
 1

OASIS ebXML Registry Technical Committee 1
 2
Subject: AuditableEvent: Issues re: ServiceRequests and Mappings 3
Version: 1 4
Author: Len Gallagher 5
Date: 24 October, 2001 6
Type: ebRIM Issue Paper with Proposals 7
 8
Introduction 9
 10
This is an issues paper that focuses on Auditable Event, an important class in the model. It is my opinion that 11
AuditableEvent is under-specified in ebRIM and that it may be necessary to create a new class, e.g. ServiceRequest, 12
in order to satisfy known Registry requirements. 13
 14
I see audit Registry requirements including at least the following: 15
 16

1) A Registry needs to keep an audit trail of every service request that has any effect on persistent values 17
stored in the Registry. Thus we need an audit log of every SubmitObjectsRequest, ApproveObjectsRequest, 18
DeprecateObjectsRequest, or RemoveObjectsRequest that is received and acted upon by Registry Services. 19

 20
2) A Registry needs to be able to determine which ServiceRequests have an impact on which RegistryObjects. 21

In particular, a client needs to be able to ask for an Audit Trail of ServiceRequests that had an impact on a 22
given RegistryEntry. 23

 24
I think our current specification of AuditableEvent fails these requirements in several ways, including the following 25
observations from Figure 1 in ebRIM v1.1: 26
 27

1) We don’t see any class to identify ServiceRequests as independent instances. Thus it seems impossible to 28
keep a record of ServiceRequests that delete objects from the Registry. For example, if I submit a 29
RemoveObjectsRequest to delete an Association instance, I don’t see any way to record that information 30
because the Association instance will no longer be in the Registry. There are no rules for how I might 31
record the deletion as an impact on the RegistryEntry that is the sourceObject or targetObject of the 32
Association instance. 33

 34
2) The relationship from AuditableEvent to RegistryObject labeled as “registryObject” implies that there is at 35

most one RegistryObject instance that is impacted by that AuditableEvent instance. But a 36
SubmitsObjectsRequest may submit thousands of objects at one time, and each individual submission, i.e. a 37
new Association instance, may impact both the source and target objects of the association. Similarly, if a 38
new object is submitted to supersede an existing object, the RegistryEntry of both the old object and the 39
new object will be affected. 40

 41
I think we can address the above limitations of our existing specification in the following way: 42
 43

1) Create a new class, call it ServiceRequest, to keep a record of every service request received and acted 44
upon by Registry Services. Require that each ServiceRequest instance be timestamped and linked to the 45
User instance who submitted it. 46

 47
2) Since some service requests may consist of many smaller requests, e.g. a SubmitObjectsRequest many 48

actually submit thousands of new objects, consider keeping track of requests at a lower level of granularity. 49
For example, consider identifying each new object submitted as part of a SubmitObjectsRequest to be an 50
independent request on Registry Services that can be accepted or rejected. If accepted, we need to record its 51
impact via an AuditableEvent on other objects in the Registry, or if rejected, we need to record that the 52
request was received but rejected for some reason. Call this new class a TransactionRequest because at this 53
level of granularity each request will satisfy the ACID properties of a transaction; in particular it will be 54
totally successful or totally rejected. Require that every TransactionRequest be linked to its parent 55
ServiceRequest so that a User and timestamp can be inferred, and provide an attribute to record whether the 56
request was accepted or rejected. Possibly, even provide an attribute to retain (for a limited audit period) 57

 2

the text of the entire request so that potential disputes between Client and Server can be addressed in detail. 58
Afetr the expiration of the agreed audit period the actual text of the request could be deleted, but NOT the 59
existence of the request itself. 60

 61
3) With the above new classes, let AuditableEvent represent a many-to-many mapping between 62

TransactionRequest and RegistryEntry. Note that I choose RegistryEntry here instead of RegistryObject. 63
This is because I feel it is impractical to retain an audit trail on every action on every object in the Registry, 64
especially when deletions need to be recorded. Instead, we only need to track actions that have an impact 65
on a “repository item”. And impacts on “repository items” can be represented by impacts on the 66
RegistryEntry that describes that “repository item”. 67

 68
Please consider the following diagram as a possible submodel of ebRIM for describing Audit Requirements. 69
 70
 71
Audit Trail Submodel 72

 73
 74
 75
 76

77

1..*

{RequestNames}={SubmitObjectsRequest, ApproveObjectsRequest, DeprecateObjectsRequest, RemoveObjectsReques t, etc.}

{TransactionRequestNames}={SubmitObject, ApproveObject, DeprecateObject, RemoveObject, etc.}

{EventTypeLabels}={AddAssoc, DropAssoc, RefByAssoc, AddClassif, DropClassif, AddExtId, DropExtId, AddExtLink, DropExtLink, ChgStatus , etc.}

Trans actionRe ques t
id : UUID
name : {Transa ctionRe quest Names}
desc ription : String(256)
partOf : Services Reques t
s tatus : {Accept ed/NotAcce pte d}
status Time : Timestamp
textOfReques t : String

AuditableEvent
ca usedBy : TransactionRequest
impactObje ct : Reg is tryEntry
eventTyp e : {Even tTypeLabels}
description : String(256)

0..*0..*

CausesEvents

CausedBy

RegistryEntry
id : UUID
urn : URN
name : LongName
description : String(256)
objectType : Lo ngName
ac cess ControlPolicy : UUID
userVersion : ShortName
majorVersion : Inte ger
minorVe rsion : Integ er
s tat us : String(32)
expiration : Timestamp
s tabilit y : String (32)
reposito ryItemURL : URL
isExternal : Boolean
isOpaque : Boolean
mimeType : String(128)

1..*1..*

ImpactedByEvents

0..1

ImpactObject

0..1

ServicesRequest
id : UUID
name : {Re quest Names}
desc ription : String(256)
receiptTime : Time sta mp
submittor : Use r

1..*

HasTra nsact io nRequests

Us er
id : UUID
u serNa me : String (15)
p assword : Authen ticat ion
n ame : LongName
d escrip tion : Strin g(256)
a ffiliate dWith : Org anizat ion
a ddre ss : Pos talAddre ss

Submittor

Organization
id : UUID
urn : URN
na me : LongName
ad dres s : PostalAd dres s
prima ryContact : ???
t elephone : Co llectio n(Telepho neNumber)
role s : Collec tion({SO,RO,RA })

AffiliatedWith

 3

Outline Of a Proposal 77
 78
Make the following modifications to Section 7, “Registry Audit Trail”, of ebRIM v1.1 79
 80
1) Add ServicesRequest as a new RIM class, with the attributes defined in the UML diagram, and with methods 81

that correspond to the pictured UML relationships. 82
 83
2) Add TransactionRequest as a new RIM class, with the attributes defined in the UML diagram, and with 84

methods that correspond to the pictured UML relationships. 85
 86
3) In Section 7.1, “Class AuditableEvent”, remove the sentence that says AuditableEvent is a subtype of 87

RegistryObject. Instead, it becomes a stand-alone class representing labeled many-to-many associations 88
between TransactionRequest and RegistryEntry. 89

 90
4) In Sections 7.1.x, Attributes of AuditableEvent, modify the attribute summary and the attribute definitions to 91

match the attributes from the above UML diagram. 92
 93
5) Add a new Section 7.1.x, “Method Summary of AuditableEvent”, with two methods as follows: 94

getTransactionRequest():TransactionRequest (returns the whole instance, not just a UUID) 95
getRegistryEntry():RegistryEntry (returns the whole instance, not just a UUID) 96

 97
6) Add the above UML diagram to the introduction of Section 7, and call it a detailed Audit Trail sub-model of 98

Figure 1 (ebRIM page 11). 99
 100
7) Modify Figure 1 (ebRIM page 11) to make it consistent with the above UML diagram. Alternatively, delete 101

AuditableEvent and User from Figure 1 so that their specification can come completely in Section 7. 102
 103
8) Consider adding ServicesRequest and TransactionRequest to Figure 2 (ebRIM page 14) as sub-classes of 104

RegistryObject. 105
 106
9) Remove AuditableEvent from Figure 2 (ebRIM page 11) because it no longer has “id” or “name” attributes. 107
 108
10) Remove getAuditableEvents() as a method on RegistryObject (ebRIM Section 6.3.7). Instead, define new 109

methods on RegistryEntry (ebRIM Section 6.4.x) as follows: 110
getAuditableEvents(String:eventType):Collection(AuditableEvent) (returns set of whole instances) 111
getEventTransactions(String:eventType):Collection(TransactionRequest) (returns UUID’s is OK). 112

