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3 Introduction

3.1 Summary of Contents of Document

This document defines the interface to the eb XML Registry Services as well as interaction
protocols, message definitions and XML schema.

A separate document, ebXML Registry Information Model [ebRIM], provides information on the
types of metadata that are stored in the Registry as well as the relationships among the various
metadata classes.

3.2 General Conventions

The following conventions are used throughout this document:

UML diagrams are used as away to concisely describe concepts. They are not interded to
convey any specific Implementation or methodology requirements.

Theterm “ repository item” is used to refer to an object that has resides in a repository for storage
and safekeeping (e.g., an XML document or aDTD). Every repository item is described in the
Registry by a RegistryObject instance.

The term "RegistryEntry" is used to refer to an object that provides metadata about a repository
item.

Capitalized Italic words are defined in the ebXML Glossary.

The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD
NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this document, are to be
interpreted as described in RFC 2119 [Bra97].

3.3 Audience

The target audience for this specification is the community of software developers who are:
?? Implementers of ebXML Registry Services

?? Implementers of ebXML Registry Clients

3.3.1.1.1 Related Documents

The following specifications provide some background and related information to the reader:
a) ebXML Registry Information Model [ebRIM]
b) ebXML Message Service Specification [ebM G
c) ebXML Business Process Specification Schema [ebBPM]
d) ebXML Collaboration-Protocol Profile and Agreement Specification [ebCPP]
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4 Design Objectives

4.1 Goals

The goals of this version of the specification are to:

?? Communicate functionality of Registry services to software developers

?? Specify the interface for Registry clients and the Registry

?? Provide a basis for future support of more complete ebXML Registry requirements
?? Be compatible with other ebXML specifications

4.2 Caveats and Assumptions

The Registry Services specification isfirst in a series of phased deliverables. Later versions of
the document will include additional functionality planned for future development. Itis
assumed that:

Interoperability requirements dictate that that at least one of the normative interfaces as
referenced in this specification must be supported.
1. All access to the Registry content is exposed via the interfaces defined for the Registry
Services.
2. The Registry makes use of a Repository for storing and retrieving persistent information
required by the Registry Services. Thisis an implementation detail that will not be
discussed further in this specification.
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5 System Overview

5.1 What The ebXML Registry Does

The ebXML Registry provides a set of services that enable sharing of information between
interested parties for the purpose of enabling business process integration between such parties
based on the ebXML specifications. The shared information is maintained as objectsin a
repository and managed by the ebXML Registry Services defined in this document.

5.2 How The ebXML Registry Works

This section describes at a high level some use cases illustrating how Registry clients may make
use of Registry Services to conduct B2B exchanges. It is meant to be illustrative and not
prescriptive.

The following scenario provides a high level textual example of those use cases in terms of
interaction between Registry clients and the Registry. It is not a complete listing of the use cases
that could be envisioned. It assumes for purposes of example, a buyer and a seller who wish to
conduct B2B exchanges using the RosettaNet PIP3A4 Purchase Order business protocal. It is
assumed that both buyer and seller use the same Registry service provided by athird party. Note
that the architecture supports other possibilities (e.g. each party usesits own private Registry).

5.2.1 Schema Documents Are Submitted

A third party such as an industry consortium or standards group submits the necessary schema
documents required by the RosettaNet PIP3A4 Purchase Order business protocol with the
Registry using the LifeCycleManager service of the Registry described in Section 7.3.

5.2.2 Business Process Documents Are Submitted

A third party, such as an industry consortium or standards group, submits the necessary business
process documents required by the RosettaNet PIP3A4 Purchase Order business protocol with
the Registry using the LifeCycleManager service of the Registry described in Section 7.3.

5.2.3 Seller’'s Collaboration Protocol Profile Is Submitted

The seller publishesits Collaboration Protocol Profile or CPP as defined by [ebCPP] to the
Registry. The CPP describes the sdller, the role it plays, the services it offers and the technical
details on how those services may be accessed. The seller classifies their Collaboration Protocol
Profile using the Registry’s flexible Classification capabilities.

5.2.4 Buyer Discovers The Seller

The buyer browses the Registry using Classification schemes defined within the Registry using a
Registry Browser GUI tool to discover a suitable seller. For example the buyer may look for al
parties that are in the Automotive Industry, play a seller role, support the RosettaNet PIP3A4
process and sell Car Stereos.

The buyer discovers the seller’s CPP and decides to engage in a partnership with the seller.
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5.25 CPA Is Established

The buyer unilaterally creates a Collaboration Protocol Agreement or CPA as defined by
[ebCPP] with the seller using the seller’s CPP and their own CPP as input. The buyer proposes a
trading relationship to the seller using the unilateral CPA. The seller accepts the proposed CPA
and the trading relationship is established.

Once the seller accepts the CPA, the parties may begin to conduct B2B transactions as defined

by [ebMS].

5.3 Registry Users

We describe the actors who use the registry from the point of view of security and analyze the
security concerns of the registry below. This analysis leads up to the security requirements for
V2. Some of the actors are defined in Section 9.4.1 of [ebRS]. Note that same entity may take on
multiple roles. For example, a Registration Authority and Registry Administrator may have the

same identity.
= <=Tablel: Registry Users
: |SO/IEC
Actor Function Comments
11179
RegistrationAuthority | Hosts the RegistryObjects Registration
Authority (RA)
Registry Evaluates and enforces MAY have the same
Administrator registry security policy. identity as
Facilitates definition of the Registration
registry security policy. Authority
Registered User Has a contract with the The contract could
Registration Authority and be aebXML CPA or
MUST be authenticated by some other form of
Registration Authority. contract.
Registry Guest Has no contract with Note that a Registry
Registration Authority. Does Guest isnot a
not have to be authenticated Registry Reader.
for Registry access. Cannot
change contents of the
Registry (MAY be permitted
to read some
RegistryObjects.)
Submitting A Registered User who does | Submitting
Organization lifecycle operationson Organization
permitted RegistryObjects. (SO)
Registry Reader A Registered User who has
only read access
Responsible Creates Registry Objects Responsible RO MAY have the
Organization Organization same identity as SO
(RO)
Registry Client Registered User or Registered

Guest
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) . Registry
Registry Client Administrator
) : Registration
Registered User Registry Guest Authority
S Responsible
. ; Ttin g Organization
Registry Reader Organization .

= <=Figurel: Actor Relationships

Note:

In the current version of the specification the following are true.

?? A Submitting Organization and a Responsible Organization are the same.

?? Registration of a user happens out-of-band, i.e, by means not specified in this specification
?? A Registry Administrator and Registration Authority are the same.

5.4 Where the Registry Services May Be Implemented

The Registry Services may be implemented in several ways including, as a public web site, as a
private web site, hosted by an ASP or hosted by a VPN provider.

5.5 Implementation Conformance

An implementation is a conforming ebXML Registry if the implementation meets the conditions
in Section 5.4.1. An implementation is a conforming ebXML Registry Client if the
implementation meets the conditions in Section 5.4.2. An implementation is a conforming
ebXML Registry and a conforming ebXML Registry Client if the implementation conforms to
the conditions of Section 5.4.1 and Section 5.4.2. An implementation shall be a conforming
ebXML Registry, aconforming ebXML Registry Client, or aconforming ebXML Registry and
Registry Client.

5.5.1 Conformance as an ebXML Registry
An implementation conforms to this specification as an ebXML registry if it meets the following
conditions:

1. Conformsto the ebXML Registry Information Model [ ebRIM].

2. Supports the syntax and semantics of the Registry Interfaces and Security Model.

3. Supports the defined ebXML Registry DTD (Appendix A)

4. Optionally supports the syntax and semantics of Section 8.3, SQL Query Support.
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5.5.2 Conformance as an ebXML Registry Client

An implementation conforms to this specification, as an ebXML Registry Client if it meets the
following conditions:

1. Supports the ebXML CPA and bootstrapping process.

2. Supports the syntax and the semantics of the Registry Client Interfaces.
3. Supports the defined ebXML Error Message DTD.
4

. Supports the defined ebXML Registry DTD.
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6 ebXML Registry Architecture

The ebXML Registry architecture consists of an ebXML Registry Service and ebXML Registry
Clients. The ebXML Registry Service provides the methods for managing a repository. An
ebXML Registry Client is an application used to access the Registry.

LTI

L R

= =Figure2: ebXML Registry Service Architecture

6.1 Registry Service Described

The ebXML Registry Service is comprised of arobust set of interfaces designed to

fundamentally manage the objects and inquiries associated with the ebXML Registry. The two

primary interfaces for the Registry Service consist of

?? A Life Cycle Management interface that provides a collection of methods for managing
objects within the Registry.

?? A Query Management Interface that controls the discovery and retrieval of information from
the Registry.

A registry client program utilizes the services of the registry by invoking methods on one of the

above interfaces defined by the Registry Service. This specification defines the interfaces

exposed by the Registry Service (Sections 6.4 and 6.5) as well as the interface for the Registry

Client (Section 6.6).

6.2 Abstract Registry Service

The architecture defines the ebXML Registry as an abstract registry service that is defined as:
1. A set of interfaces that must be supported by the registry.
2. The set of methods that must be supported by each interface.

Copyright © OASIS, 2001. All Rights Reserved



402
403

405

406
407
408

409
410

411
412

413

414
415

416
417
418
419
420

421
422

423

424
425

426
427
428
429
430
431

OASIS/ebXML Registry November 2001

3. The parameters and responses that must be supported by each method.

The abstract registry service neither defines any specific implementation for the ebXML
Registry, nor does it specify any specific protocols used by the registry. Such implementation
details are described by concrete registry services that realize the abstract registry service.
The abstract registry service (Figure 3) shows how an abstract ebXML Registry must provide
two key functional interfaces called Quer yManager! (QM) and Li f eCycl eManager 2
(LM).

<= <=Figure3: The Abstract ebXML Registry Service

Appendix 0 describes the abstract service definition in the Web Service Description Language
(WSDL) syntax.

6.3 Concrete Registry Services

The architecture allows the abstract registry service to be mapped to one or more concrete
registry services defined as:

?? Implementations of the interfaces defined by the abstract registry service.

?? Bindings of these concrete interfaces to specific communication protocols.

This specification describes two concrete bindings for the abstract registry service:

?? A SOAP binding using the HTTP protocol

?? An ebXML Messaging Service (ebMS) binding

A registry may implement one or both of the concrete bindings for the abstract registry service as
shown in Figure 4.

QMUSOAR, 04D | _— i
L —%
oS

RS WAL
$| TRRS0AT |
- s
= =

= <=Figure4: A ConcreteebXML Registry Service

Figure 4 shows a concrete implementation of the abstract ebXML Registry (RegistryService) on
the left side. The RegistryService provides the QueryManager and LifeCycleManager interfaces
available with multiple protocol bindings (SOAP and ebMYS).

Figure 4 also shows two different clients of the ebXML Registry on the right side. The top client
uses SOAP interface to access the registry while the lower client uses ebMS interface. Clients
use the appropriate concrete interface within the RegistryService service based upon their

1 Known as ObjectQueryManager in V1.0
2 Known as ObjectManager in V1.0
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protocol preference.

6.3.1 SOAP Binding

6.3.1.1 WSDL Terminology Primer

This section provides a brief introduction to Web Service Description Language (WSDL) since
the SOAP binding is described using WSDL syntax. WSDL provides the ability to describe a
web service in abstract as well as with concrete bindings to specific protocols. In WSDL, an
abstract service consists of oneor moreport types orend-points. Each port type consists
of acollection of oper at i ons. Each operation is defined in terms of messages that define
what datais exchanged as part of that operation. Each message is typically defined in terms of
elements within an XML Schema definition.

An abstract service is not bound to any specific protocol (e.g. SOAP). In WSDL, an abstract
service may be used to define a concrete service by binding it to a specific protocol. This binding
isdone by providing abi ndi ng definition for each abstract port type that defines additional

protocols specific details. Finally, aconcreteser vi ce definition is defined as a collection of
por t s, where each port smply adds address information such as a URL for each concrete port.

6.3.1.2 Concrete Binding for SOAP

This section assumes that the reader is somewhat familiar with SOAP and WSDL. The SOAP

binding to the ebXML Registry is defined as a web service description in WSDL as follows:

?? A single service element with name “RegistryService” defines the concrete SOAP binding
for the registry service.

?? The service e ement includes two port definitions, where each port corresponds with one of
the interfaces defined for the abstract registry service. Each port includes an HTTP URL for
accessing that port.

?? Each port definition also references a binding element, one for each interface defined in the
WSDL for the abstract registry service.

<servi ce name = "Regi stryService">
<port nane = "QueryManager SOAPBi ndi ng" bi nding = "tns: Quer yManager SOAPBi ndi ng" >
<soap: address | ocation = "http://your_URL_to_your_QueryManager"/>
</ port >

<port nanme = "LifeCycl eManager SOAPBi ndi ng" bi ndi ng = "t ns: Li f eCycl eManager SOAPBi ndi ng" >
<soap: address | ocation = "http://your URL_to_your_QueryNVanager"/>
</ port >
</ servi ce>

The complete WSDL description for the SOAP binding is described in Appendix O

6.3.2 ebXML Message Service Binding

6.3.2.1 Service and Action Elements
When wsing the ebXML Messaging Services Specification, eobXML Registry Service elements
correspond to Messaging Service elements as follows:

?? The vaue of the Service element in the MessageHeader is an ebXML Registry Service
interface name (e.g., “LifeCycleManager”). The type attribute of the Service element should
have a vaue of “ebXMLRegistry”.
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?? The value of the Action element in the MessageHeader is an ebXML Registry Service
method name (e.g., “submitObjects”).

<eb: Servi ce eb:type="ebXM.-Regi stry”>Li f eCycl eManger </ eb: Servi ce>
<eb: Acti on>subm t Obj ect s</ eb: Acti on>

Note that the above allows the Registry Client only one interface/method pair per message. This
implies that a Registry Client can only invoke one method on a specified interface for a given
request to aregistry.

6.3.2.2 Synchronous and Asynchronous Responses
All methods on interfaces exposed by the registry return a response message.
Asynchronous response
When a message is sent asynchronoudly, the Registry will return two response messages. The
first message will be an immediate response to the request and does not reflect the actual
response for the request. This message will contain:
?? MessageHeader;
?? RegistryResponse element with empty content (e.g., NO AdHocQueryResponsg);

?7? dtatus attribute with value Unavailable.
The Registry delivers the actual Registry response element with non-empty content
asynchronoudly at alater time. The delivery is accomplished by the Registry invoking the
onResponse method on the RegistryClient interface as implemented by the registry client
application. The onResponse method includes a RegistryResponse element which hasa complete
as defined by the Synchronous response section below. The Registry response includes:
?? MessageHeader;
?? RegistryResponse el ement including;

?7? Status attribute (Success, Failure);

?7? Optional RegistryErrorList.
Synchronous response
When a message is sent synchronously, the Message Service Handler will hold open the
communication mechanism until the Registry returns aresponse. This message will contain:
?? MessageHeader;
?? RegistryResponse element including;

?7? Status attribute (Success, Failure);

?? Optiona RegistryErrorList.

6.3.2.3 ebXML Registry Collaboration Profiles and Agreements

The ebXML CPP specification [ebCPP] defines a CollaborationProtocol Profile (CPP) and a
CollaborationProtocol Agreement (CPA) as mechanisms for two parties to share information
regarding their respective business processes. That specification assumes that a CPA has been
agreed to by both parties in order for them to engage in B2B interactions.

This specification does not mandate the use of a CPA between the Registry and the Registry
Client. However if the Registry does not use a CPP, the Registry shall provide an alternate
mechanism for the Registry Client to discover the services and other information provided by a
CPP. This aternate mechanism could be asimple URL.

The CPA between clients and the Registry should describe the interfaces that the Registry and
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the client expose to each other for Registry-specific interactions. The definition of the Registry
CPP template and a Registry Client CPP template are beyond the scope of this document.

6.4 LifeCycleManager Interface

Thisis the interface exposed by the Registry Service that implements the object life cycle
management functionality of the Registry. Its methods are invoked by the Registry Client. For
example, the client may use this interface to submit objects, to classify and associate objects and
to deprecate and remove objects. For this specification the semantic meaning of submit, classify,
associate, deprecate and remove is found in [ebRIM].

= =

= =Table2: LifeCycle Manager Summary

Method Summary of LifeCycleManager

Regi st ryResponse|lappr oveObj ect s( Appr oveObj ect sRequest req)
Approves one or more previously submitted objects.
Regi st ryResponse||depr ecat eObj ect s( Depr ecat eObj ect sRequest req)
Deprecates one or more previously submitted objects.
Regi st ryResponse||r enove(Cbj ect s( RenbveObj ect sRequest req)
Removes one or more previously submitted objects from
the Registry.

Regi st ryResponse||subni t-Ooj ect s(Subm t Obj ect sRequest req)
Submits one or more objects and possibly related
metadata such as Associations and Classifications.

Regi st ryResponse|jupdat eCbj ect s( Updat eObj ect sRequest req)
Updates one or more previously submitted objects.

Regi st ryResponse||addS| ot s( AddSI ot sRequest req)

Add dotsto one or more registry entries.

Regi st ryResponse||r enoveS| ot s( RenmoveS! ot gRequest req)

Remove specified slots from one or more registry entries.

6.5 QueryManager Interface

This is the interface exposed by the Registry that implements the Query management service of
the Registry. Its methods are invoked by the Registry Client. For example, the client may use
this interface to perform browse and drill down queries or ad hoc queries on registry content.

= &

<= =Table3: Query Manager

Method Summary of QueryM anager

Regi stryResponse|subm t AdhocQuer y( AdhocQuer yRequest req)
Submit an ad hoc query request.
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6.6 Registry Clients

6.6.1 Registry Client Described

The Registry Client interfaces may be local to the registry or local to the user. Figure 5 depicts
the two possible topol ogies supported by the registry architecture with respect to the Registry
and Registry Clients. The picture on the left side shows the scenario where the Registry provides
aweb based “thin client” application for accessing the Registry that is available to the user using
acommon web browser. In this scenario the Registry Client interfaces reside across the Internet
and are local to the Registry from the user’s view. The picture on the right side shows the
scenario where the user isusing a “fat client” Registry Browser application to access the registry.
In this scenario the Registry Client interfaces reside within the Registry Browser tool and are
local to the Registry from the user’s view. The Registry Client interfaces communicate with the
Registry over the Internet in this scenario.

A third topology made possible by the registry architecture is where the Registry Client
interfaces reside in a server side business component such as a Purchasing business component.
In this topology there may be no direct user interface or user intervention involved. Instead, the
Purchasing business component may access the Registry in an automated manner to select

(== ———
. Tl Chetid berfaces
S — | Romty s | et
| Reagistey Interfases chieert smd nol the
: registry. The chent
I may be a Registry

Brraser applcation
e
| Regestry Clert [nberfaces |

The Pepely
proides Do Client
wterfaces boall

[Tzers wia awrch based
PRI T i

PR
C Internet

Uzer aocesmg the regatry
usng a Regatry bioarer thet
1 conlains the Cherd

using commaon web hroweser. irlerfacpe

=fr acv sz e el

< =Figure5: Registry Architecture Supports Flexible Topologies
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6.6.2 Registry Communication Bootstrapping

Before a client can access the services of a Registry, there must be some communication
bootstrappi ngbetween the client and the registry. The most essential aspect of this bootstrapping
process is for the client to discover addressing information (e.g. an HTTP URL) to each of the
concrete service interfaces of the Registry. The client may obtain the addressing information by
discovering the ebXML Registry in a public registry such as UDDI or within another ebXML
Regidtry.

?? In case of SOAP binding, all the info needed by the client (e.g. Registry URLS) is available
inaWSDL desription for the registry. This WSDL conforms to the template WSDL
description in Appendix 0. This WSDL description may be discovered in a public registry
such as UDDI.

?? In case of ebM S binding, the information exchange between the client and the registry may
be accomplished in aregistry specific manner, which may involve establishing a CPA
between the client and the registry. Once the information exchange has occurred the Registry
and the client will have addressing information (e.g. URLS) for the other party.

6.6.2.1 Communication Bootstrapping for SOAP Binding

Each ebXML Registry must provide a WSDL description for its RegistryService as defined by
Appendix 0. A client uses the WSDL description to determine the address information of the
RegistryService in a protocol specific manner. For example the SOAP/HTTP based ports of the
RegistryService may be accessed viaa URL specified in the WSDL for the registry.

The use of WSDL enables the client to use automated tools such asa WSDL compiler to
generate stubs that provide access to the registry in a language specific manner.

At minimum, any client may access the registry over SOAP/HTTP using the address information

within the WSDL, with minimal infrastructure requirements other than the ability to make
synchronous SOAP call to the SOAP based ports on the RegistryService.

6.6.2.2 Communication Bootstrapping for ebXML Message Service

Since there is no previously established CPA between the Registry and the RegistryClient, the
client must know at least one Transport-specific communication address for the Registry. This
communication address is typically a URL to the Registry, although it could be some other type
of address such as an email address. For example, if the communication used by the Registry is
HTTP, then the communication addressis a URL. In this example, the client uses the Registry’s
public URL to create an implicit CPA with the Registry. When the client sends a request to the
Registry, it provides a URL to itself. The Registry uses the client’s URL to form its version of an
implicit CPA with the client. At this point a session is established within the Registry. For the
duration of the client’s session with the Registry, messages may be exchanged bidirectionally as
required by the interaction protocols defined in this specification.

6.6.3 RegistryClient Interface

Thisis the principa interface implemented by a Registry client. The client provides this interface
when creating a connection to the Registry. It provides the methods that are used by the Registry
to deliver asynchronous responses to the client. Note that a client need not provide a
RegistryClient interface if the [CPA] between the client and the registry does not support
asynchronous responses.

The registry sends all asynchronous responses to operations to the onResponse method.
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= &

= <=Table4: RegistryClient Summary

M ethod Summary of RegistryClient

voi d|jonResponse( Regi stryResponse resp)
Notifies client of the response sent by registry to previously submitted request.

6.6.4 Registry Response

= <=The RegistryResponse is a common class defined by the Registry interface that is used by theregistry to
provideresponsesto client requests.

6.7 Interoperability Requirements

6.7.1 Client Interoperability

The architecture requires that any ebXML conpliant registry client can access any ebXML
compliant registry service in an interoperable manner. An ebXML Registry may implement any
number of protocol bindings from the set of normative bindings (currently ebXML TRP and
SOAP/HTTP) defined in this proposal. The support of additional protocol bindings is optional.

6.7.2 Inter-Registry Cooperation

This version of the specification does not preclude ebXML Registries from cooperating with
each other to share information, nor does it preclude owners of ebXML Registries from
registering their ebXML registries with other registry systems, catalogs, or directories.
Examples include:

?? An ebXML Registry that serves as aregistry of ebXML Registries.

?? A nonebXML Registry that serves as aregistry of ebXML Registries.

?? Cooperative ebXML Registries, where multiple ebXML registries register with each other in
order to form afederation.
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7 Life Cycle Management Service

This section defines the LifeCycleManagement service of the Registry. The Life Cycle
Management Service is a sub-service of the Registry service. It provides the functionality
required by RegistryClients to manage the life cycle of repository items (e.g. XML documents
required for ebXML business processes). The Life Cycle Management Service can be used with
al types of repository items as well as the metadata objects specified in [ebRIM] such as
Classification and Association.

The minimum- security policy for an ebXML registry isto accept content from any client if a
certificate issued by a Certificate Authority recognized by the ebXML registry digitally signs the
content.

7.1 Life Cycle of a Repository Item

The main purpose of the LifeCycleManagement service is to manage the life cycle of repository
items. Figure 6 shows the typical life cycle of arepository item. Note that the current version of
this specification does not support Object versioning. Object versioning will be added in a future
version of this specification

. submitOhject Submitted

—

approveOhject

T
Approved

deprecatebject

B
Deprecated

removedbject

e,
@ Femaoved

H
= <=Figure6: Life Cycle of a Repository Item

7.2 RegistryObject Attributes

A repository item is associated with a set of standard metadata defined as attributes of the
RegistryObject class and its sub-classes as described in [ebRIM]. These attributes reside outside
of the actual repository item and catalog descriptive information about the repository item. XML
elements called ExtrinsicObject and other elements (See Appendix B for details) encapsulate all
object metadata attributes defined in [ebRIM] as XML attributes.
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7.3 The Submit Objects Protocol

This section describes the protocol of the Registry Service that allows a RegistryClient to submit
one or more repository items to the repository using the LifeCycleManager on behalf of a
Submitting Organization. It is expressed in UML notation as described in Appendix C.

client lcm
RegistryClient LifeCycleManager

submitOhjects{SubmitOhjectzRequest:RegistrvResponse |

L

onResponselRegistResponse)void |

L:J =

<= =Figure7: Submit Objects Sequence Diagram

For details on the schema for the Business documents shown in this process refer to Appendix B.
The SubmitObjectRequest message includes a L eafRegistryObjectList element.

The LeafRegistryObjectList element specifies one or more ExtrinsicObjects or other
RegistryEntries such as Classifications, Associations, ExternalLinks, or Packages.

An ExtrinsicObject element provides required metadata about the content being submitted to the
Registry as defined by [ebRIM]. Note that these standard ExtrinsicObject attributes are separate
from the repository item itself, thus allowing the ebXML Registry to catalog objects of any
object type.

7.3.1 Universally Unique ID Generation

As specified by [ebRIM], all objects in the registry have a unique id. Theid must be a
Universally Unique Identifier  (UUID) and must conform to the to the format of a URN that
specifies a DCE 128 hit UUID as specified in [UUID].

(eg.urn: uui d: a2345678- 1234- 1234- 123456789012)
The registry usually generates thisid. The client may optionally supply the id attribute for
submitted objects. If the client suppliesthei d and it conforms to the format of a URN that
specifiesa DCE 128 bit UUID then the registry assumes that the client wishes to specify the id
for the abject. In this case, the registry must honour a client-supplied id and use it as the id
attribute of the object in the registry. If the id is found by the registry to not be globally unique,
the registry must raise the error condition: InvalididError.
If the client does not supply an id for a submitted object then the registry must generate a
universally uniqueid. Whether the client generates the id or whether the registry generatesiit, it
must be generated using the DCE 128 bit UUID generation algorithm as specified in [UUID].
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7.3.2 ID Attribute And Object References

The id attribute of an object may be used by other objects to reference the first object. Such
references are common both within the SubmitObjectsRequest as well as within the registry.
Within a SubmitObjectsRequest, the id attribute may be used to refer to an object within the
SubmitObjectsRequest as well asto refer to an object within the registry. An object in the
SubmitObjectsRequest that needs to be referred to within the request document may be assigned
an id by the submitter so that it can be referenced within the request. The submitter may give the
object a proper uuid URN, in which case the id is permanently assigned to the object within the
registry. Alternatively, the submitter may assign an arbitrary id (not a proper uuid URN) aslong
as the id is unique within the request document. In this case the id serves as a linkage mechanism
within the request document but must be ignored by the registry and replaced with aregistry
generated id upon submission.

When an object in a SubmitObjectsRequest needs to reference an object that is aready in the
registry, the request must contain an ObjectRef element whose id attribute is the id of the object
in the registry. Thisid is by definition a proper uuid URN. An ObjectRef may be viewed as a
proxy within the request for an object that isin the registry.

7.3.3 Audit Trail

The RS must create AuditableEvents object with eventType Created for each RegistryObject
created via a SubmitObjects request.

7.3.4 Submitting Organization

The RS must create an Association of type SubmitterOf between the submitting organization and
each RegistryObject created via a SubmitObjects request. (Submitting organization is
determined from the organization attribute of the User who submits a SubmitObjects request.)

7.3.5 Error Handling

A SubmitObjects request is atomic and either succeeds or failsin total. In the event of success,
the registry sends a RegistryResponse with a status of “Success’ back to the client. In the event
of failure, the registry sends a RegistryResponse with a status of “Failure” back to the client. In
the event of an immediate response for an asynchronous request, the registry sends a
RegistryResponse with a status of “Uavailable” back to the client. Failure occurs when one or
more Error conditions are raised in the processing of the submitted objects. Warning messages
do not result in failure of the request. The following business rules apply:

= <=Table5 Submit Objects Error Handling

Business Rule AppliesTo |Error/Warning
I D not uni que Al Cl asses Error ]
Not aut hori zed Al'l Cl asses Error
Ref erenced obj ect not found. Associ ati on, Error
Cl assi fication,
Cl assi fi cati onNode,
Or gani zati on
Associ ations not allowed to connect | Association Error
to deprecated objects.
Qbi ect status, maiorVersion and Al'l Cl asses WMr ni ng
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m nor Versi on are set by the RS, and
ignored if supplied.

7.3.6 Sample SubmitObjectsRequest

The following example shows several different use cases in a single SubmitObjectsRequest. It
does not show the complete SOAP or [ebM S| Message with the message header and additional
payloads in the message for the repository items.

A SubmitObjectsRequest includes a RegistryObjectList whichcontains any number of objects
that are being submitted. It may also contain any number of ObjectRefs to link objects being
submitted to objects already within the registry.

<?xm version = "1.0" encoding = "UTF-8"?>
<Submi t bj ect sRequest
xm ns = "urn: oasi s: nanes: tc: ebxnl -regrep: regi stry: xsd: 2. 0"
xm ns: xsi = "http://ww. w3. org/ 2001/ XM_Schena-i nst ance"
xsi : schemalLocati on = "urn: oasi s: nanes:tc: ebxm-regrep:rimxsd: 2.0 file:///C:./osws/ebxmrr-
spec/ m sc/ schema/ ri m xsd urn: oasi s: nanes: t c: ebxnmi-regrep: regi stry: xsd: 2.0
file:///C /osws/ebxmrr-spec/m sc/schema/rs. xsd"
xm ns:rim= "urn: oasi s: names: tc: ebxm - regrep: ri mxsd: 2. 0"
xm ns:rs = "urn: oasi s: nanes: tc: ebxm -regrep: regi stry: xsd: 2. 0"
>

<ri m Leaf Regi st ryQbj ect Li st >

<l--

The foll owing 3 objects package specified ExtrinsicCbject in specified
Regi st ryPackage, where both the Regi stryPackage and the ExtrinsicCbject are
being subnitted

- o>
<ri m Regi stryPackage id = "acnePackagel" >
<ri m Nanme>
<rim Local i zedStri ng val ue = "Regi stryPackage #1"/>

</ri m Nane>
<ri m Descri pti on>
<rim Local i zedString val ue = "ACMVE s package #1"/>
</rim Description>
</ri m Regi st ryPackage>

<rimExtrinsicCbject id = "acmeCPP1" >
<ri m Name>
<rim Local i zedStri ng value = "Wdget Profile" />
</ ri m Nane>
<ri m Description>
<rim Local i zedString value = "ACME' s profile for selling w dgets" />
</rim Descri ption>
</rim Extrinsi cCoj ect>

<rim Associ ation id = "acnePackagel-acneCPPl- Assoc" associ ati onType = "Packages" source(bj ect
= "acnePackagel" target Cbject = "acmeCPP1" />
<I--

The fol l owi ng 3 obj ects package specified ExtrinsicCbject in specified RegistryPackage,
Wiere the Regi stryPackage is being submtted and the ExtrinsicObject is
already in registry

-->
<rim Regi stryPackage i d = "acnePackage2" >
<ri m Name>
<rim Local i zedStri ng val ue = "Regi stryPackage #2"/>

</ ri m Nane>
<ri m Descri pti on>
<rim Local i zedString val ue = "ACVE s package #2"/>
</rim Descri ption>
</rim Regi stryPackage>

<rim Qoj ectRef id = "urn:uuid: a2345678-1234-1234-123456789012"/ >
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<rim Associ ation id = "acnePackage2-al r eadySubm t t edCPP- Assoc" associ ati onType = "Packages"
sour ce(hj ect = "acnePackage2" target object = "urn:uui d: a2345678- 1234-1234- 123456789012" / >

“ll==
The fol l owi ng 3 obj ects package specified ExtrinsicCbject in specified RegistryPackage,
where the Regi stryPackage and the ExtrinsicCObject are already in registry
-->

“urn: uui d: b2345678-1234-1234-123456789012"/ >
"urn: uui d: c2345678-1234-1234-123456789012"/ >

<rim Qbj ect Ref id
<rim Obj ectRef id

<l-- idis unspecified inplying that registry must create a uuid for this object -->

<rim Associ ati on associ ati onType = "Packages" sourceCbj ect = "urn: uui d: b2345678- 1234- 1234-
123456789012" target Cbj ect = "urn: uui d: c2345678- 1234- 1234- 123456789012" / >

<l--
The following 3 objects externally link specified ExtrinsicChject using
speci fied External Link, where both the External Link and the ExtrinsicQbject
are being submtted

- o>
<rim External Link id = "acneLi nk1" >
<ri m Name>
<rim Local i zedString value = "Link #1"/>

</ ri m Nane>
<ri m Descri pti on>
<rim Local i zedString value = "ACMVE' s Link #1"/>
</rim Description>
</rim Ext ernal Li nk>

<rimExtrinsicCoject id = "acmeCPP2" >
<ri m Name>
<rim Local i zedString val ue = "Sprockets Profile" />
</ ri m Nane>
<ri m Description>
<rim Local i zedString value = "ACVE' s profile for selling sprockets"/>
</rim Descri ption>
</rim ExtrinsicCbject >

<rim Associ ation id = "acneLi nkl- acmeCPP2- Assoc" associ ati onType = "External | yLi nks"
source(hj ect = "acneLi nk1" target Qbj ect = "acneCPP2"/>
<l--

The following 2 objects externally |ink specified ExtrinsicObject using specified
Ext ernal Li nk, where the External Link is being submtted and the ExtrinsicObject
is already in registry. Note that the targetChject points to an CbjectRef in a
previous |ine

-->
<rimExternal Link id = "acneLi nk2">
<ri m Nanme>
<rim Local i zedString value = "Link #2"/>

</ ri m Nane>
<ri m Descri pti on>
<rim Local i zedStri ng val ue
</rim Description>
</rim Ext ernal Li nk>

"ACME' s Link #2"/>

<rim Associ ation id = "acneLi nk2- al readySubmi t t edCPP- Assoc" associ ati onType =
"Ext ernal | yLi nks" sourceChj ect = "acneLi nk2" target Cbject = "urn:uuid: a2345678- 1234- 1234-
123456789012"/ >

<I--
The following 3 objects externally identify specified ExtrinsicCbject using specified
External I dentifier, where the External Identifier is being submtted and the
ExtrinsicCbject is already in registry. Note that the target Cbject points to an
Obj ectRef in a previous |ine
-->

<rimd assificationScheme id = "DUNS-id" islnternal ="fal se" nodeType="Uni queCode" >
<ri m Name>
<rim Local i zedStri ng val ue = "DUNS"/ >
</ ri m Nane>
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<rim Description>

<rim Local i zedString value = "This is the DUNS schenme"/ >

</rim Descri ption>
</rimd assificationSchene>

<rimExternal Identifier id = "acneDUNSId" identificationSchene="DUNS id" val ue =

"13456789012" >
<ri m Name>
<rim Local i zedStri ng val ue
</ri m Name>
<ri m Descripti on>
<rim Local i zedStri ng val ue
</rim Description>
</rimExternal | dentifier>

"DUNS' />

"DUNS ID for ACMVE'/>

<rim Associ ation id = "acneDUNSI d-al r eadySubm tt edCPP- Assoc" associ ati onType =
"External | yldentifies" sourceQject

123456789012"/ >

<l--

= "acmeDUNSI d" target Cbj ect = "urn:uui d: a2345678- 1234- 1234-

The foll owi ng show subm ssion of a brand new cl assification scheme in its entirety

-->

<rim C assificati onSchene id = "Geography-i d" islnternal ="true" nodeType="Uni queCode" >

<ri m Nanme>
<rim Local i zedStri ng val ue
</ ri m Nane>

<ri m Descri pti on>
<rim Local i zedStri ng val ue
</rim Description>

<rimd assificationNode id =
"Nort hAneri ca" >
<rimd assificati onNode id
"UnitedStates" />
<rim d assificationNode id
</rim d assificati onNode>

" Geogr aphy"/ >

"This is a sanpl e Geography schene"/>

"Nort hAnerica-id" parent = "Geography-id" code =

"UnitedStates-id" parent = "NorthAnmerica-id" code =

"Canada-id" parent = "NorthAmerica-id" code = "Canada" />

<rimC assificationNode id = "Asia-id" parent = "Ceography-id" code = "Asia" >
<rimd assificationNode id = "Japan-id" parent = "Asia id" code = "Japan" >
<rimd assificationNode id = "Tokyo-id" parent = "Japan-id" code = "Tokyo" />

</rimd assificati onNode>
</rim d assificati onNode>
</rimd assificationSchene>

<l--

The fol | owi ng show submi ssion of a Autonotive sub-tree of d assificationNodes that
gets added to an existing classification scheme naned ' | ndustry'
that is already in the registry

-->

<rim ObjectRef id = "urn:uuid: d2345678-1234-1234-123456789012"/ >
<rim C assificationNode id = "aut onoti veNode" parent = "urn: uui d: d2345678- 1234- 1234-

123456789012" >
<ri m Nanme>
<rim Local i zedString val ue
</rim Name>
<ri m Descri pti on>
<rim Local i zedStri ng val ue
</rim Description>
</rimd assi ficati onNode>

" Aut onotive" />

"The Autonotive sub-tree under |Industry schene"/>

<rimd assificationNode id = "part Suppl i ersNode" parent = "autonotiveNode">

<ri m Name>
<rim Local i zedString val ue
</ ri m Nane>
<ri m Descri pti on>
<rim Local i zedStri ng val ue
</rim Description>
</rim d assi ficati onNode>

"Parts Supplier" />

"The Parts Supplier node under the Autonotive node" />

<rim C assificati onNode id = "engi neSuppl i er sNode" parent = "autonoti veNode">
<ri m Name>
<rim Local i zedString val ue = "Engi ne Supplier" />
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916 </ri m Nane>

917 <ri m Descri pti on>

918 <rim Local i zedString val ue = "The Engi ne Supplier node under the Autonotive node" />
919 </rim Description>

920 </rimd assi ficati onNode>

921

922 <l--

923 The fol |l owi ng show subm ssion of 2 Oassifications of an object that is already in
924 the registry using 2 dassificati onNodes. One d assificati onNode

925 is being submtted in this request (Japan) while the other is already in the registry.
926 RS

927

928 <rimC assification id = "japand assi fication" classifiedChject = "urn:uuid: a2345678- 1234-
929  1234-123456789012" cl assificati onNode = "Japan-i d">

930 <ri m Descri ption>

931 <rim Local i zedString value = "Classifies object by /Geography/ Asi a/ Japan node"/ >
932 </rim Description>

933 </rimd assification>

934

935 <rimC assification id = "cl assificationUsi ngExi sti ngNode" cl assi fi edCbj ect =

936  "urn: uui d: a2345678- 1234- 1234- 123456789012" cl assi fi cati onNode = "urn: uui d: e2345678-1234- 1234-
937  123456789012" >

938 <ri m Descri pti on>

939 <rim LocalizedString value = "C assifies object using a node in the registry" />
940 </rim Description>

941 </rimd assification>

942

943 <rim Qbj ectRef id = "urn: uuid: e2345678-1234-1234-123456789012"/ >

944 </rim Leaf Regi stryQbj ect Li st >

945 </ subni t vj ect sRequest >

947 7.4 The Update Objects Protocol

948  This section describes the protocol of the Registry Service that alows a Registry Client to update
949  one or more existing Registry Itemsin the registry on behalf of a Submitting Organization. Itis
950 expressed in UML notation as described in Appendix C.

client Ilcm
RegistrvyClient LifeCycleManager

UpdatesOhjectsilUpdateOhjectsRequest RenistvResponse |

L]

onResponselRegistvResponse)void |

L:J =

951
952 = =Figure8: Update Objects Sequence Diagram

953  For details on the schema for the Business documents shown in this process refer to Appendix B.
954  The UpdateObjectsRequest message includes a Leaf RegistryObjectList element. The

955 LeafRegistryObjectList element specifies one or more RegistryObjects. Each object in the list
956 must be acurrent RegistryObject. RegistryObjects must include al attributes, even those the
957  user does not intend to change. A missing attribute is interpreted as a request to set that attribute
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to NULL.

7.4.1 Audit Trail

The RS must create AuditableEvents object with eventType Updated for each RegistryObject
updated via an UpdateObjects request.

7.4.2 Submitting Organization

The RS must maintain an Association of type SubmitterOf between the submitting organization
and each RegistryObject updated via an UpdateObjects request. If an UpdateObjects request is
accepted from a different submitting organization, then the RS must delete the original
association object and create a new one. Of course, the AccessControlPolicy may prohibit this
sort of update in the first place. (Submitting organization is determined from the organization
attribute of the User who submits an UpdateObjects request.)

7.4.3 Error Handling

An UpdateObjects request is atomic and either succeeds or failsin total. In the event of success,
the registry sends a RegistryResponse with a status of “ Success’ back to the client. In the event
of failure, the registry sends a RegistryResponse with a status of “Failure” back to the client. In
the event of an immediate response for an asynchronous request, the registry sends a
RegistryResponse with a status of “Uavailable” back to the client. Failure occurs when one or
more Error conditions are raised in the processing of the updated objects. Warning messages do
not result in failure of the request. The following business rules apply:

= <=Table6: Update Objects Error Handling

Business Rule AppliesTo |Error/Warning
Obj ect not found Al'l Cl asses Error
Not aut hori zed Al'l Cl asses Error
Ref erenced obj ect not found. Associ ati on, Error

Cl assification,
Cl assi ficati onNode,
Organi zati on

Associ ations not allowed to connect | Association Error
to deprecated objects.
Obj ect status, majorVersion and Al'l Classes War ni ng

m nor Ver si on cannot be changed via
t he Updat eObj ects protocol, ignored
i f supplied.

Regi stryEntries with stability = Al'l Classes War ni ng
“Stabl e” shoul d not be updated.

7.5 The Add Slots Protocol

This section describes the protocol of the Registry Service that allows a client to add slotsto a
previously submitted registry entry using the LifeCycleManager. Slots provide a dynamic
mechanism for extending registry entries as defined by [ebRIM].
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client ohjMyr
RegistryClient LifeCycleManager

addslotsiaddSlotsReguesti RegistryResponse |

L]

onResponselRegistyResponselvoid |

L:J =

982
983 = =Figure9: Add Slots Sequence Diagram

984 Inthe event of success, the registry sends a RegistryResponse with a status of “success’ back to
985 theclient. Inthe event of failure, the registry sends a RegistryResponse with a status of “failure’
986  back to the client.

987 7.6 The Remove Slots Protocol

988  This section describes the protocol of the Registry Service that allows a client to rermove dots to
989 aprevioudly submitted registry entry using the LifeCycleManager.

client lcm
RegistyClient LifeCycleManager

removeslotsiRemoveSiotsRequestReqisttyResponse |

L]

onResponselRegistyResponse)void |

L:J =

990
991 = <=Figure 10: Remove Slots Sequence Diagram

992 7.7 The Approve Objects Protocol

993  This section describes the protocol of the Registry Service that allows a client to approve one or
994  more previously submitted repository items using the LifeCycleManager. Once a repository item
995 isapproved it will become available for use by business parties (e.g. during the assembly of new
996 CPAsand Collaboration Protocol Profiles).
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client lcm
RegistryClient LifeCycleManager

approveObjectsiApproveDhjectsReguest RedistrvResponse |

L]

onResponselRegistyResponselvoid |

L:J =

= <=Figure 11: Approve Objects Sequence Diagram

For details on the schema for the business documents shown in this process refer to Appendix B.

7.7.1 Audit Trail

The RS must create AuditableEvents object with eventType Approved for each RegistryObject
approved via an Approve Objects request.

7.7.2 Submitting Organization

The RS must maintain an Association of type SubmitterOf between the submitting organization
and each RegistryObject updated via an ApproveObjects request. If an ApproveObjects request
is accepted from a different submitting organization, then the RS must delete the origina
association object and create a new one. Of course, the AccessControl Policy may prohibit this
sort of ApproveObjects request in the first place. (Submitting organization is determined from
the organization attribute of the User who submits an ApproveObjects request.)

7.7.3 Error Handling

An ApproveObjects request is atomic and either succeeds or failsin total. In the event of success,
the registry sends a RegistryResponse with a status of “Success’ back to the client. In the event
of failure, the registry sends a RegistryResponse with a status of “Failure” back to the client. In
the event of an immediate response for an asynchronous request, the registry sends a
RegistryResponse with a status of “Uavailable” back to the client. Failure occurs when one or
more Error conditions are raised in the processing of the object reference list. Warning messages
do not result in failure of the request. The following business rules apply:

<= =Table7: Approve Objects Error Handling

Business Rule AppliesTo |Error/Warning
Obj ect not found Al'l Cl asses Error ]
Not aut hori zed Regi stryEntry Error
Cl asses
Only ReaistrvEntries may be Al'l Cl asses other Error
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"approved". than RegistryEntry

cl asses
Obj ect status is already Regi stryEntry War ni ng
" Approved". Cl asses

7.8 The Deprecate Objects Protocol

This section describes the protocol of the Registry Service that allows a client to deprecate one or
more previously submitted repository items using the LifeCycleManager. Once an object is
deprecated, no new references (e.g. new Associations, Classifications and ExternalLinks) to that
object can be submitted. However, existing references to a deprecated object continue to function
normally.

client lcm
RegistreClient LifeCycleManager

deprecatebjects{DeprecatedbjectsRequesfi:RegistResponse [

L]

I
7

| onResponse(RegistyResponse)void |
L_| |
I
I
I
I
I
I
I
|

= =Figure 12: Deprecate Objects Sequence Diagram

For details on the schema for the business documents shown in this process refer to Appendix B.

7.8.1 Audit Trail

The RS must create AuditableEvents object with eventType Deprecated for each RegistryObject
deprecated via a Deprecate Objects request.

7.8.2 Submitting Organization

The RS must maintain an Association of type SubmitterOf between the submitting organization
and each RegistryObject updated via a Deprecate Objects request. If a Deprecate Objects request
is accepted from a different submitting organization, then the RS must delete the original
association object and create a new one. Of course, the AccessControl Policy may prohibit this
sort of Deprecate Objects request in the first place. (Submitting organization is determined from
the organization attribute of the User who submits a Deprecate Objects request.)

7.8.3 Error Handling

A DeprecateObjects request is atomic and either succeeds or failsin total. In the event of
success, the registry sends a RegistryResponse with a status of “ Success’ back to the client. In
the event of failure, the registry sends a RegistryResponse with a status of “Failure” back to the
client. In the event of an immediate response for an asynchronous request, the registry sends a
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RegistryResponse with a status of “Uavailable” back to the client. Failure occurs when one or
more Error conditions are raised in the processing of the object reference list. Warning messages
do not result in failure of the request. The following business rules apply:

= <=Table8: Deprecate Objects Error Handling
Business Rule AppliesTo | Error/Warning

bj ect not found All Classes Error ]
Not authori zed Regi stryEntry Error

Cl asses
Only RegistryEntries may be Al l Cl asses ot her Error
"deprecated". t han Regi stryEntry

cl asses
Obj ect status is already Regi stryEntry War ni ng
"Deprecated". Cl asses
7.9 The Remove Objects Protocol

This section describes the protocol of the Registry Service that allows a client to remove one or
more RegistryObject instances and/or repository items using the LifeCycleManager.

The RemoveObjectsRequest message is sent by a client to remove RegistryObject instances
and/or repository items. The RemoveObjectsRequest element includes an XML attribute called
deletionScope which is an enumeration that can have the values as defined by the following
sections.

7.9.1 Deletion Scope DeleteRepositoryltemOnly

This deletionScope specifies that the request should delete the repository items for the specified
registry entries but not delete the specified registry entries. Thisis useful in keeping references to
the registry entries valid.

7.9.2 Deletion Scope DeleteAll

This deletionScope specifies that the request should delete both the RegistryObject and the
repository item for the specified registry entries. Only if al references (e.g. Associations,
Classifications, ExternalLinks) to a RegistryObject have been removed, can that RegistryObject
then be removed using a RemoveODbjectsRequest with deletionScope DeleteAll. Attempts to
remove a RegistryObject while it still has references raises an error condition:
InvalidRequestError.

The remove object protocoal is expressed in UML notation as described in Appendix C.
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client
RegistryClient

removedhbjects(RemovelhbjectsRequest ReqistryResponse

lcm
LifeCycleManager

L]

onResponselRegistyResponselvoid |

:

< <=Figure 13: Remove Objects Sequence Diagram

L]

For details on the schema for the business documents shown in this process refer to Appendix B.

7.9.3 Error Handling

A Remove Objects request is atomic and either succeeds or failsin total. In the event of success,
the registry sends a RegistryResponse with a status of “ Success’ back to the client. In the event
of failure, the registry sends a RegistryResponse with a status of “Failure” back to the client. In
the event of an immediate response for an asynchronous request, the registry sends a
RegistryResponse with a status of “Uavailable” back to the client. Failure occurs when one or
more Error conditions are raised in the processing of the object reference list. Warning messages
do not result in faillure of the request. The following business rules apply:

<= <=Table9: Remove Objects Error Handling

Business Rule

AppliesTo

Error/Warning

Obj ect not found

Al'l Cl asses

Error

Not aut hori zed

Regi st ryOhj ect
Cl asses

Error
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8 Query Management Service

This section describes the capabilities of the Registry Service that allow a client
(QueryManagerClient) to search for or query different kind of registry objects in the ebXML
Registry using the QueryManager interface of the Registry. The Registry supports the following
query capabilities:

1. Filter Query

2. SQL Query

The Filter Query mechanism in Section 8.2 SHALL be supported by every Registry
implementation. The SQL Query mechanism is an optional feature and MAY be provided by a
registry implementation. However, if avendor provides an SQL query capability to an ebXML
Registry it SHALL conform to this document. As such this capability is a normative yet optional
capability.

In afuture version of this specification, the W3C X Query syntax may be considered as another
query syntax.

The Registry will hold a self-describing capability profile that identifies all supported
AdhocQuery options. This profile is described in Section Error! Reference source not found.

8.1 Ad Hoc Query Request/Response

A client submits an ad hoc query to the QueryManager by sending an AdhocQueryRequest. The
AdhocQueryRequest contains a subelement that defines a query in one of the supported Registry
query mechanisms.

The QueryManager sends an AdhocQueryResponse either synchronously or asynchronously
back to the client. The AdhocQueryResponse returns a collection of objects whose element type
depends upon the responseOption attribute of the AdhocQ ueryRequest. These may be objects
representing leaf classes in [ebRIM], references to objects in the registry as well as intermediate
classesin [ebRIM] such as RegistryObject and RegistryEntry.

Any errors in the query request messages are indicated in the corresponding query response
message.
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client queny
RegistryClient QueryManager

submitddhocQuendddhocuenRequesh:RenistvResponse |

L]

onResponselRegistvResponse)lvoid |

L:J =

= =Figure 14: Submit Ad Hoc Query Sequence Diagram

For details on the schema for the business documents shown in this process refer to Appendix O.

Definition

8.1.1 Query Response Options

Purpose

A QueryManagerClient may specify what an ad hoc query must return within an

AdhocQueryResponse using the ResponseOption element of the AdHocQueryRequest.

ResponseOption element has an attribute "returnType” and its values are:

?? ObjectRef - This option specifies that the AdhocQueryResponse must contain a collection of
ObjectRef XML elements as defined in [RIM schema). Purpose of this option is to return just
the identifiers of the registry objects.
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?? RegistryObject - This option specifies that the AdhocQueryResponse must contain a
collection of RegistryObject XML elements as defined in [RIM schema). In this case all
attributes of the registry objects are returned (objectType, name, description, ...) in addition
to id attribute.

?? RegistryEntry - This option specifies that the AdhocQueryResponse must contain a
collection of RegistryEntry XML elements as defined in [RIM schema], which correspond to
RegistryEntry attributes.

?? LeafClass- This option specifies that the AdhocQueryResponse must contain a collection of
XML eements that correspond to leaf classes as defined in [RIM schema.

?? LeafClassWithRepositoryltem - This option specifies that the AdhocQueryResponse must
contain a collection of ExtrinsicObject XML elements as defined in [RIM schema)
accompanied with their repository items. Linking of ExtrinsicObject and its repository item
is done via contentURI as explained in [ XXX — Content Retrieval section].

ResponseOption element also has an attribute “returnComposedObjects”. It specifies whether or

not the whole hierarchy of composed objects are returned with the registry objects.

If “returnType” is higher then the RegistryObject option, then the highest option that satisfies the

query is returned. This can be illustrated with a case when OrganizationQuery is asked to return

L eaf ClassWithRepositoryltem. As thisis not possible, QueryManager will assume LeafClass

option instead. If OrganizationQuery is asked to retrieve a RegistryEntry as a return type then

RegistryObject metadata will be returned.

Definition
<conpl exType nanme="ResponseOpti onType">
<attribute name="returnType" default="RegistryObject">

<si npl eType>
<restriction base="NMIOKEN">
<enumeration val ue="bj ect Ref" />
<enumeration val ue="Regi stryQbj ect" />
<enuneration val ue="Regi stryEntry" />
<enuner ation val ue="Leaf Cl ass" />
<enuner ati on val ue="Leaf Cl assWthRepositoryltenm />
</restriction>
</ si npl eType>
</attribute>
<attribute name="returnConposedCbj ects" type="bool ean" default="fal se" />
</ conpl exType>
<el ement nanme="ResponseOption" type="tns: ResponseOpti onType" />

8.2 Filter Query Support

FilterQuery isan XML syntax that provides simple query capabilities for any ebXML

conforming Registry implementation. Each query alternative is directed against asingle class
defined by the ebXML Registry Information Model (ebRIM).There are two types of filter queries
depending on which classes are queried on.
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?? Firdtly, there are RegistryObjectQuery and RegistryEntryQuery. They alow for generic
gueries that might return different subclasses of the class that is queried on. The result of
such aquery isaset of XML elements that correspond to instances of any class that satisfies
the responseOption defined previoudly in Section 8.1.1. An example might be that
RegistryObjectQuery with responseOption LeafClass will return all attributes of all instances
that satisfy the query. This implies that response might return XML elements that correspond
to classes like ClassificationScheme, RegistryPackage, Organization and Service.

?? Secondly, FilterQuery supports queries on selected ebRIM classes in order to define the exact
traversals of these classes. Responses to these queries are accordingly constrained.
A client submits a FilterQuery as part of an AdhocQueryRequest. The QueryManager sends an
AdhocQueryResponse back to the client, enclosing the appropriate FilterQueryResult specified
herein. The sequence diagrams for AdhocQueryRequest and AdhocQueryResponse are specified
in Section 8.1.
Each FilterQuery alternative is associated with an ebRIM Binding that identifies a hierarchy of
classes derived from a single class and its associations with other classes as defined by ebRIM.
Each choice of a class pre-determines avirtual XML document that can be queried as atree. For
example, let C beaclass, let Y and Z be classes that have direct associationsto C, and let V be a
class that is associated with Z. The ebRIM Binding for C might be as in Figure 15

-
Labfi’f Labfi?

i Z

Labgls

<

= =Figure 15: Example ebRIM Binding

Labell identifies an association from C to Y, Label2 identifies an association from C to Z, and
Label 3 identifies an association from Z to V. Labels can be omitted if there is no ambiguity as to
which ebRIM association is intended. The name of the query is determined by the root class, i.e.
thisis an ebRIM Binding for a CQuery. The Y node in the tree is limited to the set of Y instances
that are linked to C by the association identified by Label1. Similarly, the Z and V nodes are
limited to instances that are linked to their parent node by the identified association.

Each FilterQuery alternative depends upon one or more class filters, where a class filter isa
restricted predicate clause over the attributes of a single class. Class methods that are defined in
ebRIM and that return simple types congtitute “visible attributes’ that are valid choices for
predicate clauses. Names of those attributes will be same as hame of the corresponding method
just without the prefix ‘get’. For example, in case of “getLevelNumber” method the
corresponding visible attribute is “levelNumber”. The supported class filters are specified in
Section 8.2.11 and the supported predicate clauses are defined in Section 8.2.12. A FilterQuery
will be composed of elements that traverse the tree to determine which branches satisfy the
designated class filters, and the query result will be the set of instances that support such a
branch.
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In the above example, the CQuery element will have three subelements, one a CFilter onthe C
class to eliminate C instances that do not satisfy the predicate of the CFilter, another a Y Filter on
the Y classto eliminate branches from C to Y where the target of the association does not satisfy
the YFilter, and a third to eliminate branches along a path from C through Z to V. The third
element is called a branch element because it alows class filters on each class aong the path
from Cto V. In general, a branch element will have subelements that are themselves class filters,
other branch elements, or a full-blown query on the class in the path.

If an association from aclassCto aclassY isone-to-zero or one-to-one, then at most one
branch, filter or query element on Y is alowed. However, if the association is one-to- many, then
multiple branch, filter or query elements are allowed. This allows one to specify that an instance
of C must have associations with multiple instances of Y before the instance of C is said to
satisfy the branch element.

The FilterQuery syntax istied to the structures defined in ebRIM. Since ebRIM isintended to be
stable, the FilterQuery syntax is stable. However, if new structures are added to the ebRIM, then
the FilterQuery syntax and semantics can be extended at the same time. Also, FilterQuery syntax
follows the inheritance hierarchy of ebRIM, which means that subclass queries inherit from their
respective superclass queries. Structures of XML elements that match the ebRIM classes are
explained in [RIM Schema]. Names of Filters, Queries and Branches correspond to namesin
ebRIM whenever possible.

The ebRIM Binding paragraphsin Sections 8.2.2 through 8.2.10 below identify the virtual
hierarchy for each Filter Query alternative. The Semantic Rulesfor each query alternative
specify the effect of that binding on query semantics.

8.2.1 FilterQuery

Purpose

To identify a set of queries that traverse specific registry class. Each alternative assumes a
specific binding to ebRIM. The status is a success indication or a collection of warnings and/or
exceptions.

Definition

<el ement name="FilterQery">
<conpl exType>
<choi ce m nCccurs="1" maxCccurs="1">
<el enent ref="tns:RegistryQObj ect Query" />
<el ement ref="tns: Regi stryEntryQuery" />
<el enment ref="tns: Audi t abl eEvent Query" />
<el ement ref="tns:Cl assificati onNodeQuery" />
<el ement ref="tns:Cl assificationSchemeQuery" />
<el ement ref="tns: Regi stryPackageQuery" />
<el ement ref="tns: Extrinsi cObjectQery" />
<el ement ref="tns: Organizati onQuery" />
<el enent ref="tns: Servi ceQuery" />
</ choi ce>
</ conpl exType>
</ el ement >

<el ement name="FilterQeryResult">
<conpl exType>
<choi ce mi nCccurs="1" maxCccurs="1">
<el ement ref="tns: Regi stryOhj ect QueryResult" />
<el ement ref="tns: Regi stryEntryQueryResult" />
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<el ement ref="tns: Audi t abl eEvent QueryResult" />
<el ement ref="tns:Cl assificati onNodeQueryResult" />
<el ement ref="tns:Cl assificati onScheneQueryResult" />
<el ement ref="tns: Regi stryPackageQueryResult" />
<el enent ref="tns: ExtrinsicObjectQueryResult" />
<el ement ref="tns: Organi zati onQueryResult" />
<el ement ref="tns: Servi ceQueryResult" />
</ choi ce>
</ conpl exType>
</ el ement >

Semantic Rules

3.
4,

The semantic rules for each FilterQuery alternative are specified in subsequent subsections.

Semantic rules specify the procedure for implementing the evaluation of Filter Queries.
Implementations do not necessarily have to follow the same procedure provided that the
same effect is achieved.

Each FilterQueryResult is a set of XML elements to identify each instance of the result set.
Each XML attribute carries a value derived from the value of an attribute specified in the
Registry Information Model [RIM Schema).

For each FilterQuery subelement there is only one corresponding FilterQueryResult
subelement that must be returned as a response. Class name of the FilterQueryResult
subelement has to match the class name of the FilterQuery subelement.

If an error condition is raised during any part of the execution of a FilterQuery, then the
status attribute of the XML RegistryResult is set to “failure” and no query result element is
returned; instead, a RegistryErrorList element must be returned with its highestSeverity
element set to “error”. At least one of the RegistryError elements in the RegistryErrorList
will have its severity attribute set to “error”.

If no error conditions are raised during execution of a FilterQuery, then the status attribute of
the XML RegistryResult is set to “success’ and an appropriate query result element must be
included. If a RegistryErrorList is aso returned, then the highestSeverity attribute of the
RegistryErrorList is set to “warning” and the serverity attribute of each RegistryError is set to
“warning”.

8.2.2 RegistryObjectQuery

Purpose

To identify a set of registry object instances as the result of a query over selected registry
metadata.

ebRIM Binding
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Definition

<= <Figure 16: ebRim Binding for RegistryObjectQuery
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<complexContent>
<extension base="tns:L eaf RegistryObjectListType">
<choice minOccurs="0" maxOccurs="unbounded">
<element ref="tns:RegistryEntry" />
<element ref="tns:RegistryObject" />
</choice>
</extension>
</complexContent>
</complexType>
<element name=" RegistryObjectQueryResult" type="rim:RegistryObjectListType' />

<complexType name="International StringBranchType" >
<sequence>
<element ref="tns:LocalizedStringFilter* minOccurs="0" maxOccurs="unbounded" />
</sequence>
</complexType>

<complexType name="AssociationBranchTypg'>
<seguence>
<element ref="tns:AssociationFilter" minOccurs="0" maxOccurs="1" />
<choice minOccurs="0" maxOccurs="1">
<element ref="tns.ExternalLinkFilter" minOccurs="0" maxOccurs="1" />
<element ref="tns:External |dentifierFilter* minOccurs="0" maxOccurs="1" />
<element ref="tns:RegistryObjectQuery" minOccurs="0" maxOccurs="1" />
<element ref="tns:RegistryEntryQuery" minOccurs="0" maxOccurs="1" />
<element ref="tns:.ClassificationSchemeQuery" minOccurs="0" maxOccurs="1" />
<element ref="tns.ClassificationNodeQuery" minOccurs="0" maxOccurs="1" />
<element ref="tns:OrganizationQuery" minOccurs="0" maxOccurs="1" />
<element ref="tns:AuditableEventQuery" minOccurs="0" maxOccurs="1" />
<element ref="tns:RegistryPackageQuery" minOccurs="0" maxOccurs="1" />
<element ref="tns:ExtrinsicObjectQuery"” minOccurs="0" maxOccurs="1" />
<element ref="tns:ServiceQuery" minOccurs="0" maxOccurs="1" />
<element ref="tns:UserBranch" minOccurs="0" maxOccurs="1" />
<element ref="tns:ClassificationBranch" minOccurs="0" maxOccurs="1" />
<element ref="tns.ServiceBindingBranch" minOccurs="0" maxOccurs="1" />
<element ref="tns:SpecificationLinkBranch" minOccurs="0" maxOccurs="1" />
<element ref="tns:SourceA ssociationBranch" minOccurs="0" maxOccurs="1" />
<element ref="tns: TargetAssociationBranch" minOccurs="0" maxOccurs="1" />
</choice>
</sequence>
</complexType>
<element name="SourceA ssociationBranch" type="tns:AssociationBranchType" />
<element name="TargetA ssociationBranch" type="tns:AssociationBranchType" />

<element name=" ClassifiedByBranch" >
<complexType>
<sequence>
<element ref="tns:ClassificationFilter" minOccurs="0" maxOccurs="1" />
<element ref="tns.ClassificationSchemeQuery" minOccurs="0" maxOccurs="1" />
<element ref="tns.ClassificationNodeQuery" minOccurs="0" maxOccurs="1" />
</sequence>
</complexType>
</element>

<element name=" ClassificationBranch">
<complexType>
<sequence>
<element ref="tns.ClassificationFilter* minOccurs="0" maxOccurs="1" />
<element ref="tns:.ClassificationSchemeQuery" minOccurs="0" maxOccurs="1" />
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Semantic Rules
9. Let RO denote the set of all persistent RegistryObject instances in the Registry. The

following steps will eliminate instances in RO that do not satisfy the conditions of the
specified filters.

a) If RO isempty then continue below.
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b)

f)

o)

If a RegistryObjectFilter is not specified then go to the next step; otherwise, let x be a
registry object in RO. If x does not satisfy the RegistryObjectFilter, then remove x from
RO. If RO is empty then continue below.

If an ExternalldentifierFilter element is not specified, or if RO is empty, then continue
below; otherwise, let x be aremaining registry object in RO. If x is not linked to some
Externalldentifier instance, then remove x from RO; otherwise, treat each
ExternalldentifierFilter element separately as follows:. Let El be the set of
Externalldentifier instances that satisfy the Externa ldentifierFilter and are linked to x. If
El is empty, then remove x from RO. If RO is empty then continue below.

If an AuditableEventQuery is not specified then go to the next step; otherwise, let x be a
remaining registry object in RO. If x doesn’t have an auditable event that satisfy
AuditableEventQuery as specified in Section 8.2.4 then remove x from RO. If RO is
empty then continue below.

If aNameBranch is not specified then go to the next step; otherwise, let x be aremaining
registry object in RO. If x does not have a name then remove x from RO. If RO is empty
then continue below; otherwise treat NameBranch as follows: If any
LocalizedStringFilter that is specified is not satisfied by some of the L ocalizedStrings
that congtitute the name of the registry object then remove x from RO. If RO is empty
then continue below.

If a DescriptionBranch is not specified then go to the next step; otherwise, let x be a
remaining registry object in RO. If x does not have a name then remove x from RO. If
RO is empty then continue below; otherwise treat DescriptionBranch as follows: If any
LocalizedStringFilter that is specified is not satisfied by some of the LocalizedStrings
that constitute the description of the registry object then remove x from RO. If RO is
empty then continue below.

If a ClassifiedByBranch element is not specified, or if RO is empty, then continue bel ow;
otherwise, let x be a remaining registry object in RO. If x is not the classifiedObject of
some Classification instance, then remove x from RO; otherwise, treat each
ClassifiedByBranch element separately as follows: If no ClassificationFilter is specified
within the ClassifiedByBranch, then let CL be the set of all Classification instances that
have x as the classifiedObject; otherwise, let CL be the set of Classification instances that
satisfy the ClassificationFilter and have x as the classifiedObject. If CL is empty, then
remove x from RO and continue below. Otherwisg, if CL isnot empty, and if a
ClassificationSchemeQuery is specified, then replace CL by the set of remaining
Classification instances in CL whose defining classification scheme satisfies the
ClassificationSchemeQuery. If the new CL is empty, then remove x from RO and
continue below. Otherwise, if CL remains not empty, and if a ClassificationNodeQuery is
specified, then replace CL by the set of remaining Classification instances in CL for
which a classification node exists and for which that classification node satisfies the
ClassificationNodeQuery. If the new CL is empty, then remove x from RO. If RO is
empty then continue below.
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h) If aSotBranch element is not specified, or if RO is empty, then continue below;

otherwise, let x be a remaining registry object in RO. If x is not linked to some Slot
instance, then remove x from RO. If RO is empty then continue below; otherwise, treat
each SlotBranch element separately as follows: If a SlotFilter is not specified within the
SlotBranch, then let SL be the set of all Sot instances for x; otherwise, let SL be the set
of Slot instances that satisfy the SlotFilter and are Slot instances for x. If SL is empty,
then remove x from RO and continue below. Otherwise, if SL remains not empty, and if a
SotValueFilter is specified, replace SL by the set of remaining Slot instances in SL for
which every specified SlotValueFilter isvalid. If SL is empty, then remove x from RO. If
RO is empty then continue below.

If a SourceAssociationBranch element is not specified then go to the next step; otherwise,
let x be aremaining registry object in RO. If x is not the source object of some
Association instance, then remove x from RO. If RO is empty then continue below;
otherwise, treat each SourceA ssociationBranch element separately as follows:

If no AssociationFilter is specified within the SourceAssociationBranch, then let AF be
the set of all Association instances that have x as a source object; otherwise, let AF be the
set of Association instances that satisfy the AssociationFilter and have x as the source
object. If AF is empty, then remove x from RO.

If RO is empty then continue below.

If an ExternalLinkFilter is specified within the SourceAssociationBranch, then let ROT
be the set of ExternalLink instances that satisfy the ExternalLinkFilter and are the target
object of some element of AF. If ROT is empty, then remove x from RO. If RO is empty
then continue below.

If an ExternalldentifierFilter is specified within the SourceAssociationBranch, then let
ROT be the set of Externalldentifier instances that satisfy the ExternalldentifierFilter and
are the target object of some element of AF. If ROT is empty, then remove x from RO. If
RO is empty then continue below.

If a RegistryObjectQuery is specified within the SourceAssociationBranch, then let ROT
be the set of RegistryObject instances that satisfy the RegistryObjectQuery and are the
target object of some element of AF. If ROT is empty, then remove x from RO. If RO is
empty then continue below.

If aRegistryEntryQuery is specified within the SourceAssociationBranch, then let ROT
be the set of RegistryEntry instances that satisfy the RegistryEntryQuery and are the
target object of some element of AF. If ROT is empty, then remove x from RO. If RO is
empty then cortinue below.

If a ClassificationSchemeQuery is specified within the SourceA ssociationBranch, then let
ROT be the set of ClassificationScheme instances that satisfy the
ClassificationSchemeQuery and are the target object of some element of AF. If ROT is
empty, then remove x from RO. If RO is empty then continue below.
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1543 If a ClassificationNodeQuery is specified within the SourceAssociationBranch, then let
1544 ROT be the set of ClassificationNode instances that satisfy the ClassificationNodeQuery
1545 and are the target object of some element of AF. If ROT is empty, then remove x from
1546 RO. If RO is empty then continue below.

1547

1548 If an OrganizationQuery is specified within the SourceAssociationBranch, then let ROT
1549 be the set of Organization instances that satisfy the OrganizationQuery and are the target
1550 object of some element of AF. If ROT is empty, then remove x from RO. If RO is empty
1551 then continue below.

1552

1553 If an AuditableEventQuery is specified within the SourceAssociationBranch, then let
1554 ROT be the set of AuditableEvent instances that satisfy the AuditableEventQuery and are
1555 the target object of some element of AF. If ROT is empty, then remove x from RO. If RO
1556 is empty then continue below.

1557

1558 If a RegistryPackageQuery is specified within the SourceAssociationBranch, then let
1559 ROT be the set of RegistryPackage instances that satisfy the RegistryPackageQuery and
1560 are the target object of some element of AF. If ROT is empty, then remove x from RO. If
1561 RO is empty then continue below.

1562

1563 If an ExtrinsicObjectQuery is specified within the SourceAssociationBranch, then let
1564 ROT be the set of ExtrinsicObject instances that satisfy the ExtrinsicObjectQuery and are
1565 the target object of some element of AF. If ROT is empty, then remove x from RO. If RO
1566 is empty then continue below.

1567

1568 If a ServiceQuery is specified within the SourceAssociationBranch, then let ROT be the
1569 set of Service instances that satisfy the ServiceQuery and are the target object of some
1570 element of AF. If ROT is empty, then remove x from RO. If RO is empty then continue
1571 below.

1572

1573 If aUserBranchis specified within the SourceAssociationBranch then let ROT be the set
1574 of User instances that are the target object of some element of AF. If ROT is empty, then
1575 remove X from RO. If RO is empty then continue below. Let u be the member of ROT. If
1576 a UserFilter element is specified within the UserBranch, and if u does not satisfy that
1577 filter, then remove u from ROT. If ROT is empty, then remove x from RO. If RO is
1578 empty then continue below. If a Postal AddressFilter element is specified within the
1579 UserBranch, and if the postal address of u does not satisfy that filter, then remove u from
1580 ROT. If ROT is empty, then remove x from RO. If RO is empty then continue below. If
1581 TelephoneNumberFilter(s) are specified within the UserBranch and if any of the

1582 TelephoneNumberFilters isn't satisfied by some of the telephone numbers of u then
1583 remove u from ROT. If ROT is empty, then remove x from RO. If RO is empty then
1584 continue below. If an OrganizationQuery element is specified within the UserBranch,
1585 then let o be the Organization instance that is identified by the organization that u is
1586 affiliated with. If o doesn't satisfy OrganizationQuery as defined in section 8.2.9 then
1587 remove u from ROT. If ROT is empty, then remove x from RO. If RO is empty then
1588 continue below.

1589
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1590 If aClassificationBranchis specified within the SourceAssociationBranch then let ROT
1591 be the set of Classification instances that are the target object of some element of AF. If
1592 ROT is empty, then remove x from RO. If RO is empty then continue below. Let cb be
1593 the member of ROT. If ClassificationFilter element is specified within the

1594 ClassificationBranch, and if cb does not satisfy that filter, then remove cb from ROT. If
1595 ROT is empty, then remove x from RO. If RO is empty then continue below. If a

1596 ClassificationSchemeQuery element is specified within the ClassificationBranch then
1597 replace ROT by the set of remaining Classification instancesin ROT whose defining
1598 classification scheme satisfies the ClassificationSchemeQuery. If ROT is empty, then
1599 remove x from RO. If RO is empty then continue below. If a ClassificationNodeQuery
1600 element is specified within the ClassificationBranch, then replace ROT by the set of
1601 remaining Classification instancesin ROT for which a classification node exists and for
1602 which that classification node satisfies the ClassificationNodeQuery. If ROT is empty,
1603 then remove x from RO. If RO is empty then continue below. If a RegistryObjectQuery
1604 element is specified within the ClassificationBranch element then let cb be a remaining
1605 classification in ROT. Treat RegistryObjectQuery element as follows. Let ROQ be the
1606 result set of the RegistryObjectQuery as defined in Section 8.2.2. If chisnot a

1607 classification for some registry object in ROQ, then remove cb from ROT. If ROT is
1608 empty, then remove x from RO. If RO is empty then continue below. If a

1609 RegistryEntryQuery element is specified within the ClassificationBranch element then let
1610 cb be aremaining classification in ROT. Treat RegistryEntryQuery element as follows:
1611 Let REQ be the result set of the RegistryEntryQuery as defined in Section 8.2.3. If cb is
1612 not a classification for some registry entry in REQ, then remove cb from ROT. If ROT is
1613 empty, then remove x from RO. If RO is empty then continue below.

1614

1615 If a ServiceBindingBranch is specified within the SourceAssociationBranch, then let
1616 ROT be the set of ServiceBinding instances that are the target object of some element of
1617 AF. If ROT is empty, then remove x from RO. If RO is empty then continue below. Let
1618 sb be the member of ROT. If a ServiceBindingFilter element is specified within the
1619 ServiceBindingBranch, and if sb does not satisfy that filter, then remove sb from ROT. If
1620 ROT is empty then remove x from RO. If RO is empty then continue below. If a

1621 SpecificationLinkBranch is specified within the ServiceBindingBranch then consider
1622 each SpecificationLinkBranch element separately as follows:
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1623 Let sb be aremaining service binding in ROT. Let SL be the set of all specification link
1624 instances dl that describe specification links of sh. If a SpecificationLinkFilter element is
1625 specified within the SpecificationLinkBranch, and if sl does not satisfy that filter, then
1626 remove d from SL. If SL is empty then remove sb from ROT. If ROT is empty then
1627 remove X from RO. If RO is empty then continue below. If a RegistryObjectQuery

1628 element is specified within the SpecificationLinkBranch then let 9 be aremaining

1629 specification link in SL. Treat RegistryObjectQuery element as follows:. Let RO be the
1630 result set of the RegistryObjectQuery as defined in Section 8.2.2. If d isnot a

1631 specification link for some registry object in RO, then remove sl from SL. If SL is empty
1632 then remove sb from ROT. If ROT is empty then remove x from RO. If RO is empty then
1633 continue below. If a RegistryEntryQuery element is specified within the

1634 SpecificationLinkBranch then let d be a remaining specification link in SL. Treat

1635 RegistryEntryQuery element as follows: Let RE be the result set of the

1636 RegistryEntryQuery as defined in Section 8.2.3. If d is not a specification link for some
1637 registry entry in RE, then remove d from SL. If SL is empty then remove sb from ROT.
1638 If ROT is empty then remove x from RO. If RO is empty then continue below. If a

1639 ServiceBindingTargetBranchis specified within the ServiceBindingBranch, then let SBT
1640 be the set of ServiceBinding instances that satisfy the ServiceBindingTargetBranchand
1641 are the target service binding of some element of ROT. If SBT is empty then remove sb
1642 from ROT. If ROT is empty, then remove x from RO. If RO is empty then continue
1643 below.

1644

1645 If a SpecificationLinkBranch is specified within the SourceAssociationBranch, then let
1646 ROT be the set of SpecificationLink instances that are the target object of some element
1647 of AF. If ROT is empty, then remove x from RO. If RO is empty then continue below.
1648 Let 9 be the member of ROT. If a SpecificationLinkFilter element is specified within the
1649 SpecificationLinkBranch, and if sl does not satisfy that filter, then remove d from ROT.
1650 If ROT is empty then remove x from RO. If RO is empty then continue below. If a

1651 RegistryObjectQuery element is specified within the SpecificationLinkBranch then let d
1652 be a remaining specification link in ROT. Treat RegistryObjectQuery element as follows:
1653 Let RO be the result set of the RegistryObjectQuery as defined in Section 8.2.2. If d is
1654 not a specification link for some registry object in RO, then remove d from ROT. If ROT
1655 is empty then remove x from RO. If RO is empty then continue below. If a

1656 RegistryEntryQuery element is specified within the SpecificationLinkBranch then let o
1657 be a remaining specification link in ROT. Treat RegistryEntryQuery element as follows:
1658 Let RE be the result set of the RegistryEntryQuery as defined in Section 8.2.3. If g is not
1659 a specification link for some registry entry in RE, thenremove d from ROT. If ROT is
1660 empty then remove x from RO. If RO is empty then continue below.

1661

1662 If a SourceAssociationBranchis specified within the SourceAssociationBranch, then let
1663 ROT be the set of RegistryObject instances that satisfy the SourceAssociationBranchand
1664 are the target object of some element of AF. If ROT is empty, then remove x from RO. If
1665 RO is empty then continue below.

1666

1667 If a TargetAssociationBranchis specified within the SourceAssociationBranch, then let
1668 ROT be the set of RegistryObject instances that satisfy the TargetA ssociationBranchand
1669 are the source object of some element of AF. If ROT is empty, then remove x from RO.
1670 If RO is empty then continue below.
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)

If a TargetA ssociationBranch element is not specified then go to the next step; otherwise,
let x be aremaining registry object in RO. If x is not the target object of some
Association instance, then remove x from RO. If RO is empty then continue below;
otherwise, treat each TargetAssociationBranch element separately as follows:

If no AssociationFilter is specified within the TargetAssociationBranch, then let AF be
the set of all Association instances that have x as atarget object; otherwise, let AF be the
set of Association instances that satisfy the AssociationFilter and have x as the target
object. If AF is empty, then remove x from RO. If RO is empty then continue below.

If an ExternalLinkFilter is specified within the TargetAssociationBranch, then let ROS be
the set of ExternalLink instances that satisfy the External LinkFilter and are the source
object of some element of AF. If ROS is empty, then remove x from RO. If RO is empty
then continue below.

If an ExternalldentifierFilter is specified within the TargetAssociationBranch, then let
ROS be the set of Externalldentifier instances that satisfy the ExternalldentifierFilter and
are the source object of some element of AF. If ROS is empty, then remove x from RO. If
RO is empty then continue below.

If a RegistryObjectQuery is specified within the TargetAssociationBranch, then let ROS
be the set of RegistryObject instances that satisfy the RegistryObjectQuery and are the
source object of some element of AF. If ROS is empty, then remove x from RO. If RO is
empty then continue below

If a RegistryEntryQuery is specified within the TargetAssociationBranch, then let ROS
be the set of

RegistryEntry instances that satisfy the RegistryEntryQuery and are the source object of
some element of AF. If ROS is empty, then remove x from RO. If RO is empty then
continue below.

If a ClassificationSchemeQuery is specified within the TargetA ssociationBranch, then let
ROS be the set of ClassificationScheme instances that satisfy the
ClassificationSchemeQuery and are the source object of some element of AF. If ROSis
empty, then remove x from RO. If RO is empty then continue below.

If a ClassificationNodeQuery is specified within the TargetA ssociationBranch, then let
ROS be the set of ClassificationNode instances that satisfy the ClassificationNodeQuery
and are the source object of some element of AF. If ROS is empty, then remove x from
RO. If RO is empty then continue below.

If an OrganizationQuery is specified within the TargetAssociationBranch, then let ROS
be the set of Organization instances that satisfy the OrganizationQuery and are the source
object of some element of AF. If ROS is empty, then remove x from RO. If RO is empty
then continue below.
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1717 If an AuditableEventQuery is specified within the TargetA ssociationBranch, then let
1718 ROS be the set of AuditableEvent instances that satisfy the AuditableEventQuery and are
1719 the source object of some element of AF. If ROS is empty, then remove x from RO. If
1720 RO is empty then continue below.

1721

1722 If a RegistryPackageQuery is specified within the TargetAssociationBranch, then let
1723 ROS be the set of RegistryPackage instances that satisfy the RegistryPackageQuery and
1724 are the source object of some element of AF. If ROS is empty, then remove x from RO. If
1725 RO is empty then continue below.

1726

1727 If an ExtrinsicObjectQuery is specified within the TargetAssociationBranch, then let
1728 ROS be the set of ExtrinsicObject instances that satisfy the ExtrinsicObjectQuery and are
1729 the source object of some element of AF. If ROS is empty, then remove x from RO. If
1730 RO is empty then continue below.

1731

1732 If a ServiceQuery is specified within the TargetAssociationBranch, then let ROS be the
1733 set of Service instances that satisfy the ServiceQuery and are the source object of some
1734 element of AF. If ROS is empty, then remove x from RO. If RO is empty then continue
1735 below.

1736

1737 If aUserBranchis specified within the TargetAssociationBranch then let ROS be the set
1738 of User instances that are the source object of some element of AF. If ROS is empty, then
1739 remove x from RO. If RO is empty then continue below. Let u be the member of ROS. If
1740 aUserFilter element is specified within the UserBranch, and if u does not satisfy that
1741 filter, then remove u from ROS. If ROS is empty, then remove x from RO. If RO is

1742 empty then continue below. If a Postal AddressFilter element is specified within the

1743 UserBranch, and if the postal address of u does not satisfy that filter, then remove u from
1744 ROS. If ROS is empty, then remove x from RO. If RO is empty then continue below. If
1745 TelephoneNumberFilter(s) are specified within the UserBranch and if any of the

1746 TelephoneNumberFilters isn't satisfied by some of the telephone numbers of u then

1747 remove u from ROS. If ROS is empty, then remove x from RO. If RO is empty then
1748 continue below. If an OrganizationQuery element is specified within the UserBranch,
1749 then let o be the Organization instance that is identified by the organization that u is
1750 affiliated with. If o doesn't satisfy OrganizationQuery as defined in section 8.2.9 then
1751 remove u from ROS. If ROS is empty, then remove x from RO. If RO is empty then
1752 continue below.

1753
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1754 If aClassificationBranchis specified within the TargetAssociationBranch then let ROS
1755 be the set of Classification instances that are the source object of some element of AF. If
1756 ROS is empty, then remove x from RO. If RO is empty then continue below. Let cb be
1757 the member of ROS. If ClassificationFilter element is specified within the

1758 ClassificationBranch, and if cb does not satisfy that filter, then remove cb from ROS. If
1759 ROS is empty, then remove x from RO. If RO is empty then continue below. If a

1760 ClassificationSchemeQuery element is specified within the ClassificationBranch then
1761 replace ROS by the set of remaining Classification instances in ROS whose defining
1762 classification scheme satisfies the ClassificationSchemeQuery. If ROS is empty, then
1763 remove x from RO. If RO is empty then continue below. If a ClassificationNodeQuery
1764 element is specified within the ClassificationBranch, then replace ROS by the set of
1765 remaining Classification instances in ROS for which a classification node exists and for
1766 which that classification node satisfies the ClassificationNodeQuery. If ROS is empty,
1767 then remove x from RO. If RO is empty then continue below. If a RegistryObjectQuery
1768 element is specified within the ClassificationBranch element then let cb be a remaining
1769 classification in ROT. Treat RegistryObjectQuery element as follows: Let ROQ be the
1770 result set of the RegistryObjectQuery as defined in Section 8.2.2. If chisnot a

1771 classification for some registry object in ROQ, then remove cb from ROT. If ROT is
1772 empty, then remove x from RO. If RO is empty then continue below. If a

1773 RegistryEntryQuery element is specified within the ClassificationBranch element then let
1774 cb be aremaining classification in ROT. Treat RegistryEntryQuery element as follows:
1775 Let REQ be the result set of the RegistryEntryQuery as defined in Section 8.2.3. If cbis
1776 not a classification for some registry entry in REQ, then remove cb from ROT. If ROT is
1777 empty, then remove x from RO. If RO is empty then continue below.

1778

1779 If a ServiceBindingBranchis specified within the SourceA ssociationBranch, then let
1780 ROS be the set of ServiceBinding instances that are the source object of some element of
1781 AF. If ROS is empty, then remove x from RO. If RO is empty then continue below. Let
1782 sb be the member of ROS. If a ServiceBindingFilter element is specified within the
1783 ServiceBindingBranch, and if sb does not satisfy that filter, then remove sb from ROS. If
1784 ROS is empty then remove x from RO. If RO is empty then continue below. If a

1785 SpecificationLinkBranch is specified within the ServiceBindingBranch then consider
1786 each SpecificationLinkBranch element separately as follows:

1787 Let sb be aremaining service binding in ROS. Let SL be the set of all specification link
1788 instances dl that describe specification links of sh. If a SpecificationLinkFilter element is
1789 specified within the SpecificationLinkBranch, and if gl does not satisfy that filter, then
1790 remove d from SL. If SL is empty then remove sb from ROS. If ROS is empty then
1791 remove X from RO. If RO is empty then continue below. If a RegistryObjectQuery

1792 element is specified within the SpecificationLinkBranch then let 9 be aremaining

1793 specification link in SL. Treat RegistryObjectQuery element as follows:. Let RO be the
1794 result set of the RegistryObjectQuery as defined in Section 8.2.2. If d isnot a

1795 specification link for some registry object in RO, then remove sl from SL. If SL is empty
1796 then remove sb from ROS. If ROS is empty then remove x from RO. If RO is empty then
1797 continue below. If a RegistryEntryQuery element is specified within the

1798 SpecificationLinkBranch then let sl be a remaining specification link in SL. Treat

1799 RegistryEntryQuery element as follows: Let RE be the result set of the

1800 RegistryEntryQuery as defined in Section 8.2.3. If g is not a specification link for some
1801 registry entry in RE, then remove d from SL. If SL is empty then remove sb from ROS.
1802 If ROS is empty then remove x from RO. If RO is empty then continue below.
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k)

If a SpecificationLinkBranch is specified within the SourceAssociationBranch, then let
ROS be the set of SpecificationLink instances that are the source object of some element
of AF. If ROS is empty, then remove x from RO. If RO is empty then continue below.
Let d be the member of ROS. If a SpecificationLinkFilter element is specified within the
SpecificationLinkBranch, and if d does not satisfy that filter, then remove d from ROS.
If ROS is empty then remove x from RO. If RO is empty then continue below. If a
RegistryObjectQuery element is specified within the SpecificationLinkBranch then let g
be aremaining specification link in ROS. Treat RegistryObjectQuery element as follows:
Let RO be the result set of the RegistryObjectQuery as defined in Section 8.2.2. If d is
not a specification link for some registry object in RO, then remove s from ROS. If ROS
is empty then remove x from RO. If RO is empty then continue below. If a
RegistryEntryQuery element is specified within the SpecificationLinkBranch then let ol
be aremaining specification link in ROS. Treat RegistryEntryQuery element as follows:
Let RE be the result set of the RegistryEntryQuery as defined in Section 8.2.3. If 9 is not
a specification link for some registry entry in RE, then remove d from ROS. If ROS is
empty then remove x from RO. If RO is empty then continue below. If a
ServiceBindingTargetBranch is specified within the ServiceBindingBranch, then let SBT
be the set of ServiceBinding instances that satisfy the ServiceBindingTargetBranchand
are the target service binding of some element of ROT. If SBT is empty then remove sb
from ROT. If ROT is enpty, then remove x from RO. If RO is empty then continue
below.

If a SourceAssociationBranchis specified within the TargetAssociationBranch, then let
ROS be the set of RegistryObject instances that satisfy the SourceAssociationBranchand
are the target object of some element of AF. If ROS is empty, then remove x from RO. If
RO is empty then continue below.

If a TargetAssociationBranchis specified within the TargetAssociationBranch, then let
ROS be the set of RegistryObject instances that satisfy the TargetA ssociationBranch and
are the source object of some element of AF. If ROS is empty, then remove x from RO. If
RO is empty then continue below.

10. If RO is empty, then raise the warning: registry object query result is empty; otherwise,
return RO as the result ofb the RegistryObjectQuery.

11. Return any accumulated warnings or exceptions as the StatusResult associated with the
RegistryObjectQuery.

Examples

A client application needs all items that are classified by two different classification schemes,
one based on "Industry” and another based on "Geography". Both schemes have been defined by
ebXML and are registered as "urn:ebxml:cs.industry” and "urn:ebxml:cs.geography”,
respectively. The following query identifies registry entries for all registered items that are
classified by Industry as any subnode of "Automotive" and by Geography as any subnode of
"AsialJapan”.

<AdhocQuer yRequest >

<ResponseQption returnType = "RegistryEntry"/>
<FilterQery>
Copyright © OASIS, 2001. All Rights Reserved
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<Regi st ryQhj ect Quer y>
<d assi fi edByBr anch>
<O assificationFilter>
<d ause>
<Si npl ed ause | eft Argument = "path">
<StringCd ause stringPredi cate = "Equal ">//Aut onoti ve</ Stri ngC ause>
</ Si npl ed ause>
</ Cl ause>
</ assificationFilter>
<d assi fi cati onSchemeQuer y>
<NaneBr anch>
<Local i zedStringFi |l ter>

<d ause>
<Si npl ed ause | ef t Argunent = "val ue">
<Stringd ause stringPredicate = "Equal ">urn: ebxm : cs: i ndustry</Stri ngd ause>

</ Si npl ed ause>
</ Cl ause>
</Local i zedStringFilter>
</ NaneBr anch>
</ d assi ficati onSchemeQuery>
</ d assi fi edByBranch>
<d assi fi edByBranch>
<O assificationFilter>
<d ause>
<Si npl ed ause | ef t Argunent = "path">
<StringC ause stringPredicate = "StartsWth">/ Geography-i d/ Asi a/ Japan</ Stri ngd ause>
</ Si npl eC ause>
</ d ause>
</ assificationFilter>
<d assi fi cati onSchemeQuer y>
<NameBr anch>
<Local i zedStringFi | ter>

<d ause>
<Si npl ed ause | ef t Argunent = "val ue">
<Stringd ause stringPredi cate = "Equal ">urn: ebxnl : cs: geogr aphy</ Stri ngC ause>

</ Si npl ed ause>
</ Cl ause>
</Local i zedStringFilter>
</ NanmeBr anch>
</ O assi ficati onSchemeQuery>
</ d assi fi edByBranch>
</ Regi st ryQhj ect Query>
</FilterQery>
</ AdhocQuer yRequest >

A client application wishes to identify all RegistryObject instances that are classified by some
internal classification scheme and have some given keyword as part of the description of one of
the classification nodes of that classification scheme. The following query identifies all such
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RegistryObject instances. The query takes advantage of the knowledge that the classification
scheme isinternal, and thus that all of its nodes are fully described as ClassificationNode
instances.

<AdhocQuer yRequest >
<Responseption returnType = "Regi stryoj ect"/>
<Fi |l ter Query>
<Regi st ryObj ect Quer y>
<d assi f i edByBr anch>
<d assi fi cat i onNodeQuer y>
<Descri pti onBranch>

<Local i zedStri ngFi | ter>

<d ause>
<Si npl ed ause | eft Argunent = "val ue">
<StringC ause stringPredicate = "Equal ">transi stor</Stringd ause>

</ Si npl eCl ause>
</ Cl ause>
</ Local i zedStringFilter>
</ Descri pti onBranch>
</ d assi fi cati onNodeQuer y>
</ d assi fi edByBr anch>
</ Regi st ryQhj ect Query>
</FilterQery>
</ AdhocQuer yRequest >

8.2.3 RegistryEntryQuery

Purpose

To identify a set of registry entry instances as the result of a query over selected registry
metadata.

Registry Entry

Registry
Object

ebRIM Binding
= =Figure 17:ebRIM Binding for RegistryEntryQuery

Definition

<complexType name="RegistryEntryQueryType">
<complexContent>
<extension base="tns:RegistryObjectQuery Type">
<seguence>
<element ref="tns:RegistryEntryFilter" minOccurs="0" maxOccurs="1" />
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</sequence>
</extension>
</complexContent>
</complexType>
<element name="RegistryEntryQuery" type="tns.RegistryEntryQueryType" />

<element name="RegistryEntryQueryResult ">
<complexType>
<choice minOccurs="0" maxOccurs="unbounded">
<element ref="rim:ObjectRef" />
<element ref="rim:ClassificationScheme" />
<element ref="rim:ExtrinsicObject" />
<element ref="rim:RegistryEntry" />
<element ref="rim:RegistryObject’ />
<element ref="rim:RegistryPackage" />
</choice>
</complexType>
</element>

Semantic Rules

12. Let RE denote the set of all persistent RegistryEntry instances in the Registry. The following
steps will eliminate instances in RE that do not satisfy the conditions of the specified filters.

a) If REisempty then continue below.

b) If aRegistryEntryFilter is not specified then go to the next step; otherwise, let x be a
registry entry in RE. If x does not satisfy the RegistryEntryFilter, then remove x from RE.
If RE is empty then continue below.

c) Let RE bethe set of remaining RegistryEntry instances. Evaluate inherited
RegistryObjectQuery over RE as explained in section 8.2.2.

13. If RE is empty, then raise the warning: registry entry query result is empty; otherwise, return
RE as the result of the RegistryEntryQuery.

14. Return any accumulated warnings or exceptions as the StatusResult associated with the
RegistryEntryQuery.

Examples

A client wishes to establish atrading relationship with XY Z Corporation and wants to know if
they have registered any of their business documents in the Registry. The following query
returns a set of registry entry identifiers for currently registered items submitted by any
organization whose name includes the string " XY Z". It does not return any registry entry
identifiers for superseded, replaced, deprecated, or withdrawn items.

<AdhocQueryRequest>
<ResponseOption returnType = " ObjectRef"/>
<FilterQuery>
<RegistryEntryQuery>
<TargetAssociationBranch>
<AssociationFilter>
<Clause>
<SimpleClause |eftArgument = "associationType">
<StringClause stringPredicate = " Eyjual " >SubmitterOf </StringClause>
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A client is using the United Nations Standard Product and Services Classification (UNSPSC)
scheme and wants to identify all companies that deal with products classified as "Integrated
circuit components’, i.e. UNSPSC code "321118". The client knows that companies have

registered their Collaboration Protocol Profile (CPP) documents in the Registry, and that each
such profile has been classified by UNSPSC according to the products the company deals with.
However, the client does not know if the UNSPSC classification scheme isinterna or externa to
thisregistry. The following query returns a set of approved registry entry instances for CPP' s of
companies that deal with integrated circuit components.
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<element ref="tns:AuditableEventFilter' minOccurs="0" />
<element ref="tns:RegistryObjectQuery" minOccurs="0" maxOccurs="1" />
<element ref="tns:RegistryEntryQuery" minOccurs="0" maxOccurs="1" />
<element ref="tns:UserBranch" minOccurs="0" maxOccurs="1" />
</sequence>
</extension>
</complexContent>
</complexType>
<element name="AuditableEventQuery" type="tns:AuditableEventQueryType" />

<element name="AuditableEventQueryResult" >
<complexType>
<choice minOccurs="0" maxOccurs="unbounded">
<element ref="rim:ObjectRef" />
<element ref="rim:RegistryObject" />
<element ref="rim:AuditableEvent" />
</choice>
</complexType>
</element>

Semantic Rules

15. Let AE denote the set of all persistent AuditableEvent instances in the Registry. The
following steps will eliminate instances in AE that do not satisfy the conditions of the
specified filters.

d) If AEisempty then continue below.

e) If an AuditableEventFilter is not specified then go to the next step; otherwise, let x be an
auditable event in AE. If x does not satisfy the AuditableEventFilter, then remove x from
AE. If AE is empty then continue below.

f) If a RegistryObjectQuery element is not specified then go to the next step; otherwise, let
x be aremaining auditable event in AE. Treat RegistryObjectQuery element as follows:
Let RO be the result set of the RegistryObjectQuery as defined in Section 8.2.2. If x is
not an auditable event for some registry object in RO, then remove x from AE. If AE is
empty then continue below.

g [If aRegistryEntryQuery element is not specified then go to the next step; otherwise, let x
be aremaining auditable event in AE. Treat RegistryEntryQuery element as follows: Let
RE be the result set of the RegistryEntryQuery as defined in Section 8.2.3. If x isnot an
auditable event for some registry entry in RE, then remove x from AE. If AE is empty
then continue below.
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h) If aUserBranch element is not specified then go to the next step; otherwise, let x be a

remaining auditable event in AE. Let u be the user instance that invokes x. If a UserFilter
element is specified within the UserBranch, and if u does not satisfy that filter, then
remove X from AE. If a PostalAddressFilter element is specified within the UserBranch,
and if the postal address of u does not satisfy that filter, then remove x from AE. If
TelephoneNumberFilter(s) are specified within the UserBranch and if any of the
TelephoneNumberFiltersisn't satisfied by some of the telephone numbers of u then
remove X from AE. If Email AddressFilter(s) are specified within the UserBranch and if
any of the EmailAddressFiltersisn’t satisfied by some of the email addresses of u then
remove x from AE. If an OrganizationQuery element is specified within the UserBranch,
then let o be the Organization instance that is identified by the organization that u is
affiliated with. If o doesn't satisfy OrganizationQuery as defined in Section 8.2.9 then
remove x from AE. If AE is empty then continue below.

Let AE be the set of remaining AuditableEvent instances. Evaluate inherited
RegistryObjectQuery over AE as explained in section 8.2.2.

16. If AE is empty, then raise the warning: auditable event query result is empty; otherwise
return AE as the result of the AuditableEventQuery.

17. Return any accumulated warnings or exceptions as the StatusResult associated with the
AuditableEventQuery.

Examples

A Registry client has registered an item and it has been assigned a name "urn:path:myitem”. The
client is now interested in al events since the beginning of the year that have impacted thet item.
The following query will return a set of AuditableEvent instances for all such events.

<AdhocQueryRequest>
<ResponseOption returnType = "L eafClass'/>
<FilterQuery>
<AuditableEventQuery>

<AuditableEventFilter>
<Clause>
<SimpleClause |eftArgument = "timestamp">
<Rational Clause | ogical Predicate = "GE">
DateTimeClause>2000-01-01T00:00:00-05:00</DateTimeCl ause>
</Rational Clause>
</SimpleClause>
</Clause>
</AuditableEventFilter>
<RegistryEntryQuery>
<NameBranch>
<L ocalizedStringFilter>
<Clause>
<SimpleClause leftArgument = "value">
<StringClause stringPredicate = "Equal " >urn: path: myitem</StringClause>
</SimpleClause>
</Clause>
</LocalizedStringFilter>
</NameBranch>
</RegistryEntryQuery>

</AuditableEventQuery>
</FilterQuery>
</AdhocQueryRequest
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A client company has many registered objects in the Registry. The Registry alows events
submitted by other organizations to have an impact on your registered items, e.g. new
classifications and new associations. The following query will return a set of identifiers for all
auditable events, invoked by some other party, that had an impact on an item submitted by
“myorg”.

8.2.5 ClassificationNodeQuery

Purpose

To identify a set of classification node instances as the result of a query over selected registry
metadata.
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< =Figure 19: ebRim binding for ClassificationNodeQuery
Definition

Semantic Rules

18. Let CN denote the set of al persistent ClassificationNode instances in the Registry. The
following steps will eliminate instances in CN that do not satisfy the conditions of the

specified filters.

j) If CN isempty then continue below.

k) If aClassificationNodeFilter is not specified then go to the next step; otherwise, let x be a
classification node in CN. If x does not satisfy the ClassificationNodeFilter then remove
x from CN. If CN is empty then continue below.
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I) If aClassificationSchemeQuery is not specified then go to the next step; otherwise, let x
be aremaining classification node in CN. If the defining classification scheme of x does
not satisfy the ClassificationSchemeQuery as defined in section 8.2.6, then remove x
from CN. If CN is empty then continue below.

m) If aClassificationNodeParentBranch element is not specified, then go to the next step;
otherwise, let x be aremaining classification node in CN and execute the following
paragraph with n=x.

Let n be a classification node instance. If n does not have a parent node (i.e. if nisabase
level node), then remove x from CN and go to the next step; otherwise, let p be the parent
node of n. If a ClassificationNodeFilter element is directly contained in the
ClassificationNodeParentBranch and if p does not satisfy the ClassificationNodeFilter,
then remove x from CN. If CN isempty then continue below. If a
ClassificationSchemeQuery element is directly contained in the
ClassificationNodeParentBranch and if defining classification scheme of p does not
satisfy the ClassificationSchemeQuery, then remove x from CN. If CN isempty then
continue below.

If another ClassificationNodeParentBranch element is directly contained within this
ClassificationNodeParentBranch element, then repeat the previous paragraph with n=p.

n) If aClassificationNodeChildrenBranch element is not specified, then continue below;
otherwise, let x be a remaining classification node in CN. If x is not the parent node of
some ClassificationNode instance, then remove x from CN and if CN is empty continue
below; otherwise, treat each ClassificationNodeChildrenBranch element separately and
execute the following paragraph with n = x.

Let n be a classification node instance. If a ClassificationNodeFilter element is not
specified within the ClassificationNodeChildrenBranch element then let CNC be the set
of all classification nodes that have n as their parent node; otherwise, let CNC be the set
of all classificationnodes that satisfy the ClassificationNodeFilter and have n as their
parent node. If CNC is empty, then remove x from CN and if CN is empty continue
below; otherwise, let ¢ be any member of CNC. If a ClassificationSchemeQuery element
isdirectly contained in the ClassificationNodeChildrenBranch and if the defining
classification scheme of ¢ does not satisfy the ClassificationSchemeQuery then remove ¢
from CNC. If CNC is empty then remove x from CN. If CN isempty then continue
below; otherwise, let y be an element of CNC and continue with the next paragraph.

If the ClassificationNodeChildrenBranch element is terminal, i.e. if it does not directly
contain another ClassificationNodeChildrenBranch element, then continue below;
otherwise, repeat the previous paragraph with the new ClassificationNodeChildrenBranch
element and withn=1y.

0) Let CN be the set of remaining ClassificationNode instances. Evaluate inherited
RegistryObjectQuery over CN as explained in section 8.2.2.

19. If CN isempty, then raise the warning: classification node query result is empty; otherwise
return CN as the result of the ClassificationNodeQuery.

20. Return any accumulated warnings or exceptions as the StatusResult associated with the
ClassificationNodeQuery.

Path Filter Expression usage in ClassificationNodeFilter

The path filter expression is used to match classification nodes in ClassificationNodeFilter
elements involving the path attribute of the ClassificationNode class as defied by the getPath
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method in [ebRIM].

The path filter expressions are based on avery small and proper sub-set of location path syntax
of XPath.

The path filter expression syntax includes support for matching multiple nodes by using wild
card syntax as follows:

?? Useof ‘*’ asawildcard in place of any path element in the pathFilter
?? Useof ‘/I' syntax to denote any descendent of a node in the pathFilter
It is defined by the following BNF grammar:

pathFi |l ter = "'/"' scheneld nodePat h
nodePat h = sl ashes nodeCode

| sl ashes **’

| sl ashes nodeCode ( nodePath )?
Slashes::= /" | ‘I’

In the above grammer, schemeld is the id attribute of the ClassificationScheme instance. In the
above grammar nodeCode is defined by NCName production as defined by
http://www.w3.0org/TR/REC-xml-names/#NT-NCName.

The semantic rules for the ClassificationNodeFilter element allow the use of path attribute as a
filter that is based on the EQUAL clause. The pattern specified for matching the EQUAL clause
isaPATH Filter expression.

Thisisillustrated in the following example that matches all second level nodesin
ClassificationScheme with id ‘ Geography-id’” and with code ‘ Japan’:

<O assi fi cati onNodeQuery>
<0 assi ficati onNodeFi | t er >
<Cl ause>
<Si npl ed ause | ef t Argunent = "path">
<Stringd ause stringPredi cate = "Equal ">// Geography-i d/ */ Japan</ Stri ngd ause>
</ Si npl ed ause>
</ d ause>
</ d assificationNodeFilter>
</ O assi fi cat i onNodeQuer y>

Use Cases and Examples of Path Filter Expressions

The following table lists various use cases and examples using the sample Geography scheme
below:

<d assi ficati onSchene i d=' Geography-id'" name="Ceography”/>

<0 assi fi cati onNode i d="NorthAnerica-id" parent="Ceography-id" code=NorthAmrerica" />
<C assificati onNode i d="UnitedStates-id" parent="NorthAnerica-id" code="UnitedStates" />

<C assificati onNode i d="Asi a-id" parent="Ceography-id" code="Asia" />

<0 assi fi cati onNode i d="Japan-id" parent="Asia-i d" code="Japan" />
<C assi fi cati onNode i d="Tokyo-id" parent="Japan-id" code="Tokyo" />

= =Table 10: Path Filter Expressions for Use Cases

‘ Use Case PATH Expression Description

Match al nodesin first
level that have a specified ||| /Geography-id/NorthAmerica
value

Find al first level nodes whose
code is 'NorthAmerica

II:i nd all children nf firat /Geography-id/NorthAmerica/* II\/I atch all nnAdes whnee firat laval |
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level node whose code is
“NorthAmerica’

]

]

path element has code
"NorthAmerica"

Match al nodes that have
a specified value
regardless of level

| Geography-id//Japan

Find al nodes with code "Japan’

Match al nodesin the
second leve that have a
specified value

/Geography-id/* /Japan

Find al second level nodes with
code 'Japan’

Match all nodesin the
3rd levd that have a
specified value

| Geography-id/*/*/Tokyo

Find al third level nodes with
code 'Tokyo'

Examples
A client application wishes to identify all of the classification nodes in the first three levels of a
classification scheme hierarchy. The client knows that the name of the underlying classification
scheme is “urn:ebxml:cs:myscheme”. The following query identifies all nodes at the first three
levels.

If, instead, the client wishes all levels returned, they could ssmply delete the
ClassificationNodeFilter element fromthe query.

Copyright © OASIS, 2001. All Rights Reserved
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The following query finds al third level nodes with code of Tokyo.

8.2.6 ClassificationSchemeQuery

Purpose
To identify aset of classification scheme instances as the result of a query over selected registry
metadata

ebRIM Binding
Classification Scheme
Registry
Entry
< =Figure20: ebRIM Binding for ClassificationSchemeQuery
Definition
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</comp lexContent>
</complexType>
<element name=" ClassificationSchemeQuery" type="tns:ClassificationSchemeQueryType" />

Semantic Rules

21. Let CS denote the set of all persistent ClassificationScheme instances in the Registry. The
following steps will eliminate instances in CS that do not satisfy the conditions of the
specified filters.

p) If CSisempty then continue below.

g) If aClassificationSchemeFilter is not specified then go to the next step; otherwise, let x
be a classification schemein CS. If x does not satisfy the ClassificationSchemeFilter,
then remove x from CS. If CSis empty then continue below.

N Let CSbethe set of remaining ClassificationScheme instances. Evaluate inherited
RegistryEntryQuery over CS as explained in section 8.2.3.

22. If CSisempty, then raise the warning: classification scheme query result is empty; otherwise,

return CS as the result of the ClassificationSchemeQuery.

Return any accumulated warnings or exceptions as the StatusResult associated with the
ClassificationSchemeQuery.

Examples

A client application wishes to identify all classification scheme instances in the Registry.
<AdhocQueryRequest>
<ResponseOption returnType = "Leaf Class'/>
<FilterQuery>
<ClassificationSchemeQuery/>
</FilterQuery>
</AdhocQueryRequest>

8.2.7 RegistryPackageQuery

Purpose

To identify a set of registry package instances as the result of a query over selected registry
metadata.

Registry

Package

Registry

Entry
Regjstry ]
Object Rclezgltstry
ntry
ebRIM Binding

= =Figure2l: ebRim binding for RegistryPackageQuery
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Definition

<complexType name="RegistryPackageQueryType">
<complexContent>
<extension base="tns:RegistryEntryQueryType">
<sequence>
<element ref="tns:RegistryPackageFilter* minOccurs="0" maxOccurs="1" />
<element ref="tns:RegistryObjectQuery" minOccurs="0" maxOccurs="unbounded" />
<element ref="tns:RegistryEntryQuery" minOccurs="0" maxOccurs="unbounded" />
</sequence>
</extension>
</complexContent>
</complexType>
<element name=" RegistryPackageQuery" type="tns:RegistryPackageQueryType" />

<element name=" RegistryPackageQueryResult" >
<complexType>
<choice minOccurs="0" maxOccurs="unbounded" >
<element ref="rim:ObjectRef" />
<element ref="rim:RegistryEntry" />
<element ref="rim:RegistryObject" />
<element ref="rim:RegistryPackage" />
</choice>
</complexType>
</element>

Semantic Rules

23. Let RP denote the set of al persistent RegistryPackage instances in the Registry. The
following steps will eliminate instances in RP that do not satisfy the conditions of the
specified filters.

s) If RPisempty then continue below.

t) If a RegistryPackageFilter is not specified, then continue below; otherwise, let x be a
registry package instance in RP. If x does not satisfy the RegistryPackageFilter then
remove x from RP. If RP is empty then continue below.

u) If aRegistryObjectQuery element is directly contained in the RegistryPackageQuery
element then treat each RegistryObjectQuery as follows: let RO be the set of
RegistryObject instances returned by the RegistryObjectQuery as defined in Section 8.2.2
and let PO be the subset of RO that are members of the package x. If PO is empty, then
remove X from RP. If RP is empty then continue below. If a RegistryEntryQuery element
isdirectly contained in the RegistryPackageQuery element then treat each
RegistryEntryQuery as follows: let RE be the set of RegistryEntry instances returned by
the RegistryEntryQuery as defined in Section 8.2.3 and let PE be the subset of RE that
are members of the package x. If PE is empty, then remove x from RP. If RP is empty
then continue below.

v) Let RP bethe set of remaining RegistryPackage instances. Evaluate inherited
RegistryEntryQuery over RP as explained in section 8.2.3.

24. If RPisempty, then raise the warning: registry package query result is empty; otherwise
return RP as the result of the RegistryPackageQuery.

25. Return any accumulated warnings or exceptions as the StatusResult associated with the
RegistryPackageQuery.
Copyright © OASIS, 2001. All Rights Reserved
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Examples
A client application wishes to identify all package instances in the Registry that contain an
Invoice extrinsic object as a member of the package.

A client application wishes to identify all package instances in the Registry that are not empty.

A client application wishes to identify al package instances in the Registry that are empty. Since
the RegistryPackageQuery is not set up to do negations, clients will have to do two separate
RegistryPackageQuery requests, one to find all packages and another to find all nor-empty
packages, and then do the set difference themselves. Alternatively, they could do a more
complex RegistryEntryQuery and check that the packaging association between the package and
its members is non-existent.

Note: A registry package is an intrinsic RegistryEntry instance that is completely determined by
its associations with its members. Thus a RegistryPackageQuery can aways be re-specified as an
equivalent RegistryEntryQuery using appropriate “Source” and “Target” associations. However,
the equivalent RegistryEntryQuery is often more complicated to write.

8.2.8 ExtrinsicObjectQuery

Purpose
To identify a set of extrinsic object instances as the result of a query over selected registry
metadata.

ebRIM Binding

Copyright © OASIS, 2001. All Rights Reserved
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Extrinsic Object

Registry
Entry

<= <=Figure 22:ebRIM Bindi ng for ExtrinsicObjectQuery

Definition

Semantic Rules

26. Let EO denote the set of all persistent ExtrinsicObject instances in the Registry. The
following steps will eliminate instances in EO that do not satisfy the conditions of the
specified filters.

w) If EO isempty then continue below.

X) If a ExtrinsicObjectFilter is not specified then go to the next step; otherwise, let x bean
extrinsic object in EO. If x does not satisfy the ExtrinsicObjectFilter then remove x from
EO. If EO is empty then continue below.

y) Let EO be the set of remaining ExtrinsicObject instances. Evaluate inherited
RegistryEntryQuery over EO as explained in section 8.2.3.

27. If EO is empty, then raise the warning: extrinsic object query result is empty; otherwise,
return EO as the result of the ExtrinsicObjectQuery.

28. Return any accumulated warnings or exceptions as the StatusResult associated with the
ExtrinsicObjectQuery.

8.2.9 OrganizationQuery

Purpose
To identify a set of organization instances as the result of a query over selected registry
Copyright © OASIS, 2001. All Rights Reserved
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metadata.

ebRIM Binding

Organization

lChi Idren
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Registry
Parentl Object
Organization l
Postal Telephone
Address User Number
Postal Oraanization Telephone
Address Number

< =Figure 23: ebRim Binding for OrganizationQuery

Definition

Semantic Rules

29. Let ORG denote the set of all persistent Organization instances in the Registry. The
following steps will eliminate instances in ORG that do not satisfy the conditions of the

specified filters.
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2645 z) If ORG isempty then continue below.

2646 aa) If an OrganizationFilter element is not directly contained in the OrganizationQuery

2647 element, then go to the next step; otherwise let x be an organization instance in ORG. If x
2648 does not satisfy the OrganizationFilter then remove x from ORG. If ORG isempty then
2649 continue below.

2650 bb) If a PostalAddressFilter element is not directly contained in the OrganizationQuery

2651 element then go to the next step; otherwise, let x be an extrinsic object in ORG. If postal
2652 address of x does not satisfy the Postal AddressFilter then remove x from ORG. If ORG is
2653 empty then continue bel ow.

2654 cc) If no TelephoneNumberFilter element is directly contained in the OrganizationQuery
2655 element then go to the next step; otherwise, let X be an extrinsic object in ORG. If any of
2656 the TelephoneNumberFiltersisn’t satisfied by some of the telephone numbers of x then
2657 remove x from ORG. If ORG is empty then continue below.

2658 dd) If aUserBranch element is not directly contained in the OrganizationQuery element then
2659 go to the next step; otherwise, let x be an extrinsic object in ORG. Let u be the user
2660 instance that is affiliated with x. If a UserFilter element is specified within the

2661 UserBranch, and if u does not satisfy that filter, then remove x from ORG. If a

2662 Postal AddressFilter element is specified within the UserBranch, and if the postal address
2663 of u does not satisfy that filter, then remove x from ORG. If TelephoneNumberFilter(s)
2664 are specified within the UserBranch and if any of the TelephoneNumberFiltersisn’t
2665 satisfied by some of the telephone numbers of x then remove x from ORG. If

2666 Email AddressFilter(s) are specified within the UserBranch and if any of the

2667 Email AddressFiltersisn’t satisfied by some of the email addresses of x then remove x
2668 from ORG. If an OrganizationQuery element is specified within the UserBranch, then let
2669 0 be the Organization instance that is identified by the organization that u is affiliated
2670 with. If o doesn’t satisfy OrganizationQuery as defined in section 8.2.9 then remove x
2671 from ORG. If ORG is empty then continue below.

2672 ee) If aOrganizationParentBranch element is not specified within the OrganizationQuery,
2673 then go to the next step; otherwise, let x be an extrinsic object in ORG. Execute the
2674 following paragraph with o = x:

2675 Let 0 be an organization instance. If an OrganizationFilter is not specified within the
2676 OrganizationParentBranch and if o has no parent (i.e. if o isaroot organization in the
2677 Organization hierarchy), then remove x from ORG; otherwise, let p be the parent

2678 organization of o. If p does not satisfy the OrganizatiorFilter, then remove x from ORG.
2679 If ORG is empty then continue below.

2680 If another OrganizationParentBranchelement is directly contained within this

2681 OrganizationParentBranch element, then repesat the previous paragraph with o = p.

2682 ff) |f aOrganizationChildrenBranch element is not specified, then continue bel ow;

2683 otherwise, let x be aremaining organization in ORG. If x is not the parent node of some
2684 organization instance, then remove x from ORG and if ORG is empty continue below;
2685 otherwise, treat each OrganizationChildrenBranch element separately and execute the
2686 following paragraph with n = x.
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Let n be an organization instance. If an OrganizationFilter element is not specified within
the OrganizationChildrenBranch element then let ORGC be the set of all organizations
that have n as their parent node; otherwise, let ORGC be the set of al organizations that
satisfy the OrganizationFilter and have n as their parent node. If ORGC is empty, then
remove X from ORG and if ORG is empty continue below; otherwise, let ¢ be any
member of ORGC. If a Postal AddressFilter element is directly contained in the
OrganizationChildrenBranch and if the postal address of ¢ does not satisfy the

Postal AddressFilter then remove ¢ from ORGC. If ORGC is empty then remove x from
ORG. If ORG is empty then continue below. If no TelephoneNumberFilter element is
directly contained in the OrganizationChildrenBranch and if If any of the
TelephoneNumberFiltersisn't satisfied by some of the telephone numbers of ¢ then
remove ¢ from ORGC. If ORGC is empty then remove x from ORG. If ORG is empty
then continue below; otherwise, let y be an element of ORGC and continue with the next
paragraph.

If the OrganizationChildrenBranch element is terminal, i.e. if it does not directly contain
another OrganizationChildrenBranch element, then continue below; otherwise, repeat the
previous paragraph with the new OrganizationChildrenBranch element and withn =y.

gg) Let ORG be the set of remaining Organization instances. Evaluate inherited

RegistryObjectQuery over ORG as explained in section 8.2.2.

30. If ORG is empty, then raise the warning: organization query result is empty; otherwise return
ORG as the result of the OrganizationQuery.

31. Return any accumulated warnings or exceptions as the StatusResult associated with the
OrganizationQuery.

Examples

A client application wishes to identify a set of organizations, based in France, that have
submitted a PartyProfile extrinsic object this year.

<AdhocQuer yRequest >
<Responseption returnType = "Leaf O ass" returnConposedChj ects = "True”/>
<Fil ter Query>

<Or gani zat i onQuer y>
<Sour ceAssoci at i onBr anch>
<Associ ati onFil ter>

<d ause>
<Si npl ed ause | eft Argunent = "associ ati onType" >
<Stringd ause stringPredicate = "Equal ">Subm tterOf </ StringC ause>
</ Si npl ed ause>
</ d ause>

</ Associ ati onFi | ter>
<Regi st ryQhj ect Quer y>
<Regi stryQbj ectFilter>
<d ause>
<Si npl ed ause | ef t Argunent = "obj ect Type">
<Stringd ause stringPredi cate = "Equal ">CPP</ Stri ngd ause>
</ Si npl eCl ause>
</ d ause>
</ Regi stryChjectFilter>
<Audi t abl eEvent Quer y>
<Audi t abl eEvent Fi | t er >

<d ause>
<Si npl ed ause | eft Argunent = "ti mest anp">
<Rati onal d ause | ogi cal Predicate = "CGE"'>

<Dat eTi nred ause>2000- 01- 01TOO0: 00: 00- 05: 00</ Dat eTi med ause>
</ Rati onal d ause>
</ Si npl ed ause>
</ d ause>
</ Audi t abl eEvent Fi | ter >
</ Audi t abl eEvent Quer y>
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A client application wishes to identify all organizations that have Corporation named XYZ asa
parent.

8.2.10 ServiceQuery

Purpose

To identify a set of service instances as the result of a query over selected registry metadata.

ebRIM Binding

Copyright © OASIS, 2001. All Rights Reserved
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Registry
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Registry Entry
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Service Binding
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Definition

Semantic Rules

<= <=Figure24:ebRIM Binding for ServiceQuery

Registry
Entry

32. Let S denote the set of all persistent Service instances in the Registry. The following steps
will eliminate instances in S that do not satisfy the conditions of the specified filters.

hh) If Sisempty then continue below.

i) If aServicetFilter is not specified then go to the next step; otherwise, let X be a service in
S. If x does not satisfy the ServiceFilter, then remove x from S. If Sis empty then

continue below.
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j}) If aServiceBindingBranch is not specified then continue below; otherwise, consider each
ServiceBindingBranch element separately as follows:
Let SB bethe set of all ServiceBinding instances that describe binding of x. Let sb be the
member of SB. If a ServiceBindingFilter element is specified within the
ServiceBindingBranch, and if sb does not satisfy that filter, then remove sb from SB. If
SB is empty then remove x from S. If Sis empty then continue below. If a
SpecificationLinkBranch is not specified within the ServiceBindingBranch then continue
below; otherwise, consider each SpecificationLinkBranch element separately as follows:
Let sb be aremaining service binding in SB. Let SL be the set of all specification link
instances dl that describe specification links of sb. If a SpecificationLinkFilter element is
specified within the SpecificationLinkBranch, and if sl does not satisfy that filter, then
remove d from SL. If SL is empty then remove sb from SB. If SB is empty then remove
x from S. If Sisempty then continue below. If a RegistryObjectQuery element is
specified within the SpecificationLinkBranch then let gl be a remaining specification link
in SL. Treat RegistryObjectQuery element as follows: Let RO be the result set of the
RegistryObjectQuery as defined in Section 8.2.2. If d is not a specification link for some
registry object in RO, then remove d from SL. If SL is empty then remove sb from SB. If
SB is empty then remowve x from S. If Sis empty then continue below. If a
RegistryEntryQuery element is specified within the SpecificationLinkBranch then let o
be aremaining specification link in SL. Treat RegistryEntryQuery element as follows:
Let RE be the result set of the RegistryEntryQuery as defined in Section 8.2.3. If g is not
a specification link for some registry entry in RE, then remove d from SL. If SL is empty
then remove sb from SB. If SB is empty then remove x from S. If Sisempty then
continue below.

kk) Let S be the set of remaining Service instances. Evaluate inherited RegistryEntryQuery
over AE as explained in section 8.2.3.

33. If Sisempty, then raise the warning: service query result is empty; otherwise return S as the
result of the ServiceQuery.

34. Return any accumulated warnings or exceptions as the StatusResult associated with the
ServiceQuery.

Examples

8.2.11 Reqistry Filters

Purpose
To identify a subset of the set of all persistent instances of a given registry class.

Definition

<conpl exType name="Filter Type">

<sequence>

<el ement ref="tns:C ause" />

</ sequence>
</ conpl exType>
<el ement name="Regi stryObjectFilter" type="tns:FilterType" />
<el ement name="Regi stryEntryFilter" type="tns:FilterType" />
<el enent name="ExtrinsicCObjectFilter" type="tns:FilterType" />
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<el ement nanme="Regi stryPackageFilter" type="tns:FilterType" />
<el ement name="Organi zationFilter" type="tns:FilterType" />

<el ement nanme="Cl assificati onNodeFilter" type="tns:FilterType" />
<el ement nanme="Associ ationFilter" type="tns:FilterType" />

<el ement nane="Cl assificationFilter" type="tns:FilterType" />

<el ement name="Cl assi ficationScheneFilter" type="tns:FilterType" />
<el ement name="External LinkFilter" type="tns:FilterType" />

<el ement name="External IdentifierFilter" type="tns:FilterType" />
<el ement name="SlotFilter" type="tns:FilterType" />

<el ement nanme="Auditabl eEventFilter" type="tns:FilterType" />

<el ement name="UserFilter" type="tns:FilterType" />

<el ement nanme="Sl| ot Val ueFilter" type="tns:FilterType" />

<el ement nanme="Post al AddressFilter" type="tns:FilterType" />

<el ement nane="Tel ephoneNunberFilter" type="tns:FilterType" />
<el ement name="ServiceFilter" type="tns:FilterType" />

<el ement nanme="Servi ceBi ndi ngFilter" type="tns:FilterType" />

<el ement name="SpecificationLinkFilter" type="tns:FilterType" />
<el ement nanme="Local i zedStringFilter" type="tns:FilterType" />

Semantic Rules

35.
36.

37.

38.

39.

40.

The Clause element is defined in Section Error! Refer ence sour ce not found., Clause.

For every RegistryObjectFilter XML element, the leftArgument attribute of any containing
SimpleClause shall identify a public attribute of the RegistryObject UML class defined in
[ebRIM]. If not, raise exception: object attribute error. The RegistryObjectFilter returns a set
of identifiers for RegistryObject instances whose attribute values evaluate to True for the
Clause predicate.

For every RegistryEntryFilter XML element, the leftArgument attribute of any containing
SimpleClause shall identify a public attribute of the RegistryEntry UML class defined in
[ebRIM]. If not, raise exception: registry entry attribute error. The RegistryEntryFilter
returns a set of identifiers for RegistryEntry instances whose attribute values evaluate to True
for the Clause predicate.

For every ExtrinsicObjectFilter XML element, the leftArgument attribute of any containing
SimpleClause shall identify a public attribute of the ExtrinsicObject UML class defined in
[ebRIM]. If not, raise exception: extrinsic object attribute error. The ExtrinsicObjectFilter
returns a set of identifiers for ExtrinsicObject instances whose attribute values evaluate to
True for the Clause predicate.

For every RegistryPackageFilter XML element, the leftArgument attribute of any containing
SimpleClause shall identify a public attribute of the RegistryPackage UML class defined in
[ebRIM]. If not, raise exception: package attribute error. The RegistryPackageFilter returns
a set of identifiers for RegistryPackage instances whose attribute values evaluate to True for
the Clause predicate.

For every OrganizationFilter XML element, the leftArgument attribute of any containing
SimpleClause shall identify a public attribute of the Organization or Postal Address UML
classes defined in [ebRIM]. If not, raise exception: organization attribute error. The
OrganizationFilter returns a set of identifiers for Organization instances whose attribute
values evaluate to True for the Clause predicate.
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2910 41. For every ClassificationNodeFilter XML element, the leftArgument attribute of any

2911 containing SimpleClause stell identify a public attribute of the ClassificationNode UML
2912 class defined in [ebRIM]. If not, raise exception: classification node attribute error. If the
2913 leftAttribute is the visible attribute “path” then if stringPredicate of the StringClause is not
2914 “Equal” then raise exception: classification node path attribute error. The

2915 ClassificationNodeFilter returns a set of identifiers for ClassificationNode instances whose
2916 attribute values evaluate to True for the Clause predicate.

2917  42. For every AssociationFilter XML element, the leftArgument attribute of any containing
2918 SimpleClause shall identify a public attribute of the Association UML class defined in

2919 [ebRIM]. If not, raise exception: association attribute error. The AssociationFilter returns a
2920 set of identifiers for Association instances whose attribute values evaluate to True for the
2921 Clause predicate.

2922  43. For every ClassificationFilter XML element, the leftArgument attribute of any containing
2923 SimpleClause shall identify a public attribute of the Classification UM L class defined in
2924 [ebRIM]. If not, raise exception: classification attribute error. The ClassificationFilter

2925 returns a set of identifiers for Classification instances whose attribute values evaluate to True
2926 for the Clause predicate.

2927  44. For every ClassificationSchemeFilter XML element, the leftArgument attribute of any

2928 containing SimpleClause shall identify a public attribute of the ClassificationNode UML
2929 class defined in [ebRIM]. If not, raise exception: classification scheme attribute error. The
2930 ClassificationSchemeFilter returns a set of identifiers for ClassificationScheme instances
2931 whose attribute values evaluate to True for the Clause predicate.

2932  45. For every ExternaLinkFilter XML element, the leftArgument attribute of any containing
2933 SimpleClause shall idertify a public attribute of the ExternalLink UML class defined in
2934 [ebRIM]. If not, raise exception: external link attribute error. The External LinkFilter returns
2935 a set of identifiers for ExternalLink instances whose attribute values evaluate to True for the
2936 Clause predicate.

2937  46. For every ExternaldentiferFilter XML element, the leftArgument attribute of any containing
2938 SimpleClause shall identify a public attribute of the Externalldentifier UML class defined in
2939 [ebRIM]. If not, raise exception: external identifier attribute error. The

2940 ExternalldentifierFilter returns a set of identifiers for Externalldentifier instances whose
2941 attribute values evaluate to True for the Clause predicate.

2942  47. For every SotFilter XML element, the leftArgument attribute of any containing

2943 SimpleClause shall identify a public attribute of the Slot UML class defined in [ebRIM]. If
2944 not, raise exception: dlot attribute error. The SlotFilter returns a set of identifiers for Slot
2945 instances whose attribute values evaluate to True for the Clause predicate.

2946  48. For every AuditableEventFilter XML element, the leftArgument attribute of any containing
2947 SimpleClause shall identify a public attribute of the AuditableEvent UML class defined in
2948 [ebRIM]. If not, raise exception: auditable event attribute error. The AuditableEventFilter
2949 returns a set of identifiers for AuditableEvent instances whose attribute values evaluate to
2950 True for the Clause predicate.

2951  49. For every UserFilter XML element, the leftArgument attribute of any containing

2952 SimpleClause shall identify a public attribute of the User UML class defined in [ebRIM]. If
2953 not, raise exception: user attribute error. The UserFilter returns a set of identifiers for User
2954 instances whose attribute values evaluate to True for the Clause predicate.
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50.

51.

52.

53.

54.

55.

56.

SlotVaueisaderived, nonpersistent class based on the Slot class from ebRIM. There is one
SlotVaue instance for each “vaue” in the “values’ list of a Sot instance. The visible
attribute of SlotVaue is‘value’. It is a character string. The dynamic instances of SlotValue
are derived from the “values’ attribute defined in ebRIM for a Slot instance. For every
SlotVaueFilter XML element, the leftArgument attribute of any containing SimpleClause
shall identify the “value” attribute of the SlotValue class just defined. If not, raise exception:
slot element attribute error. The SlotValueFilter returns a set of Slot instances whose “value’
attribute evaluates to True for the Clause predicate.

For every Postal AddressFilter XML element, the leftArgument attribute of any containing
SimpleClause shall identify a public attribute of the PostalAddress UML class defined in
[ebRIM]. If not, raise exception: postal address attribute error. The Postal AddressFilter
returns a set of identifiers for Postal Address instances whose attribute values evaluate to True
for the Clause predicate.

For every TelephoneNumberFilter XML element, the |eftArgument attribute of any
containing SimpleClause shall identify a public attribute of the TelephoneNumber UML
class defined in [ebRIM]. If not, raise exception: telephone number identity attribute error.
The TelephoneNumberFilter returns a set of identifiers for TelephoneNumber instances
whose attribute values evaluate to True for the Clause predicate.

For every ServiceFilter XML element, the leftArgument attribute of any containing
SimpleClause shall identify a public attribute of the Service UML class defined in [ebRIM].
If not, raise exception: service attribute error. The ServiceFilter returns a set of identifiers for
Service instances whose attribute values evaluate to True for the Clause predicate.

For every ServiceBindingFilter XML element, the leftArgument attribute of any containing
SimpleClause shall identify a public attribute of the ServiceBinding UML class defined in
[ebRIM]. If not, raise exception: service binding attribute error. The ServiceBindingFilter
returns a set of identifiers for ServiceBinding instances whose attribute values evaluate to
True for the Clause predicate.

For every SpecificationLinkFilter XML element, the leftArgument attribute of any
containing SimpleClause shall identify a public attribute of the SpecificationLink UML class
defined in [ebRIM]. If not, raise exception: specification link attribute error. The
SpecificationLinkFilter returns a set of identifiers for SpecificationLink instances whose
attribute values evaluate to True for the Clause predicate.

For every LocalizedStringFilter XML element, the leftArgument attribute of any containing
SimpleClause shall identify a public attribute of the LocalizedString UML class defined in
[ebRIM]. If not, raise exception: localized string attribute error. The LocalizedStringFilter
returns a set of identifiers for LocalizedString instances whose attribute values evaluate to
True for the Clause predicate.

8.2.12 XML Clause Constraint Representation

Purpose

The simple XML FilterQuery utilizesaformal XML structure based on Predicate Clauses.
Predicate Clauses are utilized to formally define the constraint mechanism, and are referred to
simply as Clauses in this specification.
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Conceptual Diagram
The following is a conceptual diagram outlining the Clause structure.

[' leftArgument %

strimg

* BooleanClause O [' bnoleanpredicate%
boolean

[' logicalPredicate 4
#IMMTOKEN

* IntClause g
* SimpleClause || inkeger

+ RationalClause E + Floatclause#
Flaak

+ DateTimeEIause

dakeTime

+
Clause + stringClause [i‘ stringpredicateq
string FIMNMTOKER

* mnnectiuepredicateq
*IMMTOKEN

* CompoundClause | e * Clause

= =Figure25: The Clause Structure

Semantic Rules

Predicates and Arguments are combined into a "LeftArgument - Predicate - RightArgument”
format to form aClause. There are two types of Clauses: SmpleClauses and CompoundClauses.
SimpleClauses

A SimpleClause always defines the leftArgument as a text string, sometimes referred to as the
Subject of the Clause. SimpleClause itself is incomplete (abstract) and must be extended.
SimpleClause is extended to support BooleanClause, StringClause, and Rational Clause
(abstract).

BooleanClause implicitly defines the predicate as ‘equal to’, with the right argument as a
boolean. StringClause defines the predicate as an enumerated attribute of appropriate string-
compare operations and aright argument as the element’ s text data. Rational number support is
provided through a common Rational Clause providing an enumeration of appropriate rational
number compare operations, which is further extended to IntClause and FloatClause, each with
appropriate signatures for the right argument.

CompoundClauses

A CompoundClause contains two or more Clauses (Simple or Compound) and a connective
predicate. This provides for arbitrarily complex Clauses to be formed.

Definition

<el ement nanme = "Cl ause">
<annot at i on>
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Examples

Simple BooleanClause: "Smoker" = True

Simple StringClause: "Smoker" contains "mo"

Simple IntClause: "Age" >=7
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Simple FloatClause: "Size" = 4.3

Compound with two Simples (("Smoker" = False)AND("Age" =< 45))

Coumpound with one Simple and one Compound

( ("Smoker" = False)And(("Age" =< 45)Or("American"=True)) )
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</ Cl ause>
</ ConmpoundCl ause>
<Cl ause>

8.3 SQL Query Support

The Registry may optionally support an SQL based query capability that is designed for Registry
clients that demand more advanced query capability. The optional SQL Query element in the
AdhocQueryRequest allows a client to submit complex SQL queries using a declarative query
language.

The syntax for the SQLQuery of the Registry is defined by a stylized use of a proper subset of
the “SELECT” statement of Entry level SQL defined by 1SO/IEC 9075:1992, Database
Language SQL [SQL], extended to include<sgl i nvoked routi nes> (aso kmwn as
stored procedures) as specified in ISO/IEC 9075-4 [ SQL-PSM] and pre-defined routines defined
in template form in Appendix 0. The syntax of the Registry query language is defined by the
BNF grammar in 0.

Note that the use of a subset of SQL syntax for SQLQuery does not imply a requirement to use
relational databases in a Registry implementation.

8.3.1 SQL Query Syntax Binding To [ebRIM]

SQL Queries are defined based upon the query syntax in in Appendix 0 and afixed relational
schema defined in Appendix 0. The relational schemais an algorithmic binding to [ebRIM] as
described in the following sections.

8.3.1.1 Class Binding

A subset of the class names defined in [ebRIM] map to table names that may be queried by an
SQL query. Appendix O defines the names of the ebRIM classes that may be queried by an SQL
query.

The algorithm used to define the binding of [ebRIM] classes to table definitionsin Appendix O is

as follows:

?? Classes that have concrete instances are mapped to relational tables. In addition entity classes
(e.g. PostalAddress and TelephoneNumber) are al'so mapped to relational tables.

?? The intermediate classes in the inheritance hierarchy, namely RegistryObject and
RegistryEntry, map to relational views.

?? The names of relational tables and views are the same as the corresponding [ebRIM] class
name. However, the name binding is case insensitive.

?? Each [ebRIM] class that maps to a table in Appendix 0 includes column definitions in
Appendix 0 where the column definitions are based on a subset of attributes defined for that
classin [ebRIM]. The attributes that map to columns include the inherited attributes for the
[ebRIM] class. Comments in Appendix O indicate which ancestor class contributed which
column definitions.

An SQLQuery against atable not defined in Appendix O may raise an error condition:

InvalidQueryException.

The following sections describe the algorithm for mapping attributes of [ebRIM] to SQLcolumn

definitions.
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8.3.1.2 Primitive Attributes Binding

Attributes defined by [ebRIM] that are of primitive types (e.g. String) may be used in the same
way as column names in SQL. Again the exact attribute names are defined in the class
definitions in [ebRIM]. Note that while names are in mixed case, SQL-92 is case insensitive. It is
therefore valid for a query to contain attribute names that do not exactly match the case defined
in [ebRIM].

8.3.1.3 Reference Attribute Binding

A few of the [ebRIM] class attributes are of type UUID and are a reference to an instance of a
class defined by [ebRIM]. For example, the accessControl Policy attribute of the RegistryObject
class returns a reference to an instance of an AccessControl Policy object.

In such cases the reference mapsto the i d attribute for the referenced object. The name of the
resulting column is the same as the attribute name in [ebRIM] as defined by 8.3.1.2. The data
type for the column is VARCHAR(64) as defined in Appendix O.

When a reference attribute value holds a null reference, it maps to a null value in the SQL
binding and may be tested with the <null specification> (“IS[NOT] NULL” syntax) as defined
by [SQL].

Reference attribute binding is a special case of a primitive attribute mapping.

8.3.1.4 Complex Attribute Binding

A few of the [ebRIM] interfaces define attributes that are not primitive types. Instead they are of
a complex type as defined by an entity classin [ebRIM]. Examples include attributes of type
TelephoneNumber, Contact, PersonName etc. in class Organization and class User.

The SQL query schema does not map complex attributes as columns in the table for the class for
which the attribute is defined. Instead the complex attributes are mapped to columns in the table
for the domain class that represents the data type for the complex attribute (e.g.
TelephoneNumber). A column links the row in the domain table to the row in the parent table
(e.g. Usar). An additional column named ‘attribute_name’ identifies the attribute name in the
parent class, in case there are multiple attributes with the same complex attribute type.

This mapping also easily alows for attributes that are a collection of a complex type. For
example, a User may have a collection of TelephoneNumbers. This maps to multiple rows in the
TelephoneNumber table (one for each TelephoneNumber) where each row has a parent identifier
and an attribute_name.

8.3.1.5 Binding of Methods Returning Collections

Several of the [ebRIM] classes define methods in addition to attributes, where these methods
return collections of references to instances of classes defined by [ebRIM]. For example, the
getPackages method of the ManagedObject class returns a Collection of references to instances
of Packages that the object is a member of.

Such collection returning methods in [ebRIM] classes have been mapped to stored procedures in
Appendix O such that these stored procedures return a collection of i d attribute values. The
returned value of these stored procedures can be treated as the result of atable sub-query in SQL.
These stored procedures may be used as the right-hand-side of an SQL IN clause to test for
membership of an object in such collections of references.

8.3.2 Semantic Constraints On Query Syntax
This section defines simplifying constraints on the query syntax that cannot be expressed in the
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BNF for the query syntax. These constraints must be applied in the semantic analysis of the
query.
1. Class names and attribute names must be processed in a case insensitive manner.

2. The syntax used for stored procedure invocation must be consistent with the syntax of an
SQL procedure invocation as specified by 1SO/IEC 9075-4 [SQL/PSM].

3. For this version of the specification, the SQL select column list consists of exactly one
column, and must always bet.i d, wheret isatable reference in the FROM clause.

4. Join operations must be restricted to smple joins involving only those columns that have an
index defined within the normative SQL schema. This constraint is to prevent queries that
may be computationally too expensive.

8.3.3 SQL Query Results

The result of an SQL query resolves to a collection of objects within the registry. It never
resolves to partial attributes. The objects related to the result set may be returned as an
ObjectRef, RegistryObject, RegistryEntry or leaf ebRIM class depending upon the
responseOption parameter specified by the client on the AdHocQueryRequest. The entire result
set isreturned as a SQL QueryResult as defined by the AdHocQueryResponse in Section Error!
Refer ence sour ce not found..

8.3.4 Simple Metadata Based Queries

The simplest form of an SQL query is based upon metadata attributes specified for a single class
within [ebRIM]. This section gives some examples of simple metadata based queries.
For example, to get the collection of ExtrinsicObjects whose name contains the word ‘ Acme’
and that have a version greater than 1.3, the following query must be submitted:
SELECT eo.id from ExtrinsicCoject eo, Name nm where nmval ue LIKE ' %cme% AND

eo.id = nmparent AND

eo. mgj or Version >= 1 AND
(eo. mgjorVersion >= 2 OR eo. mnorVersion > 3);

Note that the query syntax allows for conjugation of simpler predicates into more complex
queries as shown in the smple example above.

8.3.5 RegistryObject Queries

The schema for the SQL query defines a special view called RegistryObject that allows doing a
polymorphic query against al RegistryObject instances regardless of their actual concrete type or
table name.

The following example is the similar to that in Section 8.3.4 except that it is applied against all
RegistryObject instances rather than just ExtrinsicObject instances. The result set will include id
for al qualifying RegistryObject instances whose name contains the word ‘Acme’ and whose
description contains the word “bicycle’.

SELECT ro.id from Regi stryQoject ro, Nane nm Description d where nmval ue LIKE ' %cne% AND

d.val ue LIKE ' %icycl e% AND
ro.id = nmparent AND ro.id = d. parent;
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8.3.6 RegistryEntry Queries

The schemafor the SQL query defines a special view called RegistryEntry that allows doing a
polymorphic query against all RegistryEntry instances regardless of their actua concrete type or
table name.

The following example is the same as Section 8.3.4 except that it is applied against all
RegistryEntry instances rather than just ExtrinsicObject instances. The result set will include id
for all qualifying RegistryEntry instances whose name contains the word ‘Acme’ and that have a
version greater than 1.3.
SELECT re.id from RegistryEntry re, Name nmwhere nmval ue LI KE ' %cnme% AND

re.id = nmparent AND

re. maj orVersion >= 1 AND
(re.majorVersion >= 2 OR re. mnorVersion > 3);

8.3.7 Classification Queries
This section describes the various classification related queries that must be supported.

8.3.7.1 Identifying ClassificationNodes

Like al objectsin [ebRIM], ClassificationNodes are identified by their ID. However, they may
also be identified as a path attribute that specifies an XPATH expression [ XPT] from aroot
classification node to the specified classification node in the XML document that would
represent the ClassificationNode tree including the said ClassificationNode.

8.3.7.2 Getting ClassificationSchemes
To get the collection of ClassificationSchemes the following query predicate must be supported:

SELECT schene.id FROM d assi fi cati onSchene scheng;

The above query returns all ClassificationSchemes. Note that the above query may also specify
additional predicates (e.g. name, description etc.) if desired.

8.3.7.3 Getting Children of Specified ClassificationNode

To get the children of a ClassificationNode given the ID of that node the following style of query
must be supported:

SELECT cn.id FROM d assi fi cati onNode cn WHERE parent = <i d>

The above query returns all ClassificationNodes that have the node specified by <id> as their
parent attribute.

8.3.7.4 Getting Objects Classified By a ClassificationNode

To get the collection of ExtrinsicObjects classified by specified ClassificationNodes the
following style of query must be supported:

SELECT id FROM Extri nsi cQbj ect
VWHERE
id IN (SELECT cl assifiedObj ect FROM d assification
WHERE
classificationNode | N (SELECT id FROM O assi fi cati onNode
WHERE path = ‘/ Geography/ Asi a/ Japan’))
AND
idIN (SELECT cl assifiedOject FROM d assification
VWHERE
cl assificati onNode I N (SELECT id FROM d assi fi cati onNode
WHERE path = ‘/Industry/Autonotive'))
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The above query gets the collection of ExtrinsicObjects that are classified by the Automotive
Industry and the Japan Geography. Note that according to the semantics defined for
GetClassifiedObjectsRequest, the query will aso contain any objects that are classified by
descendents of the specified ClassificationNodes.

8.3.7.5 Getting Classifications That Classify an Object

To get the collection of Classifications that classify a specified Object the following style of
query must be supported:

SELECT id FROM O assification c
WHERE c. cl assi fi edChj ect = <id>;

8.3.8 Association Queries
This section describes the various Association related queries that must be supported.

8.3.8.1 Getting All Association With Specified Object As Its Source

To get the collection of Associations that have the specified Object as its source, the following
query must be supported:

SELECT id FROM Associ ati on WHERE sour ce(hj ect = <i d>

8.3.8.2 Getting All Association With Specified Object As Its Target

To get the collection of Associations that have the specified Object as its target, the following
query must be supported:

SELECT id FROM Associ ati on WHERE t ar get Gbj ect = <i d>

8.3.8.3 Getting Associated Objects Based On Association Attributes

To get the collection of Associations that have specified Association attributes, the following
gueries must be supported:

Select Associations that have the specified name.

SELECT id FROM Associ ati on WHERE nane = <nane>

Select Associations that have the specified association type, where association type is a string
containing the corresponding field name described in [ebRIM].

SELECT i d FROM Associ ati on WHERE
associ ati onType = <associ ati onType>

8.3.8.4 Complex Association Queries

The various forms of Association queries may be combined into complex predicates. The
following query selects Associations that have a specific sourceObject, targetObject and
associationType:
SELECT i d FROM Associ ati on WHERE

sour ce(hj ect = <i d1> AND

target Chj ect = <id2> AND
associ ati onType = <associ ati onType>;
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8.3.9 Package Queries
To find all Packages that a specified RegistryObject belongs to, the following query is specified:

SELECT id FROM Package WHERE id | N (Regi stryOhj ect packages(<i d>));

8.3.9.1 Complex Package Queries

The following query gets all Packages that a specified object belongs to, that are not deprecated
and where name contains "RosettaNet."

SELECT id FROM Package p, Nane n WHERE
p.id IN (Regi stryQhj ect _packages(<id>)) AND
nmval ue LIKE ' %RosettaNet% AND nm parent = p.id AND
p. status <> ‘' Deprecat ed’

8.3.10 ExternalLink Queries

To find al ExternalLinks that a specified ExtrinsicObject is linked to, the following query is
specified:

SELECT id From External Link WHERE id I N (Regi stryCbj ect _external Li nks(<i d>))

To find all ExtrinsicObjects that are linked by a specified ExternalLink, the following query is
specified:

SELECT id From ExtrinsicQoject WHERE id I N (Regi stryQoj ect | i nkedQbj ect s(<i d>))

8.3.10.1 Complex ExternalLink Queries

The following query gets all ExternalLinks that a specified ExtrinsicObject belongs to, that
contain the word ‘legal’ in their description and have a URL for their externa URI.
SELECT i d FROM Ext er nal Li nk WHERE

id IN (Regi stryQhj ect _external Li nks(<id>)) AND

description LIKE ‘ % egal % AND
external URI LIKE ‘Y%ttp://%

8.3.11 Audit Trail Queries

To get the complete collection of AuditableEvent objects for a specified ManagedObject, the
following query is specified:

SELECT i d FROM Audi t abl eEvent WHERE regi stryQhj ect = <id>

8.4 Content Retrieval

A client retrieves content via the Registry by sending the GetContentRequest to the
QueryManager. The GetContentRequest specifies alist of Object references for Objects that
need to be retrieved. The QueryManager returns the specified content by sending a
GetContentResponse message to the RegistryClient interface of the client. If there are no errors
encountered, the GetContentResponse message includes the specified content as additional
payloads within the message. In addition to the GetContentResponse payload, there is one
additional payload for each content that was requested. If there are errors encountered, the
RegistryResponse payload includes an error and there are no additional content specific
payloads.
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8.4.1 Identification Of Content Payloads

Since the GetContentResponse message may include severa repository items as additional
payloads, it is necessary to have away to identify each payload in the message. To facilitate this
identification, the Registry must do the following:

?? UsetheID of the ExtrinsicObject, as the value of the Content-1D header field for the mime-
part that contains the corresponding repository item for the ExtrinsicObject

?? In case of [ebM §] transport, use the ID for each RegistryObject instance that describes the
repository item in the Reference element for that object in the Manifest element of the
ebXMLHeader.

8.4.2 GetContentResponse Message Structure

The following message fragment illustrates the structure of the GetContentResponse Message
that is returning a Collection of CPPs as aresult of a GetContentRequest that specified the IDs
for the requested objects.

Content-type: multipart/rel ated; boundary="Boundary"; type="text/xm";

- - Boundar Y
Content- | D. <CGet Cont ent Request @xanpl e. con>
Cont ent- Type: text/xmn

<?xm version="1.0" encodi ng="UTF-8"?>
<SOAP- ENV: Envel ope xm ns: SOAP- ENV=' htt p: // schemas. xnml soap. or g/ soap/ envel ope/'

xm ns: eb= ' http://ww. oasi s- open. or g/ commi t t ees/ ebxn - nsg/ schena/ dr af t - nsg- header- 03. xsd' >
<SQAP- ENV: Header >

...ebMs header goes here if using ebMs

</ SQAP- ENV: Header >
<SQAP- ENV: Body>

...ebMs nani fest gooes here if using ebMs
<?xm version="1.0" encodi ng="UTF-8"?>

<Cet Cont ent Request >
<bj ect Ref Li st >
<pj ect Ref id="d8163df b-f45a-4798-81d9-88aca29c24ff” ..[>
<bj ect Ref id="212c3a78-1368-45d7-acc9-a935197eledf” ..[>
</ vj ect Ref Li st >
</ Get Cont ent Request >

</ SQAP- ENV: Body>
</ SOAP- ENV: Envel ope>

- -Boundary
Cont ent- | D. d8163df b- f 45a- 4798- 81d9- 88aca29c24f f
Cont ent- Type: text/xm

<?xm version="1.0" encodi ng="UTF-8"?>
<CPP>

- -Boundary- -
Content- | D: 212c3a78- 1368-45d7-acc9-a935197ele4f
Cont ent- Type: text/xm

- - Boundar y—
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9 Registry Security

This chapter describes the security features of the ebXML Registry. It is assumed that the reader
is familiar with the security related classes in the Registry information model as described in
[eébRIM]. Security glossary terms can be referenced from RFC 2828.

9.1 Security Concerns

The security risks broadly stem from the following concerns. After a description of these
concerns and potential solutions, we identify the concerns that we address in the current
specificiation

1. Isthe content of the registry (data) trustworthy?

a)

b)

f)

9

How to make sure “what isin the registry” is “what is put there” by a submitting
organization? This concern can be addressed by ensuring that the publisher is
authenticated using digital signature (Source Integrity), message is not corrupted during
transfer using digital signature (Data Integrity), and the data is not altered by
unauthorized subjects based on access control policy (Authorization)

How to protect data while in transmission?

Communication integrity has two ingredients — Data Integrity (addressed in 1) and Data
Confidentiality that can be addressed by encrypting the data in transmission. How to
protect against areplay attack.

Is the content up to date? The versioning as well as any time stamp processing, when
done securely will ensure the “latest content” is guaranteed to be the latest content.

How to ensure only bona fide responsible organizations add contents to registry?
Ensuring Source Integrity (asin 1a).

How to ensure that bona fide publishers add contents to registry only at authorized
locations? (System Integrity)

What if the publishers deny modifying certain content after-the-fact? To prevent this
(Nonrepudiation) audit trails may be kept which contain signed message digests.

What if the reader denies getting information from the registry?

2. How to provide selective access to registry content? The broad answer is, by using an access
control policy — appliesto (a), (b), and (c) directly.

a)
b)

c)

€)

How does a submitting organization restrict access to the content to only specific registry
readers?

How can a submitting organization alow some “partners’ (fellow publishers) to modify
content?

How to provide selective access to partners the registry usage data?

How to prevent accidental access to data by unauthorized users? Especially with hw/sw
failure of the registry security components? The solution to this problem is by having

System Integrity.
Data confidentiality of RegistryObject
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3. How do we make “who can see what” policy itself visible to limited parties, even excluding
the administrator (self & confidential maintenance of access control policy). By making sure
there is an access control policy for accessing the policies themselves.

4. How to transfer credentials? The broad solution is to use credentials assertion (such as being
worked onin SAML). Currently, Registry does not support the notion of a session.
Therefore, some of these concerns are not releveant to the current specification.

a) How to transfer credentials (authorization/authentication) to federated registries?
b) How do aggregators get credentials (authorization/authentication) transferred to them?
c) How to store credentials through a session?

In the current version of this specification, we address data integrity, source integrity (item 1,

above). We have used a minimalist approachto address the access control concern as in item 2,

above. Essentidly, “any known entity (Submitting Organization) can publish content and anyone

can view published content.” The Registry information model has been designed to allow more
sophisticated security policies in future versiors of this specification.

9.2 Integrity of Registry Content

It is assumed that most business registries do not have the resources to validate the veracity of
the content submitted to them. Registry must ensure that any tampering to the content submitted
by a Submitting Organization (SO) can be detected. Furthermore, Registry must make it possible
to identify the Responsible Organization for any Registry content unambiguously. Note that in
the discussions in this section we assume a Submitting Organization to be aso the Responsible
Organization. Future version of this specification may provide more examples and scenarios
where a Submitting Organization and Responsible Organization are different.

9.2.1 Message Payload Signature

Integrity of Registry content requires that al submitted content be signed by the Registry client.
The signature on the submitted content ensures that:

?? Any tampering of the content can be detected.

?? The content’ s veracity can be ascertained by its association with a specific Submitting
Organization

This section specifies the requirements for generation, packaging and validation of payload

signatures. A payload signature is packaged with the payload. Therefore the requirements apply

regardless of whether the Registry Client and the Registration Authority communicate over

vanilla SOAP with Attachments or ebXML Messaging Service [ebMS]. Currently, ebXML

Messaging Service does not specify the generation, validation and packaging of payload

signatures. The specification of payload signatures is left upto the application (such as Registry).

So the requirements on the payload signatures augment the [ebM S] specification.

Use Case

This Use Case illustrates the use of header and payload signatures (we discuss header signatures

later).

?? RC1 (Registry Client 1) signs the content (generating a payload signature) and publishes the
content along with the payload signature to the Registry.

?? RC2 (Registry Client 2) retrieves RC1's content from the Registry.

?? RC2 wants to verify that RC1 published the content. In order to do this, when RC2 retrieves
the content, the response from the Registration Authority to RC2 contains the following:
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?7? Payload containing the content that has been published by RC1.

?? RC1 s payload signature (represented by a ds:Signature element) over RC1’s published
content.

?7? The public key for vaidating RC1's payload signature in ds:Signature element ( using the
Keylnfo element as specified in [XMLDSIG] ) so RC2 can obtain the public key for
signature (e.g. retrieve a certificate containing the public key for RC1).

?? A ds:Signature element containing the header signature. Note that the Registration
Authority (not RC1) generates this signature.

9.2.2 Payload Signature Requirements

9.2.2.1 Payload Signature Packaging Requirements

A payload signature is represented by a ds.Signature element. The payload signature must be

packaged with the payload as specified here. This packaging assumes that the payload is always

signed.

?? The payload and its signature must be enclosed in a MIME multipart message with a
Content-Type of multipart/Related.

?? Thefirst body part must contain the XML signature as specified in the section * Payload
Signature Generation Requirements’.

?? The second through " body part must be the content.

The packaging of the payload signature with one payload is as follows:

M ME Version: 1.0
Cont ent- Type: nmul tipart/ Rel at ed; boundary=M ME _boundary; type=text/xni;
Cont ent- Descri ption: ebXM. Message

- M ME_boundary
Cont ent- Type: text/xm; charset=UTF-8
Cont ent- Tr ansf er - Encodi ng: 8bi t
Content-I1D: http://claimng-it.conlclai 61400a. xmi

<?xm version='"1.0" encodi ng="utf-8"?>
<SQAP- ENV: Envel ope>

SQAP- ENV: Envel ope>

--M ME_boundary
Cont ent- Type: nul tipart/Rel ated; boundary=PAYLQAD boundary

- - PAYLQAD boundary
Cont ent- Type: text/xm; charset=UTF-8
Cont ent - Tr ansf er - Encodi ng: 8bi t
Content- |1 D. payl oadl
<ds: Si gnat ur e>

. Payl oad signature
</ds: Signature>
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- - PAYLQAD boundary

Cont ent- Type: text/xm; charset=UTF-8
Content-Transfer-Encoding: 8bit

Content- | D: payl oad2

<Subm t Cbj ect sRequest >..</ Subm t Cbj ect sRequest >
--M ME_boundary

9.2.2.2 Payload Signature Generation Requirements

The ds:Signature element [XMLDSIG] for a payload signature must be generated as specified in
this section. Note: the “ds’ name space reference is to http://www.w3.0rg/2000/09/xmldsi g#

?? ds:SignatureM ethod must be present. The signing algorithm can be valid any algorithm
permitted in [XMLDSIG], though we suggest using the following Algorithm attribute while
signing for interoperability: http://www.w3.0rg/2000/09/xmldsig/#dsashal

?? The ds:SignatureM ethod element must contain a ds:CanonicalizationMethod element. . The
following Canonicalization agorithm (specified in [XMLDSIG]) must be supported:

http://www.w3.0rg/TR/2001/REC-xml -c14n-2001315

?? One ds.Reference element to reference each of the payloads that needs to be signed must be
created. The ds:Reference element:

?7? Must identify the payload to be signed using the URI attribute of the ds:Reference
element.

?? Must contain the <ds:DigestMethod> as specified in [XMLDSIG]. A client must be
support the following digest algorithm:
http://www.w3.0rg/2000/09/xmldsig/#shal
?? Must contain a <ds.DigestVaue> which is computed as specified in [XMLDSIG].
The ds.SignedVaue must be generated as specified in [XMLDSIG].
The ds:Keylnfo element may be present. However, when present, the ds:KeylInfo field is subject

to the requirements stated in the “KeyDistrbution and KeyInfo element” section of this
document.

9.2.2.3 Message Payload Signature Validation
The ds:Signature element must be validated by the Registry as specified in the [XMLDSIG].

9.2.2.4 Payload Signature Example
The following example shows the format of the payload signature:

<ds: Si gnature xm ns: ds="htt p://ww:. w3. or g/ 2000/ 09/ xm dsi g#" >
<ds: Si gnedI nf 0>

<Si gnat ur eMet hod Al gori t hne" http://www.w3.0rg/TR/2000/09/xmldsig#dsa-shal” / >
<ds: Canoni cal i zat i onMet hod>
Al gorithne"http://wwm w3. or g/ TR/ 2001/ REG xm -c14n-20010315" >
</ ds: Canoni cal i zati onMet hod>
<ds: Ref erence URI =#Payl| oad1>
<ds: D gest Met hod Di gest Al gorithm="htt p: //www w8. or g/ TR/ 2000/ 09/ xm dsi g#shal" >
<ds: Di gest Val ue> ... </ds: D gest Val ue>

</ ds: Ref er ence>
</ ds: Si gnedl nf o>
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<ds: SignatureValue> ... </ds:SignatureVal ue>
</ ds: Si gnat ur e>

9.3 Authentication

The Registry must be able to authenticate the identity of the Principal associated with client
requests. Authentication is required to identify the ownership of content as well as to identify
what “privileges’ a Principa can be assigned with respect to the specific objects in the Registry.
The Registry must perform authentication on a per message basis. From a security point of view,
all messages are independent and there is no concept of a session encompassing multiple
messages or conversations. Session support may be added as an optimization feature in future
versions of this specification.

It isimportant to note that the message header signature can only guarantee data integrity and it
may be used for Authentication knowing that it is vulnerable to replay types of attacks. True
support for authentication requires timestamps or nonce (nonrecurring series of numbers to
identify each message) that are signed.

9.3.1 Message Header Signature

Message headers are signed to provide data integrity while the message is in transit. Note that the
signature within the message header aso signs the digests of the payloads.

Header Signature Requirements

Message headers can be signed and are referred to as a header signature. This section specifies
the requirements for generation, packaging and validation of a header signature. These
requirements apply when the Registry Client and Registration Authority communicate using
vanilla SOAP with Attachments. When ebXML MSis used for communication, then the [ebM S]
specifies the generation, packaging and validation of XML signatures in the SOAP header.
Therefore the header signature requirements do not apply when the ebXML MSis used for
communication. However, payload signature generation requirements (specified elsewhere in
this document) do apply whether vanilla SOAP with Attachments or eobXML MSis used for
communication.

9.3.1.1 Packaging Requirements

A header signature is represented by a ds:Signature element. The ds:Signature element generated
must be packaged in a<SOAP-ENV:Header> element. The packaging of the ds:Signature
element in the SOAP header field is shown below.

M ME Version: 1.0
Content- Type: Miltipart/Rel ated; boundary=M ME _boundary; type=text/xni;
Cont ent- Descri ption: ebXM. Message

- M ME_boundary
Cont ent- Type: text/xm; charset=UTF-8
Cont ent - Tr ansf er - Encodi ng: 8bi t
Content-ID: http://claimng-it.conlclai m61400a. xni

<?xm version='"1.0" encodi ng="utf-8"?>
<SOAP- ENV: Envel ope
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xm ns: SOAP- ENV="htt p: / / schenmas. xm soap. or g/ soap/ envel ope/ ">
<SQOAP- ENV: Header >
<ds: Si gnature xm ns: ds="htt p://wwmv wW3. or g/ 2000/ 09/ xm dsi g#" >
..signature over soap envel ope
</ ds: Si gnat ur e>
</ SCAP- ENV: Header >
<SQAP- ENV: Body>

</ SOAP- ENV:  Body>
</ SCAP- ENV: Envel ope>

9.3.1.2 Header Sighature Generation Requirements

The ds:Signature element [XMLDSIG] for a header signature must be generated as specified in
this section. A ds:Signature element contains:

?? ds:Signedinfo

?? ds:SignatureVaue

?? dsKeylnfo

The ds:Signedinfo element must be generated as follows:

1. ds:SignatureMethod must be present. [XMLDSIG] requires that the algorithm be identified
using the Algorithm attribute. While [ XMLDSIG] allows more than one Algorithm Attribute,
aclient must be capable of signing using only the following Algorithm attribute:
http://www.w3.0rg/2000/09/xmidsig/#dsashal This agorithm is being chosen because all
XMLDSIG implementations conforming to the [XMLDSIG] specification support it.

2. The ds:SignatureMethod elment must contain a ds:CanonicalizationMethod element. The
following Canonicalization algorithm (specified in [XMLDSIG] ) must be supported:

http://www.w3.0rg/TR/2001/REC-xml-c14n-20010315

3. A dsReference element to include the <SOAP-ENV :Envelope> in the signature calculation.
This signs the entire ds:Reference element and:
?7? Must include the following ds. Transform:
http://www.w3.0rg/2000/09/xml dsi g#tenvel oped-signature
This ensures that the signature (which is embedded in the <SOAP-ENV :Header>
element) is not included in the signature calculation.
?? Mugt identify the <SOAP-ENV:Envelope> element using the URI attribute of the
ds:Reference element (The URI attribute is optional in the [XMLDSIG] specification.) .
The URI attribute must be “”.
?7? Must contain the <ds:DigestMethod> as specified in [XMLDSIG]. A client must support
the following digest algorithm:  http://www.w3.0rg/2000/09/xml dsi g/#shal
?7? Must contain a <ds.DigestVaue>, which is computed as specified in [XMLDSIG].
The ds:SignedVaue must be generated as specified in [XMLDSIG].

The ds:KeyInfo element may be present But when present, it is subject to the requirements stated
in the “KeyDistrbution and Keylnfo element” section of this document.

9.3.1.3 Header Signature Validation Requirements

The ds.Signature element for the ebXML message header must be validated by the recipient as
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specified by [XMLDSIG].

9.3.1.4 Header Signature Example
The following example shows the format of a header signature:

<ds: Si gnature xni ns: ds="http://wwmv. w3. or g/ 2000/ 09/ xni dsi g#" >
<ds: Si gnedI nf 0>
<Si gnat ur eMet hod Al gori t hnehttp://www.w3.0rg/TR/2000/09/xmldsi g#dsashal/ >
<ds: Canoni cal i zat i onMet hod>
Al gorithm="http://wwwv w3. or g/ TR/ 2000/ CR xm - c14n-2001026" >
</ ds: Canoni cal i zat i onMet hod>

<ds: Reference URI= “">
<ds: Tr ansf or n»
http://www.w3.0rg/2000/09/xml dsi g#envel oped-signature
</ ds: Tr ansf or n»
<ds: D gest Met hod Di gest Al gorithm=". /xm dsi g#shal">
<ds: Di gest Val ue> ... </ds: D gest Val ue>

</ ds: Ref erence>
</ ds: Si gnedlI nf 0>
<ds: Si gnatureValue> ... </ds:SignatureVal ue>
</ ds: Si gnat ur e>

9.4 Key Distribution and KeyInfo Element

To validate a signature, the recipient of the signature needs the public key corresponding to the

signer’ s public key. The participants may use the Keylnfo field of ds:Signature, or distribute the

public keys out-of-band. In this section we consider the case when the public key is sent in the

Keylnfo field. The following use cases need to be handled:

?? Registration Authority needs the public key of the Registry Client to validate the signature

?? Registry Client needs the public key of the Registration Authority to validate the Registry’s
signature.

?? Registry Client RC1 needs the public key of Registry Client (RC2) to validate the content
signed by RCL1.

[XMLDSIG] provides adsKeylnfo element that can be used to pass the recipient information
for retrieving the public key. dsKeylnfoisan optional element as specified in [ XMLDSIG].
This field together with the procedures outlined in this section is used to securely pass the public
key to arecipient. ds:Keyinfo can be used to pass information such as keys, certificates, names
etc. The intended usage of Keylnfo field isto send the X509 Certificate, and subsequently
extract the public key from the certificate. Therefore, the Keylnfo field must contain a X509
Certificate, if the Keylnfo field is present.

The following assumptions are also made:
1. A Certificate is associated both with the Registration Authority and a Registry Client.

2. A Registry Client registers its certificate with the Registration Authority. The mechanism
used for thisis not specified here.

3. A Registry Client obtains the Registration Authority’s certificate and storesit in its own local
key store. The mechanism is not specified here.
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Couple of scenarios on the use of Keylnfo field isin Appendix F.8.

9.5 Confidentiality

9.5.1 On-the-wire Message Confidentiality

It is suggested but not required that message payloads exchanged between clients and the
Registry be encrypted during transmission. Payload encryption must abide by any restrictions set
forth in [SEC].

9.5.2 Confidentiality of Registry Content
In the current version of this specification, there are no provisions for confidentiality of Registry
content. All content submitted to the Registry may be discovered and read by any client. This

implies that the Registry and the client need to have an a priori agreement regarding encryption
algorithm, key exchange agreements, etc. This service is not addressed in this specification.

9.6 Authorization

The Registry must provide an authorization mechanism based on the information model defined
in [ebRIM]. In this version of the specification the authorization mechanism is based on a default
Access Control Policy defined for a pre-defined set of roles for Registry users. Future versions of
this specification will allow for custom Access Control Policies to be defined by the Submitting
Organization. The authorization is going to be applied on a specific set of privileges. A
privelege is the ability to carry a specific action.

9.6.1 Actions

Life Cycle Actions
submitObjects
updateObjects
addSlots
removeS|ots
approveObjects
deprecateObjects
removeObjects

Read Actions

The various getX X X() methods in QueryManagement Service.

9.7 Access Control

The Registry must create a default AccessControlPolicy object that grants the default
permissions to Registry users based upon their assigned role. The following table defines the
Permissions granted by the Registry to the various pre-defined roles for Registry users based
upon the default AccessControlPolicy. Note that we have “ ContentOwner” as arole. Thisrole
maps to the Submitting Organization in the current version of the specification.
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= =Table 11: Default Access Control Policies

Role Permissions

ContentOwner the ContentOwner.

Access to all methods on Registry Objects that are owned by

RegistryAdministrator  ||Access to all methods on all Registry Objects

RegistryGuest

Accessto all read-only (getXXX) methodson all Registry
Objects (read-only accessto all content).

The following list summarizes the default role-based AccessControl Policy:

7?

N3N NN IS

3

The Registry must implement the default AccessControlPolicy and associate it with all
Objects in the Registry

Anyone can publish content, but needs to be a Registered User

Anyone can access the content without requiring authentication

The ContentOwner has access to all methods for Registry Objects created by it.

The RegistryAdministrator has access to all methods on all Registry Objects
Unauthenticated clients can access all read-only (getXXX) methods

At the time of content submission, the Registry must assign the default ContentOwner role to
the Submitting Organization (SO) as authenticated by the credentials in the submission
message. |n the current version of this specification, the Submitting Organization will be the
DN asidentified by the certificate

Clients that browse the Registry need not use certificates. The Registry must assign the
default RegistryGuest role to such clients.
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Appendix A Web Service Architecture

Registry Service Abstract Specification

The normative definition of the Abstract Registry Service in WSDL is defined at the following
location on the web:

http://cvs.sourcef orge.net/cai-bin/viewcvs.cqi/ebxmlrr/ebxmlrr-spec/misc/services/Reqistry.wsdl

In the final V2.0 version of this document the URL will point to an OASIS web site location

Registry Service SOAP Binding

The normative definition of the concrete Registry Service binding to SOAP in WSDL is defined
at the following location on the web:

http://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/ebxmlrr/ebxmlrr -spec/misc/services/Reqistry SOA PBinding.wsdl

In the final V2.0 version of this document the URL will point to an OASIS web site location

Copyright © OASIS, 2001. All Rights Reserved



OASIS/ebXML Registry November 2001

3903 Appendix B ebXML Registry Schema Definitions

3904 RIM Schema

3905 The normative XML Schema definition that maps [ebRIM] classesto XML can be found at the
3906 following location on the web:

3907

3908 http://cvs.sourceforge.net/cai-bin/viewcvs.cgi/ebxmlrr/ebxml rr- spec/misc/schemalrim.xsd
3909

3910 Inthefinal V2.0 version of this document the URL will point to an OASIS web site location.

3911 Query Schema

3912 The normative XML Schema definition for the XML query syntax for the registry service
3913 interface can be found at the following location on the web:

3914
3915  http://cvs.sourceforge.net/cgi- bin/viewcvs.cgi/ebxmlrr/ebxmirr- spec/misc/schemal/query.xsd
3916
3917 Inthefinal V2.0 version of this document the URL will point to an OASIS web site location.

3918 Registry Services Interface Schema

3919 The normative XML Schema definition that defines the XML requests and responses supported
3920 Dby theregistry service interfaces in this document can be found at the following location on the
3921  web:

3922

3923  http://cvs.sourceforge.net/cqi-bin/viewcvs.cgi/ebxmlrr/ebxml rr- spec/misc/schemalrs.xsd
3924

3925 Inthefina V2.0 version of this document the URL will point to an OASIS web site location.

3926 Examples of Instance Documents

3927 A growing number of non-normative XML instance documents that conform to the normative
3928  Schema definitions described earlier may be found at the following location on the web:

3929
3930 http://cvs.sourceforge.net/cqi- bin/viewcvs.coi/ebxmlrr/ebxmlrr-spec/misc/sampl es/
3931

Copyright © OASIS, 2001. All Rights Reserved



3932

3933
3934

3935

3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947

3948

3949
3950
3951
3952

3953
3954
3955
3956
3957
3958
3959
3960

OASIS/ebXML Registry November 2001

Appendix C Interpretation of UML Diagrams

This section describes in abstract termsthe conventions used to define ebXML business process
description in UML.

UML Class Diagram

A UML class diagram is used to describe the Service Interfaces required to implement an
ebXML Registry Servicesand clients. The UML class diagram contains:

1. A collection of UML interfaces where each interface represents a Service Interface for a
Registry service.

2. Tabular description of methods on each interface where each method represents an
Action (as defined by [ebCPP]) within the Service Interface representing the UML
interface.

3. Each method within a UML interface specifies one or more parameters, where the type of
each method argument represents the ebXML message type that is exchanged as part of
the Action corresponding to the method. Multiple arguments imply multiple payload
documents within the body of the corresponding ebXML message.

UML Sequence Diagram

A UML sequence diagram is used to specify the business protocol representing the interactions
between the UML interfaces for a Registry specific ebXML business process. A UML sequence
diagram provides the necessary information to determine the sequencing of messages, request to
response association as well as request to error response association.

Each sequence diagram shows the sequence for a specific conversation protocol as method calls
from the requestor to the responder. Method invocation may be synchronous or asynchronous
based on the UML notation used on the arrow- head for the link. A half arrow-head represents
asynchronous communication. A full arrow-head represents synchronous communication.

Each method invocation may be followed by a response method invocation from the responder to
the requestor to indicate the ResponseName for the previous Request. Possible error response is
indicated by a conditiona response method invocation from the responder to the requestor. See
Figure 7 on page 26 for an example.
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Appendix D SQL Query

SQL Query Syntax Specification

This section specifies the rules that define the SQL Query syntax as a subset of SQL-92. The
terms enclosed in angle brackets are defined in [SQL] or in [SQL/PSM]. The SQL query syntax
conforms to the <query specification>, modulo the restrictions identified below:

1. A <select list> may contain at most one <select sublist>.

2. Ina<sdect list> must be is a single column whose data type is UUID, from the table in the
<from clause>.

3. A <derived column> may not have an <as clause>.

4. <table expression> does not contain the optional <group by clause> and <having clause>
clauses.

5. A <table reference>can only consist of <table name> and <correlation name>.

6. A <table reference>does not have the optional AS between <table name> and
<correlation name>.

7. There can only be one <table r eference> in the <from clause>.

8. Redtricted use of sub-queriesis alowed by the syntax as follows. The <in predicate> allows
for the right hand side of the <in predicate> to be limited to arestricted <query
specification> as defined above.

9. A <search condition> within the <wher e clause> may not include a <query expression>.

10. Smplejoins are alowed only if they are based on indexed columns within the relational
schema.

11. The SQL query syntax allows for the use of <sgl invoked routines> invocation from
[SQL/PSM] asthe RHS of the <in predicate>.

Non-Normative BNF for Query Syntax Grammar

The following BNF exemplifies the grammar for the registry query syntax. It is provided here as
an aid to implementors. Since this BNF is not based on [SQL] it is provided as non-normative
syntax. For the normative syntax rules see Appendix O.

/*******************************************************************

* The Registry Query (Subset of SQ-92) grammar starts here

*******************************************************************/

Regi stryQuery = SQL.Select [";"]

SQ.Sel ect = "SELECT" ["DI STINCT"] SQ.Sel ectCol s "FROM' SQ.Tabl eList [ SQ.Were ]
SQ.Sel ectCols = ID

SQL.Tabl eLi st = SQ.Tabl eRef

SQ.Tabl eRef = 1D

SQ Were = "WHERE" SQ.O Expr

SQLO Expr = SQLANdExpr ( "OR' SQLAndExpr)*
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SQLAndExpr = SQ.Not Expr ("AND' SQ.Not Expr)*
SQ Not Expr = [ "NOT" ] SQ.Conpar eExpr
SQ.Conpar eExpr =

(SQ.Col Ref "1S") SQ.Isd ause
| SQ.SunExpr [ SQ.Conpar eExprRi ght ]

SQ.Conpar eExpr Ri ght =
SQLLi ked ause
| SQLInd ause
| SQ.Conpar eCp SQ SunExpr

SQLConpare® =

SQLInCl ause = [ "NOT™ ] "IN "(" SQ.LVal uelList ")"

SQ.LVal uelLi st = SQ.LVal ueEl enent ( "," SQ.LVal ueEl enent )*
SQ.LVal ueEl ement = "NULL" | SQSel ect

SQLIsC ause = SQ.Col Ref "IS' [ "NOT" ] "NULL"

SQ.Li ked ause = [ "NOI" ] "LIKE' SQ.Pattern

SQLPattern = STRING LI TERAL

SQ.Literal =
STRI NG_LI TERAL
| I NTEGER LI TERAL
| FLOATI NG_PO NT_LI TERAL

SQ.Col Ref = SQ@.Lval ue

SQ.Lval ue = SQ.Lval ueTerm

SQ.LvalueTerm= 1D ( "." ID)*
SQ SunExpr = SQ.Product Expr (( "+" | "-" ) SQProductExpr )*
SQ.Product Expr = SQUnaryExpr (( "*" | "/" ) SQUnaryExpr )*
SQUnaryExpr = [ ( "+" | "-") ] SQ.Term
SQ.Term= "(" SQO Expr ")"

| SQ.Col Ref

| SQ.Literal

INTEGER LI TERAL = (["0"-"9"])+

FLOATI NG_PQ NT_LI TERAL =

([7O7-"9"])+ "." (["07-"9"])
| "." (["0"-"9"])+ (EXPONENT) ?
| (["0"-"9"])+ EXPONENT
| (["0"-"9"])+ (EXPONENT)?

+ (EXPONENT) ?

STRING LI TERAL: "' (~["'"])* ( ""'" (~["'"])* )* "'"
ID=( <LETTER> )+ ( "_" | "$" | "#" | <DQ@T> | <LETTER> )*

LETTER = ["A"-"Z", "a"-"Z"]
DGT = ["0"-"9"]
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4077 Relational Schema For SQL Queries

4078  The normative Relational Schema definition for SQL queries can be found at the following
4079 location on the web:

4080

4081  http://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/ebxmirr/ebxmlrr-spec/misc/sgl/database.sgl
4082

4083  The stored procedures that must be supported by the SQL query feature are defined at the following
4084 location on the web:
4085  http://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/ebxml rr/ebxml rr-spec/misc/sgl/storedProcedures.sql

4086
4087 Inthefina V2.0 version of this document the URL will point to an OASIS web site location.
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Appendix E  Non-normative Content Based Ad Hoc Queries

The Registry SQL query capability supports the ability to search for content based not only on
metadata that catalogs the content but also the data contained within the content itself. For
exampleit is possible for a client to submit a query that searches for all Collaboration Party
Profiles that define arole named “seller” within a RoleName element in the CPP document itself.
Currently content-based query capability is restricted to XML content.

Automatic Classification of XML Content

Content-based queries are indirectly supported through the existing classification mechanism
supported by the Registry.

A submitting organization may define logical indexes on any XML schemaor DTD when it is
submitted. An instance of such alogical index defines a link between a specific attribute or
element node in an XML document tree and a ClassificationNode in a classification scheme
within the registry.

The registry utilizes thisindex to automatically classify documents that are instances of the
schema at the time the document instance is submitted. Such documents are classified according
to the data contained within the document itself.

Such automatically classified content may subsequently be discovered by clients using the
existing classificationbased discovery mechanism of the Registry and the query facilities of the
QueryManager.

[Note] This approach is conceptually simlar to the way databases support
i ndexed retrieval. DBAs define indexes on tables in the schema. \When
data is added to the table, the data gets automatically indexed.

Index Definition

This section describes how the logical indexes are defined in the SubmittedObject element
defined in the Registry DTD. The complete Registry DTD is specified in Appendix A.

A SubmittedObject element for a schema or DTD may define a collection of
ClassificationIndexes in a ClassificationlndexList optional element. The ClassificationlndexList
isignored if the content being submitted is not of the SCHEMA objectType.

The Classificationlndex element inherits the attributes of the base class RegistryObject in
[ebRIM]. It then defines specialized attributes as follows:

1. classificationNode: This attribute references a specific ClassificationNode by its ID.

2. contentldentifier: This attribute identifies a specific data element within the document
instances of the schema using an XPATH expression as defined by [XPT].

Example Of Index Definition

To define an index that automatically classifies a CPP based upon the roles defined within its
RoleName elements, the following index must be defined onthe CPP schemaor DTD:
<d assi fi cati onl ndex

cl assificationNode="id-for-rol e-cl assificati on-schenge’

contentldentifier="/Role//Rol eNange’
/>
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Proposed XML Definition

Example of Automatic Classification

Assume that a CPP is submitted that defines two roles as “seller” and “buyer." When the CPP is
submitted it will automatically be classified by two ClassificationNodes named “buyer” and
“seller” that are both children of the ClassificationNode (e.g. a node named Role) specified in the
classificationNode attribute of the ClassificationIndex. If either of the two ClassificationNodes
named “buyer” and “seller” did not previously exist, the LifeCycleManager would automatically
create these ClassificationNodes.
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Appendix F  Security Implementation Guideline

This section provides a suggested blueprint for how security processing may be implemented in
the Registry. It is meant to be illustrative not prescriptive. Registries may choose to have
different implementations as long as they support the default security roles and authorization
rules described in this document.

Authentication
1. Assoon as amessage is received, the first work is the authentication. A principal object is

created.

2. If the message is signed, it is verified (including the validity of the certificate) and the DN of
the certificate becomes the identity of the principal. Then the Registry is searched for the
principal and if found, the roles and groups are filled in.

3. If the message is not signed, an empty principal is created with the role RegistryGuest. This
step isfor symmetry and to decouple the rest of the processing.

4. Then the message is processed for the command and the objects it will act on.

Authorization

For every object, the access controller will iterate through all the AccessControl Policy objects
with the object and see if there is a chain through the permission objects to verify that the
requested method is permitted for the Principal. If any of the permission objects which the object
is associated with has a common role, or identity, or group with the principal, the action is
permitted.

Registry Bootstrap

When a Registry is newly created, a default Principal object should be created with the identity
of the Registry Admin’s certificate DN with arole RegistryAdmin. This way, any message
signed by the Registry Admin will get all the privileges.

When a Registry is newly created, a singleton instance of AccessControlPolicy is created as the
default AccessControlPolicy. This includes the creation of the necessary Permission instances as
well as the Privilges and Privilege attributes.

Content Submission — Client Responsibility

The Registry client has to sign the contents before submission — otherwise the cortent will be
rejected.

Content Submission — Registry Responsibility

1. Aswith any other request, the client will first be authenticated. In this case, the Principal
object will get the DN from the certificate.

2. As per the request in the message, the RegistryEntry will be created.
3. The RegistryEntry is assigned the singleton default AccessControlPolicy.
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4191 4. If aprincipa with the identity of the SO is not available, an identity object with the SO’s DN
4192 IS created.

4193 5. A principa with thisidentity is created.

4194 Content Delete/Deprecate — Client Responsibility

4195 The Registry client has to sign the payload (not entire message) before submission, for
4196  authentication purposes; otherwise, the request will be rejected

4197 Content Delete/Deprecate — Registry Responsibility

4198 1. Aswith any other request, the client will first be authenticated. In this case, the Principal

4199 object will get the DN from the certificate. As there will be a principal with thisidentity in
4200 the Registry, the Principal object will get al the roles from that object

4201 2. Asper the request in the message (delete or deprecate), the appropriate method in the

4202 RegistryObject class will be accessed.

4203 3. The access controller performs the authorization by iterating through the Permission objects
4204 associated with this object via the singleton default AccessControl Policy.

4205 4. If authorization succeeds then the action will be permitted. Otherwise an error response is
4206 sent back with a suitable AuthorizationException error message.

4207 Using ds:KeylInfo Field

4208 Two typica usage scenarios for ds.Keyl nfo are described below.
4209  Scenario 1

4210 1. Registry Client (RC) signs the payload and the SOAP envelope using its private key.

4211 2. Thecertificate of RC is passed to the Registry in Keylnfo field of the header signature.

4212 3. Thecertificate of RC is passed to the Registry in KeyInfo field of the payload signature.
4213 4. Registration Authority retrieves the certificate from the KeyInfo field in the header signature
4214 5. Registration Authority validates the header signature using the public key from the

4215 certificate.
4216 6. Registration Authority validates the payload signature by repeating steps 4 and 5 using the

4217 certificate from the Keylnfo field of the payload signature. Note that this step is not an
4218 essential one if the onus of validation is that of the eventual user, another Registry Client, of
4219 the content.

4220  Scenario 2

4221 1. RC1signsthe payload and SOAP envelope using its private key and publishes to the
4222 Registry.

4223 2. The certificate of RCL1 is passed to the Registry in the KeyInfo field of the header signature.

4224 3. The certificate of RC1 is passed to the Registry in the KeylInfo field of the payload signature.
4225 This step is required in addition to step 2 because when RC2 retrieves content, it should see
4226 RC1’s signature with the payload.

4227 4. RC2 retrieves content from the Registry.

Copyright © OASIS, 2001. All Rights Reserved



OASIS/ebXML Registry November 2001
4228 5. Registration Authority signs the SOAP envelope using its private key. Registration Authority

4229 sends RC1's content and the RC1’ s signature (signed by RC1).

4230 6. Registration Authority need not send its certificate in the Keylnfo field sinceRC2 is assumed
4231 to have obtained the Registration Authority’s certificate out of band and installed it in its
4232 local key store.

4233 7. RC2 obtains Registration Authority’s certificate out of itslocal key store and verifies the
4234 Registration Authority’s signature.

4235 8. RC2 obtains RC1's certificate from the Keylnfo field of the payload signature and validates
4236 the signature on the payload.

Copyright © OASIS, 2001. All Rights Reserved



4237

4238

4239
4240

4241

4242
4243

4265

4266
4267
4268
4269
4270
4271
4272
4273

OASIS/ebXML Registry November 2001

Appendix G Native Language Support (NLS)

Definitions

Although this section discusses only character set and language, the following terms have to be
defined clearly.

Coded Character Set (CCS):

CCS isamapping from a set of abstract characters to a set of integers. [RFC 2130]. Examples of
CCS are 1SO-10646, US-ASCII, 1SO-8859-1, and so on.

Character Encoding Scheme (CES):

CESisamapping from a CCS (or several) to a set of octets. [RFC 2130]. Exanples of CES are
SO-2022, UTF-8.

Character Set (charset):

?? charset isaset of rules for mapping from a sequence of octets to a sequence of
characters.[RFC 2277],[RFC 2278]. Examples of character set are 1SO-2022-JP, EUC-KR.

?? A list of registered character sets can be found at [IANA].

NLS And Request / Response Messages

For the accurate processing of datain both registry client and registry services, it is essential to
know which character set is used. Although the body part of the transaction may contain the
charset in xml encoding declaration, registry client and registry services shall specify charset
parameter in MIME header when they use text/xml. Because as defined in [RFC 3023], if a
text/xml entity is received with the charset parameter omitted, MIME processors and XML
processors MUST use the default charset value of "us-ascii”. For example:

Cont ent- Type: text/xm; charset=l SO-2022-JP

Also, when an application/xml entity is used, the charset parameter is optional, and registry
client and registry services must follow the requirements in Section 4.3.3 of [REC-XML] which
directly address this contingency.

If another Content-Type is chosen to be used, usage of charset must follow [RFC 3023].

NLS And Storing of RegistryObject

This section provides NL S guidelines on how aregistry should store RegistryObject instances.

A single instance of a concrete sub-class of RegistryObject is capable of supporting multiple
locales. Thus there is no language or character set associated with a specific RegistryObject
instance.

A single instance of a concrete sub-class of RegistryObject supports multiple locales as follows.
Each attribute of the RegistryObject that is 118N capable (e.g. name and description attributes in
RegistryObject class) as defined by [ebRIM], may have multiple locale specific values expressed
as LocalizedString sub-elements within the XML element representing the 118N capable
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attribute. Each LocalizedString sub-element defines the value of the 118N capable attribute in a
specific locale. Each LocalizedString element has a charset and lang attribute as well as avaue
attribute of type string.

Character Set of LocalizedString

The character set used by alocale specific String (LocalizedString) is defined by the charset
attribute. It is highly recommended to use UTF-8 or UTF-16 for maximuminter-operability.

Language Information of LocalizedString
The language may be specified in xml:lang attribute (Section 2.12 [REC-XML]).

NLS And Storing of Repository Items

This section provides NL S guidelines on how a registry should store repository items.

While a single instance of an ExtrinsicObject is capable of supporting multiple locales, it is
always associated with a single repository item. The repository item may be in asingle locale or
may be in multiple locales. This specification does not specify the repository item.

Character Set of Repository Items

The MIME Cont ent - Type mime header for the mime multi-part containing the repository
item MAY contain a'char set " attribute that specifies the character set used by the repository
item. For example:

Cont ent- Type: text/xm; charset="UTF8"

It is highly recommended to use UTF-16 or UTF-8 for maximum inter-operability. The charset
of arepository item must be preserved asit is originally specified in the transaction.

Language information of repository item

The Content-language mime header for the mime bodypart containing the repository item may
specify the language for alocale specific repository item. The value of the Content-language
mime header property must conform to [RFC 1766].

This document currently specifies only the method of sending the information of character set
and language, and how it is stored in a registry. However, the language information may be used
as one of the query criteria, such as retrieving only DTD written in French. Furthermore, a
language negotiation procedure, like registry client is asking a favorite language for messages
from registry services, could be another functionality for the future revision of this document.
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Appendix H Terminology Mapping

While every attempt has been made to use the same terminology used in other works there are
some terminology differences. The following table shows the terminology mapping between this
specification and that used in other specifications and working groups.

<= =Table12: Terminology Mapping Table

This Document OASIS 1SO 11179
“repository item” RegisteredObject

RegistryEntry RegistryEntry Administered Component
ExternalLink RelatedData N/A

Object.id regEntryld, orgld, etc.

ExtrinsicObject.uri

objectURL

ExtrinsicObject.objectType

defnSource, objectType

RegistryEntry.name

commonName

Object.description

shortDescription, Description

ExtrinsicObject.mimeType

objectType="mime’
fileType="<mime type>"

Versionable.majorVersion

userVersion only

Versionable.minorVersion

userVersion only

RegistryEntry.status

registrationStatus
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4370 Disclaimer

4371  The views and specification expressed in this document are those of the authors and are not
4372  necessarily those of their employers. The authors and their employers specifically disclaim
4373  responsibility for any problems arising from correct or incorrect implementation or use of this
4374  design.
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Copyright Statement

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

This document and tranglations of it may be copied and furnished to others, and derivative works
that comment on or otherwise explain it or assist in its implementation MAY be prepared,
copied, published and distributed, in whole or in part, without restriction of any kind, provided
that the above copyright notice and this paragraph are included on all such copies and derivative
works. However, this document itself MAY not be modified in any way, such as by removing
the copyright notice or references to ebXML, UN/CEFACT, or OASIS, except as required to
trandate it into languages other than English.

The limited permissions granted above are perpetua and will not be revoked by ebXML or its
SUCCESSOr's Or assigns.

This document and the information contained herein is provided on an "AS IS" basis and
ebXML DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN
WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright © OASIS, 2001. All Rights Reserved



