O INN KW~

OASIS ebXML Registry Technical Committee

Subject: AuditableEvent: Issues re: ServiceRequests and Mappings
Version: 1

Author: Len Gallagher

Date: 24 October, 2001

Type: ebRIM Issue Paper with Proposals

Introduction

This is an issues paper that focuses on Auditable Event, an important class in the model. It is my opinion that
AuditableEvent is under-specified in ebRIM and that it may be necessary to create a new class, e.g. ServiceRequest,
in order to satisfy known Registry requirements.

I see audit Registry requirements including at least the following:

1)

2)

A Registry needs to keep an audit trail of every service request that has any effect on persistent values
stored in the Registry. Thus we need an audit log of every SubmitObjectsRequest, ApproveObjectsRequest,
DeprecateObjectsRequest, or RemoveObjectsRequest that is received and acted upon by Registry Services.

A Registry needs to be able to determine which ServiceRequests have an impact on which RegistryObjects.
In particular, a client needs to be able to ask for an Audit Trail of ServiceRequests that had an impact on a
given RegistryEntry.

I think our current specification of AuditableEvent fails these requirements in several ways, including the following
observations from Figure 1 in ebRIM v1.1:

1)

2)

We don’t see any class to identify ServiceRequests as independent instances. Thus it seems impossible to
keep a record of ServiceRequests that delete objects from the Registry. For example, if I submit a
RemoveObjectsRequest to delete an Association instance, I don’t see any way to record that information
because the Association instance will no longer be in the Registry. There are no rules for how I might
record the deletion as an impact on the RegistryEntry that is the sourceObject or targetObject of the
Association instance.

The relationship from AuditableEvent to RegistryObject labeled as “registryObject” implies that there is at
most one RegistryObject instance that is impacted by that AuditableEvent instance. But a
SubmitsObjectsRequest may submit thousands of objects at one time, and each individual submission, i.c. a
new Association instance, may impact both the source and target objects of the association. Similarly, if a
new object is submitted to supersede an existing object, the RegistryEntry of both the old object and the
new object will be affected.

I think we can address the above limitations of our existing specification in the following way:

1)

2)

Create a new class, call it ServiceRequest, to keep a record of every service request received and acted
upon by Registry Services. Require that each ServiceRequest instance be timestamped and linked to the
User instance who submitted it.

Since some service requests may consist of many smaller requests, e.g. a SubmitObjectsRequest many
actually submit thousands of new objects, consider keeping track of requests at a lower level of granularity.
For example, consider identifying each new object submitted as part of a SubmitObjectsRequest to be an
independent request on Registry Services that can be accepted or rejected. If accepted, we need to record its
impact via an AuditableEvent on other objects in the Registry, or if rejected, we need to record that the
request was received but rejected for some reason. Call this new class a TransactionRequest because at this
level of granularity each request will satisfy the ACID properties of a transaction; in particular it will be
totally successful or totally rejected. Require that every TransactionRequest be linked to its parent
ServiceRequest so that a User and timestamp can be inferred, and provide an attribute to record whether the
request was accepted or rejected. Possibly, even provide an attribute to retain (for a limited audit period)

1

73
74
75
76
77

the text of the entire request so that potential disputes between Client and Server can be addressed in detail.
Afetr the expiration of the agreed audit period the actual text of the request could be deleted, but NOT the
existence of the request itself.

3) With the above new classes, let AuditableEvent represent a many-to-many mapping between

TransactionRequest and RegistryEntry. Note that I choose RegistryEntry here instead of RegistryObject.
This is because I feel it is impractical to retain an audit trail on every action on every object in the Registry,
especially when deletions need to be recorded. Instead, we only need to track actions that have an impact

on a “repository item”. And impacts on “repository items” can be represented by impacts on the
RegistryEntry that describes that “repository item”.

Please consider the following diagram as a possible submodel of ebRIM for describing Audit Requirements.

Audit Trail Submodel

ServicesRequest

gid :uuD

[&description : String(256)
[&receiptTime : Timestamp
[&submittor : User

HasTransactionRequests

Caus

1.*

Submittor

A id : UUID
[&name : {RequestNames} serName : String (15)
\

By

Trans actionRequest

gid :uuD

ame : {TransactionRequestNames}
[&description : String(256)

artOf : Services Reques t
[&status : {Accepted/NotAccepted}

status Time : Timestamp
extOfRequest : String

User

assword : Authentication
ame : LongName
escription : String(256)
ffiliatedWith :Organization
ddress :PostalAddress

Affiliated With

L Ty

Organization

AuditableEvent

impactObject : Regstry Entry

ausedBy : TransactionRequest

ventType: {EventTypeLabels }
escription : String(256)

CausesEpents

id : UUID

m :URN

ame : LongName
ddress :PostalAddress
primaryContact :2??

elephone : Collection(Telepho neNumber)

oles :Collection({SO,RO,RA })

ImpactObject

0.1

RegistryEntry

id : UUID

xpiration

is External
isOpaque

m : URN

ame : LongName
escription : String(256)
bjectType : LongName
ccess ControlPolicy : UUID
serVersion : ShortName
ajorVersion : Inte ger
inorVersion : Integer

tatus :String(32)

tability : String (32)
epositoryltemURL : URL

[&mimeType : String(128)

: Timestamp

: Boolean
: Boolean

{RequestNames }={SubmitObjectsRequest, ApproveObjectsRequest, DeprecateObjectsRequest, RemoveObjectsRequest, etc.}

{TransactionRequestNames } ={SubmitObject, ApproveObject, DeprecateObject, RemoveObject, etc.}

{EventTypeLabels}={AddAssoc, DropAssoc, RefByAssoc, AddClassif, DropClassif, AddExtld, DropExtIld, AddExtLink, DropExtLink, ChgStatus, etc.}

Outline Of a Proposal

Make the following modifications to Section 7, “Registry Audit Trail”, of ebRIM v1.1

1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

Add ServicesRequest as a new RIM class, with the attributes defined in the UML diagram, and with methods
that correspond to the pictured UML relationships.

Add TransactionRequest as a new RIM class, with the attributes defined in the UML diagram, and with
methods that correspond to the pictured UML relationships.

In Section 7.1, “Class AuditableEvent”, remove the sentence that says AuditableEvent is a subtype of
RegistryObject. Instead, it becomes a stand-alone class representing labeled many-to-many associations
between TransactionRequest and RegistryEntry.

In Sections 7.1.x, Attributes of AuditableEvent, modify the attribute summary and the attribute definitions to
match the attributes from the above UML diagram.

Add a new Section 7.1.x, “Method Summary of AuditableEvent”, with two methods as follows:
getTransactionRequest(): TransactionRequest (returns the whole instance, not just a UUID)
getRegistryEntry():RegistryEntry (returns the whole instance, not just a UUID)

Add the above UML diagram to the introduction of Section 7, and call it a detailed Audit Trail sub-model of
Figure 1 (ebRIM page 11).

Modify Figure 1 (ebRIM page 11) to make it consistent with the above UML diagram. Alternatively, delete
AuditableEvent and User from Figure 1 so that their specification can come completely in Section 7.

Consider adding ServicesRequest and TransactionRequest to Figure 2 (ebRIM page 14) as sub-classes of
RegistryObject.

Remove AuditableEvent from Figure 2 (ebRIM page 11) because it no longer has “id” or “name” attributes.

Remove getAuditableEvents() as a method on RegistryObject (ebRIM Section 6.3.7). Instead, define new

methods on RegistryEntry (ebRIM Section 6.4.x) as follows:
getAuditableEvents(String:eventType):Collection(AuditableEvent) (returns set of whole instances)
getEventTransactions(String:eventType):Collection(TransactionRequest) (returns UUID’s is OK).

