Creating A Single Global Electronic Market

OASIS/eb XML Registry Services Specification
v1.08 DRAFT

OASIS/eb XML Registry Technical Committee
26 November 2001

Copyright © OASIS, 2001. All Rights Reserved

OASIS/ebXML Registry November 2001

2 Thispageintentionally left blank.

Copyright © OASIS, 2001. All Rights Reserved

A~ W

OO 00 ~N O O

OASIS/ebXML Registry

November 2001

1 Status of this Document

Distribution of this document is unlimited.
The document formatting is based on the Internet Society’s Standard RFC format.

Thisversion:
http://www.oasi s-open.org/committees/regrep/document/rsv 1-08.pdf

Latest version:
http://www.0asi s-open.org/committees/regrep/documents/rsV 1 -08. pdf

Copyright © OASIS, 2001. All Rights Reserved

14

15
16
17

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

35
36
37
38
39

41
42

45

OASIS/ebXML Registry

2 OASIS/ebXML Registry Technical Committee

The OASIS/ebXML Registry Technical Committee has approved this document, asa DRAFT
Specification, in its current form At the time of this approval the following were members of
the OASIS/ebXML Registry Technical Committee.

Lisa Carnahan, USNIST - Chair

Len Gallagher, US NIST

Nikola Stojanovic, Encoda Systems
Suresh Damodaran, Sterling Commerce
Bruce Bargmeyer, EPA

Kathryn Breininger, Boeing

Dan Chang, IBM

Joseph M. Chiusano, LMI

Suresh Damodaran, Sterling Commerce
Mike DeNicola, Fujitsu

John Evdemon, Vitria Technologies
Anne Fischer, Drummond Group

Saly Fuger, AIAG

Len Gallagher, NIST

Michael Joya, XMLGlobal

Chaemee Kim, KTNET

Jong Kim, InnoDigital

Kyu-Chul Lee, Chungnam National University
Joel Munter, Intel

Farrukh Najmi, Sun Microsystems Inc.
Joel Neu, Vitria Technologies

Sanjay Patil, IONA

Wagar Sadiq, EDS

Neal Smith, ChevronTexaco

Nikola Stojanovic, Encoda Systens Inc.
David Webber, XMLGIlobal

Prasad Y endluri, webmethods

Y utaka Y oshida, Sun Microsystems Inc.

Copyright © OASIS, 2001. All Rights Reserved

November 2001

46
47

49
50
51

52
53

55

56
57
58

59
60
61
62
63

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

85
86
87

88
89
90

OASIS/ebXML Registry November 2001

Table of Contents

1 StatuSof thiSDOCUMENTcciiiiiieiee et sbe e b nneas 3
2 OASIS/ebXML Registry Technical COMMITIEE........cccevveeeieerieeseee e 4
TaDIE OF CONTENTS. ...t e b et e s re e s reete e e nbeeneas 5
TaADIE OF FIQUI S .ot st sttt e e et e b e b nbe b 9
QLIR= 1= o = o] = 10
G T 1 111 oo 18 [o o SR 11
3.1 Summary of Contents of DOCUMENTccreririerierierie e 11
3.2 GeNEral CONVENTIONSccueiuiiieiieiiesie sttt st see e 11
TG T N ¥ o 1= oSSR 11
O B T o [T @ o] = Y- O 12
g R €0 [SO 12
4.2 Caveats and ASSUMPLIONScceeiueiierieeiiniee e see st ee et sre e sseeneas 12
B SYSLEM OVEI VIBW......eeiecie ettt ettt sttt et e e aeesteeaaeese e teeseesseesseensesneenseeneesnnenns 13
5.1 What The ebXML REGISIIY DOES......ccoiiiiriiriirierieeie et 13
52 How The ebXML RegIStry WOrKS........ccccoriiriieiiirienereseseseeeeeee e 13
5.2.1 SchemaDocuments Are SUDMItEEdccoevereniriinierese e 13
5.2.2 Business Process Documents Are Submittedccoceevereeneniienene 13
5.2.3 Sdler’s Collaboration Protocol Profile Is Submitted ..o 13
524 Buyer Discovers The SEler ... 13
525 CPA ISESAiShed ... 14
5.3 REQISINY USEIS......oiiiieiieieieeeeee ettt nre e 14
54 Where the Registry Services May Be Implemented..........ccoceoeieienincnennnne 15
5.5 Implementation CONfOIMANCEccveieiierieeie e 15
5.5.1 Conformance as an ebXML REQISIYcoovriiieriiiienieeeeeseeie e 15
5.5.2 Conformance as an ebXML Registry Clientccccevevenenencnennenn 16
6 EDXML ReQISIIY ArChITECIUI € ..o e ere e 17
6.1 Registry Service DesCribed..........cooiiiiiiiiiieeee e 17
6.2 ADStract REQISIIY SEIVICE ...cvviee et 17
6.3 CoNCrete REQISITY SEIVICES.....cccieeciecee ettt 18
6.3.1 SOAPBINGING ...cueiuiiieiiiesiesie sttt 19
6.3.2 ebXML Message Service Binding.......cccooevevenineneniceenesesie e 19
6.4 LifeCycleManager INterface........cccooveeiieiicce e 21
6.5 QueryManager INTErfaCe.......ccooi i e 21
6.6 REQISIIY ClIENTSuiiiiieieeeee e e 22
6.6.1 Registry Client DesCribed.........ccccoovveeviiiisieece e 22
6.6.2 Registry Communication BOOtStrappingccceeeeeveereesiveesessireesvenanns 23
6.6.3 RegistryClient INErfate........occovirirereeee e 23
6.6.4 REQISIIY RESPONSEccvvieveieiiectieie et esie et te e sae e 24
6.7 Interoperability REQUIFEMENLScceoouiiieiecee e 24
6.7.1 Client INteroperability..........cccooririririereee e 24
6.7.2 Inter-Registry COOPEralioN.ccureeieieerieriesiesiesesesee e 24
7 Life Cycle Management SEMVICEcoi ittt nne s 25
7.1 Life Cycle of aRepPOSItOry IEMcccoviririiieieie s 25
7.2 RegistryObject AttrDULESccoieeeeeceee e 25

Copyright © OASIS, 2001. All Rights Reserved

OASIS/ebXML Registry November 2001

91 7.3 The Submit ObJects ProtOCoL..........cccoveiiiiiiecie e 26
92 7.3.1 Universally Unique ID Generation...........ccocerererereeieeneenienesieseennene 26
93 7.3.2 1D Attribute And Object REFEIENCESccoocevirererireeeee e 27
9 7.3.3 AUAIL Trall cveieeeieieeee e 27
95 7.3.4 Submitting OrganiZatiON...........cccereereerieniesie e 27
96 7.3.5 Error Handlingcccceoeeeieniiiseneeiee et 27
97 7.3.6 Sample SubmMitObjEeCtSREQUESL...........cevveeeecrieiece e 28
98 7.4 TheUpdate Objects ProtOCOoL...........ccoeiiiiiiieiie e 31
99 3 T N0 o [I - S 32
100 7.4.2 Submitting OrganiZation...........ccceeeeeveereeieesiese e seese e eee e 32
101 7.4.3 Error HaNAIiNgGc.coooveeiieciieciecie et 32
102 7.5 The Add SIOtS ProtOCOL........cceiiieeieeieseeriee e 32
103 7.6 The Remove SIOtS ProtoColcccooveeereerieiesiee e 33
104 7.7 The Approve ObjectS ProtOCOlccceceeiiiieiierie e 33
105 5 N0 o [I - ST 34
106 7.7.2 SUbMIttiNG Organi ZatioN..........coerereeieieniesie e 34
107 7.7.3 Error Handlingooeeieeeeeeceese et 34
108 7.8 The Deprecate ObjectS ProtoColcccuvciveeiiiiiieeiie e 35
109 S 35 N0 o [I - S 35
110 7.8.2 Submitting OrganiZatioN............cceeeeeveereeieesiesie e e esee e eee e 35
111 7.8.3 Error HaNAliNgcoccveeiieeiiiciie ettt 35
112 7.9 The Remove ODJECES ProtOCOccoereeeeeirienie et 36
113 7.9.1 Deletion Scope DeleteRepositoryltemOnlyccooveeeeveeneneneniennne 36
114 7.9.2 Deletion Scope DEEEAIlocveieeeeeeeeeee e 36
115 7.9.3 Error Handlingooeeiieeieieece e 37
116 8 QUENY ManagemMENt SENVICE.....cccecieieerieeieeee st e e see s e e see e eteeeesseessesseesse e sesneesreenseennens 38
117 8.1 AdHOC Query REQUES/RESPONSEccueeivieieriiinieesiee e siee sttt sae e 38
118 8.1.1 Query RESPONSE OPLIONS ...cveverieeeeieriesie sttt 39
119 8.2 Filter QUENY SUPPOITecuveeeeieeeieeteesteete st esteete s e steeeesseesaeesaesseessesnaesneenseennens 40
120 8.2 1 FIltErQUENY.....oi ettt st 42
121 8.22 RegiStryOhjECIQUENYcceiiiieieieieiee e 43
122 8.2.3 REQISIITYENIIYQUENY......ceieeieeeeesteerieeteseeie e stee e see e eae e s eee e 57
123 8.24 AuditableEVENTQUETYeecvieeeecreeie et 60
124 8.25 ClassificatioNNOJEQUENY..........cieriierieiieie et 63
125 8.2.6 ClassificationSCheEMEQUETY.........cceiiririerieseriereree e 68
126 8.2.7 RegistryPackagEQUENYccceiieiieiieieeie et 69
127 8.2.8 EXIrinSICODJECIQUENYc.veeeieiiiieeieeee ettt 71
128 8.29 OrganiZatioNQUETYcceruerereeieiesie sttt 72
129 8.2.10 SErVICEQUENYeecveeieeieiteesieeeesteesteseesseesesseesseessesseesseesesneesseensessensns 76
130 8.2.11 REQISIY FITEIS....coieeceece et 78
131 8.2.12 XML Clause Constraint REpresentation.............ccooeeevereerenenenesennenne 81
132 8.3 SOQL QUENY SUPPOIeeiieeeiiiieeiie e sttt siee st e st e s e ssn e s sne e sne e sanes 86
133 8.3.1 SQL Query Syntax Binding ToO [EDRIM]cccveiiiiieeeceeeee 86
134 8.3.2 Semantic Constraints On QUENY SYNaX........cccceevereererniesieesieenenseenee 87
135 8.3.3 SQL QUENY RESUILS......ccuecieceeeeeeeceeiere ettt 88
136 8.3.4 Simple Metadata Based QUENIES..........cceevuerieriece e 88
137 8.3.5 RegistryODhject QUENTES.........ccceeieeieriereeiee e 88
138 8.3.6 RegiStrYENtry QUENES.......coueiiiieieieee e 89
139 8.3.7 Classification QUENIES.........ceeieieireecie ettt e e e ene s 89

Copyright © OASIS, 2001. All Rights Reserved

OASIS/ebXML Registry November 2001

140 8.3.8 ASSOCIAION QUENTESeeeeceeeeeiee ettt re e s ree s 90
141 8.3.9 Package QUENTES........cceiuiiiriieieeeeeee ettt 91
142 8.3.10 ExternalLink QUENIES.........cccveuereeieeeeseeeesee st eee e esse e e 91
143 8.3.11 Audit Traill QUENES.......ccueeereeiteeectee ettt sbe e sare s 91
144 8.4 Content RELMEVAEc.ooeiiieeee e e 91
145 8.4.1 Identification Of Content Payloads...........ccocovererinierienenenese e 92
146 8.4.2 GetContentResponse Message SIrUCUNe..........ccvevvveeeviieesiieee s 92
A7 9 REQISIITY SECUITTY cueveiiiuiiiieeeieste sttt ettt sttt st e e e b e e e b e bt e bt st e e e e e s e nbesbenbeneeas 93
148 0.1 SECUMLY CONCEIMS.....cveiieieeeiteeieeteesteetesreesteeee s e e steeeesreesseenaeeseessesneesneensennnens 93
149 9.2 Integrity Of RegIStry COMENLcccvveiiieiiieciie e e 94
150 9.21 Message Payload SIgNAUNE.cccooereriereneniesesee e 94
151 9.2.2 Payload Signature REqUIrEMENES.........cccceieeeereerieseeseesee e e eee e 95
152 0.3 AULNENTICALION.......cciiieeiieieeiee et 97
153 9.3.1 Message Header SIgNaUre........ccooveierierierienieniesesee e 97
154 9.4 Key Distribution and KeyInfo Elemert..........ccooviririninienineeesese e 99
155 S T O] 1110 U= o1 = 1 YO 100
156 9.5.1 On-the-wire Message Confidentiality........cccccvevereenenienneeieeseseene, 100
157 9.5.2 Confidentiaity of Registry CONteNt.........cccoverererierieeieese e 100
158 0.6 AULNOMZBLION.cuiitiieeriieiee et 100
159 S 200 R AN ([0 S 100
160 0.7 ACCESS CONLIOL.....eieiieieiieee ettt 100
161 Appendix A Web Service ArChiteCtUI €vve e 102
162 Registry Service Abstract SPeCifiCation...........ccooeviiirinineneeee e 102
163 Registry Service SOAP BiNAING......c.cooiiiririeieieseresese e 102
164 Appendix B ebXML Registry Schema Definitions...........ccoevininenenieiceese e 103
165 LY S o 0= 0= S 103
166 (@ 01C VS 0= - TS 103
167 Registry Services Interface SChemMacoovv e 103
168 Examples of INStance DOCUMENES..........coererieiieieriesie st 103
169 Appendix C Interpretation of UML Diagrams........cccceevieiiieiiieesiee e esee e s 104
170 UML ClaSS DI@QIaM.....ccueeeeieieiesiesiesies et nn e n e 104
171 UML SeqUENCE DIBOIaIMccuvieeiieeeeeeeeesieseesieeseeeeseesesseesseesesseesseesesseessesnsens 104
172 Appendix D SQL QUENY ettt r e n e e nne e 105
173 SQL Query Syntax SPECiTiCaLION...........ureriererieieierie ettt 105
174 Nor-Normative BNF for Query Syntax Gramimarccceeeeveeveeeeeseeseseeseesnens 105
175 Relational Schema For SQL QUENES........ccuviiieiiecieecee et 107
176 Appendix E Non-normative Content Based Ad HOC QUENI€S........cccceveevveceeieesiennnne 108
177 Automatic Classification of XML Content..........ccoceveeveneenenienieeneerie e 108
178 INAEX DEFINITION.......eiiieieeie e 108
179 Example Of Index Definition........ccoceveeieiesece e 108
180 Proposed XML DefiNitioN........ccccceiiiiiieie e 109
181 Example of Automatic ClassifiCation.............ccoererinenenicieeieesese e 109
182 Appendix F Security Implementation GUIdENecccoceeveeie v 110
183 AULNENTICALION. ..ottt st et re et et sreenseeneen 110
184 F B 11 0o 174= 1 o] o 110
185 (RS0 1S 1V =700 (= I USSR 110
186 Content Submission — Client Responsibility ..o 110
187 Content Submission — Registry Responsibility ... 110

Copyright © OASIS, 2001. All Rights Reserved

OASIS/ebXML Registry November 2001

188 Content Delete/Deprecate — Client Responsibility ..., 111

189 Content Delete/Deprecate — Registry Responsibilitycvoevveieeiiiieiinciiienne 111

190 USINg ASIKEYINFO FIEId.....cc.eeece e 111

191 Appendix G Native Language SUPPOrt (NL'S)ooeeeriieiirerie e 113
192 [1 0T (o USSR 113

193 Coded CharaCter Sat (CCS) ..t 113

194 Character Encoding Scheme (CES):.......ccooiiiiiienenie e 113

195 Character Set (CharSEL):.......ccevverereriee e 113

196 NLS And Request / RESPONSE MESSA0ESccueeiueereeiesteeieseesreesseseesteesesseesseenens 113

197 NLS And Storing of RegiStryODJECt.........coviiiiiiie e 113

198 Character Set of LOCaliZedSIriNgccvvvererieieierese e 114

199 Language Information of LocaliZzEdSIriNg.......ccvevevveereeresieseese e e 114

200 NLS And Storing of REPOSIOrY IHEMScceveeiieieceeeeee e 114

201 Character Set of REPOSITOrY ItEMS.......ccviiiieieerese s 114

202 Language information of repoSitory iteM.........ccoevererenerieeiee e 114

203 Appendix H Terminology MaPPINGc.coeereerieriereee et 115
L B = = o Tol s TP 116
P20 T D 1o -1 0T P 117
206 CONtACt INFOrMALTON.iiiiiiee ettt s sb e et s e sbe e e nae e 118
207 COPYright SEALEMENTooceieece e ee s e sreenesne e reeneennee e 119
208

Copyright © OASIS, 2001. All Rights Reserved

OASIS/ebXML Registry November 2001

209 Table of Figures

210 = Figure 1: ACtor REIEONSNIPSc..oceiiiecieceece et 15
211 = Figure 2: ebXML Registry Service ArchiteCture..........ocooveeiiiinineseseeeeeeee e 17
212 = Fgure 3: The Abstract ebXML REQISITY SEIVICEcccviieiieiiiierieeie et 18
213 = Figure4: A Concrete edbXML ReQISITY SEIVICEccuviiiiieiiee et ee e 18
214 = Figure 5: Registry Architecture Supports Flexible TOpologies..........cvvveeiirienenincieicins 22
215 = Fgure6: Life Cycle of a REPOSITONY [TBIM.....cccuiiiiiie e 25
216 = Figure 7: Submit Objects SequENCe DIagram........ccceeveieeieeie et se e 26
217 = Figure 8: Update Objects SequeNCe DIiagramccurereeiierierieniesie st 31
218 = Figure 9: Add SIots SequENCE DIagramM........cccveiuieiieeiie e estee e cre e sneas 33
219 = Figure 10: Remove SI0otS Sequence Diagramcccccceieeieeiesieeseeieeseesie s e sse e ssee e e 33
220 = Figure 11: Approve Objects SequenCe Diagramcccceoerererenereseseseeeeee e 34
221 = Figure 12: Deprecate Objects Sequence Diagram..........cccoeeceeeereeieeseesieeseeee s eseeseesre e 35
222 = Figure 13: Remove Objects Sequence Diagram.........ccoeeierereneseseseseeeeee e 37
223 = Figure 14: Submit Ad Hoc Query Sequence Diagram.........ccccooeereeieneenieniiesee e 39
224 = Figure 15: Example ébRIM BinNiNg.........ccooieiiiieiiiie et 41
225 = Figure 16: ebRim Binding for RegistryObjeCtQUENY..........coeiiriririnereeeeee e 44
226 = Figure 17:ebRIM Binding for RegiStryENtryQUENY.........cccveiiriiieeiie e eciee et 57
227 = Figure 18: ebRim binding for Auditabl eEVENtQUENYceeoeieeiieie et 60
228 = Figure 19: ebRim binding for ClassificatioNNOAEQUENY..........cccooererirererieiesesese e 64
229 = Figure 20: ebRIM Binding for ClassificationSchemeQUErYccccvveveiieceeciecie e 68
230 = Figure 21: ebRim binding for RegistryPackageQUENY..........ccceeeereeieiieeie e seesie e se e 69
231 = Figure 22:ebRIM Binding for ExtrinsicODjeCtQUENY ..o 72
232 = Figure 23: ebRim Binding for Organi zatioNQUENY...........ccceeveeeereeieesieseeieseesie e seesreenens 73
233 = Figure 24:ebRIM Binding for SErVICEQUENYcoiriririieieiesiesie sttt 77
234 = HQUre25: The ClauSe SHUCLUIEcociiiiiieeieeee ettt sttt s sreenne e 82
235

Copyright © OASIS, 2001. All Rights Reserved

236

237
238
239
240
241
242
243
244
245
246
247
248
249

OASIS/ebXML Registry November 2001

Table of Tables

g

9

9 9 9 9

Table 1: REGISIIY USEIS... oottt sttt st te st e s e s beetesneesneenesnnesnaenns 14
Table 2: LifeCycle Manager SUMMIAIY.........cccooiieririeieienie e see i s snens 21
Table 3: QUENY MaANAOEScoiueiiiiiieiieeie ettt sttt st se e be et s se e sseebe e e sneeneas 21
Table 4: RegiStryClIent SUMIMEIYccocieiieie e eee ettt sse e e e sneenas 24
Table 5 Submit Objects Error HaNAliNgoovveiirieieeesesesesesesese e 27
Table 6: Update Objects Error Handlingccooeeveeiineenene e 32
Table 7: Approve Objects Error Handlingccccceoeeviieeiicie e 34
Table 8: Deprecate Objects Error HaNAliNg..........ooeeeeieiieierereseseseseeeeeeee e 36
Table 9: Remove Objects Error Handling..........cooueiieiieiiie e 37
Table 10: Path Filter EXpressions for USE CaSeS.......ucvvieereeiierierieesie e esee e see e 66
Table 11: Default Access CoNntrol POlICIES.........cccueiiieeieeie e 101
Table 12: Terminology Mapping Table........c.coeeiieieeeeeee e 115

Copyright © OASIS, 2001. All Rights Reserved

250

251

252
253

254
255
256

257

258

259
260

261
262
263

264
265

266

267
268
269

270

271
272
273
274

275
276
277
278
279

OASIS/ebXML Registry November 2001

3 Introduction

3.1 Summary of Contents of Document

This document defines the interface to the eb XML Registry Services as well as interaction
protocols, message definitions and XML schema.

A separate document, ebXML Registry Information Model [ebRIM], provides information on the
types of metadata that are stored in the Registry as well as the relationships among the various
metadata classes.

3.2 General Conventions

The following conventions are used throughout this document:

UML diagrams are used as away to concisely describe concepts. They are not interded to
convey any specific Implementation or methodology requirements.

Theterm “ repository item” is used to refer to an object that has resides in a repository for storage
and safekeeping (e.g., an XML document or aDTD). Every repository item is described in the
Registry by a RegistryObject instance.

The term "RegistryEntry" is used to refer to an object that provides metadata about a repository
item.

Capitalized Italic words are defined in the ebXML Glossary.

The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD
NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this document, are to be
interpreted as described in RFC 2119 [Bra97].

3.3 Audience

The target audience for this specification is the community of software developers who are:
?? Implementers of ebXML Registry Services

?? Implementers of ebXML Registry Clients

3.3.1.1.1 Related Documents

The following specifications provide some background and related information to the reader:
a) ebXML Registry Information Model [ebRIM]
b) ebXML Message Service Specification [ebM G
c) ebXML Business Process Specification Schema [ebBPM]
d) ebXML Collaboration-Protocol Profile and Agreement Specification [ebCPP]

Copyright © OASIS, 2001. All Rights Reserved

280

281

282
283
284
285
286

287

288
289
290
291
292
293
294

295
296
297

OASIS/ebXML Registry November 2001

4 Design Objectives

4.1 Goals

The goals of this version of the specification are to:

?? Communicate functionality of Registry services to software developers

?? Specify the interface for Registry clients and the Registry

?? Provide a basis for future support of more complete ebXML Registry requirements
?? Be compatible with other ebXML specifications

4.2 Caveats and Assumptions

The Registry Services specification isfirst in a series of phased deliverables. Later versions of
the document will include additional functionality planned for future development. Itis
assumed that:

Interoperability requirements dictate that that at least one of the normative interfaces as
referenced in this specification must be supported.
1. All access to the Registry content is exposed via the interfaces defined for the Registry
Services.
2. The Registry makes use of a Repository for storing and retrieving persistent information
required by the Registry Services. Thisis an implementation detail that will not be
discussed further in this specification.

Copyright © OASIS, 2001. All Rights Reserved

298

299

300
301
302
303

304

305
306
307
308
309
310
311
312
313

314

315
316
317

318

319
320
321

322

323
324
325
326

327

328
329
330
331

332

OASIS/ebXML Registry November 2001

5 System Overview

5.1 What The ebXML Registry Does

The ebXML Registry provides a set of services that enable sharing of information between
interested parties for the purpose of enabling business process integration between such parties
based on the ebXML specifications. The shared information is maintained as objectsin a
repository and managed by the ebXML Registry Services defined in this document.

5.2 How The ebXML Registry Works

This section describes at a high level some use cases illustrating how Registry clients may make
use of Registry Services to conduct B2B exchanges. It is meant to be illustrative and not
prescriptive.

The following scenario provides a high level textual example of those use cases in terms of
interaction between Registry clients and the Registry. It is not a complete listing of the use cases
that could be envisioned. It assumes for purposes of example, a buyer and a seller who wish to
conduct B2B exchanges using the RosettaNet PIP3A4 Purchase Order business protocal. It is
assumed that both buyer and seller use the same Registry service provided by athird party. Note
that the architecture supports other possibilities (e.g. each party usesits own private Registry).

5.2.1 Schema Documents Are Submitted

A third party such as an industry consortium or standards group submits the necessary schema
documents required by the RosettaNet PIP3A4 Purchase Order business protocol with the
Registry using the LifeCycleManager service of the Registry described in Section 7.3.

5.2.2 Business Process Documents Are Submitted

A third party, such as an industry consortium or standards group, submits the necessary business
process documents required by the RosettaNet PIP3A4 Purchase Order business protocol with
the Registry using the LifeCycleManager service of the Registry described in Section 7.3.

5.2.3 Seller’'s Collaboration Protocol Profile Is Submitted

The seller publishesits Collaboration Protocol Profile or CPP as defined by [ebCPP] to the
Registry. The CPP describes the sdller, the role it plays, the services it offers and the technical
details on how those services may be accessed. The seller classifies their Collaboration Protocol
Profile using the Registry’s flexible Classification capabilities.

5.2.4 Buyer Discovers The Seller

The buyer browses the Registry using Classification schemes defined within the Registry using a
Registry Browser GUI tool to discover a suitable seller. For example the buyer may look for al
parties that are in the Automotive Industry, play a seller role, support the RosettaNet PIP3A4
process and sell Car Stereos.

The buyer discovers the seller’s CPP and decides to engage in a partnership with the seller.

Copyright © OASIS, 2001. All Rights Reserved

333

334
335
336
337
338
339

340

341
342
343

345
346

OASIS/ebXML Registry

November 2001

5.25 CPA Is Established

The buyer unilaterally creates a Collaboration Protocol Agreement or CPA as defined by
[ebCPP] with the seller using the seller’s CPP and their own CPP as input. The buyer proposes a
trading relationship to the seller using the unilateral CPA. The seller accepts the proposed CPA
and the trading relationship is established.

Once the seller accepts the CPA, the parties may begin to conduct B2B transactions as defined

by [ebMS].

5.3 Registry Users

We describe the actors who use the registry from the point of view of security and analyze the
security concerns of the registry below. This analysis leads up to the security requirements for
V2. Some of the actors are defined in Section 9.4.1 of [ebRS]. Note that same entity may take on
multiple roles. For example, a Registration Authority and Registry Administrator may have the

same identity.
= <=Tablel: Registry Users
: |SO/IEC
Actor Function Comments
11179
RegistrationAuthority | Hosts the RegistryObjects Registration
Authority (RA)
Registry Evaluates and enforces MAY have the same
Administrator registry security policy. identity as
Facilitates definition of the Registration
registry security policy. Authority
Registered User Has a contract with the The contract could
Registration Authority and be aebXML CPA or
MUST be authenticated by some other form of
Registration Authority. contract.
Registry Guest Has no contract with Note that a Registry
Registration Authority. Does Guest isnot a
not have to be authenticated Registry Reader.
for Registry access. Cannot
change contents of the
Registry (MAY be permitted
to read some
RegistryObjects.)
Submitting A Registered User who does | Submitting
Organization lifecycle operationson Organization
permitted RegistryObjects. (SO)
Registry Reader A Registered User who has
only read access
Responsible Creates Registry Objects Responsible RO MAY have the
Organization Organization same identity as SO
(RO)
Registry Client Registered User or Registered

Guest

Copyright © OASIS, 2001. All Rights Reserved

347

349
350
351
352
353

354

355
356

357

358
359
360
361
362
363
364

365
366
367
368
369
370
371

OASIS/ebXML Registry November 2001

) . Registry
Registry Client Administrator
) : Registration
Registered User Registry Guest Authority
S Responsible
. ; Ttin g Organization
Registry Reader Organization .

= <=Figurel: Actor Relationships

Note:

In the current version of the specification the following are true.

?? A Submitting Organization and a Responsible Organization are the same.

?? Registration of a user happens out-of-band, i.e, by means not specified in this specification
?? A Registry Administrator and Registration Authority are the same.

5.4 Where the Registry Services May Be Implemented

The Registry Services may be implemented in several ways including, as a public web site, as a
private web site, hosted by an ASP or hosted by a VPN provider.

5.5 Implementation Conformance

An implementation is a conforming ebXML Registry if the implementation meets the conditions
in Section 5.4.1. An implementation is a conforming ebXML Registry Client if the
implementation meets the conditions in Section 5.4.2. An implementation is a conforming
ebXML Registry and a conforming ebXML Registry Client if the implementation conforms to
the conditions of Section 5.4.1 and Section 5.4.2. An implementation shall be a conforming
ebXML Registry, aconforming ebXML Registry Client, or aconforming ebXML Registry and
Registry Client.

5.5.1 Conformance as an ebXML Registry
An implementation conforms to this specification as an ebXML registry if it meets the following
conditions:

1. Conformsto the ebXML Registry Information Model [ebRIM].

2. Supports the syntax and semantics of the Registry Interfaces and Security Model.

3. Supports the defined ebXML Registry DTD (Appendix A)

4. Optionally supports the syntax and semantics of Section 8.3, SQL Query Support.

Copyright © OASIS, 2001. All Rights Reserved

372
373
374
375
376
377

378
379

OASIS/ebXML Registry November 2001

5.5.2 Conformance as an ebXML Registry Client

An implementation conforms to this specification, as an ebXML Registry Client if it meets the
following conditions:

1. Supports the ebXML CPA and bootstrapping process.

2. Supports the syntax and the semantics of the Registry Client Interfaces.
3. Supports the defined ebXML Error Message DTD.
4

. Supports the defined ebXML Registry DTD.

Copyright © OASIS, 2001. All Rights Reserved

380

381
382
383

384
385

386

387
388
389

390
391

392
393

394
395
396
397

398
399
400
401

OASIS/ebXML Registry November 2001

6 ebXML Registry Architecture

The ebXML Registry architecture consists of an ebXML Registry Service and ebXML Registry
Clients. The ebXML Registry Service provides the methods for managing a repository. An
ebXML Registry Client is an application used to access the Registry.

LTI

L R

= =Figure2: ebXML Registry Service Architecture

6.1 Registry Service Described

The ebXML Registry Service is comprised of arobust set of interfaces designed to

fundamentally manage the objects and inquiries associated with the ebXML Registry. The two

primary interfaces for the Registry Service consist of

?? A Life Cycle Management interface that provides a collection of methods for managing
objects within the Registry.

?? A Query Management Interface that controls the discovery and retrieval of information from
the Registry.

A registry client program utilizes the services of the registry by invoking methods on one of the

above interfaces defined by the Registry Service. This specification defines the interfaces

exposed by the Registry Service (Sections 6.4 and 6.5) as well as the interface for the Registry

Client (Section 6.6).

6.2 Abstract Registry Service

The architecture defines the ebXML Registry as an abstract registry service that is defined as:
1. A set of interfaces that must be supported by the registry.
2. The set of methods that must be supported by each interface.

Copyright © OASIS, 2001. All Rights Reserved

402
403

405

406
407
408

409
410

411
412

413

414
415

416
417
418
419
420

421
422

423

424
425

426
427
428
429
430
431

OASIS/ebXML Registry November 2001

3. The parameters and responses that must be supported by each method.

The abstract registry service neither defines any specific implementation for the ebXML
Registry, nor does it specify any specific protocols used by the registry. Such implementation
details are described by concrete registry services that realize the abstract registry service.
The abstract registry service (Figure 3) shows how an abstract ebXML Registry must provide
two key functional interfaces called Quer yManager! (QM) and Li f eCycl eManager 2
(LM).

<= <=Figure3: The Abstract ebXML Registry Service

Appendix 0 describes the abstract service definition in the Web Service Description Language
(WSDL) syntax.

6.3 Concrete Registry Services

The architecture allows the abstract registry service to be mapped to one or more concrete
registry services defined as:

?? Implementations of the interfaces defined by the abstract registry service.

?? Bindings of these concrete interfaces to specific communication protocols.

This specification describes two concrete bindings for the abstract registry service:

?? A SOAP binding using the HTTP protocol

?? An ebXML Messaging Service (ebMS) binding

A registry may implement one or both of the concrete bindings for the abstract registry service as
shown in Figure 4.

QMUSOAR, 04D | _— i
L —%
oS

RS WAL
$| TRRS0AT |
- s
= =

= <=Figure4: A ConcreteebXML Registry Service

Figure 4 shows a concrete implementation of the abstract ebXML Registry (RegistryService) on
the left side. The RegistryService provides the QueryManager and LifeCycleManager interfaces
available with multiple protocol bindings (SOAP and ebMYS).

Figure 4 also shows two different clients of the ebXML Registry on the right side. The top client
uses SOAP interface to access the registry while the lower client uses ebMS interface. Clients
use the appropriate concrete interface within the RegistryService service based upon their

1 Known as ObjectQueryManager in V1.0
2 Known as ObjectManager in V1.0
Copyright © OASIS, 2001. All Rights Reserved

432

433

434

435
436
437
438

439

469

470

471
472

473
474
475

OASIS/ebXML Registry November 2001

protocol preference.

6.3.1 SOAP Binding

6.3.1.1 WSDL Terminology Primer

This section provides a brief introduction to Web Service Description Language (WSDL) since
the SOAP binding is described using WSDL syntax. WSDL provides the ability to describe a
web service in abstract as well as with concrete bindings to specific protocols. In WSDL, an
abstract service consists of oneor moreport types orend-points. Each port type consists
of acollection of oper at i ons. Each operation is defined in terms of messages that define
what datais exchanged as part of that operation. Each message is typically defined in terms of
elements within an XML Schema definition.

An abstract service is not bound to any specific protocol (e.g. SOAP). In WSDL, an abstract
service may be used to define a concrete service by binding it to a specific protocol. This binding
isdone by providing abi ndi ng definition for each abstract port type that defines additional

protocols specific details. Finally, aconcreteser vi ce definition is defined as a collection of
por t s, where each port smply adds address information such as a URL for each concrete port.

6.3.1.2 Concrete Binding for SOAP

This section assumes that the reader is somewhat familiar with SOAP and WSDL. The SOAP

binding to the ebXML Registry is defined as a web service description in WSDL as follows:

?? A single service element with name “RegistryService” defines the concrete SOAP binding
for the registry service.

?? The service e ement includes two port definitions, where each port corresponds with one of
the interfaces defined for the abstract registry service. Each port includes an HTTP URL for
accessing that port.

?? Each port definition also references a binding element, one for each interface defined in the
WSDL for the abstract registry service.

<servi ce name = "Regi stryService">
<port nane = "QueryManager SOAPBi ndi ng" bi nding = "tns: Quer yManager SOAPBi ndi ng" >
<soap: address | ocation = "http://your_URL_to_your_QueryManager"/>
</ port >

<port nanme = "LifeCycl eManager SOAPBi ndi ng" bi ndi ng = "t ns: Li f eCycl eManager SOAPBi ndi ng" >
<soap: address | ocation = "http://your URL_to_your_QueryNVanager"/>
</ port >
</ servi ce>

The complete WSDL description for the SOAP binding is described in Appendix O

6.3.2 ebXML Message Service Binding

6.3.2.1 Service and Action Elements
When wsing the ebXML Messaging Services Specification, eobXML Registry Service elements
correspond to Messaging Service elements as follows:

?? The vaue of the Service element in the MessageHeader is an ebXML Registry Service
interface name (e.g., “LifeCycleManager”). The type attribute of the Service element should
have a vaue of “ebXMLRegistry”.

Copyright © OASIS, 2001. All Rights Reserved

476
477
478
479
480
481

482
483
484

485
486
487

488
489
490

491
492
493
494
495
496
497
498
499
500
501
502
503

504
505

506
507
508
509

510

511
512
513
514
515
516
517
518

519

OASIS/ebXML Registry November 2001

?? The value of the Action element in the MessageHeader is an ebXML Registry Service
method name (e.g., “submitObjects”).

<eb: Servi ce eb:type="ebXM.-Regi stry”>Li f eCycl eManger </ eb: Servi ce>
<eb: Acti on>subm t Obj ect s</ eb: Acti on>

Note that the above allows the Registry Client only one interface/method pair per message. This
implies that a Registry Client can only invoke one method on a specified interface for a given
request to aregistry.

6.3.2.2 Synchronous and Asynchronous Responses
All methods on interfaces exposed by the registry return a response message.
Asynchronous response
When a message is sent asynchronoudly, the Registry will return two response messages. The
first message will be an immediate response to the request and does not reflect the actual
response for the request. This message will contain:
?? MessageHeader;
?? RegistryResponse element with empty content (e.g., NO AdHocQueryResponsg);

?7? dtatus attribute with value Unavailable.
The Registry delivers the actual Registry response element with non-empty content
asynchronoudly at alater time. The delivery is accomplished by the Registry invoking the
onResponse method on the RegistryClient interface as implemented by the registry client
application. The onResponse method includes a RegistryResponse element which hasa complete
as defined by the Synchronous response section below. The Registry response includes:
?? MessageHeader;
?? RegistryResponse el ement including;

?7? Status attribute (Success, Failure);

?7? Optional RegistryErrorList.
Synchronous response
When a message is sent synchronously, the Message Service Handler will hold open the
communication mechanism until the Registry returns aresponse. This message will contain:
?? MessageHeader;
?? RegistryResponse element including;

?7? Status attribute (Success, Failure);

?? Optiona RegistryErrorList.

6.3.2.3 ebXML Registry Collaboration Profiles and Agreements

The ebXML CPP specification [ebCPP] defines a CollaborationProtocol Profile (CPP) and a
CollaborationProtocol Agreement (CPA) as mechanisms for two parties to share information
regarding their respective business processes. That specification assumes that a CPA has been
agreed to by both parties in order for them to engage in B2B interactions.

This specification does not mandate the use of a CPA between the Registry and the Registry
Client. However if the Registry does not use a CPP, the Registry shall provide an alternate
mechanism for the Registry Client to discover the services and other information provided by a
CPP. This aternate mechanism could be asimple URL.

The CPA between clients and the Registry should describe the interfaces that the Registry and

Copyright © OASIS, 2001. All Rights Reserved

520
521

522

523
524
525
526
527

528
529

530

531
532
533

534
535

OASIS/ebXML Registry November 2001

the client expose to each other for Registry-specific interactions. The definition of the Registry
CPP template and a Registry Client CPP template are beyond the scope of this document.

6.4 LifeCycleManager Interface

Thisis the interface exposed by the Registry Service that implements the object life cycle
management functionality of the Registry. Its methods are invoked by the Registry Client. For
example, the client may use this interface to submit objects, to classify and associate objects and
to deprecate and remove objects. For this specification the semantic meaning of submit, classify,
associate, deprecate and remove is found in [ebRIM].

= =

= =Table2: LifeCycle Manager Summary

Method Summary of LifeCycleManager

Regi st ryResponse|lappr oveObj ect s(Appr oveObj ect sRequest req)
Approves one or more previously submitted objects.
Regi st ryResponse||depr ecat eObj ect s(Depr ecat eObj ect sRequest req)
Deprecates one or more previously submitted objects.
Regi st ryResponse||r enove(Cbj ect s(RenbveObj ect sRequest req)
Removes one or more previously submitted objects from
the Registry.

Regi st ryResponse||subni t-Ooj ect s(Subm t Obj ect sRequest req)
Submits one or more objects and possibly related
metadata such as Associations and Classifications.

Regi st ryResponse|jupdat eCbj ect s(Updat eObj ect sRequest req)
Updates one or more previously submitted objects.

Regi st ryResponse||addS| ot s(AddSI ot sRequest req)

Add dotsto one or more registry entries.

Regi st ryResponse||r enoveS| ot s(RenmoveS! ot gRequest req)

Remove specified slots from one or more registry entries.

6.5 QueryManager Interface

This is the interface exposed by the Registry that implements the Query management service of
the Registry. Its methods are invoked by the Registry Client. For example, the client may use
this interface to perform browse and drill down queries or ad hoc queries on registry content.

= &

<= =Table3: Query Manager

Method Summary of QueryM anager

Regi stryResponse|subm t AdhocQuer y(AdhocQuer yRequest req)
Submit an ad hoc query request.

Copyright © OASIS, 2001. All Rights Reserved

536

537

538
539

541
542

546
547

549
550
551
552

553
554

OASIS/ebXML Registry November 2001

6.6 Registry Clients

6.6.1 Registry Client Described

The Registry Client interfaces may be local to the registry or local to the user. Figure 5 depicts
the two possible topol ogies supported by the registry architecture with respect to the Registry
and Registry Clients. The picture on the left side shows the scenario where the Registry provides
aweb based “thin client” application for accessing the Registry that is available to the user using
acommon web browser. In this scenario the Registry Client interfaces reside across the Internet
and are local to the Registry from the user’s view. The picture on the right side shows the
scenario where the user isusing a “fat client” Registry Browser application to access the registry.
In this scenario the Registry Client interfaces reside within the Registry Browser tool and are
local to the Registry from the user’s view. The Registry Client interfaces communicate with the
Registry over the Internet in this scenario.

A third topology made possible by the registry architecture is where the Registry Client
interfaces reside in a server side business component such as a Purchasing business component.
In this topology there may be no direct user interface or user intervention involved. Instead, the
Purchasing business component may access the Registry in an automated manner to select

(== ———
. Tl Chetid berfaces
S — | Romty s | et
| Reagistey Interfases chieert smd nol the
: registry. The chent
I may be a Registry

Brraser applcation
e
| Regestry Clert [nberfaces |

The Pepely
proides Do Client
wterfaces boall

[Tzers wia awrch based
PRI T i

PR
C Internet

Uzer aocesmg the regatry
usng a Regatry bioarer thet
1 conlains the Cherd

using commaon web hroweser. irlerfacpe

=fr acv sz e el

< =Figure5: Registry Architecture Supports Flexible Topologies

Copyright © OASIS, 2001. All Rights Reserved

555

556
557
558
559
560
561

562
563
564
565

566
567
568
569

570

571
572
573
574

575
576

S77
578
579

580

581
582
583
584
585
586
587
588
589
590

591

592
593
594
595
596

597

OASIS/ebXML Registry November 2001

6.6.2 Registry Communication Bootstrapping

Before a client can access the services of a Registry, there must be some communication
bootstrappi ngbetween the client and the registry. The most essential aspect of this bootstrapping
process is for the client to discover addressing information (e.g. an HTTP URL) to each of the
concrete service interfaces of the Registry. The client may obtain the addressing information by
discovering the ebXML Registry in a public registry such as UDDI or within another ebXML
Regidtry.

?? In case of SOAP binding, all the info needed by the client (e.g. Registry URLS) is available
inaWSDL desription for the registry. This WSDL conforms to the template WSDL
description in Appendix 0. This WSDL description may be discovered in a public registry
such as UDDI.

?? In case of ebM S binding, the information exchange between the client and the registry may
be accomplished in aregistry specific manner, which may involve establishing a CPA
between the client and the registry. Once the information exchange has occurred the Registry
and the client will have addressing information (e.g. URLS) for the other party.

6.6.2.1 Communication Bootstrapping for SOAP Binding

Each ebXML Registry must provide a WSDL description for its RegistryService as defined by
Appendix 0. A client uses the WSDL description to determine the address information of the
RegistryService in a protocol specific manner. For example the SOAP/HTTP based ports of the
RegistryService may be accessed viaa URL specified in the WSDL for the registry.

The use of WSDL enables the client to use automated tools such asa WSDL compiler to
generate stubs that provide access to the registry in a language specific manner.

At minimum, any client may access the registry over SOAP/HTTP using the address information

within the WSDL, with minimal infrastructure requirements other than the ability to make
synchronous SOAP call to the SOAP based ports on the RegistryService.

6.6.2.2 Communication Bootstrapping for ebXML Message Service

Since there is no previously established CPA between the Registry and the RegistryClient, the
client must know at least one Transport-specific communication address for the Registry. This
communication address is typically a URL to the Registry, although it could be some other type
of address such as an email address. For example, if the communication used by the Registry is
HTTP, then the communication addressis a URL. In this example, the client uses the Registry’s
public URL to create an implicit CPA with the Registry. When the client sends a request to the
Registry, it provides a URL to itself. The Registry uses the client’s URL to form its version of an
implicit CPA with the client. At this point a session is established within the Registry. For the
duration of the client’s session with the Registry, messages may be exchanged bidirectionally as
required by the interaction protocols defined in this specification.

6.6.3 RegistryClient Interface

Thisis the principa interface implemented by a Registry client. The client provides this interface
when creating a connection to the Registry. It provides the methods that are used by the Registry
to deliver asynchronous responses to the client. Note that a client need not provide a
RegistryClient interface if the [CPA] between the client and the registry does not support
asynchronous responses.

The registry sends all asynchronous responses to operations to the onResponse method.

Copyright © OASIS, 2001. All Rights Reserved

598
599

600

601
602

603

604

605
606
607
608

609

610
611
612

613
614
615

616
617

OASIS/ebXML Registry November 2001

= &

= <=Table4: RegistryClient Summary

M ethod Summary of RegistryClient

voi d|jonResponse(Regi stryResponse resp)
Notifies client of the response sent by registry to previously submitted request.

6.6.4 Registry Response

= <=The RegistryResponse is a common class defined by the Registry interface that is used by theregistry to
provideresponsesto client requests.

6.7 Interoperability Requirements

6.7.1 Client Interoperability

The architecture requires that any ebXML conpliant registry client can access any ebXML
compliant registry service in an interoperable manner. An ebXML Registry may implement any
number of protocol bindings from the set of normative bindings (currently ebXML TRP and
SOAP/HTTP) defined in this proposal. The support of additional protocol bindings is optional.

6.7.2 Inter-Registry Cooperation

This version of the specification does not preclude ebXML Registries from cooperating with
each other to share information, nor does it preclude owners of ebXML Registries from
registering their ebXML registries with other registry systems, catalogs, or directories.
Examples include:

?? An ebXML Registry that serves as aregistry of ebXML Registries.

?? A nonebXML Registry that serves as aregistry of ebXML Registries.

?? Cooperative ebXML Registries, where multiple ebXML registries register with each other in
order to form afederation.

Copyright © OASIS, 2001. All Rights Reserved

618

619
620
621
622
623
624
625
626
627

628

629
630
631
632

633
634

635

636
637
638
639

OASIS/ebXML Registry November 2001

7 Life Cycle Management Service

This section defines the LifeCycleManagement service of the Registry. The Life Cycle
Management Service is a sub-service of the Registry service. It provides the functionality
required by RegistryClients to manage the life cycle of repository items (e.g. XML documents
required for ebXML business processes). The Life Cycle Management Service can be used with
al types of repository items as well as the metadata objects specified in [ebRIM] such as
Classification and Association.

The minimum- security policy for an ebXML registry isto accept content from any client if a
certificate issued by a Certificate Authority recognized by the ebXML registry digitally signs the
content.

7.1 Life Cycle of a Repository Item

The main purpose of the LifeCycleManagement service is to manage the life cycle of repository
items. Figure 6 shows the typical life cycle of arepository item. Note that the current version of
this specification does not support Object versioning. Object versioning will be added in a future
version of this specification

. submitOhject Submitted

—

approveOhject

T
Approved

deprecatebject

B
Deprecated

removedbject

e,
@ Femaoved

H
= <=Figure6: Life Cycle of a Repository Item

7.2 RegistryObject Attributes

A repository item is associated with a set of standard metadata defined as attributes of the
RegistryObject class and its sub-classes as described in [ebRIM]. These attributes reside outside
of the actual repository item and catalog descriptive information about the repository item. XML
elements called ExtrinsicObject and other elements (See Appendix B for details) encapsulate all
object metadata attributes defined in [ebRIM] as XML attributes.

Copyright © OASIS, 2001. All Rights Reserved

641
642

645
646

647

649
650
651
652
653
654

655

656
657
658

659
660
661
662
663
664
665
666
667
668

OASIS/ebXML Registry November 2001

7.3 The Submit Objects Protocol

This section describes the protocol of the Registry Service that allows a RegistryClient to submit
one or more repository items to the repository using the LifeCycleManager on behalf of a
Submitting Organization. It is expressed in UML notation as described in Appendix C.

client lcm
RegistryClient LifeCycleManager

submitOhjects{SubmitOhjectzRequest:RegistrvResponse |

L

onResponselRegistResponse)void |

L:J =

<= =Figure7: Submit Objects Sequence Diagram

For details on the schema for the Business documents shown in this process refer to Appendix B.
The SubmitObjectRequest message includes a L eafRegistryObjectList element.

The LeafRegistryObjectList element specifies one or more ExtrinsicObjects or other
RegistryEntries such as Classifications, Associations, ExternalLinks, or Packages.

An ExtrinsicObject element provides required metadata about the content being submitted to the
Registry as defined by [ebRIM]. Note that these standard ExtrinsicObject attributes are separate
from the repository item itself, thus allowing the ebXML Registry to catalog objects of any
object type.

7.3.1 Universally Unique ID Generation

As specified by [ebRIM], all objects in the registry have a unique id. Theid must be a
Universally Unique Identifier (UUID) and must conform to the to the format of a URN that
specifies a DCE 128 hit UUID as specified in [UUID].

(eg.urn: uui d: a2345678- 1234- 1234- 123456789012)
The registry usually generates thisid. The client may optionally supply the id attribute for
submitted objects. If the client suppliesthei d and it conforms to the format of a URN that
specifiesa DCE 128 bit UUID then the registry assumes that the client wishes to specify the id
for the abject. In this case, the registry must honour a client-supplied id and use it as the id
attribute of the object in the registry. If the id is found by the registry to not be globally unique,
the registry must raise the error condition: InvalididError.
If the client does not supply an id for a submitted object then the registry must generate a
universally uniqueid. Whether the client generates the id or whether the registry generatesiit, it
must be generated using the DCE 128 bit UUID generation algorithm as specified in [UUID].

Copyright © OASIS, 2001. All Rights Reserved

669

670
671
672
673
674
675
676
677
678
679
680
681
682
683
684

685

686
687

688

689
690
691

692

693
694
695
696
697
698
699
700

OASIS/ebXML Registry November 2001

7.3.2 ID Attribute And Object References

The id attribute of an object may be used by other objects to reference the first object. Such
references are common both within the SubmitObjectsRequest as well as within the registry.
Within a SubmitObjectsRequest, the id attribute may be used to refer to an object within the
SubmitObjectsRequest as well asto refer to an object within the registry. An object in the
SubmitObjectsRequest that needs to be referred to within the request document may be assigned
an id by the submitter so that it can be referenced within the request. The submitter may give the
object a proper uuid URN, in which case the id is permanently assigned to the object within the
registry. Alternatively, the submitter may assign an arbitrary id (not a proper uuid URN) aslong
as the id is unique within the request document. In this case the id serves as a linkage mechanism
within the request document but must be ignored by the registry and replaced with aregistry
generated id upon submission.

When an object in a SubmitObjectsRequest needs to reference an object that is aready in the
registry, the request must contain an ObjectRef element whose id attribute is the id of the object
in the registry. Thisid is by definition a proper uuid URN. An ObjectRef may be viewed as a
proxy within the request for an object that isin the registry.

7.3.3 Audit Trail

The RS must create AuditableEvents object with eventType Created for each RegistryObject
created via a SubmitObjects request.

7.3.4 Submitting Organization

The RS must create an Association of type SubmitterOf between the submitting organization and
each RegistryObject created via a SubmitObjects request. (Submitting organization is
determined from the organization attribute of the User who submits a SubmitObjects request.)

7.3.5 Error Handling

A SubmitObjects request is atomic and either succeeds or failsin total. In the event of success,
the registry sends a RegistryResponse with a status of “Success’ back to the client. In the event
of failure, the registry sends a RegistryResponse with a status of “Failure” back to the client. In
the event of an immediate response for an asynchronous request, the registry sends a
RegistryResponse with a status of “Uavailable” back to the client. Failure occurs when one or
more Error conditions are raised in the processing of the submitted objects. Warning messages
do not result in failure of the request. The following business rules apply:

= <=Table5 Submit Objects Error Handling

Business Rule AppliesTo |Error/Warning
I D not uni que Al Cl asses Error]
Not aut hori zed Al'l Cl asses Error
Ref erenced obj ect not found. Associ ati on, Error
Cl assi fication,
Cl assi fi cati onNode,
Or gani zati on
Associ ations not allowed to connect | Association Error
to deprecated objects.
Qbi ect status, maiorVersion and Al'l Cl asses WMr ni ng

Copyright © OASIS, 2001. All Rights Reserved

OASIS/ebXML Registry November 2001

m nor Versi on are set by the RS, and
ignored if supplied.

7.3.6 Sample SubmitObjectsRequest

The following example shows several different use cases in a single SubmitObjectsRequest. It
does not show the complete SOAP or [ebM S| Message with the message header and additional
payloads in the message for the repository items.

A SubmitObjectsRequest includes a RegistryObjectList whichcontains any number of objects
that are being submitted. It may also contain any number of ObjectRefs to link objects being
submitted to objects already within the registry.

<?xm version = "1.0" encoding = "UTF-8"?>
<Submi t bj ect sRequest
xm ns = "urn: oasi s: nanes: tc: ebxnl -regrep: regi stry: xsd: 2. 0"
xm ns: xsi = "http://ww. w3. org/ 2001/ XM_Schena-i nst ance"
xsi : schemalLocati on = "urn: oasi s: nanes:tc: ebxm-regrep:rimxsd: 2.0 file:///C:./osws/ebxmrr-
spec/ m sc/ schema/ ri m xsd urn: oasi s: nanes: t c: ebxnmi-regrep: regi stry: xsd: 2.0
file:///C /osws/ebxmrr-spec/m sc/schema/rs. xsd"
xm ns:rim= "urn: oasi s: names: tc: ebxm - regrep: ri mxsd: 2. 0"
xm ns:rs = "urn: oasi s: nanes: tc: ebxm -regrep: regi stry: xsd: 2. 0"
>

<ri m Leaf Regi st ryQbj ect Li st >

<l--

The foll owing 3 objects package specified ExtrinsicCbject in specified
Regi st ryPackage, where both the Regi stryPackage and the ExtrinsicCbject are
being subnitted

- o>
<ri m Regi stryPackage id = "acnePackagel" >
<ri m Nanme>
<rim Local i zedStri ng val ue = "Regi stryPackage #1"/>

</ri m Nane>
<ri m Descri pti on>
<rim Local i zedString val ue = "ACMVE s package #1"/>
</rim Description>
</ri m Regi st ryPackage>

<rimExtrinsicCbject id = "acmeCPP1" >
<ri m Name>
<rim Local i zedStri ng value = "Wdget Profile" />
</ ri m Nane>
<ri m Description>
<rim Local i zedString value = "ACME' s profile for selling w dgets" />
</rim Descri ption>
</rim Extrinsi cCoj ect>

<rim Associ ation id = "acnePackagel-acneCPPl- Assoc" associ ati onType = "Packages" source(bj ect
= "acnePackagel" target Cbject = "acmeCPP1" />
<I--

The fol l owi ng 3 obj ects package specified ExtrinsicCbject in specified RegistryPackage,
Wiere the Regi stryPackage is being submtted and the ExtrinsicObject is
already in registry

-->
<rim Regi stryPackage i d = "acnePackage2" >
<ri m Name>
<rim Local i zedStri ng val ue = "Regi stryPackage #2"/>

</ ri m Nane>
<ri m Descri pti on>
<rim Local i zedString val ue = "ACVE s package #2"/>
</rim Descri ption>
</rim Regi stryPackage>

<rim Qoj ectRef id = "urn:uuid: a2345678-1234-1234-123456789012"/ >

Copyright © OASIS, 2001. All Rights Reserved

OASIS/ebXML Registry November 2001

<rim Associ ation id = "acnePackage2-al r eadySubm t t edCPP- Assoc" associ ati onType = "Packages"
sour ce(hj ect = "acnePackage2" target object = "urn:uui d: a2345678- 1234-1234- 123456789012" / >

“ll==
The fol l owi ng 3 obj ects package specified ExtrinsicCbject in specified RegistryPackage,
where the Regi stryPackage and the ExtrinsicCObject are already in registry
-->

“urn: uui d: b2345678-1234-1234-123456789012"/ >
"urn: uui d: c2345678-1234-1234-123456789012"/ >

<rim Qbj ect Ref id
<rim Obj ectRef id

<l-- idis unspecified inplying that registry must create a uuid for this object -->

<rim Associ ati on associ ati onType = "Packages" sourceCbj ect = "urn: uui d: b2345678- 1234- 1234-
123456789012" target Cbj ect = "urn: uui d: c2345678- 1234- 1234- 123456789012" / >

<l--
The following 3 objects externally link specified ExtrinsicChject using
speci fied External Link, where both the External Link and the ExtrinsicQbject
are being submtted

- o>
<rim External Link id = "acneLi nk1" >
<ri m Name>
<rim Local i zedString value = "Link #1"/>

</ ri m Nane>
<ri m Descri pti on>
<rim Local i zedString value = "ACMVE' s Link #1"/>
</rim Description>
</rim Ext ernal Li nk>

<rimExtrinsicCoject id = "acmeCPP2" >
<ri m Name>
<rim Local i zedString val ue = "Sprockets Profile" />
</ ri m Nane>
<ri m Description>
<rim Local i zedString value = "ACVE' s profile for selling sprockets"/>
</rim Descri ption>
</rim ExtrinsicCbject >

<rim Associ ation id = "acneLi nkl- acmeCPP2- Assoc" associ ati onType = "External | yLi nks"
source(hj ect = "acneLi nk1" target Qbj ect = "acneCPP2"/>
<l--

The following 2 objects externally |ink specified ExtrinsicObject using specified
Ext ernal Li nk, where the External Link is being submtted and the ExtrinsicObject
is already in registry. Note that the targetChject points to an CbjectRef in a
previous |ine

-->
<rimExternal Link id = "acneLi nk2">
<ri m Nanme>
<rim Local i zedString value = "Link #2"/>

</ ri m Nane>
<ri m Descri pti on>
<rim Local i zedStri ng val ue
</rim Description>
</rim Ext ernal Li nk>

"ACME' s Link #2"/>

<rim Associ ation id = "acneLi nk2- al readySubmi t t edCPP- Assoc" associ ati onType =
"Ext ernal | yLi nks" sourceChj ect = "acneLi nk2" target Cbject = "urn:uuid: a2345678- 1234- 1234-
123456789012"/ >

<I--
The following 3 objects externally identify specified ExtrinsicCbject using specified
External I dentifier, where the External Identifier is being submtted and the
ExtrinsicCbject is already in registry. Note that the target Cbject points to an
Obj ectRef in a previous |ine
-->

<rimd assificationScheme id = "DUNS-id" islnternal ="fal se" nodeType="Uni queCode" >
<ri m Name>
<rim Local i zedStri ng val ue = "DUNS"/ >
</ ri m Nane>

Copyright © OASIS, 2001. All Rights Reserved

OASIS/ebXML Registry

November 2001

<rim Description>

<rim Local i zedString value = "This is the DUNS schenme"/ >

</rim Descri ption>
</rimd assificationSchene>

<rimExternal Identifier id = "acneDUNSId" identificationSchene="DUNS id" val ue =

"13456789012" >
<ri m Name>
<rim Local i zedStri ng val ue
</ri m Name>
<ri m Descripti on>
<rim Local i zedStri ng val ue
</rim Description>
</rimExternal | dentifier>

"DUNS' />

"DUNS ID for ACMVE'/>

<rim Associ ation id = "acneDUNSI d-al r eadySubm tt edCPP- Assoc" associ ati onType =
"External | yldentifies" sourceQject

123456789012"/ >

<l--

= "acmeDUNSI d" target Cbj ect = "urn:uui d: a2345678- 1234- 1234-

The foll owi ng show subm ssion of a brand new cl assification scheme in its entirety

-->

<rim C assificati onSchene id = "Geography-i d" islnternal ="true" nodeType="Uni queCode" >

<ri m Nanme>
<rim Local i zedStri ng val ue
</ ri m Nane>

<ri m Descri pti on>
<rim Local i zedStri ng val ue
</rim Description>

<rimd assificationNode id =
"Nort hAneri ca" >
<rimd assificati onNode id
"UnitedStates" />
<rim d assificationNode id
</rim d assificati onNode>

" Geogr aphy"/ >

"This is a sanpl e Geography schene"/>

"Nort hAnerica-id" parent = "Geography-id" code =

"UnitedStates-id" parent = "NorthAnmerica-id" code =

"Canada-id" parent = "NorthAmerica-id" code = "Canada" />

<rimC assificationNode id = "Asia-id" parent = "Ceography-id" code = "Asia" >
<rimd assificationNode id = "Japan-id" parent = "Asia id" code = "Japan" >
<rimd assificationNode id = "Tokyo-id" parent = "Japan-id" code = "Tokyo" />

</rimd assificati onNode>
</rim d assificati onNode>
</rimd assificationSchene>

<l--

The fol | owi ng show submi ssion of a Autonotive sub-tree of d assificationNodes that
gets added to an existing classification scheme naned ' | ndustry'
that is already in the registry

-->

<rim ObjectRef id = "urn:uuid: d2345678-1234-1234-123456789012"/ >
<rim C assificationNode id = "aut onoti veNode" parent = "urn: uui d: d2345678- 1234- 1234-

123456789012" >
<ri m Nanme>
<rim Local i zedString val ue
</rim Name>
<ri m Descri pti on>
<rim Local i zedStri ng val ue
</rim Description>
</rimd assi ficati onNode>

" Aut onotive" />

"The Autonotive sub-tree under |Industry schene"/>

<rimd assificationNode id = "part Suppl i ersNode" parent = "autonotiveNode">

<ri m Name>
<rim Local i zedString val ue
</ ri m Nane>
<ri m Descri pti on>
<rim Local i zedStri ng val ue
</rim Description>
</rim d assi ficati onNode>

"Parts Supplier" />

"The Parts Supplier node under the Autonotive node" />

<rim C assificati onNode id = "engi neSuppl i er sNode" parent = "autonoti veNode">
<ri m Name>
<rim Local i zedString val ue = "Engi ne Supplier" />

Copyright © OASIS, 2001. All Rights Reserved

OASIS/ebXML Registry November 2001

916 </ri m Nane>

917 <ri m Descri pti on>

918 <rim Local i zedString val ue = "The Engi ne Supplier node under the Autonotive node" />
919 </rim Description>

920 </rimd assi ficati onNode>

921

922 <l--

923 The fol |l owi ng show subm ssion of 2 Oassifications of an object that is already in
924 the registry using 2 dassificati onNodes. One d assificati onNode

925 is being submtted in this request (Japan) while the other is already in the registry.
926 RS

927

928 <rimC assification id = "japand assi fication" classifiedChject = "urn:uuid: a2345678- 1234-
929 1234-123456789012" cl assificati onNode = "Japan-i d">

930 <ri m Descri ption>

931 <rim Local i zedString value = "Classifies object by /Geography/ Asi a/ Japan node"/ >
932 </rim Description>

933 </rimd assification>

934

935 <rimC assification id = "cl assificationUsi ngExi sti ngNode" cl assi fi edCbj ect =

936 "urn: uui d: a2345678- 1234- 1234- 123456789012" cl assi fi cati onNode = "urn: uui d: e2345678-1234- 1234-
937 123456789012" >

938 <ri m Descri pti on>

939 <rim LocalizedString value = "C assifies object using a node in the registry" />
940 </rim Description>

941 </rimd assification>

942

943 <rim Qbj ectRef id = "urn: uuid: e2345678-1234-1234-123456789012"/ >

944 </rim Leaf Regi stryQbj ect Li st >

945 </ subni t vj ect sRequest >

947 7.4 The Update Objects Protocol

948 This section describes the protocol of the Registry Service that alows a Registry Client to update
949 one or more existing Registry Itemsin the registry on behalf of a Submitting Organization. Itis
950 expressed in UML notation as described in Appendix C.

client Ilcm
RegistrvyClient LifeCycleManager

UpdatesOhjectsilUpdateOhjectsRequest RenistvResponse |

L]

onResponselRegistvResponse)void |

L:J =

951
952 = =Figure8: Update Objects Sequence Diagram

953 For details on the schema for the Business documents shown in this process refer to Appendix B.
954 The UpdateObjectsRequest message includes a Leaf RegistryObjectList element. The

955 LeafRegistryObjectList element specifies one or more RegistryObjects. Each object in the list
956 must be acurrent RegistryObject. RegistryObjects must include al attributes, even those the
957 user does not intend to change. A missing attribute is interpreted as a request to set that attribute

Copyright © OASIS, 2001. All Rights Reserved

958

959

960
961

962

963
964
965
966
967
968

969

970
971
972
973
974
975
976
977

978

979
980
981

OASIS/ebXML Registry November 2001

to NULL.

7.4.1 Audit Trail

The RS must create AuditableEvents object with eventType Updated for each RegistryObject
updated via an UpdateObjects request.

7.4.2 Submitting Organization

The RS must maintain an Association of type SubmitterOf between the submitting organization
and each RegistryObject updated via an UpdateObjects request. If an UpdateObjects request is
accepted from a different submitting organization, then the RS must delete the original
association object and create a new one. Of course, the AccessControlPolicy may prohibit this
sort of update in the first place. (Submitting organization is determined from the organization
attribute of the User who submits an UpdateObjects request.)

7.4.3 Error Handling

An UpdateObjects request is atomic and either succeeds or failsin total. In the event of success,
the registry sends a RegistryResponse with a status of “ Success’ back to the client. In the event
of failure, the registry sends a RegistryResponse with a status of “Failure” back to the client. In
the event of an immediate response for an asynchronous request, the registry sends a
RegistryResponse with a status of “Uavailable” back to the client. Failure occurs when one or
more Error conditions are raised in the processing of the updated objects. Warning messages do
not result in failure of the request. The following business rules apply:

= <=Table6: Update Objects Error Handling

Business Rule AppliesTo |Error/Warning
Obj ect not found Al'l Cl asses Error
Not aut hori zed Al'l Cl asses Error
Ref erenced obj ect not found. Associ ati on, Error

Cl assification,
Cl assi ficati onNode,
Organi zati on

Associ ations not allowed to connect | Association Error
to deprecated objects.
Obj ect status, majorVersion and Al'l Classes War ni ng

m nor Ver si on cannot be changed via
t he Updat eObj ects protocol, ignored
i f supplied.

Regi stryEntries with stability = Al'l Classes War ni ng
“Stabl e” shoul d not be updated.

7.5 The Add Slots Protocol

This section describes the protocol of the Registry Service that allows a client to add slotsto a
previously submitted registry entry using the LifeCycleManager. Slots provide a dynamic
mechanism for extending registry entries as defined by [ebRIM].

Copyright © OASIS, 2001. All Rights Reserved

OASIS/ebXML Registry November 2001

client ohjMyr
RegistryClient LifeCycleManager

addslotsiaddSlotsReguesti RegistryResponse |

L]

onResponselRegistyResponselvoid |

L:J =

982
983 = =Figure9: Add Slots Sequence Diagram

984 Inthe event of success, the registry sends a RegistryResponse with a status of “success’ back to
985 theclient. Inthe event of failure, the registry sends a RegistryResponse with a status of “failure’
986 back to the client.

987 7.6 The Remove Slots Protocol

988 This section describes the protocol of the Registry Service that allows a client to rermove dots to
989 aprevioudly submitted registry entry using the LifeCycleManager.

client lcm
RegistyClient LifeCycleManager

removeslotsiRemoveSiotsRequestReqisttyResponse |

L]

onResponselRegistyResponse)void |

L:J =

990
991 = <=Figure 10: Remove Slots Sequence Diagram

992 7.7 The Approve Objects Protocol

993 This section describes the protocol of the Registry Service that allows a client to approve one or
994 more previously submitted repository items using the LifeCycleManager. Once a repository item
995 isapproved it will become available for use by business parties (e.g. during the assembly of new
996 CPAsand Collaboration Protocol Profiles).

Copyright © OASIS, 2001. All Rights Reserved

997
998

999

1000

1001
1002

1003

1004
1005
1006
1007
1008
1009

1010

1011
1012
1013
1014
1015
1016
1017
1018

OASIS/ebXML Registry November 2001

client lcm
RegistryClient LifeCycleManager

approveObjectsiApproveDhjectsReguest RedistrvResponse |

L]

onResponselRegistyResponselvoid |

L:J =

= <=Figure 11: Approve Objects Sequence Diagram

For details on the schema for the business documents shown in this process refer to Appendix B.

7.7.1 Audit Trail

The RS must create AuditableEvents object with eventType Approved for each RegistryObject
approved via an Approve Objects request.

7.7.2 Submitting Organization

The RS must maintain an Association of type SubmitterOf between the submitting organization
and each RegistryObject updated via an ApproveObjects request. If an ApproveObjects request
is accepted from a different submitting organization, then the RS must delete the origina
association object and create a new one. Of course, the AccessControl Policy may prohibit this
sort of ApproveObjects request in the first place. (Submitting organization is determined from
the organization attribute of the User who submits an ApproveObjects request.)

7.7.3 Error Handling

An ApproveObjects request is atomic and either succeeds or failsin total. In the event of success,
the registry sends a RegistryResponse with a status of “Success’ back to the client. In the event
of failure, the registry sends a RegistryResponse with a status of “Failure” back to the client. In
the event of an immediate response for an asynchronous request, the registry sends a
RegistryResponse with a status of “Uavailable” back to the client. Failure occurs when one or
more Error conditions are raised in the processing of the object reference list. Warning messages
do not result in failure of the request. The following business rules apply:

<= =Table7: Approve Objects Error Handling

Business Rule AppliesTo |Error/Warning
Obj ect not found Al'l Cl asses Error]
Not aut hori zed Regi stryEntry Error
Cl asses
Only ReaistrvEntries may be Al'l Cl asses other Error

Copyright © OASIS, 2001. All Rights Reserved

1019

1020
1021
1022
1023
1024

1025
1026

1027

1028

1029
1030

1031

1032
1033
1034
1035
1036
1037

1038

1039
1040
1041
1042

OASIS/ebXML Registry November 2001

"approved". than RegistryEntry

cl asses
Obj ect status is already Regi stryEntry War ni ng
" Approved". Cl asses

7.8 The Deprecate Objects Protocol

This section describes the protocol of the Registry Service that allows a client to deprecate one or
more previously submitted repository items using the LifeCycleManager. Once an object is
deprecated, no new references (e.g. new Associations, Classifications and ExternalLinks) to that
object can be submitted. However, existing references to a deprecated object continue to function
normally.

client lcm
RegistreClient LifeCycleManager

deprecatebjects{DeprecatedbjectsRequesfi:RegistResponse [

L]

I
7

| onResponse(RegistyResponse)void |
L_| |
I
I
I
I
I
I
I
|

= =Figure 12: Deprecate Objects Sequence Diagram

For details on the schema for the business documents shown in this process refer to Appendix B.

7.8.1 Audit Trail

The RS must create AuditableEvents object with eventType Deprecated for each RegistryObject
deprecated via a Deprecate Objects request.

7.8.2 Submitting Organization

The RS must maintain an Association of type SubmitterOf between the submitting organization
and each RegistryObject updated via a Deprecate Objects request. If a Deprecate Objects request
is accepted from a different submitting organization, then the RS must delete the original
association object and create a new one. Of course, the AccessControl Policy may prohibit this
sort of Deprecate Objects request in the first place. (Submitting organization is determined from
the organization attribute of the User who submits a Deprecate Objects request.)

7.8.3 Error Handling

A DeprecateObjects request is atomic and either succeeds or failsin total. In the event of
success, the registry sends a RegistryResponse with a status of “ Success’ back to the client. In
the event of failure, the registry sends a RegistryResponse with a status of “Failure” back to the
client. In the event of an immediate response for an asynchronous request, the registry sends a

Copyright © OASIS, 2001. All Rights Reserved

1043
1044
1045
1046

1047

1048
1049
1050
1051
1052
1053

1054

1055
1056
1057

1058

1059
1060
1061
1062
1063
1064

1065

OASIS/ebXML Registry November 2001

RegistryResponse with a status of “Uavailable” back to the client. Failure occurs when one or
more Error conditions are raised in the processing of the object reference list. Warning messages
do not result in failure of the request. The following business rules apply:

= <=Table8: Deprecate Objects Error Handling
Business Rule AppliesTo | Error/Warning

bj ect not found All Classes Error]
Not authori zed Regi stryEntry Error

Cl asses
Only RegistryEntries may be Al l Cl asses ot her Error
"deprecated". t han Regi stryEntry

cl asses
Obj ect status is already Regi stryEntry War ni ng
"Deprecated". Cl asses
7.9 The Remove Objects Protocol

This section describes the protocol of the Registry Service that allows a client to remove one or
more RegistryObject instances and/or repository items using the LifeCycleManager.

The RemoveObjectsRequest message is sent by a client to remove RegistryObject instances
and/or repository items. The RemoveObjectsRequest element includes an XML attribute called
deletionScope which is an enumeration that can have the values as defined by the following
sections.

7.9.1 Deletion Scope DeleteRepositoryltemOnly

This deletionScope specifies that the request should delete the repository items for the specified
registry entries but not delete the specified registry entries. Thisis useful in keeping references to
the registry entries valid.

7.9.2 Deletion Scope DeleteAll

This deletionScope specifies that the request should delete both the RegistryObject and the
repository item for the specified registry entries. Only if al references (e.g. Associations,
Classifications, ExternalLinks) to a RegistryObject have been removed, can that RegistryObject
then be removed using a RemoveODbjectsRequest with deletionScope DeleteAll. Attempts to
remove a RegistryObject while it still has references raises an error condition:
InvalidRequestError.

The remove object protocoal is expressed in UML notation as described in Appendix C.

Copyright © OASIS, 2001. All Rights Reserved

1066
1067

1068

1069

1070
1071
1072
1073
1074
1075
1076
1077

1078

OASIS/ebXML Registry

November 2001

client
RegistryClient

removedhbjects(RemovelhbjectsRequest ReqistryResponse

lcm
LifeCycleManager

L]

onResponselRegistyResponselvoid |

:

< <=Figure 13: Remove Objects Sequence Diagram

L]

For details on the schema for the business documents shown in this process refer to Appendix B.

7.9.3 Error Handling

A Remove Objects request is atomic and either succeeds or failsin total. In the event of success,
the registry sends a RegistryResponse with a status of “ Success’ back to the client. In the event
of failure, the registry sends a RegistryResponse with a status of “Failure” back to the client. In
the event of an immediate response for an asynchronous request, the registry sends a
RegistryResponse with a status of “Uavailable” back to the client. Failure occurs when one or
more Error conditions are raised in the processing of the object reference list. Warning messages
do not result in faillure of the request. The following business rules apply:

<= <=Table9: Remove Objects Error Handling

Business Rule

AppliesTo

Error/Warning

Obj ect not found

Al'l Cl asses

Error

Not aut hori zed

Regi st ryOhj ect
Cl asses

Error

Copyright © OASIS, 2001. All Rights Reserved

1079

1080
1081
1082
1083

1084

1085
1086
1087
1088
1089
1090
1091
1092
1093
1094

1095

1096
1097
1098

1099
1100
1101
1102
1103

1104
1105

OASIS/ebXML Registry November 2001

8 Query Management Service

This section describes the capabilities of the Registry Service that allow a client
(QueryManagerClient) to search for or query different kind of registry objects in the ebXML
Registry using the QueryManager interface of the Registry. The Registry supports the following
query capabilities:

1. Filter Query

2. SQL Query

The Filter Query mechanism in Section 8.2 SHALL be supported by every Registry
implementation. The SQL Query mechanism is an optional feature and MAY be provided by a
registry implementation. However, if avendor provides an SQL query capability to an ebXML
Registry it SHALL conform to this document. As such this capability is a normative yet optional
capability.

In afuture version of this specification, the W3C X Query syntax may be considered as another
query syntax.

The Registry will hold a self-describing capability profile that identifies all supported
AdhocQuery options. This profile is described in Section Error! Reference source not found.

8.1 Ad Hoc Query Request/Response

A client submits an ad hoc query to the QueryManager by sending an AdhocQueryRequest. The
AdhocQueryRequest contains a subelement that defines a query in one of the supported Registry
query mechanisms.

The QueryManager sends an AdhocQueryResponse either synchronously or asynchronously
back to the client. The AdhocQueryResponse returns a collection of objects whose element type
depends upon the responseOption attribute of the AdhocQ ueryRequest. These may be objects
representing leaf classes in [ebRIM], references to objects in the registry as well as intermediate
classesin [ebRIM] such as RegistryObject and RegistryEntry.

Any errors in the query request messages are indicated in the corresponding query response
message.

Copyright © OASIS, 2001. All Rights Reserved

1106
1107

1108

1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131

1132

1133
1134
1135
1136
1137
1138
1139

OASIS/ebXML Registry November 2001

client queny
RegistryClient QueryManager

submitddhocQuendddhocuenRequesh:RenistvResponse |

L]

onResponselRegistvResponse)lvoid |

L:J =

= =Figure 14: Submit Ad Hoc Query Sequence Diagram

For details on the schema for the business documents shown in this process refer to Appendix O.

Definition

8.1.1 Query Response Options

Purpose

A QueryManagerClient may specify what an ad hoc query must return within an

AdhocQueryResponse using the ResponseOption element of the AdHocQueryRequest.

ResponseOption element has an attribute "returnType” and its values are:

?? ObjectRef - This option specifies that the AdhocQueryResponse must contain a collection of
ObjectRef XML elements as defined in [RIM schema). Purpose of this option is to return just
the identifiers of the registry objects.

Copyright © OASIS, 2001. All Rights Reserved

1140
1141
1142
1143

1144
1145
1146

1147
1148

1149
1150
1151
1152

1153
1154

1155
1156
1157
1158
1159

1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177

1178

1179
1180
1181
1182

OASIS/ebXML Registry November 2001

?? RegistryObject - This option specifies that the AdhocQueryResponse must contain a
collection of RegistryObject XML elements as defined in [RIM schema). In this case all
attributes of the registry objects are returned (objectType, name, description, ...) in addition
to id attribute.

?? RegistryEntry - This option specifies that the AdhocQueryResponse must contain a
collection of RegistryEntry XML elements as defined in [RIM schema], which correspond to
RegistryEntry attributes.

?? LeafClass- This option specifies that the AdhocQueryResponse must contain a collection of
XML eements that correspond to leaf classes as defined in [RIM schema.

?? LeafClassWithRepositoryltem - This option specifies that the AdhocQueryResponse must
contain a collection of ExtrinsicObject XML elements as defined in [RIM schema)
accompanied with their repository items. Linking of ExtrinsicObject and its repository item
is done via contentURI as explained in [XXX — Content Retrieval section].

ResponseOption element also has an attribute “returnComposedObjects”. It specifies whether or

not the whole hierarchy of composed objects are returned with the registry objects.

If “returnType” is higher then the RegistryObject option, then the highest option that satisfies the

query is returned. This can be illustrated with a case when OrganizationQuery is asked to return

L eaf ClassWithRepositoryltem. As thisis not possible, QueryManager will assume LeafClass

option instead. If OrganizationQuery is asked to retrieve a RegistryEntry as a return type then

RegistryObject metadata will be returned.

Definition
<conpl exType nanme="ResponseOpti onType">
<attribute name="returnType" default="RegistryObject">

<si npl eType>
<restriction base="NMIOKEN">
<enumeration val ue="bj ect Ref" />
<enumeration val ue="Regi stryQbj ect" />
<enuneration val ue="Regi stryEntry" />
<enuner ation val ue="Leaf Cl ass" />
<enuner ati on val ue="Leaf Cl assWthRepositoryltenm />
</restriction>
</ si npl eType>
</attribute>
<attribute name="returnConposedCbj ects" type="bool ean" default="fal se" />
</ conpl exType>
<el ement nanme="ResponseOption" type="tns: ResponseOpti onType" />

8.2 Filter Query Support

FilterQuery isan XML syntax that provides simple query capabilities for any ebXML

conforming Registry implementation. Each query alternative is directed against asingle class
defined by the ebXML Registry Information Model (ebRIM).There are two types of filter queries
depending on which classes are queried on.

Copyright © OASIS, 2001. All Rights Reserved

1183
1184
1185
1186
1187
1188
1189

1190
1191

1192
1193
1194
1195

1196
1197
1198
1199
1200

1201
1202

1203
1204
1205
1206
1207
1208

1209
1210
1211
1212
1213
1214
1215
1216
1217
1218

OASIS/ebXML Registry November 2001

?? Firdtly, there are RegistryObjectQuery and RegistryEntryQuery. They alow for generic
gueries that might return different subclasses of the class that is queried on. The result of
such aquery isaset of XML elements that correspond to instances of any class that satisfies
the responseOption defined previoudly in Section 8.1.1. An example might be that
RegistryObjectQuery with responseOption LeafClass will return all attributes of all instances
that satisfy the query. This implies that response might return XML elements that correspond
to classes like ClassificationScheme, RegistryPackage, Organization and Service.

?? Secondly, FilterQuery supports queries on selected ebRIM classes in order to define the exact
traversals of these classes. Responses to these queries are accordingly constrained.
A client submits a FilterQuery as part of an AdhocQueryRequest. The QueryManager sends an
AdhocQueryResponse back to the client, enclosing the appropriate FilterQueryResult specified
herein. The sequence diagrams for AdhocQueryRequest and AdhocQueryResponse are specified
in Section 8.1.
Each FilterQuery alternative is associated with an ebRIM Binding that identifies a hierarchy of
classes derived from a single class and its associations with other classes as defined by ebRIM.
Each choice of a class pre-determines avirtual XML document that can be queried as atree. For
example, let C beaclass, let Y and Z be classes that have direct associationsto C, and let V be a
class that is associated with Z. The ebRIM Binding for C might be as in Figure 15

-
Labfi’f Labfi?

i Z

Labgls

<

= =Figure 15: Example ebRIM Binding

Labell identifies an association from C to Y, Label2 identifies an association from C to Z, and
Label 3 identifies an association from Z to V. Labels can be omitted if there is no ambiguity as to
which ebRIM association is intended. The name of the query is determined by the root class, i.e.
thisis an ebRIM Binding for a CQuery. The Y node in the tree is limited to the set of Y instances
that are linked to C by the association identified by Label1. Similarly, the Z and V nodes are
limited to instances that are linked to their parent node by the identified association.

Each FilterQuery alternative depends upon one or more class filters, where a class filter isa
restricted predicate clause over the attributes of a single class. Class methods that are defined in
ebRIM and that return simple types congtitute “visible attributes’ that are valid choices for
predicate clauses. Names of those attributes will be same as hame of the corresponding method
just without the prefix ‘get’. For example, in case of “getLevelNumber” method the
corresponding visible attribute is “levelNumber”. The supported class filters are specified in
Section 8.2.11 and the supported predicate clauses are defined in Section 8.2.12. A FilterQuery
will be composed of elements that traverse the tree to determine which branches satisfy the
designated class filters, and the query result will be the set of instances that support such a
branch.

Copyright © OASIS, 2001. All Rights Reserved

1219
1220
1221
1222
1223
1224
1225

1226
1227
1228
1229
1230

1231
1232
1233
1234
1235
1236
1237

1238
1239
1240

1241

1242
1243
1244
1245

1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268

OASIS/ebXML Registry November 2001

In the above example, the CQuery element will have three subelements, one a CFilter onthe C
class to eliminate C instances that do not satisfy the predicate of the CFilter, another a Y Filter on
the Y classto eliminate branches from C to Y where the target of the association does not satisfy
the YFilter, and a third to eliminate branches along a path from C through Z to V. The third
element is called a branch element because it alows class filters on each class aong the path
from Cto V. In general, a branch element will have subelements that are themselves class filters,
other branch elements, or a full-blown query on the class in the path.

If an association from aclassCto aclassY isone-to-zero or one-to-one, then at most one
branch, filter or query element on Y is alowed. However, if the association is one-to- many, then
multiple branch, filter or query elements are allowed. This allows one to specify that an instance
of C must have associations with multiple instances of Y before the instance of C is said to
satisfy the branch element.

The FilterQuery syntax istied to the structures defined in ebRIM. Since ebRIM isintended to be
stable, the FilterQuery syntax is stable. However, if new structures are added to the ebRIM, then
the FilterQuery syntax and semantics can be extended at the same time. Also, FilterQuery syntax
follows the inheritance hierarchy of ebRIM, which means that subclass queries inherit from their
respective superclass queries. Structures of XML elements that match the ebRIM classes are
explained in [RIM Schema]. Names of Filters, Queries and Branches correspond to namesin
ebRIM whenever possible.

The ebRIM Binding paragraphsin Sections 8.2.2 through 8.2.10 below identify the virtual
hierarchy for each Filter Query alternative. The Semantic Rulesfor each query alternative
specify the effect of that binding on query semantics.

8.2.1 FilterQuery

Purpose

To identify a set of queries that traverse specific registry class. Each alternative assumes a
specific binding to ebRIM. The status is a success indication or a collection of warnings and/or
exceptions.

Definition

<el ement name="FilterQery">
<conpl exType>
<choi ce m nCccurs="1" maxCccurs="1">
<el enent ref="tns:RegistryQObj ect Query" />
<el ement ref="tns: Regi stryEntryQuery" />
<el enment ref="tns: Audi t abl eEvent Query" />
<el ement ref="tns:Cl assificati onNodeQuery" />
<el ement ref="tns:Cl assificationSchemeQuery" />
<el ement ref="tns: Regi stryPackageQuery" />
<el ement ref="tns: Extrinsi cObjectQery" />
<el ement ref="tns: Organizati onQuery" />
<el enent ref="tns: Servi ceQuery" />
</ choi ce>
</ conpl exType>
</ el ement >

<el ement name="FilterQeryResult">
<conpl exType>
<choi ce mi nCccurs="1" maxCccurs="1">
<el ement ref="tns: Regi stryOhj ect QueryResult" />
<el ement ref="tns: Regi stryEntryQueryResult" />

Copyright © OASIS, 2001. All Rights Reserved

1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279

1280
1281

1282
1283
1284

1285
1286
1287

1288
1289
1290

1291
1292
1293
1294
1295

1296
1297
1298
1299
1300

1301

1302

1303
1304

1305

OASIS/ebXML Registry November 2001

<el ement ref="tns: Audi t abl eEvent QueryResult" />
<el ement ref="tns:Cl assificati onNodeQueryResult" />
<el ement ref="tns:Cl assificati onScheneQueryResult" />
<el ement ref="tns: Regi stryPackageQueryResult" />
<el enent ref="tns: ExtrinsicObjectQueryResult" />
<el ement ref="tns: Organi zati onQueryResult" />
<el ement ref="tns: Servi ceQueryResult" />
</ choi ce>
</ conpl exType>
</ el ement >

Semantic Rules

3.
4,

The semantic rules for each FilterQuery alternative are specified in subsequent subsections.

Semantic rules specify the procedure for implementing the evaluation of Filter Queries.
Implementations do not necessarily have to follow the same procedure provided that the
same effect is achieved.

Each FilterQueryResult is a set of XML elements to identify each instance of the result set.
Each XML attribute carries a value derived from the value of an attribute specified in the
Registry Information Model [RIM Schema).

For each FilterQuery subelement there is only one corresponding FilterQueryResult
subelement that must be returned as a response. Class name of the FilterQueryResult
subelement has to match the class name of the FilterQuery subelement.

If an error condition is raised during any part of the execution of a FilterQuery, then the
status attribute of the XML RegistryResult is set to “failure” and no query result element is
returned; instead, a RegistryErrorList element must be returned with its highestSeverity
element set to “error”. At least one of the RegistryError elements in the RegistryErrorList
will have its severity attribute set to “error”.

If no error conditions are raised during execution of a FilterQuery, then the status attribute of
the XML RegistryResult is set to “success’ and an appropriate query result element must be
included. If a RegistryErrorList is aso returned, then the highestSeverity attribute of the
RegistryErrorList is set to “warning” and the serverity attribute of each RegistryError is set to
“warning”.

8.2.2 RegistryObjectQuery

Purpose

To identify a set of registry object instances as the result of a query over selected registry
metadata.

ebRIM Binding

Copyright © OASIS, 2001. All Rights Reserved

1306

1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343

OASIS/ebXML Registry November 2001
Registry Object
Sourfe Tgrae
External
Identifier
\ 4 Slot Value \ 4
Association Classification Association
o / \ e
Classificai Classification
Registry Object or its assfication Node Registry Object or its
subclass Scheme subclass

Definition

<= <Figure 16: ebRim Binding for RegistryObjectQuery

Copyright © OASIS, 2001. All Rights Reserved

1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402

OASIS/ebXML Registry November 2001

<complexContent>
<extension base="tns:L eaf RegistryObjectListType">
<choice minOccurs="0" maxOccurs="unbounded">
<element ref="tns:RegistryEntry" />
<element ref="tns:RegistryObject" />
</choice>
</extension>
</complexContent>
</complexType>
<element name=" RegistryObjectQueryResult" type="rim:RegistryObjectListType' />

<complexType name="International StringBranchType" >
<sequence>
<element ref="tns:LocalizedStringFilter* minOccurs="0" maxOccurs="unbounded" />
</sequence>
</complexType>

<complexType name="AssociationBranchTypg'>
<seguence>
<element ref="tns:AssociationFilter" minOccurs="0" maxOccurs="1" />
<choice minOccurs="0" maxOccurs="1">
<element ref="tns.ExternalLinkFilter" minOccurs="0" maxOccurs="1" />
<element ref="tns:External |dentifierFilter* minOccurs="0" maxOccurs="1" />
<element ref="tns:RegistryObjectQuery" minOccurs="0" maxOccurs="1" />
<element ref="tns:RegistryEntryQuery" minOccurs="0" maxOccurs="1" />
<element ref="tns:.ClassificationSchemeQuery" minOccurs="0" maxOccurs="1" />
<element ref="tns.ClassificationNodeQuery" minOccurs="0" maxOccurs="1" />
<element ref="tns:OrganizationQuery" minOccurs="0" maxOccurs="1" />
<element ref="tns:AuditableEventQuery" minOccurs="0" maxOccurs="1" />
<element ref="tns:RegistryPackageQuery" minOccurs="0" maxOccurs="1" />
<element ref="tns:ExtrinsicObjectQuery"” minOccurs="0" maxOccurs="1" />
<element ref="tns:ServiceQuery" minOccurs="0" maxOccurs="1" />
<element ref="tns:UserBranch" minOccurs="0" maxOccurs="1" />
<element ref="tns:ClassificationBranch" minOccurs="0" maxOccurs="1" />
<element ref="tns.ServiceBindingBranch" minOccurs="0" maxOccurs="1" />
<element ref="tns:SpecificationLinkBranch" minOccurs="0" maxOccurs="1" />
<element ref="tns:SourceA ssociationBranch" minOccurs="0" maxOccurs="1" />
<element ref="tns: TargetAssociationBranch" minOccurs="0" maxOccurs="1" />
</choice>
</sequence>
</complexType>
<element name="SourceA ssociationBranch" type="tns:AssociationBranchType" />
<element name="TargetA ssociationBranch" type="tns:AssociationBranchType" />

<element name=" ClassifiedByBranch" >
<complexType>
<sequence>
<element ref="tns:ClassificationFilter" minOccurs="0" maxOccurs="1" />
<element ref="tns.ClassificationSchemeQuery" minOccurs="0" maxOccurs="1" />
<element ref="tns.ClassificationNodeQuery" minOccurs="0" maxOccurs="1" />
</sequence>
</complexType>
</element>

<element name=" ClassificationBranch">
<complexType>
<sequence>
<element ref="tns.ClassificationFilter* minOccurs="0" maxOccurs="1" />
<element ref="tns:.ClassificationSchemeQuery" minOccurs="0" maxOccurs="1" />

Copyright © OASIS, 2001. All Rights Reserved

OASIS/ebXML Registry November 2001

Semantic Rules
9. Let RO denote the set of all persistent RegistryObject instances in the Registry. The

following steps will eliminate instances in RO that do not satisfy the conditions of the
specified filters.

a) If RO isempty then continue below.

Copyright © OASIS, 2001. All Rights Reserved

1456
1457
1458

1459
1460
1461
1462
1463
1464

1465
1466
1467
1468

1469
1470
1471
1472
1473
1474

1475
1476
1477
1478
1479
1480

1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496

OASIS/ebXML Registry November 2001

b)

f)

o)

If a RegistryObjectFilter is not specified then go to the next step; otherwise, let x be a
registry object in RO. If x does not satisfy the RegistryObjectFilter, then remove x from
RO. If RO is empty then continue below.

If an ExternalldentifierFilter element is not specified, or if RO is empty, then continue
below; otherwise, let x be aremaining registry object in RO. If x is not linked to some
Externalldentifier instance, then remove x from RO; otherwise, treat each
ExternalldentifierFilter element separately as follows:. Let El be the set of
Externalldentifier instances that satisfy the Externa ldentifierFilter and are linked to x. If
El is empty, then remove x from RO. If RO is empty then continue below.

If an AuditableEventQuery is not specified then go to the next step; otherwise, let x be a
remaining registry object in RO. If x doesn’t have an auditable event that satisfy
AuditableEventQuery as specified in Section 8.2.4 then remove x from RO. If RO is
empty then continue below.

If aNameBranch is not specified then go to the next step; otherwise, let x be aremaining
registry object in RO. If x does not have a name then remove x from RO. If RO is empty
then continue below; otherwise treat NameBranch as follows: If any
LocalizedStringFilter that is specified is not satisfied by some of the L ocalizedStrings
that congtitute the name of the registry object then remove x from RO. If RO is empty
then continue below.

If a DescriptionBranch is not specified then go to the next step; otherwise, let x be a
remaining registry object in RO. If x does not have a name then remove x from RO. If
RO is empty then continue below; otherwise treat DescriptionBranch as follows: If any
LocalizedStringFilter that is specified is not satisfied by some of the LocalizedStrings
that constitute the description of the registry object then remove x from RO. If RO is
empty then continue below.

If a ClassifiedByBranch element is not specified, or if RO is empty, then continue bel ow;
otherwise, let x be a remaining registry object in RO. If x is not the classifiedObject of
some Classification instance, then remove x from RO; otherwise, treat each
ClassifiedByBranch element separately as follows: If no ClassificationFilter is specified
within the ClassifiedByBranch, then let CL be the set of all Classification instances that
have x as the classifiedObject; otherwise, let CL be the set of Classification instances that
satisfy the ClassificationFilter and have x as the classifiedObject. If CL is empty, then
remove x from RO and continue below. Otherwisg, if CL isnot empty, and if a
ClassificationSchemeQuery is specified, then replace CL by the set of remaining
Classification instances in CL whose defining classification scheme satisfies the
ClassificationSchemeQuery. If the new CL is empty, then remove x from RO and
continue below. Otherwise, if CL remains not empty, and if a ClassificationNodeQuery is
specified, then replace CL by the set of remaining Classification instances in CL for
which a classification node exists and for which that classification node satisfies the
ClassificationNodeQuery. If the new CL is empty, then remove x from RO. If RO is
empty then continue below.

Copyright © OASIS, 2001. All Rights Reserved

1497
1498
1499
1500
1501
1502
1503
1504
1505
1506

1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542

OASIS/ebXML Registry November 2001

h) If aSotBranch element is not specified, or if RO is empty, then continue below;

otherwise, let x be a remaining registry object in RO. If x is not linked to some Slot
instance, then remove x from RO. If RO is empty then continue below; otherwise, treat
each SlotBranch element separately as follows: If a SlotFilter is not specified within the
SlotBranch, then let SL be the set of all Sot instances for x; otherwise, let SL be the set
of Slot instances that satisfy the SlotFilter and are Slot instances for x. If SL is empty,
then remove x from RO and continue below. Otherwise, if SL remains not empty, and if a
SotValueFilter is specified, replace SL by the set of remaining Slot instances in SL for
which every specified SlotValueFilter isvalid. If SL is empty, then remove x from RO. If
RO is empty then continue below.

If a SourceAssociationBranch element is not specified then go to the next step; otherwise,
let x be aremaining registry object in RO. If x is not the source object of some
Association instance, then remove x from RO. If RO is empty then continue below;
otherwise, treat each SourceA ssociationBranch element separately as follows:

If no AssociationFilter is specified within the SourceAssociationBranch, then let AF be
the set of all Association instances that have x as a source object; otherwise, let AF be the
set of Association instances that satisfy the AssociationFilter and have x as the source
object. If AF is empty, then remove x from RO.

If RO is empty then continue below.

If an ExternalLinkFilter is specified within the SourceAssociationBranch, then let ROT
be the set of ExternalLink instances that satisfy the ExternalLinkFilter and are the target
object of some element of AF. If ROT is empty, then remove x from RO. If RO is empty
then continue below.

If an ExternalldentifierFilter is specified within the SourceAssociationBranch, then let
ROT be the set of Externalldentifier instances that satisfy the ExternalldentifierFilter and
are the target object of some element of AF. If ROT is empty, then remove x from RO. If
RO is empty then continue below.

If a RegistryObjectQuery is specified within the SourceAssociationBranch, then let ROT
be the set of RegistryObject instances that satisfy the RegistryObjectQuery and are the
target object of some element of AF. If ROT is empty, then remove x from RO. If RO is
empty then continue below.

If aRegistryEntryQuery is specified within the SourceAssociationBranch, then let ROT
be the set of RegistryEntry instances that satisfy the RegistryEntryQuery and are the
target object of some element of AF. If ROT is empty, then remove x from RO. If RO is
empty then cortinue below.

If a ClassificationSchemeQuery is specified within the SourceA ssociationBranch, then let
ROT be the set of ClassificationScheme instances that satisfy the
ClassificationSchemeQuery and are the target object of some element of AF. If ROT is
empty, then remove x from RO. If RO is empty then continue below.

Copyright © OASIS, 2001. All Rights Reserved

OASIS/ebXML Registry November 2001

1543 If a ClassificationNodeQuery is specified within the SourceAssociationBranch, then let
1544 ROT be the set of ClassificationNode instances that satisfy the ClassificationNodeQuery
1545 and are the target object of some element of AF. If ROT is empty, then remove x from
1546 RO. If RO is empty then continue below.

1547

1548 If an OrganizationQuery is specified within the SourceAssociationBranch, then let ROT
1549 be the set of Organization instances that satisfy the OrganizationQuery and are the target
1550 object of some element of AF. If ROT is empty, then remove x from RO. If RO is empty
1551 then continue below.

1552

1553 If an AuditableEventQuery is specified within the SourceAssociationBranch, then let
1554 ROT be the set of AuditableEvent instances that satisfy the AuditableEventQuery and are
1555 the target object of some element of AF. If ROT is empty, then remove x from RO. If RO
1556 is empty then continue below.

1557

1558 If a RegistryPackageQuery is specified within the SourceAssociationBranch, then let
1559 ROT be the set of RegistryPackage instances that satisfy the RegistryPackageQuery and
1560 are the target object of some element of AF. If ROT is empty, then remove x from RO. If
1561 RO is empty then continue below.

1562

1563 If an ExtrinsicObjectQuery is specified within the SourceAssociationBranch, then let
1564 ROT be the set of ExtrinsicObject instances that satisfy the ExtrinsicObjectQuery and are
1565 the target object of some element of AF. If ROT is empty, then remove x from RO. If RO
1566 is empty then continue below.

1567

1568 If a ServiceQuery is specified within the SourceAssociationBranch, then let ROT be the
1569 set of Service instances that satisfy the ServiceQuery and are the target object of some
1570 element of AF. If ROT is empty, then remove x from RO. If RO is empty then continue
1571 below.

1572

1573 If aUserBranchis specified within the SourceAssociationBranch then let ROT be the set
1574 of User instances that are the target object of some element of AF. If ROT is empty, then
1575 remove X from RO. If RO is empty then continue below. Let u be the member of ROT. If
1576 a UserFilter element is specified within the UserBranch, and if u does not satisfy that
1577 filter, then remove u from ROT. If ROT is empty, then remove x from RO. If RO is
1578 empty then continue below. If a Postal AddressFilter element is specified within the
1579 UserBranch, and if the postal address of u does not satisfy that filter, then remove u from
1580 ROT. If ROT is empty, then remove x from RO. If RO is empty then continue below. If
1581 TelephoneNumberFilter(s) are specified within the UserBranch and if any of the

1582 TelephoneNumberFilters isn't satisfied by some of the telephone numbers of u then
1583 remove u from ROT. If ROT is empty, then remove x from RO. If RO is empty then
1584 continue below. If an OrganizationQuery element is specified within the UserBranch,
1585 then let o be the Organization instance that is identified by the organization that u is
1586 affiliated with. If o doesn't satisfy OrganizationQuery as defined in section 8.2.9 then
1587 remove u from ROT. If ROT is empty, then remove x from RO. If RO is empty then
1588 continue below.

1589

Copyright © OASIS, 2001. All Rights Reserved

OASIS/ebXML Registry November 2001

1590 If aClassificationBranchis specified within the SourceAssociationBranch then let ROT
1591 be the set of Classification instances that are the target object of some element of AF. If
1592 ROT is empty, then remove x from RO. If RO is empty then continue below. Let cb be
1593 the member of ROT. If ClassificationFilter element is specified within the

1594 ClassificationBranch, and if cb does not satisfy that filter, then remove cb from ROT. If
1595 ROT is empty, then remove x from RO. If RO is empty then continue below. If a

1596 ClassificationSchemeQuery element is specified within the ClassificationBranch then
1597 replace ROT by the set of remaining Classification instancesin ROT whose defining
1598 classification scheme satisfies the ClassificationSchemeQuery. If ROT is empty, then
1599 remove x from RO. If RO is empty then continue below. If a ClassificationNodeQuery
1600 element is specified within the ClassificationBranch, then replace ROT by the set of
1601 remaining Classification instancesin ROT for which a classification node exists and for
1602 which that classification node satisfies the ClassificationNodeQuery. If ROT is empty,
1603 then remove x from RO. If RO is empty then continue below. If a RegistryObjectQuery
1604 element is specified within the ClassificationBranch element then let cb be a remaining
1605 classification in ROT. Treat RegistryObjectQuery element as follows. Let ROQ be the
1606 result set of the RegistryObjectQuery as defined in Section 8.2.2. If chisnot a

1607 classification for some registry object in ROQ, then remove cb from ROT. If ROT is
1608 empty, then remove x from RO. If RO is empty then continue below. If a

1609 RegistryEntryQuery element is specified within the ClassificationBranch element then let
1610 cb be aremaining classification in ROT. Treat RegistryEntryQuery element as follows:
1611 Let REQ be the result set of the RegistryEntryQuery as defined in Section 8.2.3. If cb is
1612 not a classification for some registry entry in REQ, then remove cb from ROT. If ROT is
1613 empty, then remove x from RO. If RO is empty then continue below.

1614

1615 If a ServiceBindingBranch is specified within the SourceAssociationBranch, then let
1616 ROT be the set of ServiceBinding instances that are the target object of some element of
1617 AF. If ROT is empty, then remove x from RO. If RO is empty then continue below. Let
1618 sb be the member of ROT. If a ServiceBindingFilter element is specified within the
1619 ServiceBindingBranch, and if sb does not satisfy that filter, then remove sb from ROT. If
1620 ROT is empty then remove x from RO. If RO is empty then continue below. If a

1621 SpecificationLinkBranch is specified within the ServiceBindingBranch then consider
1622 each SpecificationLinkBranch element separately as follows:

Copyright © OASIS, 2001. All Rights Reserved

OASIS/ebXML Registry November 2001

1623 Let sb be aremaining service binding in ROT. Let SL be the set of all specification link
1624 instances dl that describe specification links of sh. If a SpecificationLinkFilter element is
1625 specified within the SpecificationLinkBranch, and if sl does not satisfy that filter, then
1626 remove d from SL. If SL is empty then remove sb from ROT. If ROT is empty then
1627 remove X from RO. If RO is empty then continue below. If a RegistryObjectQuery

1628 element is specified within the SpecificationLinkBranch then let 9 be aremaining

1629 specification link in SL. Treat RegistryObjectQuery element as follows:. Let RO be the
1630 result set of the RegistryObjectQuery as defined in Section 8.2.2. If d isnot a

1631 specification link for some registry object in RO, then remove sl from SL. If SL is empty
1632 then remove sb from ROT. If ROT is empty then remove x from RO. If RO is empty then
1633 continue below. If a RegistryEntryQuery element is specified within the

1634 SpecificationLinkBranch then let d be a remaining specification link in SL. Treat

1635 RegistryEntryQuery element as follows: Let RE be the result set of the

1636 RegistryEntryQuery as defined in Section 8.2.3. If d is not a specification link for some
1637 registry entry in RE, then remove d from SL. If SL is empty then remove sb from ROT.
1638 If ROT is empty then remove x from RO. If RO is empty then continue below. If a

1639 ServiceBindingTargetBranchis specified within the ServiceBindingBranch, then let SBT
1640 be the set of ServiceBinding instances that satisfy the ServiceBindingTargetBranchand
1641 are the target service binding of some element of ROT. If SBT is empty then remove sb
1642 from ROT. If ROT is empty, then remove x from RO. If RO is empty then continue
1643 below.

1644

1645 If a SpecificationLinkBranch is specified within the SourceAssociationBranch, then let
1646 ROT be the set of SpecificationLink instances that are the target object of some element
1647 of AF. If ROT is empty, then remove x from RO. If RO is empty then continue below.
1648 Let 9 be the member of ROT. If a SpecificationLinkFilter element is specified within the
1649 SpecificationLinkBranch, and if sl does not satisfy that filter, then remove d from ROT.
1650 If ROT is empty then remove x from RO. If RO is empty then continue below. If a

1651 RegistryObjectQuery element is specified within the SpecificationLinkBranch then let d
1652 be a remaining specification link in ROT. Treat RegistryObjectQuery element as follows:
1653 Let RO be the result set of the RegistryObjectQuery as defined in Section 8.2.2. If d is
1654 not a specification link for some registry object in RO, then remove d from ROT. If ROT
1655 is empty then remove x from RO. If RO is empty then continue below. If a

1656 RegistryEntryQuery element is specified within the SpecificationLinkBranch then let o
1657 be a remaining specification link in ROT. Treat RegistryEntryQuery element as follows:
1658 Let RE be the result set of the RegistryEntryQuery as defined in Section 8.2.3. If g is not
1659 a specification link for some registry entry in RE, thenremove d from ROT. If ROT is
1660 empty then remove x from RO. If RO is empty then continue below.

1661

1662 If a SourceAssociationBranchis specified within the SourceAssociationBranch, then let
1663 ROT be the set of RegistryObject instances that satisfy the SourceAssociationBranchand
1664 are the target object of some element of AF. If ROT is empty, then remove x from RO. If
1665 RO is empty then continue below.

1666

1667 If a TargetAssociationBranchis specified within the SourceAssociationBranch, then let
1668 ROT be the set of RegistryObject instances that satisfy the TargetA ssociationBranchand
1669 are the source object of some element of AF. If ROT is empty, then remove x from RO.
1670 If RO is empty then continue below.

Copyright © OASIS, 2001. All Rights Reserved

1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715

1716

OASIS/ebXML Registry November 2001

)

If a TargetA ssociationBranch element is not specified then go to the next step; otherwise,
let x be aremaining registry object in RO. If x is not the target object of some
Association instance, then remove x from RO. If RO is empty then continue below;
otherwise, treat each TargetAssociationBranch element separately as follows:

If no AssociationFilter is specified within the TargetAssociationBranch, then let AF be
the set of all Association instances that have x as atarget object; otherwise, let AF be the
set of Association instances that satisfy the AssociationFilter and have x as the target
object. If AF is empty, then remove x from RO. If RO is empty then continue below.

If an ExternalLinkFilter is specified within the TargetAssociationBranch, then let ROS be
the set of ExternalLink instances that satisfy the External LinkFilter and are the source
object of some element of AF. If ROS is empty, then remove x from RO. If RO is empty
then continue below.

If an ExternalldentifierFilter is specified within the TargetAssociationBranch, then let
ROS be the set of Externalldentifier instances that satisfy the ExternalldentifierFilter and
are the source object of some element of AF. If ROS is empty, then remove x from RO. If
RO is empty then continue below.

If a RegistryObjectQuery is specified within the TargetAssociationBranch, then let ROS
be the set of RegistryObject instances that satisfy the RegistryObjectQuery and are the
source object of some element of AF. If ROS is empty, then remove x from RO. If RO is
empty then continue below

If a RegistryEntryQuery is specified within the TargetAssociationBranch, then let ROS
be the set of

RegistryEntry instances that satisfy the RegistryEntryQuery and are the source object of
some element of AF. If ROS is empty, then remove x from RO. If RO is empty then
continue below.

If a ClassificationSchemeQuery is specified within the TargetA ssociationBranch, then let
ROS be the set of ClassificationScheme instances that satisfy the
ClassificationSchemeQuery and are the source object of some element of AF. If ROSis
empty, then remove x from RO. If RO is empty then continue below.

If a ClassificationNodeQuery is specified within the TargetA ssociationBranch, then let
ROS be the set of ClassificationNode instances that satisfy the ClassificationNodeQuery
and are the source object of some element of AF. If ROS is empty, then remove x from
RO. If RO is empty then continue below.

If an OrganizationQuery is specified within the TargetAssociationBranch, then let ROS
be the set of Organization instances that satisfy the OrganizationQuery and are the source
object of some element of AF. If ROS is empty, then remove x from RO. If RO is empty
then continue below.

Copyright © OASIS, 2001. All Rights Reserved

OASIS/ebXML Registry November 2001

1717 If an AuditableEventQuery is specified within the TargetA ssociationBranch, then let
1718 ROS be the set of AuditableEvent instances that satisfy the AuditableEventQuery and are
1719 the source object of some element of AF. If ROS is empty, then remove x from RO. If
1720 RO is empty then continue below.

1721

1722 If a RegistryPackageQuery is specified within the TargetAssociationBranch, then let
1723 ROS be the set of RegistryPackage instances that satisfy the RegistryPackageQuery and
1724 are the source object of some element of AF. If ROS is empty, then remove x from RO. If
1725 RO is empty then continue below.

1726

1727 If an ExtrinsicObjectQuery is specified within the TargetAssociationBranch, then let
1728 ROS be the set of ExtrinsicObject instances that satisfy the ExtrinsicObjectQuery and are
1729 the source object of some element of AF. If ROS is empty, then remove x from RO. If
1730 RO is empty then continue below.

1731

1732 If a ServiceQuery is specified within the TargetAssociationBranch, then let ROS be the
1733 set of Service instances that satisfy the ServiceQuery and are the source object of some
1734 element of AF. If ROS is empty, then remove x from RO. If RO is empty then continue
1735 below.

1736

1737 If aUserBranchis specified within the TargetAssociationBranch then let ROS be the set
1738 of User instances that are the source object of some element of AF. If ROS is empty, then
1739 remove x from RO. If RO is empty then continue below. Let u be the member of ROS. If
1740 aUserFilter element is specified within the UserBranch, and if u does not satisfy that
1741 filter, then remove u from ROS. If ROS is empty, then remove x from RO. If RO is

1742 empty then continue below. If a Postal AddressFilter element is specified within the

1743 UserBranch, and if the postal address of u does not satisfy that filter, then remove u from
1744 ROS. If ROS is empty, then remove x from RO. If RO is empty then continue below. If
1745 TelephoneNumberFilter(s) are specified within the UserBranch and if any of the

1746 TelephoneNumberFilters isn't satisfied by some of the telephone numbers of u then

1747 remove u from ROS. If ROS is empty, then remove x from RO. If RO is empty then
1748 continue below. If an OrganizationQuery element is specified within the UserBranch,
1749 then let o be the Organization instance that is identified by the organization that u is
1750 affiliated with. If o doesn't satisfy OrganizationQuery as defined in section 8.2.9 then
1751 remove u from ROS. If ROS is empty, then remove x from RO. If RO is empty then
1752 continue below.

1753

Copyright © OASIS, 2001. All Rights Reserved

OASIS/ebXML Registry November 2001

1754 If aClassificationBranchis specified within the TargetAssociationBranch then let ROS
1755 be the set of Classification instances that are the source object of some element of AF. If
1756 ROS is empty, then remove x from RO. If RO is empty then continue below. Let cb be
1757 the member of ROS. If ClassificationFilter element is specified within the

1758 ClassificationBranch, and if cb does not satisfy that filter, then remove cb from ROS. If
1759 ROS is empty, then remove x from RO. If RO is empty then continue below. If a

1760 ClassificationSchemeQuery element is specified within the ClassificationBranch then
1761 replace ROS by the set of remaining Classification instances in ROS whose defining
1762 classification scheme satisfies the ClassificationSchemeQuery. If ROS is empty, then
1763 remove x from RO. If RO is empty then continue below. If a ClassificationNodeQuery
1764 element is specified within the ClassificationBranch, then replace ROS by the set of
1765 remaining Classification instances in ROS for which a classification node exists and for
1766 which that classification node satisfies the ClassificationNodeQuery. If ROS is empty,
1767 then remove x from RO. If RO is empty then continue below. If a RegistryObjectQuery
1768 element is specified within the ClassificationBranch element then let cb be a remaining
1769 classification in ROT. Treat RegistryObjectQuery element as follows: Let ROQ be the
1770 result set of the RegistryObjectQuery as defined in Section 8.2.2. If chisnot a

1771 classification for some registry object in ROQ, then remove cb from ROT. If ROT is
1772 empty, then remove x from RO. If RO is empty then continue below. If a

1773 RegistryEntryQuery element is specified within the ClassificationBranch element then let
1774 cb be aremaining classification in ROT. Treat RegistryEntryQuery element as follows:
1775 Let REQ be the result set of the RegistryEntryQuery as defined in Section 8.2.3. If cbis
1776 not a classification for some registry entry in REQ, then remove cb from ROT. If ROT is
1777 empty, then remove x from RO. If RO is empty then continue below.

1778

1779 If a ServiceBindingBranchis specified within the SourceA ssociationBranch, then let
1780 ROS be the set of ServiceBinding instances that are the source object of some element of
1781 AF. If ROS is empty, then remove x from RO. If RO is empty then continue below. Let
1782 sb be the member of ROS. If a ServiceBindingFilter element is specified within the
1783 ServiceBindingBranch, and if sb does not satisfy that filter, then remove sb from ROS. If
1784 ROS is empty then remove x from RO. If RO is empty then continue below. If a

1785 SpecificationLinkBranch is specified within the ServiceBindingBranch then consider
1786 each SpecificationLinkBranch element separately as follows:

1787 Let sb be aremaining service binding in ROS. Let SL be the set of all specification link
1788 instances dl that describe specification links of sh. If a SpecificationLinkFilter element is
1789 specified within the SpecificationLinkBranch, and if gl does not satisfy that filter, then
1790 remove d from SL. If SL is empty then remove sb from ROS. If ROS is empty then
1791 remove X from RO. If RO is empty then continue below. If a RegistryObjectQuery

1792 element is specified within the SpecificationLinkBranch then let 9 be aremaining

1793 specification link in SL. Treat RegistryObjectQuery element as follows:. Let RO be the
1794 result set of the RegistryObjectQuery as defined in Section 8.2.2. If d isnot a

1795 specification link for some registry object in RO, then remove sl from SL. If SL is empty
1796 then remove sb from ROS. If ROS is empty then remove x from RO. If RO is empty then
1797 continue below. If a RegistryEntryQuery element is specified within the

1798 SpecificationLinkBranch then let sl be a remaining specification link in SL. Treat

1799 RegistryEntryQuery element as follows: Let RE be the result set of the

1800 RegistryEntryQuery as defined in Section 8.2.3. If g is not a specification link for some
1801 registry entry in RE, then remove d from SL. If SL is empty then remove sb from ROS.
1802 If ROS is empty then remove x from RO. If RO is empty then continue below.

Copyright © OASIS, 2001. All Rights Reserved

1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830

1831
1832
1833
1834

1835
1836

1837
1838

1839
1840
1841
1842
1843
1844

1845
1846

1847
1848
1849

OASIS/ebXML Registry November 2001

k)

If a SpecificationLinkBranch is specified within the SourceAssociationBranch, then let
ROS be the set of SpecificationLink instances that are the source object of some element
of AF. If ROS is empty, then remove x from RO. If RO is empty then continue below.
Let d be the member of ROS. If a SpecificationLinkFilter element is specified within the
SpecificationLinkBranch, and if d does not satisfy that filter, then remove d from ROS.
If ROS is empty then remove x from RO. If RO is empty then continue below. If a
RegistryObjectQuery element is specified within the SpecificationLinkBranch then let g
be aremaining specification link in ROS. Treat RegistryObjectQuery element as follows:
Let RO be the result set of the RegistryObjectQuery as defined in Section 8.2.2. If d is
not a specification link for some registry object in RO, then remove s from ROS. If ROS
is empty then remove x from RO. If RO is empty then continue below. If a
RegistryEntryQuery element is specified within the SpecificationLinkBranch then let ol
be aremaining specification link in ROS. Treat RegistryEntryQuery element as follows:
Let RE be the result set of the RegistryEntryQuery as defined in Section 8.2.3. If 9 is not
a specification link for some registry entry in RE, then remove d from ROS. If ROS is
empty then remove x from RO. If RO is empty then continue below. If a
ServiceBindingTargetBranch is specified within the ServiceBindingBranch, then let SBT
be the set of ServiceBinding instances that satisfy the ServiceBindingTargetBranchand
are the target service binding of some element of ROT. If SBT is empty then remove sb
from ROT. If ROT is enpty, then remove x from RO. If RO is empty then continue
below.

If a SourceAssociationBranchis specified within the TargetAssociationBranch, then let
ROS be the set of RegistryObject instances that satisfy the SourceAssociationBranchand
are the target object of some element of AF. If ROS is empty, then remove x from RO. If
RO is empty then continue below.

If a TargetAssociationBranchis specified within the TargetAssociationBranch, then let
ROS be the set of RegistryObject instances that satisfy the TargetA ssociationBranch and
are the source object of some element of AF. If ROS is empty, then remove x from RO. If
RO is empty then continue below.

10. If RO is empty, then raise the warning: registry object query result is empty; otherwise,
return RO as the result ofb the RegistryObjectQuery.

11. Return any accumulated warnings or exceptions as the StatusResult associated with the
RegistryObjectQuery.

Examples

A client application needs all items that are classified by two different classification schemes,
one based on "Industry” and another based on "Geography". Both schemes have been defined by
ebXML and are registered as "urn:ebxml:cs.industry” and "urn:ebxml:cs.geography”,
respectively. The following query identifies registry entries for all registered items that are
classified by Industry as any subnode of "Automotive" and by Geography as any subnode of
"AsialJapan”.

<AdhocQuer yRequest >

<ResponseQption returnType = "RegistryEntry"/>
<FilterQery>
Copyright © OASIS, 2001. All Rights Reserved

1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894

1895
1896
1897

OASIS/ebXML Registry November 2001

<Regi st ryQhj ect Quer y>
<d assi fi edByBr anch>
<O assificationFilter>
<d ause>
<Si npl ed ause | eft Argument = "path">
<StringCd ause stringPredi cate = "Equal ">//Aut onoti ve</ Stri ngC ause>
</ Si npl ed ause>
</ Cl ause>
</ assificationFilter>
<d assi fi cati onSchemeQuer y>
<NaneBr anch>
<Local i zedStringFi |l ter>

<d ause>
<Si npl ed ause | ef t Argunent = "val ue">
<Stringd ause stringPredicate = "Equal ">urn: ebxm : cs: i ndustry</Stri ngd ause>

</ Si npl ed ause>
</ Cl ause>
</Local i zedStringFilter>
</ NaneBr anch>
</ d assi ficati onSchemeQuery>
</ d assi fi edByBranch>
<d assi fi edByBranch>
<O assificationFilter>
<d ause>
<Si npl ed ause | ef t Argunent = "path">
<StringC ause stringPredicate = "StartsWth">/ Geography-i d/ Asi a/ Japan</ Stri ngd ause>
</ Si npl eC ause>
</ d ause>
</ assificationFilter>
<d assi fi cati onSchemeQuer y>
<NameBr anch>
<Local i zedStringFi | ter>

<d ause>
<Si npl ed ause | ef t Argunent = "val ue">
<Stringd ause stringPredi cate = "Equal ">urn: ebxnl : cs: geogr aphy</ Stri ngC ause>

</ Si npl ed ause>
</ Cl ause>
</Local i zedStringFilter>
</ NanmeBr anch>
</ O assi ficati onSchemeQuery>
</ d assi fi edByBranch>
</ Regi st ryQhj ect Query>
</FilterQery>
</ AdhocQuer yRequest >

A client application wishes to identify all RegistryObject instances that are classified by some
internal classification scheme and have some given keyword as part of the description of one of
the classification nodes of that classification scheme. The following query identifies all such

Copyright © OASIS, 2001. All Rights Reserved

1898
1899

1900
1901

1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922

1923

1924

1925
1926
1927

1928
1929

1930
1931
1932
1933
1934
1935
1936

OASIS/ebXML Registry November 2001

RegistryObject instances. The query takes advantage of the knowledge that the classification
scheme isinternal, and thus that all of its nodes are fully described as ClassificationNode
instances.

<AdhocQuer yRequest >
<Responseption returnType = "Regi stryoj ect"/>
<Fi |l ter Query>
<Regi st ryObj ect Quer y>
<d assi f i edByBr anch>
<d assi fi cat i onNodeQuer y>
<Descri pti onBranch>

<Local i zedStri ngFi | ter>

<d ause>
<Si npl ed ause | eft Argunent = "val ue">
<StringC ause stringPredicate = "Equal ">transi stor</Stringd ause>

</ Si npl eCl ause>
</ Cl ause>
</ Local i zedStringFilter>
</ Descri pti onBranch>
</ d assi fi cati onNodeQuer y>
</ d assi fi edByBr anch>
</ Regi st ryQhj ect Query>
</FilterQery>
</ AdhocQuer yRequest >

8.2.3 RegistryEntryQuery

Purpose

To identify a set of registry entry instances as the result of a query over selected registry
metadata.

Registry Entry

Registry
Object

ebRIM Binding
= =Figure 17:ebRIM Binding for RegistryEntryQuery

Definition

<complexType name="RegistryEntryQueryType">
<complexContent>
<extension base="tns:RegistryObjectQuery Type">
<seguence>
<element ref="tns:RegistryEntryFilter" minOccurs="0" maxOccurs="1" />

Copyright © OASIS, 2001. All Rights Reserved

1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955

1956

1957
1958

1959

1960
1961
1962

1963
1964

1965
1966

1967
1968

1969

1970
1971
1972
1973

1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984

OASIS/ebXML Registry November 2001

</sequence>
</extension>
</complexContent>
</complexType>
<element name="RegistryEntryQuery" type="tns.RegistryEntryQueryType" />

<element name="RegistryEntryQueryResult ">
<complexType>
<choice minOccurs="0" maxOccurs="unbounded">
<element ref="rim:ObjectRef" />
<element ref="rim:ClassificationScheme" />
<element ref="rim:ExtrinsicObject" />
<element ref="rim:RegistryEntry" />
<element ref="rim:RegistryObject’ />
<element ref="rim:RegistryPackage" />
</choice>
</complexType>
</element>

Semantic Rules

12. Let RE denote the set of all persistent RegistryEntry instances in the Registry. The following
steps will eliminate instances in RE that do not satisfy the conditions of the specified filters.

a) If REisempty then continue below.

b) If aRegistryEntryFilter is not specified then go to the next step; otherwise, let x be a
registry entry in RE. If x does not satisfy the RegistryEntryFilter, then remove x from RE.
If RE is empty then continue below.

c) Let RE bethe set of remaining RegistryEntry instances. Evaluate inherited
RegistryObjectQuery over RE as explained in section 8.2.2.

13. If RE is empty, then raise the warning: registry entry query result is empty; otherwise, return
RE as the result of the RegistryEntryQuery.

14. Return any accumulated warnings or exceptions as the StatusResult associated with the
RegistryEntryQuery.

Examples

A client wishes to establish atrading relationship with XY Z Corporation and wants to know if
they have registered any of their business documents in the Registry. The following query
returns a set of registry entry identifiers for currently registered items submitted by any
organization whose name includes the string " XY Z". It does not return any registry entry
identifiers for superseded, replaced, deprecated, or withdrawn items.

<AdhocQueryRequest>
<ResponseOption returnType = " ObjectRef"/>
<FilterQuery>
<RegistryEntryQuery>
<TargetAssociationBranch>
<AssociationFilter>
<Clause>
<SimpleClause |eftArgument = "associationType">
<StringClause stringPredicate = " Eyjual " >SubmitterOf </StringClause>

Copyright © OASIS, 2001. All Rights Reserved

OASIS/ebXML Registry November 2001

A client is using the United Nations Standard Product and Services Classification (UNSPSC)
scheme and wants to identify all companies that deal with products classified as "Integrated
circuit components’, i.e. UNSPSC code "321118". The client knows that companies have

registered their Collaboration Protocol Profile (CPP) documents in the Registry, and that each
such profile has been classified by UNSPSC according to the products the company deals with.
However, the client does not know if the UNSPSC classification scheme isinterna or externa to
thisregistry. The following query returns a set of approved registry entry instances for CPP' s of
companies that deal with integrated circuit components.

Copyright © OASIS, 2001. All Rights Reserved

OASIS/ebXML Registry November 2001

2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063

2064 8.2.4 AuditableEventQuery

2065 Purpose

2066 Toidentify aset of auditable event instances as the result of a query over selected registry
2067 metadata.

Auditable Event

Registry
l Object l
Registry v i
Object User Registry
/ \ Entry
Postal Telephone
Address Number
\ 4

Organization

2068 ebRIM Binding
2069 = =Figure 18: ebRim binding for AuditableEventQuery

2070 Definition
2071
2072
2073
2074
2075

Copyright © OASIS, 2001. All Rights Reserved

2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095

2096

2097
2098
2099

2100

2101
2102
2103

2104
2105
2106
2107
2108

2109
2110
2111
2112
2113

OASIS/ebXML Registry November 2001

<element ref="tns:AuditableEventFilter' minOccurs="0" />
<element ref="tns:RegistryObjectQuery" minOccurs="0" maxOccurs="1" />
<element ref="tns:RegistryEntryQuery" minOccurs="0" maxOccurs="1" />
<element ref="tns:UserBranch" minOccurs="0" maxOccurs="1" />
</sequence>
</extension>
</complexContent>
</complexType>
<element name="AuditableEventQuery" type="tns:AuditableEventQueryType" />

<element name="AuditableEventQueryResult" >
<complexType>
<choice minOccurs="0" maxOccurs="unbounded">
<element ref="rim:ObjectRef" />
<element ref="rim:RegistryObject" />
<element ref="rim:AuditableEvent" />
</choice>
</complexType>
</element>

Semantic Rules

15. Let AE denote the set of all persistent AuditableEvent instances in the Registry. The
following steps will eliminate instances in AE that do not satisfy the conditions of the
specified filters.

d) If AEisempty then continue below.

e) If an AuditableEventFilter is not specified then go to the next step; otherwise, let x be an
auditable event in AE. If x does not satisfy the AuditableEventFilter, then remove x from
AE. If AE is empty then continue below.

f) If a RegistryObjectQuery element is not specified then go to the next step; otherwise, let
x be aremaining auditable event in AE. Treat RegistryObjectQuery element as follows:
Let RO be the result set of the RegistryObjectQuery as defined in Section 8.2.2. If x is
not an auditable event for some registry object in RO, then remove x from AE. If AE is
empty then continue below.

g [If aRegistryEntryQuery element is not specified then go to the next step; otherwise, let x
be aremaining auditable event in AE. Treat RegistryEntryQuery element as follows: Let
RE be the result set of the RegistryEntryQuery as defined in Section 8.2.3. If x isnot an
auditable event for some registry entry in RE, then remove x from AE. If AE is empty
then continue below.

Copyright © OASIS, 2001. All Rights Reserved

2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126

2127
2128

2129
2130

2131
2132

2133

2134
2135

2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165

OASIS/ebXML Registry November 2001

h) If aUserBranch element is not specified then go to the next step; otherwise, let x be a

remaining auditable event in AE. Let u be the user instance that invokes x. If a UserFilter
element is specified within the UserBranch, and if u does not satisfy that filter, then
remove X from AE. If a PostalAddressFilter element is specified within the UserBranch,
and if the postal address of u does not satisfy that filter, then remove x from AE. If
TelephoneNumberFilter(s) are specified within the UserBranch and if any of the
TelephoneNumberFiltersisn't satisfied by some of the telephone numbers of u then
remove X from AE. If Email AddressFilter(s) are specified within the UserBranch and if
any of the EmailAddressFiltersisn’t satisfied by some of the email addresses of u then
remove x from AE. If an OrganizationQuery element is specified within the UserBranch,
then let o be the Organization instance that is identified by the organization that u is
affiliated with. If o doesn't satisfy OrganizationQuery as defined in Section 8.2.9 then
remove x from AE. If AE is empty then continue below.

Let AE be the set of remaining AuditableEvent instances. Evaluate inherited
RegistryObjectQuery over AE as explained in section 8.2.2.

16. If AE is empty, then raise the warning: auditable event query result is empty; otherwise
return AE as the result of the AuditableEventQuery.

17. Return any accumulated warnings or exceptions as the StatusResult associated with the
AuditableEventQuery.

Examples

A Registry client has registered an item and it has been assigned a name "urn:path:myitem”. The
client is now interested in al events since the beginning of the year that have impacted thet item.
The following query will return a set of AuditableEvent instances for all such events.

<AdhocQueryRequest>
<ResponseOption returnType = "L eafClass'/>
<FilterQuery>
<AuditableEventQuery>

<AuditableEventFilter>
<Clause>
<SimpleClause |eftArgument = "timestamp">
<Rational Clause | ogical Predicate = "GE">
DateTimeClause>2000-01-01T00:00:00-05:00</DateTimeCl ause>
</Rational Clause>
</SimpleClause>
</Clause>
</AuditableEventFilter>
<RegistryEntryQuery>
<NameBranch>
<L ocalizedStringFilter>
<Clause>
<SimpleClause leftArgument = "value">
<StringClause stringPredicate = "Equal " >urn: path: myitem</StringClause>
</SimpleClause>
</Clause>
</LocalizedStringFilter>
</NameBranch>
</RegistryEntryQuery>

</AuditableEventQuery>
</FilterQuery>
</AdhocQueryRequest

Copyright © OASIS, 2001. All Rights Reserved

OASIS/ebXML Registry November 2001

A client company has many registered objects in the Registry. The Registry alows events
submitted by other organizations to have an impact on your registered items, e.g. new
classifications and new associations. The following query will return a set of identifiers for all
auditable events, invoked by some other party, that had an impact on an item submitted by
“myorg”.

8.2.5 ClassificationNodeQuery

Purpose

To identify a set of classification node instances as the result of a query over selected registry
metadata.

Copyright © OASIS, 2001. All Rights Reserved

2219

2220

2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248

2249

2250
2251
2252

2253

2254
2255
2256

OASIS/ebXML Registry November 2001
ebRIM Binding
Classification
Node
Registry
Parent Object Children
A 4
v Classification v
Classification Scheme Classification
Node Node
< =Figure 19: ebRim binding for ClassificationNodeQuery
Definition

Semantic Rules

18. Let CN denote the set of al persistent ClassificationNode instances in the Registry. The
following steps will eliminate instances in CN that do not satisfy the conditions of the

specified filters.

j) If CN isempty then continue below.

k) If aClassificationNodeFilter is not specified then go to the next step; otherwise, let x be a
classification node in CN. If x does not satisfy the ClassificationNodeFilter then remove
x from CN. If CN is empty then continue below.

Copyright © OASIS, 2001. All Rights Reserved

2257
2258
2259
2260

2261
2262
2263

2264
2265
2266
2267
2268
2269
2270
2271
2272

2273
2274

2275
2276
2277
2278
2279

2280
2281
2282
2283
2284
2285
2286
2287
2288
2289

2290
2291
2292
2293

2294
2295

2296
2297

2298
2299

2300

2301
2302

OASIS/ebXML Registry November 2001

I) If aClassificationSchemeQuery is not specified then go to the next step; otherwise, let x
be aremaining classification node in CN. If the defining classification scheme of x does
not satisfy the ClassificationSchemeQuery as defined in section 8.2.6, then remove x
from CN. If CN is empty then continue below.

m) If aClassificationNodeParentBranch element is not specified, then go to the next step;
otherwise, let x be aremaining classification node in CN and execute the following
paragraph with n=x.

Let n be a classification node instance. If n does not have a parent node (i.e. if nisabase
level node), then remove x from CN and go to the next step; otherwise, let p be the parent
node of n. If a ClassificationNodeFilter element is directly contained in the
ClassificationNodeParentBranch and if p does not satisfy the ClassificationNodeFilter,
then remove x from CN. If CN isempty then continue below. If a
ClassificationSchemeQuery element is directly contained in the
ClassificationNodeParentBranch and if defining classification scheme of p does not
satisfy the ClassificationSchemeQuery, then remove x from CN. If CN isempty then
continue below.

If another ClassificationNodeParentBranch element is directly contained within this
ClassificationNodeParentBranch element, then repeat the previous paragraph with n=p.

n) If aClassificationNodeChildrenBranch element is not specified, then continue below;
otherwise, let x be a remaining classification node in CN. If x is not the parent node of
some ClassificationNode instance, then remove x from CN and if CN is empty continue
below; otherwise, treat each ClassificationNodeChildrenBranch element separately and
execute the following paragraph with n = x.

Let n be a classification node instance. If a ClassificationNodeFilter element is not
specified within the ClassificationNodeChildrenBranch element then let CNC be the set
of all classification nodes that have n as their parent node; otherwise, let CNC be the set
of all classificationnodes that satisfy the ClassificationNodeFilter and have n as their
parent node. If CNC is empty, then remove x from CN and if CN is empty continue
below; otherwise, let ¢ be any member of CNC. If a ClassificationSchemeQuery element
isdirectly contained in the ClassificationNodeChildrenBranch and if the defining
classification scheme of ¢ does not satisfy the ClassificationSchemeQuery then remove ¢
from CNC. If CNC is empty then remove x from CN. If CN isempty then continue
below; otherwise, let y be an element of CNC and continue with the next paragraph.

If the ClassificationNodeChildrenBranch element is terminal, i.e. if it does not directly
contain another ClassificationNodeChildrenBranch element, then continue below;
otherwise, repeat the previous paragraph with the new ClassificationNodeChildrenBranch
element and withn=1y.

0) Let CN be the set of remaining ClassificationNode instances. Evaluate inherited
RegistryObjectQuery over CN as explained in section 8.2.2.

19. If CN isempty, then raise the warning: classification node query result is empty; otherwise
return CN as the result of the ClassificationNodeQuery.

20. Return any accumulated warnings or exceptions as the StatusResult associated with the
ClassificationNodeQuery.

Path Filter Expression usage in ClassificationNodeFilter

The path filter expression is used to match classification nodes in ClassificationNodeFilter
elements involving the path attribute of the ClassificationNode class as defied by the getPath

Copyright © OASIS, 2001. All Rights Reserved

OASIS/ebXML Registry November 2001

method in [ebRIM].

The path filter expressions are based on avery small and proper sub-set of location path syntax
of XPath.

The path filter expression syntax includes support for matching multiple nodes by using wild
card syntax as follows:

?? Useof ‘*’ asawildcard in place of any path element in the pathFilter
?? Useof ‘/I' syntax to denote any descendent of a node in the pathFilter
It is defined by the following BNF grammar:

pathFi |l ter = "'/"' scheneld nodePat h
nodePat h = sl ashes nodeCode

| sl ashes **’

| sl ashes nodeCode (nodePath)?
Slashes::= /" | ‘I’

In the above grammer, schemeld is the id attribute of the ClassificationScheme instance. In the
above grammar nodeCode is defined by NCName production as defined by
http://www.w3.0org/TR/REC-xml-names/#NT-NCName.

The semantic rules for the ClassificationNodeFilter element allow the use of path attribute as a
filter that is based on the EQUAL clause. The pattern specified for matching the EQUAL clause
isaPATH Filter expression.

Thisisillustrated in the following example that matches all second level nodesin
ClassificationScheme with id ‘ Geography-id’” and with code ‘ Japan’:

<O assi fi cati onNodeQuery>
<0 assi ficati onNodeFi | t er >
<Cl ause>
<Si npl ed ause | ef t Argunent = "path">
<Stringd ause stringPredi cate = "Equal ">// Geography-i d/ */ Japan</ Stri ngd ause>
</ Si npl ed ause>
</ d ause>
</ d assificationNodeFilter>
</ O assi fi cat i onNodeQuer y>

Use Cases and Examples of Path Filter Expressions

The following table lists various use cases and examples using the sample Geography scheme
below:

<d assi ficati onSchene i d=' Geography-id'" name="Ceography”/>

<0 assi fi cati onNode i d="NorthAnerica-id" parent="Ceography-id" code=NorthAmrerica" />
<C assificati onNode i d="UnitedStates-id" parent="NorthAnerica-id" code="UnitedStates" />

<C assificati onNode i d="Asi a-id" parent="Ceography-id" code="Asia" />

<0 assi fi cati onNode i d="Japan-id" parent="Asia-i d" code="Japan" />
<C assi fi cati onNode i d="Tokyo-id" parent="Japan-id" code="Tokyo" />

= =Table 10: Path Filter Expressions for Use Cases

‘ Use Case PATH Expression Description

Match al nodesin first
level that have a specified ||| /Geography-id/NorthAmerica
value

Find al first level nodes whose
code is 'NorthAmerica

II:i nd all children nf firat /Geography-id/NorthAmerica/* II\/I atch all nnAdes whnee firat laval |

Copyright © OASIS, 2001. All Rights Reserved

2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384

2385
2386
2387

2388
2389

OASIS/ebXML Registry

November 2001

level node whose code is
“NorthAmerica’

]

]

path element has code
"NorthAmerica"

Match al nodes that have
a specified value
regardless of level

| Geography-id//Japan

Find al nodes with code "Japan’

Match al nodesin the
second leve that have a
specified value

/Geography-id/* /Japan

Find al second level nodes with
code 'Japan’

Match all nodesin the
3rd levd that have a
specified value

| Geography-id/*/*/Tokyo

Find al third level nodes with
code 'Tokyo'

Examples
A client application wishes to identify all of the classification nodes in the first three levels of a
classification scheme hierarchy. The client knows that the name of the underlying classification
scheme is “urn:ebxml:cs:myscheme”. The following query identifies all nodes at the first three
levels.

If, instead, the client wishes all levels returned, they could ssmply delete the
ClassificationNodeFilter element fromthe query.

Copyright © OASIS, 2001. All Rights Reserved

The following query finds all children nodes of a first level node whose code is NorthAmerica.

2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403

2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420

2421

2422

2423
2424

2425

2426

2427
2428
2429
2430
2431
2432
2433
2434
2435

OASIS/ebXML Registry November 2001

The following query finds al third level nodes with code of Tokyo.

8.2.6 ClassificationSchemeQuery

Purpose
To identify aset of classification scheme instances as the result of a query over selected registry
metadata

ebRIM Binding
Classification Scheme
Registry
Entry
< =Figure20: ebRIM Binding for ClassificationSchemeQuery
Definition

Copyright © OASIS, 2001. All Rights Reserved

2436
2437
2438
2439

2440

2441
2442
2443

2444

2445
2446
2447

2448
2449

2450
2451

2452
2453

2454

2455
2456
2457
2458
2459
2460
2461

2462

2463

2464

2465
2466

2467
2468

OASIS/ebXML Registry November 2001

</comp lexContent>
</complexType>
<element name=" ClassificationSchemeQuery" type="tns:ClassificationSchemeQueryType" />

Semantic Rules

21. Let CS denote the set of all persistent ClassificationScheme instances in the Registry. The
following steps will eliminate instances in CS that do not satisfy the conditions of the
specified filters.

p) If CSisempty then continue below.

g) If aClassificationSchemeFilter is not specified then go to the next step; otherwise, let x
be a classification schemein CS. If x does not satisfy the ClassificationSchemeFilter,
then remove x from CS. If CSis empty then continue below.

N Let CSbethe set of remaining ClassificationScheme instances. Evaluate inherited
RegistryEntryQuery over CS as explained in section 8.2.3.

22. If CSisempty, then raise the warning: classification scheme query result is empty; otherwise,

return CS as the result of the ClassificationSchemeQuery.

Return any accumulated warnings or exceptions as the StatusResult associated with the
ClassificationSchemeQuery.

Examples

A client application wishes to identify all classification scheme instances in the Registry.
<AdhocQueryRequest>
<ResponseOption returnType = "Leaf Class'/>
<FilterQuery>
<ClassificationSchemeQuery/>
</FilterQuery>
</AdhocQueryRequest>

8.2.7 RegistryPackageQuery

Purpose

To identify a set of registry package instances as the result of a query over selected registry
metadata.

Registry

Package

Registry

Entry
Regjstry]
Object Rclezgltstry
ntry
ebRIM Binding

= =Figure2l: ebRim binding for RegistryPackageQuery

Copyright © OASIS, 2001. All Rights Reserved

2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494

2495

2496
2497
2498

2499

2500
2501
2502

2503
2504
2505
2506
2507
2508
2509
2510
2511
2512

2513
2514

2515
2516

2517
2518

OASIS/ebXML Registry November 2001

Definition

<complexType name="RegistryPackageQueryType">
<complexContent>
<extension base="tns:RegistryEntryQueryType">
<sequence>
<element ref="tns:RegistryPackageFilter* minOccurs="0" maxOccurs="1" />
<element ref="tns:RegistryObjectQuery" minOccurs="0" maxOccurs="unbounded" />
<element ref="tns:RegistryEntryQuery" minOccurs="0" maxOccurs="unbounded" />
</sequence>
</extension>
</complexContent>
</complexType>
<element name=" RegistryPackageQuery" type="tns:RegistryPackageQueryType" />

<element name=" RegistryPackageQueryResult" >
<complexType>
<choice minOccurs="0" maxOccurs="unbounded" >
<element ref="rim:ObjectRef" />
<element ref="rim:RegistryEntry" />
<element ref="rim:RegistryObject" />
<element ref="rim:RegistryPackage" />
</choice>
</complexType>
</element>

Semantic Rules

23. Let RP denote the set of al persistent RegistryPackage instances in the Registry. The
following steps will eliminate instances in RP that do not satisfy the conditions of the
specified filters.

s) If RPisempty then continue below.

t) If a RegistryPackageFilter is not specified, then continue below; otherwise, let x be a
registry package instance in RP. If x does not satisfy the RegistryPackageFilter then
remove x from RP. If RP is empty then continue below.

u) If aRegistryObjectQuery element is directly contained in the RegistryPackageQuery
element then treat each RegistryObjectQuery as follows: let RO be the set of
RegistryObject instances returned by the RegistryObjectQuery as defined in Section 8.2.2
and let PO be the subset of RO that are members of the package x. If PO is empty, then
remove X from RP. If RP is empty then continue below. If a RegistryEntryQuery element
isdirectly contained in the RegistryPackageQuery element then treat each
RegistryEntryQuery as follows: let RE be the set of RegistryEntry instances returned by
the RegistryEntryQuery as defined in Section 8.2.3 and let PE be the subset of RE that
are members of the package x. If PE is empty, then remove x from RP. If RP is empty
then continue below.

v) Let RP bethe set of remaining RegistryPackage instances. Evaluate inherited
RegistryEntryQuery over RP as explained in section 8.2.3.

24. If RPisempty, then raise the warning: registry package query result is empty; otherwise
return RP as the result of the RegistryPackageQuery.

25. Return any accumulated warnings or exceptions as the StatusResult associated with the
RegistryPackageQuery.
Copyright © OASIS, 2001. All Rights Reserved

2519

2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539

2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556

2557
2558
2559
2560

2561

2562

2563
2564

2565

OASIS/ebXML Registry November 2001

Examples
A client application wishes to identify all package instances in the Registry that contain an
Invoice extrinsic object as a member of the package.

A client application wishes to identify all package instances in the Registry that are not empty.

A client application wishes to identify al package instances in the Registry that are empty. Since
the RegistryPackageQuery is not set up to do negations, clients will have to do two separate
RegistryPackageQuery requests, one to find all packages and another to find all nor-empty
packages, and then do the set difference themselves. Alternatively, they could do a more
complex RegistryEntryQuery and check that the packaging association between the package and
its members is non-existent.

Note: A registry package is an intrinsic RegistryEntry instance that is completely determined by
its associations with its members. Thus a RegistryPackageQuery can aways be re-specified as an
equivalent RegistryEntryQuery using appropriate “Source” and “Target” associations. However,
the equivalent RegistryEntryQuery is often more complicated to write.

8.2.8 ExtrinsicObjectQuery

Purpose
To identify a set of extrinsic object instances as the result of a query over selected registry
metadata.

ebRIM Binding

Copyright © OASIS, 2001. All Rights Reserved

2566

2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590

2501

2592
2593
2594

2595

2596
2597
2598

2599
2600

2601
2602

2603
2604

2605

2606
2607

OASIS/ebXML Registry November 2001

Extrinsic Object

Registry
Entry

<= <=Figure 22:ebRIM Bindi ng for ExtrinsicObjectQuery

Definition

Semantic Rules

26. Let EO denote the set of all persistent ExtrinsicObject instances in the Registry. The
following steps will eliminate instances in EO that do not satisfy the conditions of the
specified filters.

w) If EO isempty then continue below.

X) If a ExtrinsicObjectFilter is not specified then go to the next step; otherwise, let x bean
extrinsic object in EO. If x does not satisfy the ExtrinsicObjectFilter then remove x from
EO. If EO is empty then continue below.

y) Let EO be the set of remaining ExtrinsicObject instances. Evaluate inherited
RegistryEntryQuery over EO as explained in section 8.2.3.

27. If EO is empty, then raise the warning: extrinsic object query result is empty; otherwise,
return EO as the result of the ExtrinsicObjectQuery.

28. Return any accumulated warnings or exceptions as the StatusResult associated with the
ExtrinsicObjectQuery.

8.2.9 OrganizationQuery

Purpose
To identify a set of organization instances as the result of a query over selected registry
Copyright © OASIS, 2001. All Rights Reserved

2608
2609

2610

2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640

2641

2642
2643
2644

OASIS/ebXML Registry

November 2001

metadata.

ebRIM Binding

Organization

lChi Idren

Organization

Registry
Parentl Object
Organization l
Postal Telephone
Address User Number
Postal Oraanization Telephone
Address Number

< =Figure 23: ebRim Binding for OrganizationQuery

Definition

Semantic Rules

29. Let ORG denote the set of all persistent Organization instances in the Registry. The
following steps will eliminate instances in ORG that do not satisfy the conditions of the

specified filters.

Copyright © OASIS, 2001. All Rights Reserved

OASIS/ebXML Registry November 2001

2645 z) If ORG isempty then continue below.

2646 aa) If an OrganizationFilter element is not directly contained in the OrganizationQuery

2647 element, then go to the next step; otherwise let x be an organization instance in ORG. If x
2648 does not satisfy the OrganizationFilter then remove x from ORG. If ORG isempty then
2649 continue below.

2650 bb) If a PostalAddressFilter element is not directly contained in the OrganizationQuery

2651 element then go to the next step; otherwise, let x be an extrinsic object in ORG. If postal
2652 address of x does not satisfy the Postal AddressFilter then remove x from ORG. If ORG is
2653 empty then continue bel ow.

2654 cc) If no TelephoneNumberFilter element is directly contained in the OrganizationQuery
2655 element then go to the next step; otherwise, let X be an extrinsic object in ORG. If any of
2656 the TelephoneNumberFiltersisn’t satisfied by some of the telephone numbers of x then
2657 remove x from ORG. If ORG is empty then continue below.

2658 dd) If aUserBranch element is not directly contained in the OrganizationQuery element then
2659 go to the next step; otherwise, let x be an extrinsic object in ORG. Let u be the user
2660 instance that is affiliated with x. If a UserFilter element is specified within the

2661 UserBranch, and if u does not satisfy that filter, then remove x from ORG. If a

2662 Postal AddressFilter element is specified within the UserBranch, and if the postal address
2663 of u does not satisfy that filter, then remove x from ORG. If TelephoneNumberFilter(s)
2664 are specified within the UserBranch and if any of the TelephoneNumberFiltersisn’t
2665 satisfied by some of the telephone numbers of x then remove x from ORG. If

2666 Email AddressFilter(s) are specified within the UserBranch and if any of the

2667 Email AddressFiltersisn’t satisfied by some of the email addresses of x then remove x
2668 from ORG. If an OrganizationQuery element is specified within the UserBranch, then let
2669 0 be the Organization instance that is identified by the organization that u is affiliated
2670 with. If o doesn’t satisfy OrganizationQuery as defined in section 8.2.9 then remove x
2671 from ORG. If ORG is empty then continue below.

2672 ee) If aOrganizationParentBranch element is not specified within the OrganizationQuery,
2673 then go to the next step; otherwise, let x be an extrinsic object in ORG. Execute the
2674 following paragraph with o = x:

2675 Let 0 be an organization instance. If an OrganizationFilter is not specified within the
2676 OrganizationParentBranch and if o has no parent (i.e. if o isaroot organization in the
2677 Organization hierarchy), then remove x from ORG; otherwise, let p be the parent

2678 organization of o. If p does not satisfy the OrganizatiorFilter, then remove x from ORG.
2679 If ORG is empty then continue below.

2680 If another OrganizationParentBranchelement is directly contained within this

2681 OrganizationParentBranch element, then repesat the previous paragraph with o = p.

2682 ff) |f aOrganizationChildrenBranch element is not specified, then continue bel ow;

2683 otherwise, let x be aremaining organization in ORG. If x is not the parent node of some
2684 organization instance, then remove x from ORG and if ORG is empty continue below;
2685 otherwise, treat each OrganizationChildrenBranch element separately and execute the
2686 following paragraph with n = x.

Copyright © OASIS, 2001. All Rights Reserved

OASIS/ebXML Registry November 2001

Let n be an organization instance. If an OrganizationFilter element is not specified within
the OrganizationChildrenBranch element then let ORGC be the set of all organizations
that have n as their parent node; otherwise, let ORGC be the set of al organizations that
satisfy the OrganizationFilter and have n as their parent node. If ORGC is empty, then
remove X from ORG and if ORG is empty continue below; otherwise, let ¢ be any
member of ORGC. If a Postal AddressFilter element is directly contained in the
OrganizationChildrenBranch and if the postal address of ¢ does not satisfy the

Postal AddressFilter then remove ¢ from ORGC. If ORGC is empty then remove x from
ORG. If ORG is empty then continue below. If no TelephoneNumberFilter element is
directly contained in the OrganizationChildrenBranch and if If any of the
TelephoneNumberFiltersisn't satisfied by some of the telephone numbers of ¢ then
remove ¢ from ORGC. If ORGC is empty then remove x from ORG. If ORG is empty
then continue below; otherwise, let y be an element of ORGC and continue with the next
paragraph.

If the OrganizationChildrenBranch element is terminal, i.e. if it does not directly contain
another OrganizationChildrenBranch element, then continue below; otherwise, repeat the
previous paragraph with the new OrganizationChildrenBranch element and withn =y.

gg) Let ORG be the set of remaining Organization instances. Evaluate inherited

RegistryObjectQuery over ORG as explained in section 8.2.2.

30. If ORG is empty, then raise the warning: organization query result is empty; otherwise return
ORG as the result of the OrganizationQuery.

31. Return any accumulated warnings or exceptions as the StatusResult associated with the
OrganizationQuery.

Examples

A client application wishes to identify a set of organizations, based in France, that have
submitted a PartyProfile extrinsic object this year.

<AdhocQuer yRequest >
<Responseption returnType = "Leaf O ass" returnConposedChj ects = "True”/>
<Fil ter Query>

<Or gani zat i onQuer y>
<Sour ceAssoci at i onBr anch>
<Associ ati onFil ter>

<d ause>
<Si npl ed ause | eft Argunent = "associ ati onType" >
<Stringd ause stringPredicate = "Equal ">Subm tterOf </ StringC ause>
</ Si npl ed ause>
</ d ause>

</ Associ ati onFi | ter>
<Regi st ryQhj ect Quer y>
<Regi stryQbj ectFilter>
<d ause>
<Si npl ed ause | ef t Argunent = "obj ect Type">
<Stringd ause stringPredi cate = "Equal ">CPP</ Stri ngd ause>
</ Si npl eCl ause>
</ d ause>
</ Regi stryChjectFilter>
<Audi t abl eEvent Quer y>
<Audi t abl eEvent Fi | t er >

<d ause>
<Si npl ed ause | eft Argunent = "ti mest anp">
<Rati onal d ause | ogi cal Predicate = "CGE"'>

<Dat eTi nred ause>2000- 01- 01TOO0: 00: 00- 05: 00</ Dat eTi med ause>
</ Rati onal d ause>
</ Si npl ed ause>
</ d ause>
</ Audi t abl eEvent Fi | ter >
</ Audi t abl eEvent Quer y>

Copyright © OASIS, 2001. All Rights Reserved

OASIS/ebXML Registry November 2001

A client application wishes to identify all organizations that have Corporation named XYZ asa
parent.

8.2.10 ServiceQuery

Purpose

To identify a set of service instances as the result of a query over selected registry metadata.

ebRIM Binding

Copyright © OASIS, 2001. All Rights Reserved

2785

2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811

2812

2813
2814

2815

2816
2817
2818

OASIS/ebXML Registry

November 2001

Registry
Object

<

Service

Registry Entry

l

Service Binding

Specification Link

Definition

Semantic Rules

<= <=Figure24:ebRIM Binding for ServiceQuery

Registry
Entry

32. Let S denote the set of all persistent Service instances in the Registry. The following steps
will eliminate instances in S that do not satisfy the conditions of the specified filters.

hh) If Sisempty then continue below.

i) If aServicetFilter is not specified then go to the next step; otherwise, let X be a service in
S. If x does not satisfy the ServiceFilter, then remove x from S. If Sis empty then

continue below.

Copyright © OASIS, 2001. All Rights Reserved

2819
2820
2821
2822
2823
2824
2825
2826

2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842

2843
2844

2845
2846

2847
2848

2849
2850

2851

2852
2853

2854
2855
2856
2857
2858
2859
2860
2861
2862
2863

OASIS/ebXML Registry November 2001

j}) If aServiceBindingBranch is not specified then continue below; otherwise, consider each
ServiceBindingBranch element separately as follows:
Let SB bethe set of all ServiceBinding instances that describe binding of x. Let sb be the
member of SB. If a ServiceBindingFilter element is specified within the
ServiceBindingBranch, and if sb does not satisfy that filter, then remove sb from SB. If
SB is empty then remove x from S. If Sis empty then continue below. If a
SpecificationLinkBranch is not specified within the ServiceBindingBranch then continue
below; otherwise, consider each SpecificationLinkBranch element separately as follows:
Let sb be aremaining service binding in SB. Let SL be the set of all specification link
instances dl that describe specification links of sb. If a SpecificationLinkFilter element is
specified within the SpecificationLinkBranch, and if sl does not satisfy that filter, then
remove d from SL. If SL is empty then remove sb from SB. If SB is empty then remove
x from S. If Sisempty then continue below. If a RegistryObjectQuery element is
specified within the SpecificationLinkBranch then let gl be a remaining specification link
in SL. Treat RegistryObjectQuery element as follows: Let RO be the result set of the
RegistryObjectQuery as defined in Section 8.2.2. If d is not a specification link for some
registry object in RO, then remove d from SL. If SL is empty then remove sb from SB. If
SB is empty then remowve x from S. If Sis empty then continue below. If a
RegistryEntryQuery element is specified within the SpecificationLinkBranch then let o
be aremaining specification link in SL. Treat RegistryEntryQuery element as follows:
Let RE be the result set of the RegistryEntryQuery as defined in Section 8.2.3. If g is not
a specification link for some registry entry in RE, then remove d from SL. If SL is empty
then remove sb from SB. If SB is empty then remove x from S. If Sisempty then
continue below.

kk) Let S be the set of remaining Service instances. Evaluate inherited RegistryEntryQuery
over AE as explained in section 8.2.3.

33. If Sisempty, then raise the warning: service query result is empty; otherwise return S as the
result of the ServiceQuery.

34. Return any accumulated warnings or exceptions as the StatusResult associated with the
ServiceQuery.

Examples

8.2.11 Reqistry Filters

Purpose
To identify a subset of the set of all persistent instances of a given registry class.

Definition

<conpl exType name="Filter Type">

<sequence>

<el ement ref="tns:C ause" />

</ sequence>
</ conpl exType>
<el ement name="Regi stryObjectFilter" type="tns:FilterType" />
<el ement name="Regi stryEntryFilter" type="tns:FilterType" />
<el enent name="ExtrinsicCObjectFilter" type="tns:FilterType" />

Copyright © OASIS, 2001. All Rights Reserved

2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882

2883
2884

2885
2886
2887
2888
2889

2890
2891
2892
2893
2894

2895
2896
2897
2898
2899

2900
2901
2902
2903
2904

2905
2906
2907
2908
2909

OASIS/ebXML Registry November 2001

<el ement nanme="Regi stryPackageFilter" type="tns:FilterType" />
<el ement name="Organi zationFilter" type="tns:FilterType" />

<el ement nanme="Cl assificati onNodeFilter" type="tns:FilterType" />
<el ement nanme="Associ ationFilter" type="tns:FilterType" />

<el ement nane="Cl assificationFilter" type="tns:FilterType" />

<el ement name="Cl assi ficationScheneFilter" type="tns:FilterType" />
<el ement name="External LinkFilter" type="tns:FilterType" />

<el ement name="External IdentifierFilter" type="tns:FilterType" />
<el ement name="SlotFilter" type="tns:FilterType" />

<el ement nanme="Auditabl eEventFilter" type="tns:FilterType" />

<el ement name="UserFilter" type="tns:FilterType" />

<el ement nanme="Sl| ot Val ueFilter" type="tns:FilterType" />

<el ement nanme="Post al AddressFilter" type="tns:FilterType" />

<el ement nane="Tel ephoneNunberFilter" type="tns:FilterType" />
<el ement name="ServiceFilter" type="tns:FilterType" />

<el ement nanme="Servi ceBi ndi ngFilter" type="tns:FilterType" />

<el ement name="SpecificationLinkFilter" type="tns:FilterType" />
<el ement nanme="Local i zedStringFilter" type="tns:FilterType" />

Semantic Rules

35.
36.

37.

38.

39.

40.

The Clause element is defined in Section Error! Refer ence sour ce not found., Clause.

For every RegistryObjectFilter XML element, the leftArgument attribute of any containing
SimpleClause shall identify a public attribute of the RegistryObject UML class defined in
[ebRIM]. If not, raise exception: object attribute error. The RegistryObjectFilter returns a set
of identifiers for RegistryObject instances whose attribute values evaluate to True for the
Clause predicate.

For every RegistryEntryFilter XML element, the leftArgument attribute of any containing
SimpleClause shall identify a public attribute of the RegistryEntry UML class defined in
[ebRIM]. If not, raise exception: registry entry attribute error. The RegistryEntryFilter
returns a set of identifiers for RegistryEntry instances whose attribute values evaluate to True
for the Clause predicate.

For every ExtrinsicObjectFilter XML element, the leftArgument attribute of any containing
SimpleClause shall identify a public attribute of the ExtrinsicObject UML class defined in
[ebRIM]. If not, raise exception: extrinsic object attribute error. The ExtrinsicObjectFilter
returns a set of identifiers for ExtrinsicObject instances whose attribute values evaluate to
True for the Clause predicate.

For every RegistryPackageFilter XML element, the leftArgument attribute of any containing
SimpleClause shall identify a public attribute of the RegistryPackage UML class defined in
[ebRIM]. If not, raise exception: package attribute error. The RegistryPackageFilter returns
a set of identifiers for RegistryPackage instances whose attribute values evaluate to True for
the Clause predicate.

For every OrganizationFilter XML element, the leftArgument attribute of any containing
SimpleClause shall identify a public attribute of the Organization or Postal Address UML
classes defined in [ebRIM]. If not, raise exception: organization attribute error. The
OrganizationFilter returns a set of identifiers for Organization instances whose attribute
values evaluate to True for the Clause predicate.

Copyright © OASIS, 2001. All Rights Reserved

OASIS/ebXML Registry November 2001

2910 41. For every ClassificationNodeFilter XML element, the leftArgument attribute of any

2911 containing SimpleClause stell identify a public attribute of the ClassificationNode UML
2912 class defined in [ebRIM]. If not, raise exception: classification node attribute error. If the
2913 leftAttribute is the visible attribute “path” then if stringPredicate of the StringClause is not
2914 “Equal” then raise exception: classification node path attribute error. The

2915 ClassificationNodeFilter returns a set of identifiers for ClassificationNode instances whose
2916 attribute values evaluate to True for the Clause predicate.

2917 42. For every AssociationFilter XML element, the leftArgument attribute of any containing
2918 SimpleClause shall identify a public attribute of the Association UML class defined in

2919 [ebRIM]. If not, raise exception: association attribute error. The AssociationFilter returns a
2920 set of identifiers for Association instances whose attribute values evaluate to True for the
2921 Clause predicate.

2922 43. For every ClassificationFilter XML element, the leftArgument attribute of any containing
2923 SimpleClause shall identify a public attribute of the Classification UM L class defined in
2924 [ebRIM]. If not, raise exception: classification attribute error. The ClassificationFilter

2925 returns a set of identifiers for Classification instances whose attribute values evaluate to True
2926 for the Clause predicate.

2927 44. For every ClassificationSchemeFilter XML element, the leftArgument attribute of any

2928 containing SimpleClause shall identify a public attribute of the ClassificationNode UML
2929 class defined in [ebRIM]. If not, raise exception: classification scheme attribute error. The
2930 ClassificationSchemeFilter returns a set of identifiers for ClassificationScheme instances
2931 whose attribute values evaluate to True for the Clause predicate.

2932 45. For every ExternaLinkFilter XML element, the leftArgument attribute of any containing
2933 SimpleClause shall idertify a public attribute of the ExternalLink UML class defined in
2934 [ebRIM]. If not, raise exception: external link attribute error. The External LinkFilter returns
2935 a set of identifiers for ExternalLink instances whose attribute values evaluate to True for the
2936 Clause predicate.

2937 46. For every ExternaldentiferFilter XML element, the leftArgument attribute of any containing
2938 SimpleClause shall identify a public attribute of the Externalldentifier UML class defined in
2939 [ebRIM]. If not, raise exception: external identifier attribute error. The

2940 ExternalldentifierFilter returns a set of identifiers for Externalldentifier instances whose
2941 attribute values evaluate to True for the Clause predicate.

2942 47. For every SotFilter XML element, the leftArgument attribute of any containing

2943 SimpleClause shall identify a public attribute of the Slot UML class defined in [ebRIM]. If
2944 not, raise exception: dlot attribute error. The SlotFilter returns a set of identifiers for Slot
2945 instances whose attribute values evaluate to True for the Clause predicate.

2946 48. For every AuditableEventFilter XML element, the leftArgument attribute of any containing
2947 SimpleClause shall identify a public attribute of the AuditableEvent UML class defined in
2948 [ebRIM]. If not, raise exception: auditable event attribute error. The AuditableEventFilter
2949 returns a set of identifiers for AuditableEvent instances whose attribute values evaluate to
2950 True for the Clause predicate.

2951 49. For every UserFilter XML element, the leftArgument attribute of any containing

2952 SimpleClause shall identify a public attribute of the User UML class defined in [ebRIM]. If
2953 not, raise exception: user attribute error. The UserFilter returns a set of identifiers for User
2954 instances whose attribute values evaluate to True for the Clause predicate.

Copyright © OASIS, 2001. All Rights Reserved

2955
2956
2957
2958
2959
2960
2961
2962

2963
2964
2965
2966
2967

2968
2969
2970
2971
2972

2973
2974
2975
2976

2977
2978
2979
2980
2981

2982
2983
2984
2985
2986

2987
2988
2989
2990
2991

2992

2993
2994
2995
2996

OASIS/ebXML Registry November 2001

50.

51.

52.

53.

54.

55.

56.

SlotVaueisaderived, nonpersistent class based on the Slot class from ebRIM. There is one
SlotVaue instance for each “vaue” in the “values’ list of a Sot instance. The visible
attribute of SlotVaue is‘value’. It is a character string. The dynamic instances of SlotValue
are derived from the “values’ attribute defined in ebRIM for a Slot instance. For every
SlotVaueFilter XML element, the leftArgument attribute of any containing SimpleClause
shall identify the “value” attribute of the SlotValue class just defined. If not, raise exception:
slot element attribute error. The SlotValueFilter returns a set of Slot instances whose “value’
attribute evaluates to True for the Clause predicate.

For every Postal AddressFilter XML element, the leftArgument attribute of any containing
SimpleClause shall identify a public attribute of the PostalAddress UML class defined in
[ebRIM]. If not, raise exception: postal address attribute error. The Postal AddressFilter
returns a set of identifiers for Postal Address instances whose attribute values evaluate to True
for the Clause predicate.

For every TelephoneNumberFilter XML element, the |eftArgument attribute of any
containing SimpleClause shall identify a public attribute of the TelephoneNumber UML
class defined in [ebRIM]. If not, raise exception: telephone number identity attribute error.
The TelephoneNumberFilter returns a set of identifiers for TelephoneNumber instances
whose attribute values evaluate to True for the Clause predicate.

For every ServiceFilter XML element, the leftArgument attribute of any containing
SimpleClause shall identify a public attribute of the Service UML class defined in [ebRIM].
If not, raise exception: service attribute error. The ServiceFilter returns a set of identifiers for
Service instances whose attribute values evaluate to True for the Clause predicate.

For every ServiceBindingFilter XML element, the leftArgument attribute of any containing
SimpleClause shall identify a public attribute of the ServiceBinding UML class defined in
[ebRIM]. If not, raise exception: service binding attribute error. The ServiceBindingFilter
returns a set of identifiers for ServiceBinding instances whose attribute values evaluate to
True for the Clause predicate.

For every SpecificationLinkFilter XML element, the leftArgument attribute of any
containing SimpleClause shall identify a public attribute of the SpecificationLink UML class
defined in [ebRIM]. If not, raise exception: specification link attribute error. The
SpecificationLinkFilter returns a set of identifiers for SpecificationLink instances whose
attribute values evaluate to True for the Clause predicate.

For every LocalizedStringFilter XML element, the leftArgument attribute of any containing
SimpleClause shall identify a public attribute of the LocalizedString UML class defined in
[ebRIM]. If not, raise exception: localized string attribute error. The LocalizedStringFilter
returns a set of identifiers for LocalizedString instances whose attribute values evaluate to
True for the Clause predicate.

8.2.12 XML Clause Constraint Representation

Purpose

The simple XML FilterQuery utilizesaformal XML structure based on Predicate Clauses.
Predicate Clauses are utilized to formally define the constraint mechanism, and are referred to
simply as Clauses in this specification.

Copyright © OASIS, 2001. All Rights Reserved

2997
2998
2999

3000
3001

3002
3003
3004
3005

3006
3007
3008
3009

3010
3011
3012
3013
3014
3015
3016

3017
3018

3019
3020
3021
3022

OASIS/ebXML Registry November 2001

Conceptual Diagram
The following is a conceptual diagram outlining the Clause structure.

[' leftArgument %

strimg

* BooleanClause O [' bnoleanpredicate%
boolean

[' logicalPredicate 4
#IMMTOKEN

* IntClause g
* SimpleClause || inkeger

+ RationalClause E + Floatclause#
Flaak

+ DateTimeEIause

dakeTime

+
Clause + stringClause [i‘ stringpredicateq
string FIMNMTOKER

* mnnectiuepredicateq
*IMMTOKEN

* CompoundClause | e * Clause

= =Figure25: The Clause Structure

Semantic Rules

Predicates and Arguments are combined into a "LeftArgument - Predicate - RightArgument”
format to form aClause. There are two types of Clauses: SmpleClauses and CompoundClauses.
SimpleClauses

A SimpleClause always defines the leftArgument as a text string, sometimes referred to as the
Subject of the Clause. SimpleClause itself is incomplete (abstract) and must be extended.
SimpleClause is extended to support BooleanClause, StringClause, and Rational Clause
(abstract).

BooleanClause implicitly defines the predicate as ‘equal to’, with the right argument as a
boolean. StringClause defines the predicate as an enumerated attribute of appropriate string-
compare operations and aright argument as the element’ s text data. Rational number support is
provided through a common Rational Clause providing an enumeration of appropriate rational
number compare operations, which is further extended to IntClause and FloatClause, each with
appropriate signatures for the right argument.

CompoundClauses

A CompoundClause contains two or more Clauses (Simple or Compound) and a connective
predicate. This provides for arbitrarily complex Clauses to be formed.

Definition

<el ement nanme = "Cl ause">
<annot at i on>

Copyright © OASIS, 2001. All Rights Reserved

OASIS/ebXML Registry November 2001

Copyright © OASIS, 2001. All Rights Reserved

OASIS/ebXML Registry November 2001

Examples

Simple BooleanClause: "Smoker" = True

Simple StringClause: "Smoker" contains "mo"

Simple IntClause: "Age" >=7

Copyright © OASIS, 2001. All Rights Reserved

OASIS/ebXML Registry November 2001

Simple FloatClause: "Size" = 4.3

Compound with two Simples (("Smoker" = False)AND("Age" =< 45))

Coumpound with one Simple and one Compound

(("Smoker" = False)And(("Age" =< 45)Or("American"=True)))

Copyright © OASIS, 2001. All Rights Reserved

3195
3196
3197
3198

3199

3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211

3212

3213
3214
3215

3216

3217
3218
3219

3220
3221

3222
3223

3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236

OASIS/ebXML Registry November 2001

</ Cl ause>
</ ConmpoundCl ause>
<Cl ause>

8.3 SQL Query Support

The Registry may optionally support an SQL based query capability that is designed for Registry
clients that demand more advanced query capability. The optional SQL Query element in the
AdhocQueryRequest allows a client to submit complex SQL queries using a declarative query
language.

The syntax for the SQLQuery of the Registry is defined by a stylized use of a proper subset of
the “SELECT” statement of Entry level SQL defined by 1SO/IEC 9075:1992, Database
Language SQL [SQL], extended to include<sgl i nvoked routi nes> (aso kmwn as
stored procedures) as specified in ISO/IEC 9075-4 [SQL-PSM] and pre-defined routines defined
in template form in Appendix 0. The syntax of the Registry query language is defined by the
BNF grammar in 0.

Note that the use of a subset of SQL syntax for SQLQuery does not imply a requirement to use
relational databases in a Registry implementation.

8.3.1 SQL Query Syntax Binding To [ebRIM]

SQL Queries are defined based upon the query syntax in in Appendix 0 and afixed relational
schema defined in Appendix 0. The relational schemais an algorithmic binding to [ebRIM] as
described in the following sections.

8.3.1.1 Class Binding

A subset of the class names defined in [ebRIM] map to table names that may be queried by an
SQL query. Appendix O defines the names of the ebRIM classes that may be queried by an SQL
query.

The algorithm used to define the binding of [ebRIM] classes to table definitionsin Appendix O is

as follows:

?? Classes that have concrete instances are mapped to relational tables. In addition entity classes
(e.g. PostalAddress and TelephoneNumber) are al'so mapped to relational tables.

?? The intermediate classes in the inheritance hierarchy, namely RegistryObject and
RegistryEntry, map to relational views.

?? The names of relational tables and views are the same as the corresponding [ebRIM] class
name. However, the name binding is case insensitive.

?? Each [ebRIM] class that maps to a table in Appendix 0 includes column definitions in
Appendix 0 where the column definitions are based on a subset of attributes defined for that
classin [ebRIM]. The attributes that map to columns include the inherited attributes for the
[ebRIM] class. Comments in Appendix O indicate which ancestor class contributed which
column definitions.

An SQLQuery against atable not defined in Appendix O may raise an error condition:

InvalidQueryException.

The following sections describe the algorithm for mapping attributes of [ebRIM] to SQLcolumn

definitions.

Copyright © OASIS, 2001. All Rights Reserved

3237

3238
3239
3240
3241
3242

3243

3244
3245
3246

3247
3248
3249
3250
3251
3252
3253

3254

3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267

3268

3269
3270
3271
3272
3273
3274
3275
3276
3277

3278
3279

OASIS/ebXML Registry November 2001

8.3.1.2 Primitive Attributes Binding

Attributes defined by [ebRIM] that are of primitive types (e.g. String) may be used in the same
way as column names in SQL. Again the exact attribute names are defined in the class
definitions in [ebRIM]. Note that while names are in mixed case, SQL-92 is case insensitive. It is
therefore valid for a query to contain attribute names that do not exactly match the case defined
in [ebRIM].

8.3.1.3 Reference Attribute Binding

A few of the [ebRIM] class attributes are of type UUID and are a reference to an instance of a
class defined by [ebRIM]. For example, the accessControl Policy attribute of the RegistryObject
class returns a reference to an instance of an AccessControl Policy object.

In such cases the reference mapsto the i d attribute for the referenced object. The name of the
resulting column is the same as the attribute name in [ebRIM] as defined by 8.3.1.2. The data
type for the column is VARCHAR(64) as defined in Appendix O.

When a reference attribute value holds a null reference, it maps to a null value in the SQL
binding and may be tested with the <null specification> (“IS[NOT] NULL” syntax) as defined
by [SQL].

Reference attribute binding is a special case of a primitive attribute mapping.

8.3.1.4 Complex Attribute Binding

A few of the [ebRIM] interfaces define attributes that are not primitive types. Instead they are of
a complex type as defined by an entity classin [ebRIM]. Examples include attributes of type
TelephoneNumber, Contact, PersonName etc. in class Organization and class User.

The SQL query schema does not map complex attributes as columns in the table for the class for
which the attribute is defined. Instead the complex attributes are mapped to columns in the table
for the domain class that represents the data type for the complex attribute (e.g.
TelephoneNumber). A column links the row in the domain table to the row in the parent table
(e.g. Usar). An additional column named ‘attribute_name’ identifies the attribute name in the
parent class, in case there are multiple attributes with the same complex attribute type.

This mapping also easily alows for attributes that are a collection of a complex type. For
example, a User may have a collection of TelephoneNumbers. This maps to multiple rows in the
TelephoneNumber table (one for each TelephoneNumber) where each row has a parent identifier
and an attribute_name.

8.3.1.5 Binding of Methods Returning Collections

Several of the [ebRIM] classes define methods in addition to attributes, where these methods
return collections of references to instances of classes defined by [ebRIM]. For example, the
getPackages method of the ManagedObject class returns a Collection of references to instances
of Packages that the object is a member of.

Such collection returning methods in [ebRIM] classes have been mapped to stored procedures in
Appendix O such that these stored procedures return a collection of i d attribute values. The
returned value of these stored procedures can be treated as the result of atable sub-query in SQL.
These stored procedures may be used as the right-hand-side of an SQL IN clause to test for
membership of an object in such collections of references.

8.3.2 Semantic Constraints On Query Syntax
This section defines simplifying constraints on the query syntax that cannot be expressed in the

Copyright © OASIS, 2001. All Rights Reserved

OASIS/ebXML Registry November 2001

BNF for the query syntax. These constraints must be applied in the semantic analysis of the
query.
1. Class names and attribute names must be processed in a case insensitive manner.

2. The syntax used for stored procedure invocation must be consistent with the syntax of an
SQL procedure invocation as specified by 1SO/IEC 9075-4 [SQL/PSM].

3. For this version of the specification, the SQL select column list consists of exactly one
column, and must always bet.i d, wheret isatable reference in the FROM clause.

4. Join operations must be restricted to smple joins involving only those columns that have an
index defined within the normative SQL schema. This constraint is to prevent queries that
may be computationally too expensive.

8.3.3 SQL Query Results

The result of an SQL query resolves to a collection of objects within the registry. It never
resolves to partial attributes. The objects related to the result set may be returned as an
ObjectRef, RegistryObject, RegistryEntry or leaf ebRIM class depending upon the
responseOption parameter specified by the client on the AdHocQueryRequest. The entire result
set isreturned as a SQL QueryResult as defined by the AdHocQueryResponse in Section Error!
Refer ence sour ce not found..

8.3.4 Simple Metadata Based Queries

The simplest form of an SQL query is based upon metadata attributes specified for a single class
within [ebRIM]. This section gives some examples of simple metadata based queries.
For example, to get the collection of ExtrinsicObjects whose name contains the word ‘ Acme’
and that have a version greater than 1.3, the following query must be submitted:
SELECT eo.id from ExtrinsicCoject eo, Name nm where nmval ue LIKE ' %cme% AND

eo.id = nmparent AND

eo. mgj or Version >= 1 AND
(eo. mgjorVersion >= 2 OR eo. mnorVersion > 3);

Note that the query syntax allows for conjugation of simpler predicates into more complex
queries as shown in the smple example above.

8.3.5 RegistryObject Queries

The schema for the SQL query defines a special view called RegistryObject that allows doing a
polymorphic query against al RegistryObject instances regardless of their actual concrete type or
table name.

The following example is the similar to that in Section 8.3.4 except that it is applied against all
RegistryObject instances rather than just ExtrinsicObject instances. The result set will include id
for al qualifying RegistryObject instances whose name contains the word ‘Acme’ and whose
description contains the word “bicycle’.

SELECT ro.id from Regi stryQoject ro, Nane nm Description d where nmval ue LIKE ' %cne% AND

d.val ue LIKE ' %icycl e% AND
ro.id = nmparent AND ro.id = d. parent;

Copyright © OASIS, 2001. All Rights Reserved

OASIS/ebXML Registry November 2001

8.3.6 RegistryEntry Queries

The schemafor the SQL query defines a special view called RegistryEntry that allows doing a
polymorphic query against all RegistryEntry instances regardless of their actua concrete type or
table name.

The following example is the same as Section 8.3.4 except that it is applied against all
RegistryEntry instances rather than just ExtrinsicObject instances. The result set will include id
for all qualifying RegistryEntry instances whose name contains the word ‘Acme’ and that have a
version greater than 1.3.
SELECT re.id from RegistryEntry re, Name nmwhere nmval ue LI KE ' %cnme% AND

re.id = nmparent AND

re. maj orVersion >= 1 AND
(re.majorVersion >= 2 OR re. mnorVersion > 3);

8.3.7 Classification Queries
This section describes the various classification related queries that must be supported.

8.3.7.1 Identifying ClassificationNodes

Like al objectsin [ebRIM], ClassificationNodes are identified by their ID. However, they may
also be identified as a path attribute that specifies an XPATH expression [XPT] from aroot
classification node to the specified classification node in the XML document that would
represent the ClassificationNode tree including the said ClassificationNode.

8.3.7.2 Getting ClassificationSchemes
To get the collection of ClassificationSchemes the following query predicate must be supported:

SELECT schene.id FROM d assi fi cati onSchene scheng;

The above query returns all ClassificationSchemes. Note that the above query may also specify
additional predicates (e.g. name, description etc.) if desired.

8.3.7.3 Getting Children of Specified ClassificationNode

To get the children of a ClassificationNode given the ID of that node the following style of query
must be supported:

SELECT cn.id FROM d assi fi cati onNode cn WHERE parent = <i d>

The above query returns all ClassificationNodes that have the node specified by <id> as their
parent attribute.

8.3.7.4 Getting Objects Classified By a ClassificationNode

To get the collection of ExtrinsicObjects classified by specified ClassificationNodes the
following style of query must be supported:

SELECT id FROM Extri nsi cQbj ect
VWHERE
id IN (SELECT cl assifiedObj ect FROM d assification
WHERE
classificationNode | N (SELECT id FROM O assi fi cati onNode
WHERE path = ‘/ Geography/ Asi a/ Japan’))
AND
idIN (SELECT cl assifiedOject FROM d assification
VWHERE
cl assificati onNode I N (SELECT id FROM d assi fi cati onNode
WHERE path = ‘/Industry/Autonotive'))

Copyright © OASIS, 2001. All Rights Reserved

OASIS/ebXML Registry November 2001

The above query gets the collection of ExtrinsicObjects that are classified by the Automotive
Industry and the Japan Geography. Note that according to the semantics defined for
GetClassifiedObjectsRequest, the query will aso contain any objects that are classified by
descendents of the specified ClassificationNodes.

8.3.7.5 Getting Classifications That Classify an Object

To get the collection of Classifications that classify a specified Object the following style of
query must be supported:

SELECT id FROM O assification c
WHERE c. cl assi fi edChj ect = <id>;

8.3.8 Association Queries
This section describes the various Association related queries that must be supported.

8.3.8.1 Getting All Association With Specified Object As Its Source

To get the collection of Associations that have the specified Object as its source, the following
query must be supported:

SELECT id FROM Associ ati on WHERE sour ce(hj ect = <i d>

8.3.8.2 Getting All Association With Specified Object As Its Target

To get the collection of Associations that have the specified Object as its target, the following
query must be supported:

SELECT id FROM Associ ati on WHERE t ar get Gbj ect = <i d>

8.3.8.3 Getting Associated Objects Based On Association Attributes

To get the collection of Associations that have specified Association attributes, the following
gueries must be supported:

Select Associations that have the specified name.

SELECT id FROM Associ ati on WHERE nane = <nane>

Select Associations that have the specified association type, where association type is a string
containing the corresponding field name described in [ebRIM].

SELECT i d FROM Associ ati on WHERE
associ ati onType = <associ ati onType>

8.3.8.4 Complex Association Queries

The various forms of Association queries may be combined into complex predicates. The
following query selects Associations that have a specific sourceObject, targetObject and
associationType:
SELECT i d FROM Associ ati on WHERE

sour ce(hj ect = <i d1> AND

target Chj ect = <id2> AND
associ ati onType = <associ ati onType>;

Copyright © OASIS, 2001. All Rights Reserved

OASIS/ebXML Registry November 2001

8.3.9 Package Queries
To find all Packages that a specified RegistryObject belongs to, the following query is specified:

SELECT id FROM Package WHERE id | N (Regi stryOhj ect packages(<i d>));

8.3.9.1 Complex Package Queries

The following query gets all Packages that a specified object belongs to, that are not deprecated
and where name contains "RosettaNet."

SELECT id FROM Package p, Nane n WHERE
p.id IN (Regi stryQhj ect _packages(<id>)) AND
nmval ue LIKE ' %RosettaNet% AND nm parent = p.id AND
p. status <> ‘' Deprecat ed’

8.3.10 ExternalLink Queries

To find al ExternalLinks that a specified ExtrinsicObject is linked to, the following query is
specified:

SELECT id From External Link WHERE id I N (Regi stryCbj ect _external Li nks(<i d>))

To find all ExtrinsicObjects that are linked by a specified ExternalLink, the following query is
specified:

SELECT id From ExtrinsicQoject WHERE id I N (Regi stryQoj ect | i nkedQbj ect s(<i d>))

8.3.10.1 Complex ExternalLink Queries

The following query gets all ExternalLinks that a specified ExtrinsicObject belongs to, that
contain the word ‘legal’ in their description and have a URL for their externa URI.
SELECT i d FROM Ext er nal Li nk WHERE

id IN (Regi stryQhj ect _external Li nks(<id>)) AND

description LIKE ‘ % egal % AND
external URI LIKE ‘Y%ttp://%

8.3.11 Audit Trail Queries

To get the complete collection of AuditableEvent objects for a specified ManagedObject, the
following query is specified:

SELECT i d FROM Audi t abl eEvent WHERE regi stryQhj ect = <id>

8.4 Content Retrieval

A client retrieves content via the Registry by sending the GetContentRequest to the
QueryManager. The GetContentRequest specifies alist of Object references for Objects that
need to be retrieved. The QueryManager returns the specified content by sending a
GetContentResponse message to the RegistryClient interface of the client. If there are no errors
encountered, the GetContentResponse message includes the specified content as additional
payloads within the message. In addition to the GetContentResponse payload, there is one
additional payload for each content that was requested. If there are errors encountered, the
RegistryResponse payload includes an error and there are no additional content specific
payloads.

Copyright © OASIS, 2001. All Rights Reserved

3473

3474
3475
3476

3477
3478

3479
3480
3481

OASIS/ebXML Registry November 2001

8.4.1 Identification Of Content Payloads

Since the GetContentResponse message may include severa repository items as additional
payloads, it is necessary to have away to identify each payload in the message. To facilitate this
identification, the Registry must do the following:

?? UsetheID of the ExtrinsicObject, as the value of the Content-1D header field for the mime-
part that contains the corresponding repository item for the ExtrinsicObject

?? In case of [ebM §] transport, use the ID for each RegistryObject instance that describes the
repository item in the Reference element for that object in the Manifest element of the
ebXMLHeader.

8.4.2 GetContentResponse Message Structure

The following message fragment illustrates the structure of the GetContentResponse Message
that is returning a Collection of CPPs as aresult of a GetContentRequest that specified the IDs
for the requested objects.

Content-type: multipart/rel ated; boundary="Boundary"; type="text/xm";

- - Boundar Y
Content- | D. <CGet Cont ent Request @xanpl e. con>
Cont ent- Type: text/xmn

<?xm version="1.0" encodi ng="UTF-8"?>
<SOAP- ENV: Envel ope xm ns: SOAP- ENV=' htt p: // schemas. xnml soap. or g/ soap/ envel ope/'

xm ns: eb= ' http://ww. oasi s- open. or g/ commi t t ees/ ebxn - nsg/ schena/ dr af t - nsg- header- 03. xsd' >
<SQAP- ENV: Header >

...ebMs header goes here if using ebMs

</ SQAP- ENV: Header >
<SQAP- ENV: Body>

...ebMs nani fest gooes here if using ebMs
<?xm version="1.0" encodi ng="UTF-8"?>

<Cet Cont ent Request >
<bj ect Ref Li st >
<pj ect Ref id="d8163df b-f45a-4798-81d9-88aca29c24ff” ..[>
<bj ect Ref id="212c3a78-1368-45d7-acc9-a935197eledf” ..[>
</ vj ect Ref Li st >
</ Get Cont ent Request >

</ SQAP- ENV: Body>
</ SOAP- ENV: Envel ope>

- -Boundary
Cont ent- | D. d8163df b- f 45a- 4798- 81d9- 88aca29c24f f
Cont ent- Type: text/xm

<?xm version="1.0" encodi ng="UTF-8"?>
<CPP>

- -Boundary- -
Content- | D: 212c3a78- 1368-45d7-acc9-a935197ele4f
Cont ent- Type: text/xm

- - Boundar y—

Copyright © OASIS, 2001. All Rights Reserved

3537

3538
3539
3540

3541

3542
3543
3544

3545

3546
3547
3548
3549
3550

3551

3552
3553
3554

3555
3556

3557
3558

3559
3560

3561
3562

3563

3564
3565

3566
3567

3568
3569

3570

3571
3572
3573

3574

OASIS/ebXML Registry November 2001

9 Registry Security

This chapter describes the security features of the ebXML Registry. It is assumed that the reader
is familiar with the security related classes in the Registry information model as described in
[eébRIM]. Security glossary terms can be referenced from RFC 2828.

9.1 Security Concerns

The security risks broadly stem from the following concerns. After a description of these
concerns and potential solutions, we identify the concerns that we address in the current
specificiation

1. Isthe content of the registry (data) trustworthy?

a)

b)

f)

9

How to make sure “what isin the registry” is “what is put there” by a submitting
organization? This concern can be addressed by ensuring that the publisher is
authenticated using digital signature (Source Integrity), message is not corrupted during
transfer using digital signature (Data Integrity), and the data is not altered by
unauthorized subjects based on access control policy (Authorization)

How to protect data while in transmission?

Communication integrity has two ingredients — Data Integrity (addressed in 1) and Data
Confidentiality that can be addressed by encrypting the data in transmission. How to
protect against areplay attack.

Is the content up to date? The versioning as well as any time stamp processing, when
done securely will ensure the “latest content” is guaranteed to be the latest content.

How to ensure only bona fide responsible organizations add contents to registry?
Ensuring Source Integrity (asin 1a).

How to ensure that bona fide publishers add contents to registry only at authorized
locations? (System Integrity)

What if the publishers deny modifying certain content after-the-fact? To prevent this
(Nonrepudiation) audit trails may be kept which contain signed message digests.

What if the reader denies getting information from the registry?

2. How to provide selective access to registry content? The broad answer is, by using an access
control policy — appliesto (a), (b), and (c) directly.

a)
b)

c)

€)

How does a submitting organization restrict access to the content to only specific registry
readers?

How can a submitting organization alow some “partners’ (fellow publishers) to modify
content?

How to provide selective access to partners the registry usage data?

How to prevent accidental access to data by unauthorized users? Especially with hw/sw
failure of the registry security components? The solution to this problem is by having

System Integrity.
Data confidentiality of RegistryObject

Copyright © OASIS, 2001. All Rights Reserved

3575
3576
3577

3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588

3589

3590
3591
3592
3593
3594
3595
3596

3597

3598
3599

3600

3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614

3615

3616
3617

OASIS/ebXML Registry November 2001

3. How do we make “who can see what” policy itself visible to limited parties, even excluding
the administrator (self & confidential maintenance of access control policy). By making sure
there is an access control policy for accessing the policies themselves.

4. How to transfer credentials? The broad solution is to use credentials assertion (such as being
worked onin SAML). Currently, Registry does not support the notion of a session.
Therefore, some of these concerns are not releveant to the current specification.

a) How to transfer credentials (authorization/authentication) to federated registries?
b) How do aggregators get credentials (authorization/authentication) transferred to them?
c) How to store credentials through a session?

In the current version of this specification, we address data integrity, source integrity (item 1,

above). We have used a minimalist approachto address the access control concern as in item 2,

above. Essentidly, “any known entity (Submitting Organization) can publish content and anyone

can view published content.” The Registry information model has been designed to allow more
sophisticated security policies in future versiors of this specification.

9.2 Integrity of Registry Content

It is assumed that most business registries do not have the resources to validate the veracity of
the content submitted to them. Registry must ensure that any tampering to the content submitted
by a Submitting Organization (SO) can be detected. Furthermore, Registry must make it possible
to identify the Responsible Organization for any Registry content unambiguously. Note that in
the discussions in this section we assume a Submitting Organization to be aso the Responsible
Organization. Future version of this specification may provide more examples and scenarios
where a Submitting Organization and Responsible Organization are different.

9.2.1 Message Payload Signature

Integrity of Registry content requires that al submitted content be signed by the Registry client.
The signature on the submitted content ensures that:

?? Any tampering of the content can be detected.

?? The content’ s veracity can be ascertained by its association with a specific Submitting
Organization

This section specifies the requirements for generation, packaging and validation of payload

signatures. A payload signature is packaged with the payload. Therefore the requirements apply

regardless of whether the Registry Client and the Registration Authority communicate over

vanilla SOAP with Attachments or ebXML Messaging Service [ebMS]. Currently, ebXML

Messaging Service does not specify the generation, validation and packaging of payload

signatures. The specification of payload signatures is left upto the application (such as Registry).

So the requirements on the payload signatures augment the [ebM S] specification.

Use Case

This Use Case illustrates the use of header and payload signatures (we discuss header signatures

later).

?? RC1 (Registry Client 1) signs the content (generating a payload signature) and publishes the
content along with the payload signature to the Registry.

?? RC2 (Registry Client 2) retrieves RC1's content from the Registry.

?? RC2 wants to verify that RC1 published the content. In order to do this, when RC2 retrieves
the content, the response from the Registration Authority to RC2 contains the following:

Copyright © OASIS, 2001. All Rights Reserved

3618

3619
3620

3621
3622
3623

3624
3625

3626

3627

3628
3629
3630

3631
3632
3633
3634

3635

3636
3637

3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662

OASIS/ebXML Registry November 2001

?7? Payload containing the content that has been published by RC1.

?? RC1 s payload signature (represented by a ds:Signature element) over RC1’s published
content.

?7? The public key for vaidating RC1's payload signature in ds:Signature element (using the
Keylnfo element as specified in [XMLDSIG]) so RC2 can obtain the public key for
signature (e.g. retrieve a certificate containing the public key for RC1).

?? A ds:Signature element containing the header signature. Note that the Registration
Authority (not RC1) generates this signature.

9.2.2 Payload Signature Requirements

9.2.2.1 Payload Signature Packaging Requirements

A payload signature is represented by a ds.Signature element. The payload signature must be

packaged with the payload as specified here. This packaging assumes that the payload is always

signed.

?? The payload and its signature must be enclosed in a MIME multipart message with a
Content-Type of multipart/Related.

?? Thefirst body part must contain the XML signature as specified in the section * Payload
Signature Generation Requirements’.

?? The second through " body part must be the content.

The packaging of the payload signature with one payload is as follows:

M ME Version: 1.0
Cont ent- Type: nmul tipart/ Rel at ed; boundary=M ME _boundary; type=text/xni;
Cont ent- Descri ption: ebXM. Message

- M ME_boundary
Cont ent- Type: text/xm; charset=UTF-8
Cont ent- Tr ansf er - Encodi ng: 8bi t
Content-I1D: http://claimng-it.conlclai 61400a. xmi

<?xm version='"1.0" encodi ng="utf-8"?>
<SQAP- ENV: Envel ope>

SQAP- ENV: Envel ope>

--M ME_boundary
Cont ent- Type: nul tipart/Rel ated; boundary=PAYLQAD boundary

- - PAYLQAD boundary
Cont ent- Type: text/xm; charset=UTF-8
Cont ent - Tr ansf er - Encodi ng: 8bi t
Content- |1 D. payl oadl
<ds: Si gnat ur e>

. Payl oad signature
</ds: Signature>

Copyright © OASIS, 2001. All Rights Reserved

3663
3664
3665
3666
3667
3668
3669

3670

3671
3672

3673
3674
3675
3676
3677
3678
3679
3680

3681
3682

3683
3684
3685
3686
3687
3688

3689
3690

3691
3692

3693
3694
3695
3696
3697

3698
3699
3700
3701
3702
3703
3704
3705
3706

OASIS/ebXML Registry November 2001

- - PAYLQAD boundary

Cont ent- Type: text/xm; charset=UTF-8
Content-Transfer-Encoding: 8bit

Content- | D: payl oad2

<Subm t Cbj ect sRequest >..</ Subm t Cbj ect sRequest >
--M ME_boundary

9.2.2.2 Payload Signature Generation Requirements

The ds:Signature element [XMLDSIG] for a payload signature must be generated as specified in
this section. Note: the “ds’ name space reference is to http://www.w3.0rg/2000/09/xmldsi g#

?? ds:SignatureM ethod must be present. The signing algorithm can be valid any algorithm
permitted in [XMLDSIG], though we suggest using the following Algorithm attribute while
signing for interoperability: http://www.w3.0rg/2000/09/xmldsig/#dsashal

?? The ds:SignatureM ethod element must contain a ds:CanonicalizationMethod element. . The
following Canonicalization agorithm (specified in [XMLDSIG]) must be supported:

http://www.w3.0rg/TR/2001/REC-xml -c14n-2001315

?? One ds.Reference element to reference each of the payloads that needs to be signed must be
created. The ds:Reference element:

?7? Must identify the payload to be signed using the URI attribute of the ds:Reference
element.

?? Must contain the <ds:DigestMethod> as specified in [XMLDSIG]. A client must be
support the following digest algorithm:
http://www.w3.0rg/2000/09/xmldsig/#shal
?? Must contain a <ds.DigestVaue> which is computed as specified in [XMLDSIG].
The ds.SignedVaue must be generated as specified in [XMLDSIG].
The ds:Keylnfo element may be present. However, when present, the ds:KeylInfo field is subject

to the requirements stated in the “KeyDistrbution and KeyInfo element” section of this
document.

9.2.2.3 Message Payload Signature Validation
The ds:Signature element must be validated by the Registry as specified in the [XMLDSIG].

9.2.2.4 Payload Signature Example
The following example shows the format of the payload signature:

<ds: Si gnature xm ns: ds="htt p://ww:. w3. or g/ 2000/ 09/ xm dsi g#" >
<ds: Si gnedI nf 0>

<Si gnat ur eMet hod Al gori t hne" http://www.w3.0rg/TR/2000/09/xmldsig#dsa-shal” / >
<ds: Canoni cal i zat i onMet hod>
Al gorithne"http://wwm w3. or g/ TR/ 2001/ REG xm -c14n-20010315" >
</ ds: Canoni cal i zati onMet hod>
<ds: Ref erence URI =#Payl| oad1>
<ds: D gest Met hod Di gest Al gorithm="htt p: //www w8. or g/ TR/ 2000/ 09/ xm dsi g#shal" >
<ds: Di gest Val ue> ... </ds: D gest Val ue>

</ ds: Ref er ence>
</ ds: Si gnedl nf o>

Copyright © OASIS, 2001. All Rights Reserved

3707
3708
3709

3710

3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721

3722

3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734

3735

3736
3737

3738
3739

3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750

OASIS/ebXML Registry November 2001

<ds: SignatureValue> ... </ds:SignatureVal ue>
</ ds: Si gnat ur e>

9.3 Authentication

The Registry must be able to authenticate the identity of the Principal associated with client
requests. Authentication is required to identify the ownership of content as well as to identify
what “privileges’ a Principa can be assigned with respect to the specific objects in the Registry.
The Registry must perform authentication on a per message basis. From a security point of view,
all messages are independent and there is no concept of a session encompassing multiple
messages or conversations. Session support may be added as an optimization feature in future
versions of this specification.

It isimportant to note that the message header signature can only guarantee data integrity and it
may be used for Authentication knowing that it is vulnerable to replay types of attacks. True
support for authentication requires timestamps or nonce (nonrecurring series of numbers to
identify each message) that are signed.

9.3.1 Message Header Signature

Message headers are signed to provide data integrity while the message is in transit. Note that the
signature within the message header aso signs the digests of the payloads.

Header Signature Requirements

Message headers can be signed and are referred to as a header signature. This section specifies
the requirements for generation, packaging and validation of a header signature. These
requirements apply when the Registry Client and Registration Authority communicate using
vanilla SOAP with Attachments. When ebXML MSis used for communication, then the [ebM S]
specifies the generation, packaging and validation of XML signatures in the SOAP header.
Therefore the header signature requirements do not apply when the ebXML MSis used for
communication. However, payload signature generation requirements (specified elsewhere in
this document) do apply whether vanilla SOAP with Attachments or eobXML MSis used for
communication.

9.3.1.1 Packaging Requirements

A header signature is represented by a ds:Signature element. The ds:Signature element generated
must be packaged in a<SOAP-ENV:Header> element. The packaging of the ds:Signature
element in the SOAP header field is shown below.

M ME Version: 1.0
Content- Type: Miltipart/Rel ated; boundary=M ME _boundary; type=text/xni;
Cont ent- Descri ption: ebXM. Message

- M ME_boundary
Cont ent- Type: text/xm; charset=UTF-8
Cont ent - Tr ansf er - Encodi ng: 8bi t
Content-ID: http://claimng-it.conlclai m61400a. xni

<?xm version='"1.0" encodi ng="utf-8"?>
<SOAP- ENV: Envel ope

Copyright © OASIS, 2001. All Rights Reserved

3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761

3762
3763
3764
3765
3766
3767
3768

3769
3770
3771
3772
3773

3774
3775

3776

3777
3778

3779
3780

3781
3782

3783
3784
3785

3786
3787

3788
3789

3790
3791

3792
3793

OASIS/ebXML Registry November 2001

xm ns: SOAP- ENV="htt p: / / schenmas. xm soap. or g/ soap/ envel ope/ ">
<SQOAP- ENV: Header >
<ds: Si gnature xm ns: ds="htt p://wwmv wW3. or g/ 2000/ 09/ xm dsi g#" >
..signature over soap envel ope
</ ds: Si gnat ur e>
</ SCAP- ENV: Header >
<SQAP- ENV: Body>

</ SOAP- ENV: Body>
</ SCAP- ENV: Envel ope>

9.3.1.2 Header Sighature Generation Requirements

The ds:Signature element [XMLDSIG] for a header signature must be generated as specified in
this section. A ds:Signature element contains:

?? ds:Signedinfo

?? ds:SignatureVaue

?? dsKeylnfo

The ds:Signedinfo element must be generated as follows:

1. ds:SignatureMethod must be present. [XMLDSIG] requires that the algorithm be identified
using the Algorithm attribute. While [XMLDSIG] allows more than one Algorithm Attribute,
aclient must be capable of signing using only the following Algorithm attribute:
http://www.w3.0rg/2000/09/xmidsig/#dsashal This agorithm is being chosen because all
XMLDSIG implementations conforming to the [XMLDSIG] specification support it.

2. The ds:SignatureMethod elment must contain a ds:CanonicalizationMethod element. The
following Canonicalization algorithm (specified in [XMLDSIG]) must be supported:

http://www.w3.0rg/TR/2001/REC-xml-c14n-20010315

3. A dsReference element to include the <SOAP-ENV :Envelope> in the signature calculation.
This signs the entire ds:Reference element and:
?7? Must include the following ds. Transform:
http://www.w3.0rg/2000/09/xml dsi g#tenvel oped-signature
This ensures that the signature (which is embedded in the <SOAP-ENV :Header>
element) is not included in the signature calculation.
?? Mugt identify the <SOAP-ENV:Envelope> element using the URI attribute of the
ds:Reference element (The URI attribute is optional in the [XMLDSIG] specification.) .
The URI attribute must be “”.
?7? Must contain the <ds:DigestMethod> as specified in [XMLDSIG]. A client must support
the following digest algorithm: http://www.w3.0rg/2000/09/xml dsi g/#shal
?7? Must contain a <ds.DigestVaue>, which is computed as specified in [XMLDSIG].
The ds:SignedVaue must be generated as specified in [XMLDSIG].

The ds:KeyInfo element may be present But when present, it is subject to the requirements stated
in the “KeyDistrbution and Keylnfo element” section of this document.

9.3.1.3 Header Signature Validation Requirements

The ds.Signature element for the ebXML message header must be validated by the recipient as

Copyright © OASIS, 2001. All Rights Reserved

3794

3795
3796
3797
3798
3799

3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814

3815

3816
3817
3818
3819

3820

3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832

3833

3834
3835

3836
3837

OASIS/ebXML Registry November 2001

specified by [XMLDSIG].

9.3.1.4 Header Signature Example
The following example shows the format of a header signature:

<ds: Si gnature xni ns: ds="http://wwmv. w3. or g/ 2000/ 09/ xni dsi g#" >
<ds: Si gnedI nf 0>
<Si gnat ur eMet hod Al gori t hnehttp://www.w3.0rg/TR/2000/09/xmldsi g#dsashal/ >
<ds: Canoni cal i zat i onMet hod>
Al gorithm="http://wwwv w3. or g/ TR/ 2000/ CR xm - c14n-2001026" >
</ ds: Canoni cal i zat i onMet hod>

<ds: Reference URI= “">
<ds: Tr ansf or n»
http://www.w3.0rg/2000/09/xml dsi g#envel oped-signature
</ ds: Tr ansf or n»
<ds: D gest Met hod Di gest Al gorithm=". /xm dsi g#shal">
<ds: Di gest Val ue> ... </ds: D gest Val ue>

</ ds: Ref erence>
</ ds: Si gnedlI nf 0>
<ds: Si gnatureValue> ... </ds:SignatureVal ue>
</ ds: Si gnat ur e>

9.4 Key Distribution and KeyInfo Element

To validate a signature, the recipient of the signature needs the public key corresponding to the

signer’ s public key. The participants may use the Keylnfo field of ds:Signature, or distribute the

public keys out-of-band. In this section we consider the case when the public key is sent in the

Keylnfo field. The following use cases need to be handled:

?? Registration Authority needs the public key of the Registry Client to validate the signature

?? Registry Client needs the public key of the Registration Authority to validate the Registry’s
signature.

?? Registry Client RC1 needs the public key of Registry Client (RC2) to validate the content
signed by RCL1.

[XMLDSIG] provides adsKeylnfo element that can be used to pass the recipient information
for retrieving the public key. dsKeylnfoisan optional element as specified in [XMLDSIG].
This field together with the procedures outlined in this section is used to securely pass the public
key to arecipient. ds:Keyinfo can be used to pass information such as keys, certificates, names
etc. The intended usage of Keylnfo field isto send the X509 Certificate, and subsequently
extract the public key from the certificate. Therefore, the Keylnfo field must contain a X509
Certificate, if the Keylnfo field is present.

The following assumptions are also made:
1. A Certificate is associated both with the Registration Authority and a Registry Client.

2. A Registry Client registers its certificate with the Registration Authority. The mechanism
used for thisis not specified here.

3. A Registry Client obtains the Registration Authority’s certificate and storesit in its own local
key store. The mechanism is not specified here.

Copyright © OASIS, 2001. All Rights Reserved

3838

3839

3840

3841
3842
3843

3844

3845
3846
3847
3848

3849

3850
3851
3852
3853
3854
3855

3856

3857
3858
3859
3860
3861
3862
3863
3864
3865
3866

3867

3868
3869
3870
3871
3872

OASIS/ebXML Registry November 2001

Couple of scenarios on the use of Keylnfo field isin Appendix F.8.

9.5 Confidentiality

9.5.1 On-the-wire Message Confidentiality

It is suggested but not required that message payloads exchanged between clients and the
Registry be encrypted during transmission. Payload encryption must abide by any restrictions set
forth in [SEC].

9.5.2 Confidentiality of Registry Content
In the current version of this specification, there are no provisions for confidentiality of Registry
content. All content submitted to the Registry may be discovered and read by any client. This

implies that the Registry and the client need to have an a priori agreement regarding encryption
algorithm, key exchange agreements, etc. This service is not addressed in this specification.

9.6 Authorization

The Registry must provide an authorization mechanism based on the information model defined
in [ebRIM]. In this version of the specification the authorization mechanism is based on a default
Access Control Policy defined for a pre-defined set of roles for Registry users. Future versions of
this specification will allow for custom Access Control Policies to be defined by the Submitting
Organization. The authorization is going to be applied on a specific set of privileges. A
privelege is the ability to carry a specific action.

9.6.1 Actions

Life Cycle Actions
submitObjects
updateObjects
addSlots
removeS|ots
approveObjects
deprecateObjects
removeObjects

Read Actions

The various getX X X() methods in QueryManagement Service.

9.7 Access Control

The Registry must create a default AccessControlPolicy object that grants the default
permissions to Registry users based upon their assigned role. The following table defines the
Permissions granted by the Registry to the various pre-defined roles for Registry users based
upon the default AccessControlPolicy. Note that we have “ ContentOwner” as arole. Thisrole
maps to the Submitting Organization in the current version of the specification.

Copyright © OASIS, 2001. All Rights Reserved

3873

3874

3875
3876

3877
3878
3879
3880
3881

3882
3883
3884
3885

3886
3887

OASIS/ebXML Registry November 2001

= =Table 11: Default Access Control Policies

Role Permissions

ContentOwner the ContentOwner.

Access to all methods on Registry Objects that are owned by

RegistryAdministrator ||Access to all methods on all Registry Objects

RegistryGuest

Accessto all read-only (getXXX) methodson all Registry
Objects (read-only accessto all content).

The following list summarizes the default role-based AccessControl Policy:

7?

N3N NN IS

3

The Registry must implement the default AccessControlPolicy and associate it with all
Objects in the Registry

Anyone can publish content, but needs to be a Registered User

Anyone can access the content without requiring authentication

The ContentOwner has access to all methods for Registry Objects created by it.

The RegistryAdministrator has access to all methods on all Registry Objects
Unauthenticated clients can access all read-only (getXXX) methods

At the time of content submission, the Registry must assign the default ContentOwner role to
the Submitting Organization (SO) as authenticated by the credentials in the submission
message. |n the current version of this specification, the Submitting Organization will be the
DN asidentified by the certificate

Clients that browse the Registry need not use certificates. The Registry must assign the
default RegistryGuest role to such clients.

Copyright © OASIS, 2001. All Rights Reserved

3888

3889

3890
3891

3892
3893
3894
3895

3896

3897
3898

3899
3900

3901
3902

OASIS/ebXML Registry November 2001

Appendix A Web Service Architecture

Registry Service Abstract Specification

The normative definition of the Abstract Registry Service in WSDL is defined at the following
location on the web:

http://cvs.sourcef orge.net/cai-bin/viewcvs.cqi/ebxmlrr/ebxmlrr-spec/misc/services/Reqistry.wsdl

In the final V2.0 version of this document the URL will point to an OASIS web site location

Registry Service SOAP Binding

The normative definition of the concrete Registry Service binding to SOAP in WSDL is defined
at the following location on the web:

http://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/ebxmlrr/ebxmlrr -spec/misc/services/Reqistry SOA PBinding.wsdl

In the final V2.0 version of this document the URL will point to an OASIS web site location

Copyright © OASIS, 2001. All Rights Reserved

OASIS/ebXML Registry November 2001

3903 Appendix B ebXML Registry Schema Definitions

3904 RIM Schema

3905 The normative XML Schema definition that maps [ebRIM] classesto XML can be found at the
3906 following location on the web:

3907

3908 http://cvs.sourceforge.net/cai-bin/viewcvs.cgi/ebxmlrr/ebxml rr- spec/misc/schemalrim.xsd
3909

3910 Inthefinal V2.0 version of this document the URL will point to an OASIS web site location.

3911 Query Schema

3912 The normative XML Schema definition for the XML query syntax for the registry service
3913 interface can be found at the following location on the web:

3914
3915 http://cvs.sourceforge.net/cgi- bin/viewcvs.cgi/ebxmlrr/ebxmirr- spec/misc/schemal/query.xsd
3916
3917 Inthefinal V2.0 version of this document the URL will point to an OASIS web site location.

3918 Registry Services Interface Schema

3919 The normative XML Schema definition that defines the XML requests and responses supported
3920 Dby theregistry service interfaces in this document can be found at the following location on the
3921 web:

3922

3923 http://cvs.sourceforge.net/cqi-bin/viewcvs.cgi/ebxmlrr/ebxml rr- spec/misc/schemalrs.xsd
3924

3925 Inthefina V2.0 version of this document the URL will point to an OASIS web site location.

3926 Examples of Instance Documents

3927 A growing number of non-normative XML instance documents that conform to the normative
3928 Schema definitions described earlier may be found at the following location on the web:

3929
3930 http://cvs.sourceforge.net/cqi- bin/viewcvs.coi/ebxmlrr/ebxmlrr-spec/misc/sampl es/
3931

Copyright © OASIS, 2001. All Rights Reserved

3932

3933
3934

3935

3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947

3948

3949
3950
3951
3952

3953
3954
3955
3956
3957
3958
3959
3960

OASIS/ebXML Registry November 2001

Appendix C Interpretation of UML Diagrams

This section describes in abstract termsthe conventions used to define ebXML business process
description in UML.

UML Class Diagram

A UML class diagram is used to describe the Service Interfaces required to implement an
ebXML Registry Servicesand clients. The UML class diagram contains:

1. A collection of UML interfaces where each interface represents a Service Interface for a
Registry service.

2. Tabular description of methods on each interface where each method represents an
Action (as defined by [ebCPP]) within the Service Interface representing the UML
interface.

3. Each method within a UML interface specifies one or more parameters, where the type of
each method argument represents the ebXML message type that is exchanged as part of
the Action corresponding to the method. Multiple arguments imply multiple payload
documents within the body of the corresponding ebXML message.

UML Sequence Diagram

A UML sequence diagram is used to specify the business protocol representing the interactions
between the UML interfaces for a Registry specific ebXML business process. A UML sequence
diagram provides the necessary information to determine the sequencing of messages, request to
response association as well as request to error response association.

Each sequence diagram shows the sequence for a specific conversation protocol as method calls
from the requestor to the responder. Method invocation may be synchronous or asynchronous
based on the UML notation used on the arrow- head for the link. A half arrow-head represents
asynchronous communication. A full arrow-head represents synchronous communication.

Each method invocation may be followed by a response method invocation from the responder to
the requestor to indicate the ResponseName for the previous Request. Possible error response is
indicated by a conditiona response method invocation from the responder to the requestor. See
Figure 7 on page 26 for an example.

Copyright © OASIS, 2001. All Rights Reserved

3961

3962

3963
3964
3965

3966

3967
3968

3969

3970
3971

3972

3973
3974

3975

3976
3977
3978

3979

3980
3981

3982
3983

OASIS/ebXML Registry November 2001

Appendix D SQL Query

SQL Query Syntax Specification

This section specifies the rules that define the SQL Query syntax as a subset of SQL-92. The
terms enclosed in angle brackets are defined in [SQL] or in [SQL/PSM]. The SQL query syntax
conforms to the <query specification>, modulo the restrictions identified below:

1. A <select list> may contain at most one <select sublist>.

2. Ina<sdect list> must be is a single column whose data type is UUID, from the table in the
<from clause>.

3. A <derived column> may not have an <as clause>.

4. <table expression> does not contain the optional <group by clause> and <having clause>
clauses.

5. A <table reference>can only consist of <table name> and <correlation name>.

6. A <table reference>does not have the optional AS between <table name> and
<correlation name>.

7. There can only be one <table r eference> in the <from clause>.

8. Redtricted use of sub-queriesis alowed by the syntax as follows. The <in predicate> allows
for the right hand side of the <in predicate> to be limited to arestricted <query
specification> as defined above.

9. A <search condition> within the <wher e clause> may not include a <query expression>.

10. Smplejoins are alowed only if they are based on indexed columns within the relational
schema.

11. The SQL query syntax allows for the use of <sgl invoked routines> invocation from
[SQL/PSM] asthe RHS of the <in predicate>.

Non-Normative BNF for Query Syntax Grammar

The following BNF exemplifies the grammar for the registry query syntax. It is provided here as
an aid to implementors. Since this BNF is not based on [SQL] it is provided as non-normative
syntax. For the normative syntax rules see Appendix O.

/***

* The Registry Query (Subset of SQ-92) grammar starts here

***/

Regi stryQuery = SQL.Select [";"]

SQ.Sel ect = "SELECT" ["DI STINCT"] SQ.Sel ectCol s "FROM' SQ.Tabl eList [SQ.Were]
SQ.Sel ectCols = ID

SQL.Tabl eLi st = SQ.Tabl eRef

SQ.Tabl eRef = 1D

SQ Were = "WHERE" SQ.O Expr

SQLO Expr = SQLANdExpr ("OR' SQLAndExpr)*

Copyright © OASIS, 2001. All Rights Reserved

OASIS/ebXML Registry

November 2001

SQLAndExpr = SQ.Not Expr ("AND' SQ.Not Expr)*
SQ Not Expr = ["NOT"] SQ.Conpar eExpr
SQ.Conpar eExpr =

(SQ.Col Ref "1S") SQ.Isd ause
| SQ.SunExpr [SQ.Conpar eExprRi ght]

SQ.Conpar eExpr Ri ght =
SQLLi ked ause
| SQLInd ause
| SQ.Conpar eCp SQ SunExpr

SQLConpare® =

SQLInCl ause = ["NOT™] "IN "(" SQ.LVal uelList ")"

SQ.LVal uelLi st = SQ.LVal ueEl enent ("," SQ.LVal ueEl enent)*
SQ.LVal ueEl ement = "NULL" | SQSel ect

SQLIsC ause = SQ.Col Ref "IS' ["NOT"] "NULL"

SQ.Li ked ause = ["NOI"] "LIKE' SQ.Pattern

SQLPattern = STRING LI TERAL

SQ.Literal =
STRI NG_LI TERAL
| I NTEGER LI TERAL
| FLOATI NG_PO NT_LI TERAL

SQ.Col Ref = SQ@.Lval ue

SQ.Lval ue = SQ.Lval ueTerm

SQ.LvalueTerm= 1D ("." ID)*
SQ SunExpr = SQ.Product Expr (("+" | "-") SQProductExpr)*
SQ.Product Expr = SQUnaryExpr (("*" | "/") SQUnaryExpr)*
SQUnaryExpr = [("+" | "-")] SQ.Term
SQ.Term= "(" SQO Expr ")"

| SQ.Col Ref

| SQ.Literal

INTEGER LI TERAL = (["0"-"9"])+

FLOATI NG_PQ NT_LI TERAL =

([7O7-"9"])+ "." (["07-"9"])
| "." (["0"-"9"])+ (EXPONENT) ?
| (["0"-"9"])+ EXPONENT
| (["0"-"9"])+ (EXPONENT)?

+ (EXPONENT) ?

STRING LI TERAL: "' (~["'"])* (""'" (~["'"])*)* "'"
ID=(<LETTER>)+ ("_" | "$" | "#" | <DQ@T> | <LETTER>)*

LETTER = ["A"-"Z", "a"-"Z"]
DGT = ["0"-"9"]

Copyright © OASIS, 2001. All Rights Reserved

OASIS/ebXML Registry November 2001
4077 Relational Schema For SQL Queries

4078 The normative Relational Schema definition for SQL queries can be found at the following
4079 location on the web:

4080

4081 http://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/ebxmirr/ebxmlrr-spec/misc/sgl/database.sgl
4082

4083 The stored procedures that must be supported by the SQL query feature are defined at the following
4084 location on the web:
4085 http://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/ebxml rr/ebxml rr-spec/misc/sgl/storedProcedures.sql

4086
4087 Inthefina V2.0 version of this document the URL will point to an OASIS web site location.

Copyright © OASIS, 2001. All Rights Reserved

OASIS/ebXML Registry November 2001

Appendix E Non-normative Content Based Ad Hoc Queries

The Registry SQL query capability supports the ability to search for content based not only on
metadata that catalogs the content but also the data contained within the content itself. For
exampleit is possible for a client to submit a query that searches for all Collaboration Party
Profiles that define arole named “seller” within a RoleName element in the CPP document itself.
Currently content-based query capability is restricted to XML content.

Automatic Classification of XML Content

Content-based queries are indirectly supported through the existing classification mechanism
supported by the Registry.

A submitting organization may define logical indexes on any XML schemaor DTD when it is
submitted. An instance of such alogical index defines a link between a specific attribute or
element node in an XML document tree and a ClassificationNode in a classification scheme
within the registry.

The registry utilizes thisindex to automatically classify documents that are instances of the
schema at the time the document instance is submitted. Such documents are classified according
to the data contained within the document itself.

Such automatically classified content may subsequently be discovered by clients using the
existing classificationbased discovery mechanism of the Registry and the query facilities of the
QueryManager.

[Note] This approach is conceptually simlar to the way databases support
i ndexed retrieval. DBAs define indexes on tables in the schema. \When
data is added to the table, the data gets automatically indexed.

Index Definition

This section describes how the logical indexes are defined in the SubmittedObject element
defined in the Registry DTD. The complete Registry DTD is specified in Appendix A.

A SubmittedObject element for a schema or DTD may define a collection of
ClassificationIndexes in a ClassificationlndexList optional element. The ClassificationlndexList
isignored if the content being submitted is not of the SCHEMA objectType.

The Classificationlndex element inherits the attributes of the base class RegistryObject in
[ebRIM]. It then defines specialized attributes as follows:

1. classificationNode: This attribute references a specific ClassificationNode by its ID.

2. contentldentifier: This attribute identifies a specific data element within the document
instances of the schema using an XPATH expression as defined by [XPT].

Example Of Index Definition

To define an index that automatically classifies a CPP based upon the roles defined within its
RoleName elements, the following index must be defined onthe CPP schemaor DTD:
<d assi fi cati onl ndex

cl assificationNode="id-for-rol e-cl assificati on-schenge’

contentldentifier="/Role//Rol eNange’
/>

Copyright © OASIS, 2001. All Rights Reserved

4130

4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148

4149

4150
4151
4152
4153
4154
4155

OASIS/ebXML Registry November 2001

Proposed XML Definition

Example of Automatic Classification

Assume that a CPP is submitted that defines two roles as “seller” and “buyer." When the CPP is
submitted it will automatically be classified by two ClassificationNodes named “buyer” and
“seller” that are both children of the ClassificationNode (e.g. a node named Role) specified in the
classificationNode attribute of the ClassificationIndex. If either of the two ClassificationNodes
named “buyer” and “seller” did not previously exist, the LifeCycleManager would automatically
create these ClassificationNodes.

Copyright © OASIS, 2001. All Rights Reserved

4156

4157
4158
4159
4160

4161

4162
4163

4164
4165
4166

4167
4168

4169

4170

4171
4172
4173
4174
4175

4176

4177
4178
4179

4180
4181
4182

4183

4184
4185

4186

4187
4188
4189

4190

OASIS/ebXML Registry November 2001

Appendix F Security Implementation Guideline

This section provides a suggested blueprint for how security processing may be implemented in
the Registry. It is meant to be illustrative not prescriptive. Registries may choose to have
different implementations as long as they support the default security roles and authorization
rules described in this document.

Authentication
1. Assoon as amessage is received, the first work is the authentication. A principal object is

created.

2. If the message is signed, it is verified (including the validity of the certificate) and the DN of
the certificate becomes the identity of the principal. Then the Registry is searched for the
principal and if found, the roles and groups are filled in.

3. If the message is not signed, an empty principal is created with the role RegistryGuest. This
step isfor symmetry and to decouple the rest of the processing.

4. Then the message is processed for the command and the objects it will act on.

Authorization

For every object, the access controller will iterate through all the AccessControl Policy objects
with the object and see if there is a chain through the permission objects to verify that the
requested method is permitted for the Principal. If any of the permission objects which the object
is associated with has a common role, or identity, or group with the principal, the action is
permitted.

Registry Bootstrap

When a Registry is newly created, a default Principal object should be created with the identity
of the Registry Admin’s certificate DN with arole RegistryAdmin. This way, any message
signed by the Registry Admin will get all the privileges.

When a Registry is newly created, a singleton instance of AccessControlPolicy is created as the
default AccessControlPolicy. This includes the creation of the necessary Permission instances as
well as the Privilges and Privilege attributes.

Content Submission — Client Responsibility

The Registry client has to sign the contents before submission — otherwise the cortent will be
rejected.

Content Submission — Registry Responsibility

1. Aswith any other request, the client will first be authenticated. In this case, the Principal
object will get the DN from the certificate.

2. As per the request in the message, the RegistryEntry will be created.
3. The RegistryEntry is assigned the singleton default AccessControlPolicy.

Copyright © OASIS, 2001. All Rights Reserved

OASIS/ebXML Registry November 2001

4191 4. If aprincipa with the identity of the SO is not available, an identity object with the SO’s DN
4192 IS created.

4193 5. A principa with thisidentity is created.

4194 Content Delete/Deprecate — Client Responsibility

4195 The Registry client has to sign the payload (not entire message) before submission, for
4196 authentication purposes; otherwise, the request will be rejected

4197 Content Delete/Deprecate — Registry Responsibility

4198 1. Aswith any other request, the client will first be authenticated. In this case, the Principal

4199 object will get the DN from the certificate. As there will be a principal with thisidentity in
4200 the Registry, the Principal object will get al the roles from that object

4201 2. Asper the request in the message (delete or deprecate), the appropriate method in the

4202 RegistryObject class will be accessed.

4203 3. The access controller performs the authorization by iterating through the Permission objects
4204 associated with this object via the singleton default AccessControl Policy.

4205 4. If authorization succeeds then the action will be permitted. Otherwise an error response is
4206 sent back with a suitable AuthorizationException error message.

4207 Using ds:KeylInfo Field

4208 Two typica usage scenarios for ds.Keyl nfo are described below.
4209 Scenario 1

4210 1. Registry Client (RC) signs the payload and the SOAP envelope using its private key.

4211 2. Thecertificate of RC is passed to the Registry in Keylnfo field of the header signature.

4212 3. Thecertificate of RC is passed to the Registry in KeyInfo field of the payload signature.
4213 4. Registration Authority retrieves the certificate from the KeyInfo field in the header signature
4214 5. Registration Authority validates the header signature using the public key from the

4215 certificate.
4216 6. Registration Authority validates the payload signature by repeating steps 4 and 5 using the

4217 certificate from the Keylnfo field of the payload signature. Note that this step is not an
4218 essential one if the onus of validation is that of the eventual user, another Registry Client, of
4219 the content.

4220 Scenario 2

4221 1. RC1signsthe payload and SOAP envelope using its private key and publishes to the
4222 Registry.

4223 2. The certificate of RCL1 is passed to the Registry in the KeyInfo field of the header signature.

4224 3. The certificate of RC1 is passed to the Registry in the KeylInfo field of the payload signature.
4225 This step is required in addition to step 2 because when RC2 retrieves content, it should see
4226 RC1’s signature with the payload.

4227 4. RC2 retrieves content from the Registry.

Copyright © OASIS, 2001. All Rights Reserved

OASIS/ebXML Registry November 2001
4228 5. Registration Authority signs the SOAP envelope using its private key. Registration Authority

4229 sends RC1's content and the RC1’ s signature (signed by RC1).

4230 6. Registration Authority need not send its certificate in the Keylnfo field sinceRC2 is assumed
4231 to have obtained the Registration Authority’s certificate out of band and installed it in its
4232 local key store.

4233 7. RC2 obtains Registration Authority’s certificate out of itslocal key store and verifies the
4234 Registration Authority’s signature.

4235 8. RC2 obtains RC1's certificate from the Keylnfo field of the payload signature and validates
4236 the signature on the payload.

Copyright © OASIS, 2001. All Rights Reserved

4237

4238

4239
4240

4241

4242
4243

4265

4266
4267
4268
4269
4270
4271
4272
4273

OASIS/ebXML Registry November 2001

Appendix G Native Language Support (NLS)

Definitions

Although this section discusses only character set and language, the following terms have to be
defined clearly.

Coded Character Set (CCS):

CCS isamapping from a set of abstract characters to a set of integers. [RFC 2130]. Examples of
CCS are 1SO-10646, US-ASCII, 1SO-8859-1, and so on.

Character Encoding Scheme (CES):

CESisamapping from a CCS (or several) to a set of octets. [RFC 2130]. Exanples of CES are
SO-2022, UTF-8.

Character Set (charset):

?? charset isaset of rules for mapping from a sequence of octets to a sequence of
characters.[RFC 2277],[RFC 2278]. Examples of character set are 1SO-2022-JP, EUC-KR.

?? A list of registered character sets can be found at [IANA].

NLS And Request / Response Messages

For the accurate processing of datain both registry client and registry services, it is essential to
know which character set is used. Although the body part of the transaction may contain the
charset in xml encoding declaration, registry client and registry services shall specify charset
parameter in MIME header when they use text/xml. Because as defined in [RFC 3023], if a
text/xml entity is received with the charset parameter omitted, MIME processors and XML
processors MUST use the default charset value of "us-ascii”. For example:

Cont ent- Type: text/xm; charset=l SO-2022-JP

Also, when an application/xml entity is used, the charset parameter is optional, and registry
client and registry services must follow the requirements in Section 4.3.3 of [REC-XML] which
directly address this contingency.

If another Content-Type is chosen to be used, usage of charset must follow [RFC 3023].

NLS And Storing of RegistryObject

This section provides NL S guidelines on how aregistry should store RegistryObject instances.

A single instance of a concrete sub-class of RegistryObject is capable of supporting multiple
locales. Thus there is no language or character set associated with a specific RegistryObject
instance.

A single instance of a concrete sub-class of RegistryObject supports multiple locales as follows.
Each attribute of the RegistryObject that is 118N capable (e.g. name and description attributes in
RegistryObject class) as defined by [ebRIM], may have multiple locale specific values expressed
as LocalizedString sub-elements within the XML element representing the 118N capable

Copyright © OASIS, 2001. All Rights Reserved

4274
4275
4276

4277

4278
4279

4280
4281

4282

4283
4284
4285
4286

4287

4288
4289

4290
4291
4292

4293

4294
4295

4296

4297
4298
4299

4300
4301
4302
4303
4304

OASIS/ebXML Registry November 2001

attribute. Each LocalizedString sub-element defines the value of the 118N capable attribute in a
specific locale. Each LocalizedString element has a charset and lang attribute as well as avaue
attribute of type string.

Character Set of LocalizedString

The character set used by alocale specific String (LocalizedString) is defined by the charset
attribute. It is highly recommended to use UTF-8 or UTF-16 for maximuminter-operability.

Language Information of LocalizedString
The language may be specified in xml:lang attribute (Section 2.12 [REC-XML]).

NLS And Storing of Repository Items

This section provides NL S guidelines on how a registry should store repository items.

While a single instance of an ExtrinsicObject is capable of supporting multiple locales, it is
always associated with a single repository item. The repository item may be in asingle locale or
may be in multiple locales. This specification does not specify the repository item.

Character Set of Repository Items

The MIME Cont ent - Type mime header for the mime multi-part containing the repository
item MAY contain a'char set " attribute that specifies the character set used by the repository
item. For example:

Cont ent- Type: text/xm; charset="UTF8"

It is highly recommended to use UTF-16 or UTF-8 for maximum inter-operability. The charset
of arepository item must be preserved asit is originally specified in the transaction.

Language information of repository item

The Content-language mime header for the mime bodypart containing the repository item may
specify the language for alocale specific repository item. The value of the Content-language
mime header property must conform to [RFC 1766].

This document currently specifies only the method of sending the information of character set
and language, and how it is stored in a registry. However, the language information may be used
as one of the query criteria, such as retrieving only DTD written in French. Furthermore, a
language negotiation procedure, like registry client is asking a favorite language for messages
from registry services, could be another functionality for the future revision of this document.

Copyright © OASIS, 2001. All Rights Reserved

4305

4306
4307
4308
4309

OASIS/ebXML Registry November 2001

Appendix H Terminology Mapping

While every attempt has been made to use the same terminology used in other works there are
some terminology differences. The following table shows the terminology mapping between this
specification and that used in other specifications and working groups.

<= =Table12: Terminology Mapping Table

This Document OASIS 1SO 11179
“repository item” RegisteredObject

RegistryEntry RegistryEntry Administered Component
ExternalLink RelatedData N/A

Object.id regEntryld, orgld, etc.

ExtrinsicObject.uri

objectURL

ExtrinsicObject.objectType

defnSource, objectType

RegistryEntry.name

commonName

Object.description

shortDescription, Description

ExtrinsicObject.mimeType

objectType="mime’
fileType="<mime type>"

Versionable.majorVersion

userVersion only

Versionable.minorVersion

userVersion only

RegistryEntry.status

registrationStatus

Copyright © OASIS, 2001. All Rights Reserved

4310

4311
4312

4313
4314

4315
4316

4317

4318
4319

4320
4321

4322
4323

4324
4325

4326
4327

4328
4329

4330

4331
4332

4333
4334

4335
4336

4337
4338
4339

4341
4342

4345

4346
4347

4349
4350

4351

4352
4353

OASIS/ebXML Registry November 2001

References

[Bra97] Keywords for use in RFCs to Indicate Requirement Levels.
[GLS] ebXML Glossary, http://www.ebxml.org/documents/199909/terms_of_reference.htm

[TA] ebXML Technical Architecture
http://www.ebxml.org/specdrafts/ebXML_TA_v1.0.pdf

[OAS] OASIS Information Model
http://www.nist.gov/itl/div897/cta/rearep/oasis -work.html

[ISO] 1SO 11179 Information Model

http://208.226.167.205/SC32/jtc1sc32.nsf/576871ad2f11bba785256621005419d7/b83fc7816a6064c68525690e0065
£913?0OpenDocument

[eébRIM] ebXML Registry Information Model
http://www.ebxml.org/project_teams/reqistry/private/reqgistryl nfoM odelv0.54. pdf

[ebBPM] ebXML Business Process Specification Schema
http://www.ebxml.org/specdrafts/Busv2-0.pdf

[ebCPP] ebXML Collaboration-Protocol Profile and Agreement Specification
http://www.ebxml.org/project_teams/trade partner/private/

[ebXML-UDDI] Using UDDI to Find ebXML Reg/Reps
http://lists.ebxml.org/archives/ebxml -regrep/200104/msg00104.html

[CTB] Context table informal document from Core Components

[ebMS] ebXML Messaging Service Specification, Version 0.21

http://ebxml.org/project_teams/transport/private/ebXML_Messaging_Service Specification v0-21.pdf
[SEC] ebXML Risk Assessment Technical Report, Version 3.6
http://lists.ebxml.org/archives/ebxml -ta-security/200012/msg00072.html

[XPT] XML Path Language (XPath) Version 1.0
http://www.w3.org/TR/xpath

[SQL] Structured Query Language (FIPS PUB 127-2)
http://www.itl.nist.gov/fipspubs/fipl27-2.htm

[SQL/PSM] Database Language SQL — Part 4: Persistent Stored Modules
(SQL/PSM) [ISO/IEC 9075-4:1996]
[IANA] IANA (Internet Assigned Numbers Authority).

Official Names for Character Sets, ed. Keld Simonsen et dl.
ftp://ftp.isi.edu/in-notes/ianal/assignments/character-sets

[RFC 1766] IETF (Internet Engineering Task Force). RFC 1766:

Tags for the Identification of Languages, ed. H. Alvestrand. 1995.
http://www.cis.ohio-state.edu/htbin/rfc/rfc1 766.html
[RFC 2277] |ETF (Internet Engineering Task Force). RFC 2277:

IETF policy on character sets and languages, ed. H. Alvestrand. 1998.
http://www.cis.ohio-state.edu/htbin/rfc/rfc2277.html

[RFC 2278] IETF (Internet Engineering Task Force). RFC 2278:

IANA Charset Registration Procedures, ed. N. Freed and J. Postel. 1998.
http://www.cis.ohio-state.edu/htbin/rfc/rfc2278.html

[RFC 2828] |IETF (Internet Engineering Task Force). RFC 2828:

Internet Security Glossary, ed. R. Shirey. May 2000.
http://www.cis.ohio-state.edu/htbin/rfc/rfc2828.html

Copyright © OASIS, 2001. All Rights Reserved

OASIS/ebXML Registry November 2001

4354 [RFC 3023] ETF (Internet Engineering Task Force). RFC 3023:

4355 XML Media Types, ed. M. Murata. 2001.

4356 ftp://ftp.isi.edu/in-notes/rfc3023.txt

4357 [REC-XML] W3C Recommendation. Extensible Markup language(XML)1.0(Second Edition)
4358 http://www.w3.org/ TR/REC-xml

4359 [UUID] DCE 128 bit Universal Unigque Identifier

4360 http://www.opengroup.org/onlinepubs/009629399/apdxa. htm#tagcih_20

4361 http://www.opengroup.org/publications/catal og/c706.htmttp://www.w3.0rg/TR/REC-xml
4362 [WSDL]W3C Note. Web Services Description Language (WSDL) 1.1

4363 http://www.w3.ora/TR/wsdl

4364 [SOAP11]W3C Note. Simple Object Access Protocol, May 2000,

4365 http://www.w3.ora/ TR/SOAP

4366 [SOAPALt]W3C Note: SOAP with Attachments, Dec 2000,

4367 http://www.w3.0rg/TR/SOA P-attachments

4368 [XMLDSIG] XML-Signature Syntax and Processing,

4369 http://www.w3.org/TR/2001/PR- xml dsig-core- 20010820/

4370 Disclaimer

4371 The views and specification expressed in this document are those of the authors and are not
4372 necessarily those of their employers. The authors and their employers specifically disclaim
4373 responsibility for any problems arising from correct or incorrect implementation or use of this
4374 design.

Copyright © OASIS, 2001. All Rights Reserved

4375

4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402

OASIS/ebXML Registry

November 2001

Contact Information
Team Leader

Name:
Company:
Street:

City, State, Postal Code:

Country:
Phone:
Email:

Vice Team Lead

Name:
Company:
Street:

City, State, Postal Code:

Country:
Phone:
Email:

Editor
Name:
Company:
Street:

City, State, Postal Code:

Country:
Phone:
Email:

Copyright © OASIS, 2001. All Rights Reserved

Lisa Carnahan

USA

lisa.carnahan@nist.gov

Y utaka Y oshida

Sun Microsystems

901 San Antonio Road, MS UMPK 17-102
Palo Alto, CA 94303

USA

650.786.5488

Y utaka.Y oshida@eng.sun.com

Anne A. Fischer

Drummond Group, Inc.

4700 Bryant Irvin Ct., Suite 303
Fort Worth, Texas 76107-7645
USA

817-371-2367
anne@drummondgroup.com

4403

4405
4406
4407
4408
4409
4410
4411

4412
4413

4414
4415
4416
4417
4418

OASIS/ebXML Registry November 2001

Copyright Statement

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

This document and tranglations of it may be copied and furnished to others, and derivative works
that comment on or otherwise explain it or assist in its implementation MAY be prepared,
copied, published and distributed, in whole or in part, without restriction of any kind, provided
that the above copyright notice and this paragraph are included on all such copies and derivative
works. However, this document itself MAY not be modified in any way, such as by removing
the copyright notice or references to ebXML, UN/CEFACT, or OASIS, except as required to
trandate it into languages other than English.

The limited permissions granted above are perpetua and will not be revoked by ebXML or its
SUCCESSOr's Or assigns.

This document and the information contained herein is provided on an "AS IS" basis and
ebXML DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN
WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright © OASIS, 2001. All Rights Reserved

