

OASIS ebXML Registry 1

Proposal: Support for Extramural Associations 2

Category: Improvements to existing specifications 3

Date: November 1, 2001 4

Author: Farrukh Najmi 5

Status of this Document 6

This document is a draft proposal whose purpose is to solicit additional input. 7

1 Abstract 8

The RIM 1.1 specification defines an Association class to represent an 9
association between two RegistryObjects. Current definition of association has 10
the following limitations: 11

1. An Association is restricted to be owned by the owner of the sourceObject 12
in the Association. 13

2. The rules are not clearly defined when the sourceObject and targetObject 14
of the Association are owned by different submitting organizations (SO). 15

3. There is no support for bilaterally agreed upon associations between two 16
objects that are owned by different submitting organizations. 17

This document proposes to provide focused backward compatible enhancements 18
to RIM1.1 and RS 1.0 that provide solutions to the above problems. 19

2 Motivation 20

The following motivations drive this proposal: 21
 22

1. Clarify current specifications for the case of extramural Associations 23
2. Relax restrictions on Associations 24

 25

2.1 Assumptions 26

The following assumptions are made in this proposal: 27

ebXML Registry

 Page 2

1. Issues dealing with multiple co-operating registries are not considered. 28
These issues are deferred to the Inter Registry Cooperation (IRC) team. 29

3 Changes to RIM 1.1 30

Replace chapter 9 with following chapter. A replacement of the chapter is needed 31
because we need to incrementally expose complexity to the reader and properly 32
position intramural Vs. extramural associations. 33

4 Association of Registry Objects 34

A RegistryObject instance may be associated with zero or more RegistryObject 35
instances. The information model defines an Association class, an instance of 36
which may be used to associate any two RegistryObject instances. 37

4.1 Example of an Association 38

One example of such an association is between two ClassificationScheme 39
instances, where one ClassificationScheme supercedes the other 40
ClassificationScheme as shown in Figure 1. This may be the case when a new 41
version of a ClassificationScheme is submitted. 42

In Figure 1, we see how an Association is defined between a new version of the 43
NAICS ClassificationScheme and an older version of the NAICS 44
ClassificationScheme. 45

 46

Figure 1: Example of RegistryObject Association 47

ebXML Registry

 Page 3

4.2 Source and Target Objects 48

An Association instance represents an association between a source 49
RegistryObject and a target RegistryObject. These are referred to as 50
sourceObject and targetObject for the Association instance. It is important which 51
object is the sourceObject and which is the targetObject as it determines the 52
directional semantics of an Association. 53

In the example in Figure 1, it is important to make the newer version of NAICS 54
ClassificationScheme be the sourceObject and the older version of NAICS be the 55
targetObject because the associationType implies that the sourceObject 56
supercedes the targetObject (and not the other way around). 57

4.3 Association Types 58

Each Association must have an associationType attribute that identifies the type 59
of that association. 60

4.4 Intramural Associations 61

A common use case for the Association class is when a User “u” creates an 62
Association “a” between two RegistryObjects “o1” and “o2” where association “a” 63
and RegistryObjects “o1” and “o2” are objects that were created by the same 64
User “u”. This is the simplest use case where the association is between two 65
objects that are owned by same User that is defining the Association. Such 66
associations are referred to as intramural associations. 67

Figure 2 below, extends the previous example in Figure 1 for the intramural 68
association case. 69

 70

ebXML Registry

 Page 4

 71

Figure 2: Example of Intramural Association 72

4.5 Extramural Association 73

The information model also allows a more sophisticated use case where a User 74
“u1” creates an Association “a” between two RegistryObjects “o1” and “o2” where 75
association “a” is owned by User “u1”, but RegistryObjects “o1” and “o2” are 76
owned by User “u2” and User “u3” respectively. 77

In this use case the Association is being defined where either or both objects that 78
are being associated are owned by a User different from the User defining the 79
Association. Such associations are referred to as extramural associations. The 80
Association class provides a convenience method called isExtramural that 81
returns true if the Association instance is an extramural Association. 82

Figure 3 below, extends the previous example in Figure 1 for the extramural 83
association case. Note that it is possible for an extramural association to have 84
two distinct Users rather than three distinct Users as shown in Figure 3. In such 85
case, one of the two users owns two of the three objects involved (Association, 86
sourceObject and targetObject). 87

ebXML Registry

 Page 5

 88

Figure 3: Example of Extramural Association 89

4.6 Confirmation of an Association 90

An association may need to be confirmed by the parties whose objects are 91
involved in that Association as the sourceObject o r targetObject. This section 92
describes the semantics of confirmation of an association by the parties involved. 93

4.6.1 Confirmation of Intramural Associations 94

Intramural associations may be viewed as declarations of truth and do not 95
require any explicit steps to confirm that Association as being true. In other 96
words, intramural associations are implicitly considered confirmed. 97

4.6.2 Confirmation of Extramural Associations 98

Extramural associations may be viewed as a unilateral assertion that may not be 99
viewed as truth until it has been confirmed by the other (extramural) parties 100
(Users “u2” and “u3” in example in section 4.5). 101

ebXML Registry

 Page 6

To confirm an extramural Association, each extramural parties (parties that own 102
source or target object that do not own the Association) must submit an identical 103
association (clone association) as the association they are intending to confirm 104
using a SubmitObjectsRequest. The clone Association must have the same id as 105
the original association. 106

4.7 Visibility of Unconfirmed Associations 107

Extramural associations require each extramural party to confirm the assertion 108
being made by the extramural Association before the Association is visible to 3rd 109
parties that are not involved in the Association. This ensures that unconfirmed 110
Associations are not visible to 3rd party registry clients. 111

4.8 Possible Confirmation States 112

Assume the most general case where there are three distinct User instances as 113
shown in Figure 3 for an extramural Association. The extramural Association 114
needs to be confirmed by both the other (extramural) parties (Users “u2” and “u3” 115
in example) in order to be fully confirmed. The methods 116
isConfirmedBySourceOwner and isConfiremedByTargetOwner in the 117

Association class provide access to confirmation state for both the sourceObject 118
and targetObject. A third convenience method called isConfirmed provides a 119

way to determine whether the Association is fully confirmed or not. So there are 120
the following four possibilities related to confirmation state of an extramural 121
Association: 122

o The Association is confirmed neither by the owner of the sourceObject nor 123
is it confirmed by owner of targetObject. 124

o The Association is confirmed by the owner of the sourceObject but it is not 125
confirmed by owner of targetObject. 126

o The Association is not confirmed by the owner of the sourceObject but it is 127
confirmed by owner of targetObject. 128

o The Association is confirmed by the owner of the sourceObject and it is 129
confirmed by owner of targetObject. This is the only state where the 130
Association is fully confirmed. 131

 132

 133
134

ebXML Registry

 Page 7

 134

4.9 Class Association 135

 Super Classes: 136

RegistryObject 137

138

 139

Association instances are used to define many-to-many associations between 140
RegistryObjects in the information model. 141

 142

An Instance of the Association Class represents an association between two 143
RegistryObjects. 144

4.9.1 Attribute Summary 145

 146

Attribute Data Type Required Default
Value

Specified By Mutable

associationType LongName Yes Client No

sourceObject UUID Yes Client No

targetObject UUID Yes Client No

 147

Note that attributes inherited from the base classes of this class are not shown. 148

4.9.2 Attribute associationType 149

Each Association must have an associationType attribute that identifies the type 150
of that association. This MUST be the name attribute of an association type as 151
defined by Error! Reference source not found.. 152

4.9.2.1 Pre-defined Association Types 153

The following table lists pre-defined association types. These pre-defined 154
association types are defined as a Classification scheme. While the scheme may 155
easily be extended a Registry MUST support the association types listed below. 156

 157

name description

ebXML Registry

 Page 8

RelatedTo Defines that source RegistryObject is related to target
RegistryObject.

HasMember Defines that the source Package object has the target
RegistryObject object as a member. Reserved for use in
Packaging of RegistryEntries.

ExternallyLinks Defines that the source ExternalLink object externally
links the target RegistryObject object. Reserved for use
in associating ExternalLinks with RegistryEntries.

Contains Defines that source RegistryObject contains the target
RegistryObject.

EquivalentTo Defines that source RegistryObject is equivalent to the
target RegistryObject.

Extends Defines that source RegistryObject inherits from or
specializes the target RegistryObject.

Implements Defines that source RegistryObject implements the
functionality defined by the target RegistryObject.

InstanceOf Defines that source RegistryObject is an Instance of
target RegistryObject.

Supersedes Defines that the source RegistryObject supersedes the
target RegistryObject.

Uses Defines that the source RegistryObject uses the target
RegistryObject in some manner.

Replaces Defines that the source RegistryObject replaces the
target RegistryObject in some manner.

 158

4.9.3 Attribute sourceObject 159

Each Association must have a sourceObject attribute that references the 160
RegistryObject instance that is the source or owner of that association. 161

4.9.4 Attribute targetObject 162

Each Association must have an targetObject attribute that references the 163
RegistryObject instance that is the target of that association. 164

ebXML Registry

 Page 9

4.9.5 Inherited Attribute id 165

The id attribute for an Association is an attribute based id composed of the value 166
of the sourceObject, targetObject and associationType attributes in that order, 167
where each attribute value is separated by a ‘:’. 168

 169

The pattern is as follows: 170

urn:uuid:< sourceObject id>:< targetObject id>:<associationType> 171

 172

An example is as follows: 173

 174

urn:uuid:a2345678-1234-1234-123456789012: a2345678-1234-1234-175
123456789013:Implements 176

177

 178

Method Summary of Association

 boolean isConfirmed()
 Returns true if isConfirmedBySourceOwner and
isConfirmedByTargetOwner both return true. For intramural
Associations always return true. An association should only be
visible to third parties (not involved with the Association) if
isConfirmed returns true.

 boolean isConfirmedBySourceOwner()
 Returns true if the association has been confirmed by the
owner of the sourceObject. For intramural Associations always
return true.

 boolean isConfirmedByTargetOwner()
 Returns true if the association has been confirmed by the
owner of the targetObject. For intramural Associations always return
true.

 boolean isExtramural()
 Returns true if the sourceObject and/or the targetObject are
owned by a User that is different from the User that created the
Association.

 179

 180

