ebXML Registry

OASIS ebXML Registry

Proposal: UpdateObjects Proposal (revised)

Category: Improvements to existing specifications

Date: November 5, 2001

Authors: Neal Smith

Status of this Document

This document is a second draft, updated to reflect informal feedback received on the first draft.

1 Abstract

This document proposes an update mechanism for Registry Objects. The proposed solution is to add a new UpdateObjects Protocol. UpdateObjects is very similar in syntax to SubmitObjects, except that it operates on one or more existing RegistryObjects.

This proposal includes specifications for three key features of the UpdateObjects protocol: error handling, auditable events, and submitting organization. For consistency, the Submit, Approve, Deprecate and Remove specifications are also updated to detail these features. Note that these features are not new functionality in v2, but simply a clear specification of things that were previously implied.

1.1 Auditable Events

Section 7.1 of the RIM states

"AuditableEvent instances provide a long-term record of Events that effect a change of state in a RegistryObject."

After some informal discussion with Reg/Rep team members, it seems the intent of the RIM specification is to require an audit trail of all updates to a RegistryObject. "Change of state" should not be interpreted as "change of status". This proposal includes a wording change to the RIM to make it clear that AuditableEvents are created whenever RegistryEntries are changed, not just when they change status.

The UpdateObjects specification specifies how the RS must create AuditableEvents objects when processing an UpdateObjects request. For consistency, the Submit, Approve, Deprecate and Remove protocols are also updated with specifications for creating AuditableEvents.

1.2 Submitting Organization

This proposal details the process for automatically creating and maintaining an Association between RegistryEntries and Organization.

Section 9.1 of the RS states

"The Registry must make it possible to identify the SO for any Registry content unambiguously"

Therefore, the RS must automatically maintain an Association of type SubmittedBy between the submitting organization and a RegistryObject. If an UpdateObjects request is accepted from a different submitting organization, then the RS must delete the original association object and create a new one. (Of course, the AccessControlPolicy may prohibit this sort of update in the first place.)

The Submit, Approve and Deprecate specifications are updated for consistency.

1.3 Error Handling

This proposal includes specifications for common errors that the RS must handle when processing an UpdateObjects request. For consistency, the Submit, Approve, Deprecate and Remove protocols are updated with specifications for error handling.

The RS DTD already includes a RegistryError element, which is an optional in the RegistryResponse. Therefore no DTD changes are required for the error handling specification.

2 Motivation

During the November 1, 2001 face-to-face meeting, it became clear there is no common understanding of update processes in RS. RS implementers need a clear specification.

2.1 Assumptions

The following assumptions are made in this proposal:

1. Issues dealing with Registry Access Control Policies are to be specified elsewhere. The current proposal does not specify how to determine whether a user is permitted to update the RegistryObjects included in an UpdateObjects request. However, if not authorized, an error condition should be raised and handled similar to other errors.

2.2 Alternatives

The proposal here is for a new protocol UpdateObjects. Although the discussion in the f2f centered around using SubmitObjects for both new submissions or updates, there is a good reason not to do that. Current RS specifications (section 7.3.1) allow a SubmitObjects Request to specify the ID (or omit it, in which case the RS assigns one). Therefore, there is no way to differentiate between a new submission vs. an update simply by inspection. There is also the danger of new submissions being accidentally treated as updates if the ID supplied happens to match one in the repository. An alternative is to add an action ("new/update") attribute to SubmitObjects, however, the current proposal seems clearer.

3 Proposed Deliverables

The following concrete deliverables are proposed:

3.1 ebRIM Information Model Changes

Replace the first sentence of RIM section 7.1 with the following.

AuditableEvent instances provide a long-term record of Events that effect a change of attributes in a RegistryObject.

Replace the third sentence of the last paragraph of RIM section 7.1 with the following.

No AuditableEvent is created for requests that do not alter the content of a RegistryObject.

3.2 ebRS Registry Services Specification Changes

3.2.1 Changes to ebRS Section 7.3, The SubmitObjects Protocol

Delete the last paragraph of 7.3 (replaced by the first paragraph of 7.3.2a below).

Add three new sub-sections following 7.3.2, as follows:

7.3.3 Audit Trail

The RS must create AuditableEvents object with eventType Created for each RegistryObject created via a SubmitObjects request.

7.3.4 Submitting Organization

The RS must create an Association of type SubmittedBy between the submitting organization and each RegistryObject created via a SubmitObjects request. (Submitting organization is determined from the organization attribute of the User who submits a SubmitObjects request.)

7.3.5 Error Handling

SubmitObjects requests are atomic and either succeed or fail in total. In the event of success, the registry sends a RegistryResponse with a status of “success” back to the client. In the event of failure, the registry sends a RegistryResponse with a status of “failure” back to the client. Failure occurs when one or more Error conditions are raised in the processing of the submitted objects. Warning messages do not result in failure of the request.

The following business rules apply:

Business Rule
Applies To
Error/Warning

ID not unique
All Classes
Error

Not authorized
All Classes
Error

Referenced object not found.
Association, Classification, ClassificationNode, Organization
Error

Associations not allowed to connect to deprecated objects.
Association
Error

Object status, majorVersion and minorVersion are set by the RS, and ignored if supplied.
All Classes
Warning

3.2.2 New ebRS Section 7.3a, The UpdateObjectsProtocol

This section describes the protocol of the Registry Service that allows a Registry Client to update one or more existing Registry Items in the registry on behalf of a Submitting Organization. It is expressed in UML notation as described in Appendix C.

<insert diagram of the updateObjects here>

For details on the schema for the Business documents shown in this process refer to Appendix A.

The UpdateObjectsRequest message includes a RegistryEntryList element.

The RegistryEntryList element specifies one or more ExtrinsicObjects or other RegistryEntries such as Classifications, Associations, ExternalLinks, or Packages. Each object in the list must be a current Registry Entry. RegistryEntries must include all attributes, even those the user does not intend to change. A missing attribute is interpreted as a request to set that attribute to NULL.
7.3a.1 Audit Trail

The RS must create AuditableEvents object with eventType Updated for each RegistryObject created via an UpdateObjects request.

7.3a.2 Submitting Organization

The RS must maintain an Association of type SubmittedBy between the submitting organization and each RegistryObject updated via an UpdateObjects request. If an UpdateObjects request is accepted from a different submitting organization, then the RS must delete the original association object and create a new one. Of course, the AccessControlPolicy may prohibit this sort of update in the first place. (Submitting organization is determined from the organization attribute of the User who submits an UpdateObjects request.)

7.3a.3 Error Handling

UpdateObjects requests are atomic and either succeed or fail in total. In the event of success, the registry sends a RegistryResponse with a status of “success” back to the client. In the event of failure, the registry sends a RegistryResponse with a status of “failure” back to the client. Failure occurs when one or more Error conditions are raised in the processing of the updated objects. Warning messages do not result in failure of the request.

The following business rules apply:

Business Rule
Applies To
Error/Warning

Object not found
All Classes
Error

Not authorized
All Classes
Error

Referenced object not found.
Association, Classification, ClassificationNode, Organization
Error

Associations not allowed to connect to deprecated objects.
Association
Error

contentURI cannot be changed via the UpdateObjects protocol, and is ignored if supplied.
ExtrinsicObject
Warning

Object status, majorVersion and minorVersion cannot be changed via the UpdateObjects protocol, ignored if supplied.
All Classes
Warning

RegistryEntries with stability = “Stable” should not be updated.
All Classes
Warning

3.2.3 Changes to ebRS Section 7.6, The Approve Objects Protocol

Delete the paragraph beginning "In the event of success".
Add three new sub-sections following 7.6, as follows:

7.6.1 Audit Trail

The RS must create AuditableEvents object with eventType Approved for each RegistryObject approved via an Approve Objects request.

7.6.2 Submitting Organization

The RS must maintain an Association of type SubmittedBy between the submitting organization and each RegistryObject updated via an ApproveObjects request. If an ApproveObjects request is accepted from a different submitting organization, then the RS must delete the original association object and create a new one. Of course, the AccessControlPolicy may prohibit this sort of ApproveObjects request in the first place. (Submitting organization is determined from the organization attribute of the User who submits an ApproveObjects request.)

7.6.3 Error Handling

ApproveObjects requests are atomic and either succeed or fail in total. In the event of success, the registry sends a RegistryResponse with a status of “success” back to the client. In the event of failure, the registry sends a RegistryResponse with a status of “failure” back to the client. Failure occurs when one or more Error conditions are raised in the processing of the object reference list. Warning messages do not result in failure of the request.

The following business rules apply:

Business Rule
Applies To
Error/Warning

Object not found
All Classes
Error

Not authorized
RegistryEntry Classes
Error

Only RegistryEntries may be "approved".
All Classes other than RegistryEntry classes
Error

Object status is already "Approved".
RegistryEntry Classes
Warning

3.2.4 Changes to ebRS Section 7.7, The Deprecate Objects Protocol

Delete the paragraph beginning "In the event of success".
Add three new sub-sections following 7.7, as follows:

7.7.1 Audit Trail

The RS must create AuditableEvents object with eventType Deprecated for each RegistryObject deprecated via a Deprecate Objects request.

7.7.2 Submitting Organization

The RS must maintain an Association of type SubmittedBy between the submitting organization and each RegistryObject updated via a Deprecate Objects request. If a Deprecate Objects request is accepted from a different submitting organization, then the RS must delete the original association object and create a new one. Of course, the AccessControlPolicy may prohibit this sort of Deprecate Objects request in the first place. (Submitting organization is determined from the organization attribute of the User who submits a Deprecate Objects request.)

7.7.3 Error Handling

Deprecate Objects requests are atomic and either succeed or fail in total. In the event of success, the registry sends a RegistryResponse with a status of “success” back to the client. In the event of failure, the registry sends a RegistryResponse with a status of “failure” back to the client. Failure occurs when one or more Error conditions are raised in the processing of the object reference list. Warning messages do not result in failure of the request.

The following business rules apply:

Business Rule
Applies To
Error/Warning

Object not found
All Classes
Error

Not authorized
RegistryEntry Classes
Error

Only RegistryEntries may be "deprecated".
All Classes other than RegistryEntry classes
Error

Object status is already "Deprecated".
RegistryEntry Classes
Warning

3.2.5 Changes to ebRS Section 7.8, The Remove Objects Protocol

Delete the paragraph in 7.8.2 beginning "In the event of success".
Add three new sub-sections following 7.8.2, as follows:

7.8.3 Audit Trail

The RS must create AuditableEvents object with eventType Deleted for each RegistryObject removed via a Remove Objects request.

7.8.4 Error Handling

Remove Objects requests are atomic and either succeed or fail in total. In the event of success, the registry sends a RegistryResponse with a status of “success” back to the client. In the event of failure, the registry sends a RegistryResponse with a status of “failure” back to the client. Failure occurs when one or more Error conditions are raised in the processing of the object reference list. Warning messages do not result in failure of the request.

The following business rules apply:

Business Rule
Applies To
Error/Warning

Object not found
All Classes
Error

Not authorized
RegistryEntry Classes
Error

Only RegistryEntries may be "removed".
All Classes other than RegistryEntry classes
Error

3.3 ebRS DTD Changes

3.3.1 Update the RootElement to add UpdateObjectsRequest

Line

Content

3609a

UpdateObjectsRequest |

3.3.2 Define the UpdateObjectsRequest

Line

Content

3280a

<!ELEMENT UpdateObjectsRequest (RegistryEntryList)>

 Page 8

