. I’d like to see a 89
couple of minor restrictions on the data type of this attribute. Suppose we agree that the valid objectType’s are pre-90
defined by some responsible organization (RO). In fact, the valid objectType’s will likely be specified by a 91
taxonomy with “unique” codes (i.e. the “code” attribute of a ClassificationNode instance uniquely identifies that 92
node). This attribute can be thought of as a pointer to a specific node of that classification scheme. As such, I think 93
we can restrict the values to something more stable than an arbitrary String of 128 characters. How about if we 94
restrict such enumerations to shorter strings (e.g. 32 characters) of characters contained in the International 95
Reference Version (IRV) of ISO 646. These characters are recognized by nearly every international character set 96
and will survive most character set transformations. For example, from the ebRIM list, “CPA” and “CPP” could be 97
thought of as a sub-classification of “XMLDocument” since they will validate to a specific schema definition. I 98
suggest we define a new data type, e.g. CodeText, which will be a variable length string, of length greater than 0, 99
with no space characters, and consisting only of IRV characters, possibly with some XML special characters 100
removed. We can then use this new CodeText data type for all attributes that carry a value defined by a responsible 101
organization. 102
Proposal_1: Define a CodeText data type and use it as the type of this attribute, and of any other attributes in RIM 103
that assume a pre-determined code value defined by some responsible organization. 104
Proposal_2: Decide how the objectType attribute is supposed to be used and interpreted in classes other than 105
RegistryEntry. If the value is minimal, consider moving the attribute from RegistryObject to RegistryEntry so that 106
its interpretation can always be “a declaration of the type of the repository item described by this RegistryEntry 107
instance”. 108
 109
accessControlPolicy:UUID 110

 3

This attribute is inherited from RegistryObject. It is a pointer to an AccessControlPolicy instance, discussed in 111
Section 11 of ebRIM. Since Section 11 is rather sparse in its requirements, I’m concerned that a Registry may have a 112
very valid “default” access control policy that applies to every RegistryObject instance. If so, why is the Registry 113
required to carry around this attribute on each instance. Wouldn’t it be just as effective to have this UUID be found 114
via a method? Then the value would not have to be stored persistently in each instance. 115
Proposal: Remove “accesscontrolPolicy” as an attribute of RegistryObject; instead, define a new method, 116
getAccessControlPolicy() returning either: 1) a UUID REF , or 2) an actual AccessControlPolicy instance. 117
 118
userVersion:ShortName (64 characters) 119
This is the version supplied by the SO. The RA has no control over this version and in the absence of profanity will 120
normally accept whatever the SO submits. Thus we can make no assumptions about its completeness or relationship 121
to majorVersion and minorVersion, or its representation in any “id” or “urn” identifier. It may or may not be unique 122
within some context. 123
 124
majorVersion:Integer 125
This is a version number assigned by the RA when the RegistryEntry instance is first created and it is maintained by 126
the RA when an object is updated. Presumably, the version is derivable from the AuditTrail returned by the 127
getAuditTrail() method, but there are no rules in ebRIM to specify when and/or how this happens. Since this value is 128
derivable from other information that may be left unspecified until we add a robust version control facility, I’d 129
prefer to see it as a method instead of an attribute. If it stays as an attribute, I think we need rules to reconcile its 130
relationship with the AuditTrail! 131
Proposal: Remove majorVersion as an attribute of RegistryEntry; instead, define a new method for the 132
RegistryEntry class, getMajorVersion(), that returns an integer. Its value is derivable from the AuditTrail using an 133
implementation-defined version control algorithm. 134
 135
minorVersion:Integer 136
This is a version number assigned by the RA when the Registryentry is first created and it is maintained by the RA 137
when an object is updated. Presumably, the version is derivable from the AuditTrail returned by the getAuditTrail() 138
method, but there are no rules in ebRIM to specify when and/or how this happens. Since this value is derivable from 139
other information that may be left unspecified until we add a robust version control facility, I’d prefer to see it as a 140
method instead of an attribute. If it stays as an attribute, I think we need rules to reconcile its relationship with the 141
AuditTrail! 142
Proposal: Remove minorVersion as an attribute of RegistryEntry; instead, define a new method for the 143
RegistryEntry class, getMinorVersion(), that returns an integer. Its value is derivable from the AuditTrail using an 144
implementation-defined version control algorithm. 145
 146
status:LongName (128 characters) 147
The values of this attribute come from an enumeration that is defined in Section 6.4.6 of ebRIM. Just like the 148
“objectType” attribute defined above, I think this enumeration will likely represent a “unique code” for a node in a 149
classification taxonomy pre-defined by some responsible organization (RO). As such it is no problem to restrict the 150
valid values to be more internationally interpretable. 151
Proposal: Let the data type of “status” be the CodeText type defined as above for “objectType”. 152
 153
expiration:Timestamp 154
This attribute specifies the expiration date of the registration status defined by the “status” attribute. Its value can be 155
suggested by the SO, but final determination is at the prerogative of the RA. For example, an RA may have a policy 156
that no registration status lasts longer than a fixed amount of time. I think it would be wise if ebXML Registry could 157
agree on a standard default representation of timestamp as a character string literal, so that whenever a timestamp is 158
passed to or from the registry, and a specific format is not specified, the default format will apply. 159
Proposal: Let the default string representation of timestamp be YYYYMMDD::HH:MM:SS.FFF, i.e. a 160
representation as a CodeText string, with the default assumption, unless specified otherwise, that it represents 161
Universal Coordinated Time (UT) as defined by ISO. 162
 163
stability:LongName (128 characters) 164
The values of this attribute come from an enumeration that is defined in Section 6.4.5 of ebRIM. Just like the 165
“status” attribute, its enumeration will likely represent a “unique code” for a node in a classification taxonomy pre-166
defined by some responsible organization (RO). As such it is no problem to restrict the valid values to be more 167
internationally interpretable. 168
Proposal: Let the data type of “status” be the CodeText type defined as above for “objectType”. 169

 4

 170
repositoryItemURL:URL 171
This is a new attribute for the RegistryEntry class proposed by the October 11 paper, “Support for External 172
Repository Items”, cf http://lists.oasis-open.org/archives/regrep/200110/pdf00001.pdf. Whether the name is 173
“contentURI”, “discoveryURL”, “locationURL”, or “repositoryItemURL” is not so important. What is important is 174
that users of the Registry have a standard, web-resolvable way to “locate” the repository item described by a 175
RegistryEntry instance. 176
Proposal: Add a new attribute, repositoryItemURL, to the RegistryEntry class. Define its semantics to be that 177
specified for “discoveryURL” in the above referenced paper. 178
 179
isExternal:Boolean 180
This is a new attribute, that should be considered if the “Support for External Repository Items” proosal discussed 181
above is accepted by the F2F. It would explicitly state whether the “repository item” described by the RegistryEntry 182
instance is “internal” to this Registry or “external” to it. If the repository item is external, then the RA has no 183
responsibility to ensure that it validates to the declared “objectType”. For some “internal” repository items, the 184
Registry may (or may not) assume some responsibility to validate the “repository item” to the declared 185
“objectType”, especially if we’re dealing with “repository items” that have a “ValidatesTo” association with some 186
registered XML DTD or schema. 187
 188
isOpaque:Boolean 189
This attribute is currently defined for the ExtrinsicObject class, a sub-class of RegistryEntry. If the “Support for 190
External Repository Items” proposal discussed above passes, then it may make sense for this attribute to move up to 191
RegistryEntry so that it could be used to give more information about the representation of an “external repository 192
item”. 193
 194
mimeType:LongName (128 characters) 195
This attribute is currently defined for the ExtrinsicObject class, a sub-class of RegistryEntry. If the “support for 196
External Repository Items” proposal discussed above passes, then it may make sense for this attribute to move up to 197
RegistryEntry so that it could be used to give more information about the representation of an “external repository 198
item”. For example, a RegistryEntry instance that describes an external classification taxonomy may have an 199
objectType of “ClassificationScheme” because it will have a ClassificationScheme instance in this Registry that 200
describes an external classification taxonomy. Then the mimeType will give additional information about how that 201
taxonomy is represented, e.g. gif, jpeg, text, xml, etc. 202
 203
 204
Method Discussion 205
 206
NOTE: In ebRIM v1.1, line 552+, a Collection type is defined to be a collection of multiple RegistryObject 207
instances. There are different ways that one might interpret Collection: 1) a collection of REF’s or UUID’s each 208
pointing to a RegistryObject instance, 2) a collection of strings each of which can be parsed to point to a 209
RegistryObject instance, or 3) a collection of actual RegistryObject instances. None of these interpretations can be 210
applied exclusively for all methods below. I think we need to take a closer look at how these methods are defined, 211
their interpretation for each sub-class of RegistryObject, and what is the best interpretation of the data type of the 212
returned result. 213
 214
getAssociatedObjects():Collection 215
This is an inherited method from RegistryObject that can return many different subtypes of RegistryObject. Not all 216
instances of these subtypes are represented by UUID’s (e.g. Slot, Association, Classification, cf ebRIM section 217
6.3.4). Wouldn’t it be better to allow (or require) an input variable to this method, e.g. objectType, that would allow 218
the client to specify the specific type of associated object to be returned? Then getAssociatedObjects(RegistryEntry) 219
would return only a homogeneous collection of UUID references to RegistryEntry instances, whereas 220
getAssociatedObjects(Association) would return a homogeneous collection of Association instances, either as the 221
compound triple-UUID strings defined in ebRIM Section 9.1.5, or as a collection of Association instances. A second 222
issue is how this method differs from the Union of all of the methods defined below. In particular, do 223
getExternalIdentifiers() and getPackages() both return subsets of getAssociations()? 224
Proposal: I think getAssociatedObjects() should offer “objectType” as an input variable, or it should be deleted in 225
favor of more explicit methods, e.g. getRegistryEntries(), analogous to others defined below. I favor deletion and 226
replacement by more specific methods. In particular, see the getTargetRegistryEntries() method proposed below. 227
 228

 5

getAssociations():Collection 229
This is an inherited method from RegistryObject. It’s not clear if it returns a collection of UUID’s, a collection of 230
compound triple-UUID strings as specified in ebRIM Section 9.1.5, or a collection of Association instances. I think I 231
favor the last alternative because it would avoid requiring the Client software having to parse a compound string to 232
determine the source and target objects and would give access to all attributes of an Association instance. 233
Proposal_1: Clarify that getAssociations() returns a Collection of Association instances, where each instance carries 234
at least the three attributes: sourceObject, targetObject, and associationType. 235
Proposal_2: Section 6.3.7 of ebRIM v1.1 defined getAssociations() to return all associations where “this object is 236
the source of the Association”. It ignores the case where this object is the target of the Association. Consider re-237
naming this method definition to be getSourceAssociations() to emphasize that this object is the “sourceObject” of 238
the returned associations. 239
 240
getTargetAssociations():Collection 241
The previous method gets all associations where this object is the sourceObject of the association. I think it will be 242
valuable to have a method that goes the other way around too. 243
Proposal_1: Define a new method on RegistryEntry, getTargetAssociations(), that returns a Collection of 244
Association instances where the given object is referenced by the targetObject attribute of the Association instance. 245
Proposal_2: Consider replacing the getSourceAssociations() and getTargetAssociations() by more explicit 246
getTargetRegistryEntries() and getSourceRegistryEntries() methods discussed below. The advantage of the more 247
explicit methods is that the Collection returned as a result could always be interpreted as a Collection of UUID’s. 248
 249
getAuditTrail():Collection of UUID 250
This is an inherited method from RegistryObject. Since AuditTrail can be interpreted as a set of AuditableEvent 251
instances, each with a UUID identifier, we’re OK interpreting Collection as a set of UUID’s. 252
Proposal: Clarify that getAuditTrail() returns a Collection of UUID’s, each pointing to an AuditableEvent instance. 253
 254
getClassificationNodes():Collection of UUID 255
This is an inherited method from RegistryObject that returns the collection of ClassificationNode instances that 256
classify the subject object. Since each ClassificationNode instance has a UUID identifier, we’re OK interpreting 257
Collection as a set of UUID’s. 258
Proposal: Clarify that getClassificationNodes() returns a Collection of UUID’s, each pointing to a 259
ClassificationNode instance. Keep in mind that this method will only identify “internal classifications”; in order to 260
include “external classifications” one will have to use the getClassifications() method. 261
 262
getClassifications():Collection 263
This is an inherited method from RegistryObject. It’s not clear if it returns a collection of UUID’s, a collection of 264
compound UUID strings as specified in ebRIM Section 10.3.4, or a collection of Classification instances. I think I 265
favor the last alternative because it would avoid requiring the Client software having to parse a compound string to 266
determine the parent and target objects. 267
Proposal: Clarify that getClassifications() returns a Collection of Classification instances, where each instance 268
includes at least the attributes that uniquely identify the Classification instances, i.e. a ClassificationScheme UUID 269
and a nodeRepresentation. 270
 271
getExternalIdentifiers():Collection 272
This is an inherited method from RegistryObject. It’s not clear if it returns a collection of UUID’s, a collection of 273
compound UUID strings as specified in ebRIM Section 6.8.4, or a collection of ExternalIdentifier instances. I think I 274
favor the last alternative because it would avoid requiring the Client software having to parse a compound string to 275
determine the parent and target objects. It should return at least the value attribute of each ExternalIdentifier 276
instance. 277
Proposal_1: Clarify that getExternalIdentifiers() returns a Collection of ExternalIdentifier instances, where each 278
instance carries at least the “value” attribute. 279
Proposal_2: Decide if it makes sense for classes other than RegistryEntry to have this method. If not, move this 280
method from RegistryObject to RegistryEntry. 281
 282
getExternalLinks():Collection 283
This is an inherited method from RegistryObject. It’s not clear if it returns a collection of UUID’s, a collection of 284
externalURI attributes, or a collection of ExternalLink instances. I think I favor the last alternative because it would 285
allow additional attributes on ExternalLink to be returned at the same time, e.g. an externalLinkType attribute. 286

 6

Proposal_1: Clarify that getExternalLinks() returns a Collection of ExternalLink instances, where each instance 287
carries all attributes that determine a unique instance of ExternalLink. 288
Proposal_2: Decide if it makes sense for classes other than RegistryEntry to have this method. If not, move this 289
method from RegistryObject to RegistryEntry. 290
 291
getOrganizations(String type) :Collection of UUID 292
This is an inherited method from RegistryObject. The “type” input variable is supposed to allow one to retrieve only 293
Organizations that are the targetObject of Association instances having associationType=type. This is intended to 294
support the “submitting organization” and “responsible organization” requirements on a RegistryEntry instance, but 295
ebRIM v1.1 fails to make this clear. It does NOT define any AssociationType values for this purpose (cf ebRIM 296
Section 9.1.2) 297
Proposal_1: Support explicit methods for getSubmittingOrganization() and getResponsibleOrganization() in all 298
classes where they make sense. See below for proposals to do just that. 299
Proposal_2: With explicit methods for the above two important cases, decide if this general purpose method still 300
has value in the model. If so, define the appropriate associationType values that make it useful. 301
 302
getPackages():Collection of UUID 303
This is an inherited method from RegistryObject. This method returns the collection of Package instances that have 304
this object as a member. Since Package is a sub-class of RegistryEntry, each instance will have a UUID, so it’s OK 305
to think of the result of this method as a Collection of UUID’s, each of which identifies a Package instance. 306
Note: One could think of this method as a shorthand for first finding all of the Association instances having 307
associationType=”HasMember” and where this object is the targetObject, then extracting the sourceObject UUID 308
from each of those instances. 309
 310
getTargetRegistryEntries(String:associationType):Collection of UUID 311
This is a proposed new method on RegistryEntry that returns a collection of object identifiers that reference 312
RegistryEntry instances that are linked to the given RegistryEntry instance via an Association instance having the 313
given object as the sourceObject and having an associationType that matches the input parameter. 314
Proposal_1: Add this new method to the RegistryEntry class in ebRIM. 315
Proposal_2: Consider adding an analogous getSourceRegistryEntries(String:AssociationType) method. It would 316
return a Collection of UUID’s that are the sourceObjects of the identified Association instances. 317
Proposal_3: Consider replacement of the getAssociations(), getSourceAssociations(), and getTargetAssociations() 318
methods defined above by more specific methods that identify the explicit class of all returned UUID’s. 319
 320
getSlots():Collection 321
This is an inherited method from RegistryObject. Since Slot has no “id” attribute, we have no choice but to say that 322
this method returns a Collection of Slot instances rather than a Collection of UUID’s or a collection of parseable 323
strings. Each instance will contain all of the Slot attributes, i.e. name, slotType, and values. 324
Note: Consider whether or not it is important for each Slot instance to carry a “values” attribute that is itself a 325
Collection of ShortName values. If it is sufficient that each Slot instance carry only a single value, then this class 326
can be handled much more easily. 327
Proposal: Change the “values” attribute of Slot to “value” and make its data type ShortName. 328
 329
getSubmittingOrganization():Organization 330
This is a new method proposed by a recent paper in the Query Team archive, http://lists.oasis-331
open.org/archives/regrep-query/200110/msg00021.html. I intend to forward this proposal to the Registry TC so that 332
it will be on our F2F agenda. It adds a getSubmittingOrganization() method to each class where it makes sense, 333
including RegistryEntry. 334
Proposal: Accept the getSubmittingOrganization() methods for RegistryEntry and other ebRIM classes proposed in 335
http://lists.oasis-open.org/archives/regrep-query/200110/pdf00005.pdf. 336
 337
getResponsibleOrganization():Organization 338
This is a new method proposed by a recent paper in the Query Team archive, http://lists.oasis-339
open.org/archives/regrep-query/200110/msg00021.html. I intend to forward this proposal to the Registry TC so that 340
it will be on our F2F agenda. It adds a getResponsibleOrganization() method to the RegistryEntry class. The intent is 341
that when an SO registers an object, it can optionally name a responsible organization (SO), whose responsibilities 342
are defined in ISO/IEC 11179. This method makes sense only for the RegistryEntry class. 343
Proposal: Accept the getResponsibleOrganization() method for the RegistryEntry class proposed in 344
http://lists.oasis-open.org/archives/regrep-query/200110/pdf00005.pdf. 345

