10
11

12
13

14
15

16
17

18
19

20

21
22
23
24
25

26

27

OASIS ebXML Registry

Proposal: Support for Extramural Associations
Category: Improvements to existing specifications
Date: November 1, 2001

Author: Farrukh Najmi

Status of this Document

This document is a draft proposal whose purpose is to solicit additional input.

1 Abstract

The RIM 1.1 specification defines an Association class to represent an
association between two RegistryObjects. Current definition of association has
the following limitations:

1. An Association is restricted to be owned by the owner of the sourceObject
in the Association.

2. The rules are not clearly defined when the sourceObject and targetObject
of the Association are owned by different submitting organizations (SO).

3. There is no support for bilaterally agreed upon associations between two
objects that are owned by different submitting organizations.

This document proposes to provide focused backward compatible enhancements
to RIM1.1 and RS 1.0 that provide solutions to the above problems.

2 Motivation
The following motivations drive this proposal:

1. Clarify current specifications for the case of extramural Associations

2. Relax restrictions on Associations

2.1 Assumptions

The following assumptions are made in this proposal:

28
29

30

31
32
33

34

35
36
37

38

39
40
41
42

43
44
45

46
47

ebXML Registry

1. Issues dealing with multiple co-operating registries are not considered.
These issues are deferred to the Inter Registry Cooperation (IRC) team.

3 Changesto RIM 1.1

Replace chapter 9 with following chapter. A replacement of the chapter is needed
because we need to incrementally expose complexity to the reader and properly
position intramural Vs. extramural associations.

4 Association of Registry Objects

A RegistryObject instance may be associated with zero or more RegistryObject
instances. The information model defines an Association class, an instance of
which may be used to associate any two RegistryObject instances.

4.1 Example of an Association

One example of such an association is between two ClassificationScheme
instances, where one ClassificationScheme supercedes the other
ClassificationScheme as shown in Figure 1. This may be the case when a new
version of a ClassificationScheme is submitted.

In Figure 1, we see how an Association is defined between a new version of the
NAICS ClassificationScheme and an older version of the NAICS
ClassificationScheme.

NAICS2001-HAICS 1997 _Association:Association
[associationType = Supercedes)

sourceObject targetOhject

HAICS2001:ClassificationScheme HAICS 1997 ClassificationScheme

Figure 1: Example of RegistryObject Association

Page 2

48

49
50
51
52
53

54
55
56
57

58

59
60

61

62
63
64
65
66
67

68
69

70

ebXML Registry

4.2 Source and Target Objects

An Association instance represents an association between asource
RegistryObject and a target RegistryObject. These are referred to as
sourceObject and targetObject for the Association instance. It is important which
object is the sourceObject and which is the targetObject as it determines the
directional semantics of an Association.

In the example in Figure 1, it is important to make the newer version of NAICS
ClassificationScheme be the sourceObject and the older version of NAICS be the
targetObject because the associationType implies that the sourceObject
supercedes the targetObject (and not the other way around).

4.3 Association Types

Each Association must have an associationType attribute that identifies the type
of that association.

4.4 Intramural Associations

A common use case for the Association class is when a User “u” creates an
Association “a” between two RegistryObjects “01” and “02” where association “a”
and RegistryObjects “01” and “02” are objects that were created by the same
User “u”. This is the simplest use case where the association is between two
objects that are owned by same User that is defining the Association. Such
associations are referred to as intramural associations.

Figure 2 below, extends the previous example in Figure 1 for the intramural
association case.

Page 3

71

72

73

74
75
76
77

78
79
80
81
82

83
84
85
86
87

ebXML Registry

HAICS2001-HAICS1997-Association:Association
[associationType = Supercedes)

sourceObject targetObject
HAICS2001:ClassificationScheme HAICS 1997 ClassificationScheme
user user
user
u:llser

Figure 2: Example of Intramural Association

45 Extramural Association

The information model also allows a more sophisticated use case where a User
“ul” creates an Association “a” between two RegistryObjects “01” and “02” where
association “a” is owned by User “ul”, but RegistryObjects “01” and “02” are
owned by User “u2” and User “u3” respectively.

In this use case the Association is being defined where either or both objects that
are being associated are owned by a User different from the User defining the
Association. Such associations are referred to as extramural associations. The
Association class provides a convenience method called i sExt r anur al that
returns true if the Association instance is an extramural Association.

Figure 3 below, extends the previous example in Figure 1 for the extramural
association case. Note that it is possible for an extramural association to have
two distinct Users rather than three distinct Users as shown in Figure 3. In such
case, one of the two users owns two of the three objects involved (Association,
sourceObject and targetObject).

Page 4

88
89

90

91
92
93

94

95
96
97

98

99
100
101

ebXML Registry

ul:User

user

HAICSZ2001-HAICS 1997 -Association:Association
[assaciationType = Supercedes]

sourceOhject targetObject
HAICS2001:ClassificationScheme HAICS 1997 ClassificationScheme
user user
uZ:User udUser

Figure 3: Example of Extramural Association

4.6 Confirmation of an Association

An association may need to be confirmed by the parties whose objects are
involved in that Association as the sourceObject or targetObject. This section
describes the semantics of confirmation of an association by the parties involved.

4.6.1 Confirmation of Intramural Associations

Intramural associations may be viewed as declarations of truth and do not
require any explicit steps to confirm that Association as being true. In other
words, intramural associations are implicitly considered confirmed.

4.6.2 Confirmation of Extramural Associations

Extramural associations may be viewed as a unilateral assertion that may not be
viewed as truth until it has been confirmed by the other (extramural) parties
(Users “u2” and “u3” in example in section 4.5).

Page 5

102
103
104
105
106

107

108
109
110
111

112

113
114
115
116
117
118
119
120
121
122

123
124

125
126

127
128

129
130
131

132

133
134

ebXML Registry

To confirm an extramural Association, each extramural parties (parties that own
source or target object that do not own the Association) must submit an identical
association (clone association) as the association they are intending to confirm
using a SubmitObjectsRequest. The clone Association must have the same id as
the original association.

4.7 Visibility of Unconfirmed Associations

Extramural associations require each extramural party to confirm the assertion
being made by the extramural Association before the Association is visible to 3™
parties that are not involved in the Association. This ensures that unconfirmed
Associations are not visible to 3" party registry clients.

4.8 Possible Confirmation States

Assume the most general case where there are three distinct User instances as
shown in Figure 3 for an extramural Association. The extramural Association
needs to be confirmed by both the other (extramural) parties (Users “u2” and “u3”
in example) in order to be fully confirmed. The methods

i sConfirmedBySour ceOwer andi sConfirenmedByTar get Owmer inthe
Association class provide access to confirmation state for both the sourceObject
and targetObject. A third convenience method called i sConf i r med provides a
way to determine whether the Association is fully confirmed or not. So there are
the following four possibilities related to confirmation state of an extramural
Association:

0 The Association is confirmed neither by the owner of the sourceObject nor
is it confirmed by owner of targetObiject.

o0 The Association is confirmed by the owner of the sourceObject but it is not
confirmed by owner of targetObject.

0 The Association is not confirmed by the owner of the sourceObject but it is
confirmed by owner of targetObject.

0 The Association is confirmed by the owner of the sourceObject and it is
confirmed by owner of targetObject. This is the only state where the
Association is fully confirmed.

Page 6

134

135

136
137

138
139

140
141

142

143
144

145

146

147
148

149

150
151
152

153

154
155
156

157

ebXML Registry

49 Class Association

Super Classes:
RegistryObject

Association instances are used to define many-to-many associations between
RegistryObjects in the information model.

An Instance of the Association Class represents an association between two
RegistryObjects.

49.1 Attribute Summary

Attribute Data Type | Required | Default | Specified By | Mutable
Value
associationType | LongName Yes Client No
sourceObject UuUID Yes Client No
targetObject UuUID Yes Client No

Note that attributes inherited from the base classes of this class are not shown.

49.2 Attribute associationType

Each Association must have an associationType attribute that identifies the type
of that association. This MUST be the name attribute of an association type as
defined by Error! Reference source not found..

4.9.2.1 Pre-defined Association Types

The following table lists pre-defined association types. These pre-defined
association types are defined as a Classification scheme. While the scheme may
easily be extended a Registry MUST support the association types listed below.

‘| name ‘| descri ption ﬂ

Page 7

158

159

160
161

162

163
164

ebXML Registry

Rel at edTo

Defines that source RegistryObject is related to target
RegistryObject.

HasMenber

Defines that the source Package object has the target
RegistryObject object as a member. Reserved for use in
Packaging of RegistryEntries.

Ext er nal | yLi nks

Defines that the source ExternalLink object externally
links the target RegistryObject object. Reserved for use
in associating ExternalLinks with RegistryEntries.

Cont ai ns

Defines that source RegistryObject contains the target
RegistryObject.

Equi val ent To

Defines that source RegistryObject is equivalent to the
target RegistryObiject.

Ext ends Defines that source RegistryObject inherits from or
specializes the target RegistryObject.
I npl ement s Defines that source RegistryObject implements the
functionality defined by the target RegistryObject.
I nstanceOf

Defines that source RegistryObject is an Instance of
target RegistryObject.

Super sedes

Defines that the source RegistryObject supersedes the
target RegistryObject.

Uses Defines that the source RegistryObject uses the target
RegistryObject in some manner.
Repl aces Defines that the source RegistryObiject replaces the

target RegistryObject in some manner.

4.9.3 Attribute sourceObject

Each Association must have a sourceObiject attribute that references the
RegistryObject instance that is the source or owner of that association.

4.9.4 Attribute targetObject

Each Association must have an targetObject attribute that references the
RegistryObject instance that is the target of that association.

Page 8

165

166
167
168

169
170
171
172
173
174

175

176
177

178

179
180

ebXML Registry

495 Inherited Attribute id

The id attribute for an Association is an attribute based id composed of the value
of the sourceObject, targetObject and associationType attributes in that order,
where each attribute value is separated by a ‘.’

The pattern is as follows:

urn:uuid:< sourceObject id>:< targetObject id>:<associationType>

An example is as follows:

urn:uuid:a2345678-1234-1234-123456789012: a2345678-1234-1234-
123456789013:Implements

Method Sum

mary of Association

bool ean

i sConfirned()

Returns true if isConfirmedBySourceOwner and
isConfirmedByTargetOwner both return true. For intramural
Associations always return true. An association should only be
visible to third parties (not involved with the Association) if
isConfirmed returns true.

bool ean

i sConfirmedBySour ceOnner ()

Returns true if the association has been confirmed by the
owner of the sourceObject. For intramural Associations always
return true.

bool ean

i sConfirmedByTar get Oaner ()

Returns true if the association has been confirmed by the
owner of the targetObject. For intramural Associations always return
true.

bool ean

i sExtranural ()

Returns true if the sourceObject and/or the targetObject are
owned by a User that is different from the User that created the
Association.

Page 9

