Creating A Single Global Electronic Market

OASIS/eb XML Registry Services Specification v2.2
—Committee Working Draft

OASIS/eb XML Registry Technical Committee
September 2002

Copyright © OASIS, 2002. All Rights Reserved

OASIS/ebXML Registry Services Specification v2.0 September 2002

2 Thispageintentionally left blank.

Copyright © OASIS, 2002. All Rights Reserved Page 2 of 167

OASIS/ebXML Registry Services Specification v2.0

1 Status of this Document

This document is an OASIS Registry Technical Committee Working Draft - September 2002.

Distributionof this document is unlimited.

The document formatting is based on the Internet Society’ s Standard RFC format.

Thisversion:
http://www.0oasis-open.org/committees/regrep/documents/2.2/specs/ebrs. pdf

Latest Technical Committee Approved version:
http://www.oasis-open.org/committees/regrep/documents/2.1/specs/ebrs. pdf

Latest OASI S Approved Standard:
http://www.oasis-open.org/committees/regrep/documents/2.0/specs/ebrs. pdf

Copyright © OASIS, 2002. All Rights Reserved

Page 3 of 167

September 2002

16

17
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

35

36

37
38

39

41
42

OASIS/ebXML Registry Services Specification v2.0

September 2002

2 OASIS/ebXML Registry Technical Committee

Thisis an OASIS/ebXML Registry Technical Committee draft document. The following
persons are members of the OASIS/ebXML Registry Technical Committee:

Zachary Alexander, Individual Member
John Bekisz, Software AG, Inc.
Kathryn Breininger, Boeing

Lisa Carnahan, NIST

Joseph M. Chiusano, LMI

Suresh Damodaran, Sterling Commerce
Fred Federlein, Sun Microsystems
Sally Fuger, Individual Member
Michael Kass, NIST

Kyu-Chul Lee, Individual Member
Matthew MacKenzie, XML Global
Koma Mangtani, BEA Systems
Monica Martin, Drake Certivo, Inc.
Farrukh Ngjmi, Sun Microsystems
Sanjay Patil, IONA

Nikola Stojanovic, Individual Member
Scott Zimmerman, Storagepoint

Contributors

The following persons contributed to the content of this document, but were not a voting member

of the OASIS/ebXML Registry Technical Committee.

Anne Fischer, Individual
Len Gallagher, NIST
Sekhar Vajjhala, Sun Microsystems

Copyright © OASIS, 2002. All Rights Reserved

Page 4 of 167

&R &

46
47

49
50
51
52

53

55

56
57
58
59
60
61
62
63

65
66
67
68

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

85
86
87
88

OASIS/ebXML Registry Services Specification v2.0 September 2002

Table of Contents

1 StatuS Of thISDOCUMENTceeiiiiieiie ettt bbb e e 3
2 OASIS/ebXML Registry Technical COMMITIEE........cccovieeiieiieeseee e 4
JLIE= o1 L= o) 0 g = o1 5
BLI= Lo = o T LU =SS 11
JLI= 1= o = o] =S 13
G T 1 111 oo 18 [o o SR 14
3.1 Summary of Contents of DOCUMENTceeriieierierierie e 14
3.2 GeNEral CONVENTIONSccueiuiiieiieiiesie sttt st see e 14
3.3 AUIENCE ...ttt bbb e e nae e 14
O B T o [T @ o] = Y- O 15
g R €07 [SRS 15
4.2 CaveatS and ASSUMPLIONSccoviiririieieieieriesi e 15
B SYSLEM OVEI VIBW......eeiecie ettt ettt sttt et e e aeesteeaaeese e teeseesseesseensesneenseeneesnnenns 16
5.1 What The ebXML REGISIIY DOES......ccoiiiiriiriirierieeie et 16
52 How The ebXML RegIStry WOrKS........ccccoriiriieiiirienereseseseeeeeee e 16
5.2.1 SchemaDocuments Are SUDMIttEdccoceveneririenienere e 16
5.2.2 Business Process Documents Are Submittedccoceevereeneniienene 16
5.2.3 Sdler’s Collaboration Protocol Profile Is Submitted ..o 16
524 Buyer Discovers The SEler ... 16
525 CPA ISESAiShed ... 17
5.3 REQISINY USEIS......oiiiieiieieieeeeee ettt nre e 17
54 Where the Registry Services May Be Implemented..........ccoceoeieienincnennnne 18
5.5 Implementation CONfOIMANCEccveieiuieiicie e 18
5.5.1 Conformance as an ebXML REQISIYcoovriiieriiiienieeeeeseeie e 18
5.5.2 Conformance as an ebXML Registry Clientccocevevenenencnennene 19
6 EDXML REQISIIY ArCHITECIUIN @ ..ot 20
6.1 Registry Service DesCribed..........coiviiiiiiiie e 20
6.2 ADStract REQISIIY SEIVICE ...cvveee et 21
6.2.1 LifeCycleManager Interface.........ccoovvvviiiiiiieiie e 21
6.2.2 QueryManager INtErface.........ccoeriririieiieiee e 22
6.3 CONCrete REJISITY SEIVICES.....cci ittt 22
6.4 SOAPBINAING .ccveiiiiiiriiieee et 23
6.4.1 WSDL Terminology Primer........cccooiiiinienecie e 23
6.4.2 Concrete Binding for SOAPcoociiiiiere e 23
6.5 ebXML Message Service Binding........ccccovveeeveeneeeeseese e 24
6.5.1 Service and Action Elements.........ccoceviriiinni i 24
6.5.2 Synchronous and Asynchronous RESPONSES...........ccceeeeeerierienieriennenn 24
6.5.3 ebXML Registry Collaboration Profiles and Agreements................... 25
6.6 REST BiNAiNG.....cccoeriirieieieiisie st 25
6.6.1 Standard URI Parameters.........cccoeveeiiniiniene e 26
6.6.2 QueyManager REST INtErfacecccovviiirenenineneeeee e 26
6.6.3 LifecycleManager REST Interface........cccovvevveeieececce e 28
6.6.4 Security CONSIAEraliONScocueeiieriirieerieeie et 29
6.6.5 EXCEPtioN HaNAIiNGccoveieiriiiiniirieiee e 29
A (= o 1 1Y O 1= o £ P 29

Copyright © OASIS, 2002. All Rights Reserved Page 5 of 167

OASIS/ebXML Registry Services Specification v2.0 September 2002

89 6.7.1 Registry Client Described.........ccooviiiiiiiiicce e 29
90 6.7.2 Registry Communication BOOLSIrapPiNgc.eevererereeieereenenieniennene 30
91 6.7.3 RegistryClient INErfaCe........covevvvciieeieseseee e 31
92 6.7.4 REQISINY REJDONSEooveeeieeiectieie ettt 31
93 6.8 Interoperability REQUIFEMENEScoiiirieieieiee e 31
94 6.8.1 Client INteroperability........ccccoourieririeriiierese e 31
95 6.8.2 Inter-Registry COOPEratioN.........cccurereeriereriesiesieseseseeee e 32
96 7 LifeCycle Management SEMVICE ...ttt sne e 33
97 7.1 LifeCycle of aRepOSItOry IteM.......cccuvieeiice e 33
98 7.2 RegistryObject AttrHDULES........c.coiieeiiece e 33
99 7.3 The Submit ObJectS ProtoCol...........coceeireeieieiere s 34
100 7.3.1 SUbMItODJECISREGUESL.......c.eeveeie et 34
101 7.3.2 REQISITYRESPONSEcovieeieceecteete ettt 35
102 7.3.3 Universally Unique ID Generation...........ccoererererenieeneeneeseseeseesnenne 36
103 7.3.4 1D Attribute And Object REFEIENCEScoocevererierieeee e 36
104 7.35 AU TraIl cooieeicieeee e 37
105 7.3.6 Error Handlingcoeoieeiiiieeeese et 37
106 7.3.7 Sample SUbmitObjeCtSREQUESL.coveieieierieere e 37
107 7.4 TheUpdate ObjectS ProtOCOL.........ccveueieeiiicie et 40
108 A AN U o [I = SR 41
109 7.5 The Add SIOtS ProtOCOL........ccecciieeiieeeseere e 41
110 7.5.1 AdASOLSREGUESE ..ottt 42
111 7.6 The Remove SIOtS ProtOCOLccociiiririeieiie et 43
112 7.6.1 RemMOVESIOISREQUESLccuiitirieriirieeieeete e 43
113 7.7 The Approve ObJECES PrOtOCOcccvereeirieeriinie e 44
114 7.7.1 ApproveOLJECISREJUEScceeiieieecieeieeee et 45
115 A XU o [G I - SR 46
116 7.8 The Deprecate Objects ProtOCOIccoeeeieiieriirieiesicseseeee e 46
117 7.8.1 DeprecateObjectSREUESLccvviiecieiecesee e 46
118 7.8.2 AUt Tl cvoieieieieeee e e 47
119 7.9 The Remove ODJECES ProtOCOcccoereeieiierienie st 47
120 7.9.1 RemoVEODJECISREQUESLccueeiereesieeie ettt 48
121 8 QUENY ManagemMENTt SEIVICE.cciiirieeieeeeieree ettt e e bese e s se e s snesnesne b nneas 50
122 8.1 AdHOC Query REQUESI/RESDONSEcoviruirieeieeieneesie sttt 50
123 8.1.1 AdNOCQUENYREQUESeeeeceeeeteete et 51
124 8.1.2 AdNOCQUENYRESDONSEooeiiiiieeieeie ettt 52
125 8.1.3 REPONSEOPLION ...ttt sttt 53
126 8.1.4 Iterative QUENY SUPPOITccveeeeeeeeeie ettt 54
127 8.2 Filter QUENY SUPPOIoeetieeieeciee ettt ettt en e 55
128 o0 R 11 (= (@)1= S 56
129 8.2.2 RegiStryOhjECtQUENYeeiueeieeeee et 58
130 8.2.3 ReQIStTYENIYQUENY.....cccuieiee ittt 71
131 8.24 ASSOCIAT ONQUENY ..ottt sttt 74
132 8.25 AuditableEVeNtQUENYcoiiiiieiee e 76
133 8.2.6 ClassifiCatioNQUENYccceeiieieirieiie ettt 79
134 8.2.7 ClassificatioNNOJEQUENY..........oieriieeieiieieeie e 8l
135 8.2.8 ClassificationSChemMEQUENY.........cceiiriirieriesie e 86
136 8.2.9 RegistryPackagEQUENYccceiieieiie e 87

Copyright © OASIS, 2002. All Rights Reserved Page 6 of 167

OASIS/ebXML Registry Services Specification v2.0 September 2002

137 8.2.10 EXtrinSICODJECLQUENYeiiiieiiee ettt 89
138 8.2.11 OrganiZatiONQUETYeeueruerereeeeierieste sttt e e sne e sre e s 90
139 8.2.12 SErVICEQUENYeeecveeieeeeseeeiteeeesteesteseesseesesseesseessesseesseesesseesseesesneenes 94
140 8.2.13 REQISLIY FIILErS....cceeeieeee et 96
141 8.2.14 XML Clause Constraint Representation.............cccceevvererenereneneennes 100
142 8.3 SQL QUENY SUPPOITeeueerieeriieiieieestee et nesn e sne e e 104
143 8.3.1 SQL Query Syntax Binding To [€EDRIM]c.ocoveiveiiiieeeeecee, 105
144 8.3.2 Semantic Constraints On QUErY SYNtaX........ccocereerererseereesiensenens 106
145 8.3.3 SQL QUENY RESUITSceeieeeiieieeiesiee ettt 107
146 8.3.4 Simple Metadata Based QUENES........cccceeveevieeieseeie e 107
147 8.3.5 RegiStryObjeCt QUENES.........ceveeiieeiiiecieesieeste et nneas 107
148 8.3.6 RegiStrYENtry QUENES........coiiieiieeeeee s 107
149 8.3.7 Classification QUENIES........cceevueeiiieecie sttt aeas 108
150 8.3.8 ASSOCIAON QUENTES......ccveeeerietee ettt ettt ereesreeneas 109
151 8.3.9 Package QUENTES........cceriirieriieieieee et 110
152 8.3.10 ExternalLink QUENTES.........cccueiueeeerieerieseesieeseeseesteeseeseesneeee e sseeneas 110
153 8.3.11 Audit Trail QUENES......coeiuerieririeieie s 110
154 8.4 Content RELMEVAEcoouiiiiiieeee e e 110
155 8.4.1 Identification Of Content Payloads...........cccocveeneenvnnsennireeeseeenen, 111
156 8.4.2 GetContentResponse Message SIrUCIUre.........cooeveveeveeneeeseeceeee 111
157 9 Content-DASEU DiSCOVEIYccoiiriiiiiriiieeieie sttt sn b e ne e 113
158 9.1 Content-based DisCoVery: USE CaSES.......coceeveeeeneerieeieseesieesee e saeenae e 113
159 9.1.1 Find All CPPs Where Role iS “BUyer”cccceveeveccee e, 113
160 9.1.2 Find All XML Schema’s That Use Specified Namespace................. 113
161 9.1.3 Find All WSDL Descriptions with a SOAP Bindingccccevue.e. 113
162 9.2 Content INdeXiNg SEIVICEcciieiecieie et 113
163 0.2.1 ustrative EXamPle.......coeoieeiieiesie e 114
164 9.3 Index DEfINItION File......c.cceiiieeeecee e 115
165 9.4 INdeXaDI@ CONENL.......ccerieieiiiere e 115
166 05 INAEX MEAOALAcoveeeeeeeeieesese et 116
167 9.6 Content INdeXing ProtOCOlccooiiiiiiiiieeeee s 116
168 9.6.1 INdexConteNtREGUESL.........ccveieeeerieie e et 116
169 9.6.2 INdeXCONtENtRESPONSEccveeuriciieirieie ettt 117
170 9.7 Publishing a Content INdeXing SEMVICE.ccceirireienieeeee e 118
171 9.7.1 Multiple Indexers and Index Definition Files...........cccocevivereninnenne. 119
172 9.7.2 Restrictions On Publishing Content Indexing Services..................... 120
173 9.8 Dynamic Content INAEXING.......cccocuuiieririeiieneeesee e 120
174 9.8.1 Threading Model for Dynamic Content Indexingcccccvvrereenne. 120
175 9.8.2 Referential Integrity and Dynamic Content Indexingccccue..... 120
176 9.8.3 Error Handling Model for Dynamic Content Indexing 120
177 9.8.4 Updates and Dynamic Content INdexing.........ccccveeeeveereneneseneniennes 121
178 9.8.5 Resolution Algorithm For Indexer and Index Definition File............ 121
179 9.9 Dynamic Content-based DiSCOVENYcccvieiieieiieese e 121
180 9.10 Default XML Content INAEXEScceererirrierieeiesee e 122
181 9.10.1 Publishing of Default XML Content Indexercccooevvneienereene. 122
182 9.11 Canonical Index Definition FIlES........cccoviiririeierese e 122
183 10 Y7 1 N Lo o= LA o] o S 123
184 LO.1 USE CBSES. ..cviuiieeiieiieiie e sttt sttt ettt st b e b bttt et e b et ae e b 123

Copyright © OASIS, 2002. All Rights Reserved Page 7 of 167

OASIS/ebXML Registry Services Specification v2.0 September 2002

185 10.1.1 New Service iS Offered.......coiiiiiieieeeeeee e 123
186 10.1.2 Monitor Download of CONteNt..........cceveeriereereeieee e 123
187 10.1.3 MoONitor Price ChangEScccveveeiieiieseeiie e seesie e see e e nae e 123
188 10.1.4 Keep Replicas Consistent With Source Objectcccovvveeevveenieennene 123
189 10.2 REQISIY EVENLS. ..ottt 123
190 10.3 SUBSCIDING t0 EVENES......cciiiieeeieeeeee e 124
191 10.3.1 BEVENt SEIECHION.....ceiiiiieteseeeee e 124
192 10.3.2 NOUTICAHON ACHON......coiiiiiiiieieeie e 124
193 10.3.3 SubsCription AULNOMTZELION.........cceieeieieieresee e 124
194 10.3.4 SubsCription QUOLES.........cccueiierieeieseesieeie e e see et eee e nre e 124
195 10.3.5 SubscCription EXPIralion.........ccccceeeiieeieeiieeiie e esieesire e sseessessneens 124
196 10.4 Unsubscribing from EVENEScocoiiiiiiceeee e 125
197 10.5 NOtIfication Of EVENES.......cccoiiiiininieeeee e 125
198 10.6 Retrieval Of EVENLS.......cccoviiiiinereseeeeee ettt 125
199 10.6.1 GetNotificatiONSREQUESE.........cceieeieieierie e 125
200 10.6.2 GetNOtificatiONSRESPONSEccueeueeieieierie e 126
201 10.7 Event Management POlICIES.........ccccveieeiieie e 126
202 10.8 Notes 127

203 11 Cooperating RegIStri€S SUPPOITceeieeeiieeiececrie ettt 128
204 11.1 Cooperating RegiStries USE CaseS......ccccvvvieiieeiee et esessie s 128
205 11.1.1 Inter-registry Object REFEreNCES.........covvivinirerieieeeese e 128
206 11.1.2 Federated QUENTES.......cciiiiriirieeeeee ettt 128
207 11.1.3 Local Caching of Data from Another RegIStry.......ccccovevveceeveeiieennnne 128
208 11.1.4 ObJeCt REIOCALION.......ccviiiiiiriieieee ettt 129
209 11.2 RegiSty FEOEIaiONScveiviieriesieeieeeeee ettt 129
210 11.2.1 Federation Metadata.........cccvvverreeierieenieiesie e 129
211 11.2.2 Loca Vs. Federated QUENES.........cccueeiueeiieeiieecie et 130
212 11.2.3 Federated Life Cycle Management Operationsccccevererenenens 130
213 11.2.4 Federations and Local Caching of Remote Data...........ccccccevveviennne 131
214 11.2.5 Caching of Federation Metadata..............ccoeeeeieeeieeciieenie e 131
215 11.2.6 Time Synchronization Between Registry Peers........ccccevvvevencnnne 131
216 11.2.7 Federations and SECUITY........cciveruerieereerieeeeseesesseesee e seesee e e 131
217 11.2.8 Federation Life Cycle Management Protocols...........cccocveveeveenieennnne 131
218 11.3 ODbjeCt REPICALION.....c..cieiieirieeieeieeeee e 132
219 11.3.1 Use Casesfor Object RepliCation..........ccccevererenerierieiesesee s 133
220 11.3.2 Queries ANd REPIICESvocuveieeeeceseece e 133
221 11.3.3 Lifecycle Operations And RePIICaS.........ccveereriinieniieieeee e 133
222 11.3.4 Object Replication and Federated REQISIIES........ccocvviveieienicrinicniene 134
223 11.3.5 Creating aLocal RePliCa........cccceeveieeiiciece e 134
224 11.3.6 Transactional RePIICAtiON..........cccecueeiieeiiieciie e 134
225 11.3.7 Keeping RePlICas CUMENtcoeeeerierierieresesieee e 134
226 11.3.8 Write Operations on Local REPIICAcceveeveeieeieieerecee e 134
227 11.3.9 Tracking Location of a RepliCa........ccccvevieveeiieiecececceee e 135
228 11.3.10 Remote Object Referencesto aReplica........coovvvveieieiencicnicnine 135
229 11.3.11 Removing aLocal REPICA........ccccerereriirinireseeee e 135
230 11.4 Object Relocation ProtOCOL...........cceevieieeiieie e 135
231 11.4.1 ReloCateODjECtSREQUESLcoiviriiiieiteeie e e 138
232 11.4.2 AcceptODjeCtSREQUESL.........covieieeeeeeeietesie st 139

Copyright © OASIS, 2002. All Rights Reserved Page 8 of 167

OASIS/ebXML Registry Services Specification v2.0 September 2002

233 11.4.3 Object Relocation and Remote ObjectRefs........ccovvvceeieecceciiecie 139
234 11.4.4 Notification of Object REIOCALION...........cccoveriririiieeeese e 140
235 11.4.5 Object Relocation and TIMEOULS...........cecereereeresieeseesie e seeseeeeens 140
236 12 REJISIIY SECUTTTY ...ttt snenneas 141
237 121 SECUNLY CONCEIMNSeieiieiisiesiesie sttt se et et bt e et see e e s 141
238 12.2 Integrity of RegiStry CONENLccccoeieeiiee e 141
239 12.2.1 Message Payload SIgNatUre........cccoeeeieeienienee e 141
240 12.2.2 Payload Signature REQUITEMENTS.........cccovivirininiceeeeee e 142
241 123 AUINENTICAIION......cueiiieiiierie et 143
242 12.3.1 Message Header SIgNature........cccocvvecveeiiecciie e 144
243 12.4 Key Distribution and Keylnfo Element............cccoovivininininieneeeese 145
244 12,5 CoNfIdentialityccceceeieeeeceere ettt aesreenne e 146
245 12.5.1 On-the-wire Message Confidentiality..........cccoceeviveveiieieiieieeseen, 146
246 12.5.2 Confidentiality of Registry COntent...........ocuvrererieeieiesese s 146
247 2K AN U 1100 g2 £ o] o USSR 146
248 12.6.1 ACHONS ..cviieieiieiieie ettt sttt sttt ae st e nbenreas 147
249 12.7 ACCESS CONLIOL....cueiieieieeee ettt sttt neesreense e 147
250 Appendix A WeED Service ArChiteCtUN € ... 149
251 A.1 Registry Service Abstract SPeCIfiCation...........ccevverieereereniisie e 149
252 A.2 Registry Service SOAP BiNGiNG.......cooeriririiriinene s 149
253 Appendix B ebXML Registry Schema Definitions.........ccccceveeiiieieeccecvee e, 150
254 B.l RIM SChEMA....cciiieieeeece ettt 150
255 B.2 QUENY SCHEMAL.....c.ceiieiecee ettt st eesreenneennens 150
256 B.3 Registry Services Interface SChemacoocoveveieneneneneeeee e 150
257 B.4 Examples of INStance DOCUMENLS........cccceierrierieneeiieseesieeee e 150
258 Appendix C Interpretation of UML Diagrams.........cccoeeeveeieeeesieeie e seesee e 151
259 C.1 UML ClasS DIiagram.........cccceeieriereeniesieseesiesessieesseseesses e sesssesssesesssessees 151
260 C.2 UML SequenCe Diagram........cccoeeeririeeeieniesie s see e s v e 151
261 Appendix D SOL QUEY ettt ettt e e ae e s b e e sae e e aneenneesnnean 152
262 D.1 SQL Query Syntax SPECITICAION........cccervereereirieriesie st 152
263 D.2 Non-Normative BNF for Query Syntax Grammarccceeeeereereeseeseennens 152
264 D.3 Reational Schema For SQL QUENIES........cueeecieeeeieeecree e 154
265 Appendix E Security Implementation GUIAEINecccveeeveeieceeseere e 155
266 E.l SECUNtY COMCEINScciueiiecieeieeee et esiesee st e e ste e sseea e e esteeresneenneennens 155
267 [SIDZ2 AN U 117 011 o= 1 o o USRS 156
268 [SIS AN 11 00 g2 £ o] o USSR 156
269 A 8 S 0[S (Y =100 1S 1 o USSR 156
270 E.5 Content Submission — Client Responsibility.........cccvoevniinienienie e 156
271 E.6 Content Submisson— Registry Responsibilityccocvoriiienincncncrenne 157
272 E.7 Content Delete/Deprecate — Client Responsibility........ccccccveeevicieiecieenns 157
273 E.8 Content Delete/Deprecate — Registry Responsibilitycccecveveiieenienne 157
274 E.9 Using dsKeylnfoO FEId. ... 157
275 Appendix F Native Language SUPPOrt (NLS)ccoieeiiiiee e 159
276 [R B T] 0] USRS 159
277 F.1.1 Coded Character SEt (CCS) ..o 159
278 F.1.2 Character Encoding Scheme (CES):ccocooeveeieivececce e 159
279 F.1.3 Character Set (Charset):coccoveeiiieneeieee e 159

Copyright © OASIS, 2002. All Rights Reserved Page 9 of 167

280
281
282
283
284
285
286
287
288
289
290
291
292
293

OASIS/ebXML Registry Services Specification v2.0 September 2002

F.2 NLSANdRequest / ReSPONSe MESSAJES........ceevueviieeiee e esiee e esiee e 159

F.3 NLSANd Storing of RegistryOBjeCt.........ccooiiiiinirinereeeeeeee e 159

F.3.1 Character Set of LOCalizedSIring......ccccoveverieereeienieseesieeeeseesieeeens 160

F.3.2 Language Information of LocalizedSIring.........cccceeeeeevviieeveeniennnns 160

F.4 NLSANd Storing of REPOSITOrY [tEMSooviiiiiiiieeeeeeee e 160

F.4.1 Character Set of REPOSITOrY HHEMS.......ccoviviiireneeeeee e 160

F.4.2 Language information of repository item..........ccceeevveveiieeveeneennn, 160
Appendix G REGISLIY Profile ..o 161
13 [= = oS PP 162
14 D1 o = T T SRRSO 164
15 (@0l o] = To: i I 0o 0 0 =1 4 1o o 1P 165
16 CopYright SEALEMENTc.veiee e 166
17 N0 =TSSP 167

Copyright © OASIS, 2002. All Rights Reserved Page 10 of 167

294

295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334

OASIS/ebXML Registry Services Specification v2.0 September 2002

Table of Figures

Figure 1.
Figure 2:
Figure 3:
= Figure4:
= Figure5:
= Figure6:
= Figure7:
= Figure8:
Figure 9:

9 9 9

= Figure 10:
= Figure 11:
= Figure 12:
= Figure 13:
= Figure 14:
= Figure 15:
= Figure 16:
= Figure 17:

AcCtor REEIONSNIPS ..o 18
ebXML Registry Service ArChiteCtUIe.ccuvveeiiecie e 20
The Abstract €0XML REGISITY SEIVICEcceiiiiiieierieee e 21
A Concrete ebXML REQISLIY SEIVICEocveiiieiecieseece ettt 23
Registry Architecture Supports Flexible TOpolOgIes........cocuvverereeieierese e 30
Life Cycle of a REPOSITONY [TEM.......c.oiiiice e 33
Submit Objects Sequence Diagram.........ccccveeeeieereeie e 34
SUbMItOD) ECISREQUESE SYNTAXevivieieeieeeeee e 34

REQISIIYRESPONSE SYNLAX.....ccuvieiieeiieeitieeieesiee et see et e e e sse e ere e e neenneas 35
Update Objects Sequence Diagram..........cccoeeceiiereeinseese e e see e 41
Add SIOtS SEqUENCE DIagram.........cceiviririeieeeee et 42
AdASIOISREUESE SYNLAXccueeieeeieciieite st sre e 42
Remove SI0tS SequenCe DIiagraimc.ceeeeeierieresiesie s s 43
RemMOVESI OtSREQUESE SYNLBX.......cueeivereerieeieniesiee ettt 44
Approve Objects Sequence DIiagramccccceeieecereeseesesee e see e 45
APProveOh] ECISREQUESE SYMEBX.......ccerererieieiesiesie et 45
Deprecate Objects Sequence Diagram........c.coveeeeieneeiesee e 46

= Figure 18: DeprecateObjeCctSREQUESE SYNLAX.........ccverrereeiieiieeesie e see s esee e eee e sae e 46
= Figure 19: Remove Objects Sequence Diagramccoceiererireneseseseeeeee e 48
= Figure 20: Removal ObjectsReqUESE SYNaXcccceiiieiieiiie i 438
= Figure 21: Submit Ad Hoc Query Sequence Diagram.........cccceeceereerieseeseeseeseeseeseeseesseseens 51
= Figure 22: AdnOCQUENYREQUESE SYNEAXeivereirririiiiiniiee ettt 51
= Figure 23: AdhoCQUENYRESPONSE SYNAX.......ccueiieirieie e ce et ee e st s e e e 52
= Figure 24: ReSPONSEOPLTION SYNEAXc.veverieriereirieriesiereeeeee e sre s s see e sne e 53
= Figure 25: Example eDRIM BindiNG.........ccooiiiriiiieie et s 55
= Figure 26: ebRIM Binding for RegistryObjeCtQUENY..........ccceeeeiieieiieseee e 58
= Figure 27: ebRIM Binding for RegiStryENtryQUENY..........cceiiiirinireneseeeeee e 71
= Figure 28: ebRIM Binding for ASSOCIiatiONQUENYccceiueiiiieiieeiee e citeesee e sre e 74
= Figure 29: ebRIM Binding for AuditableEVeNtQUENYcccveeeieeie e 76
= Figure 30: ebRIM Binding for ClassifiCationQUENYccccoererirerenineeeeeeeese e 79
= Figure 31: ebRIM Binding for ClassificationNOJEQUENYcccveiieveeieeie e 81
= Figure 32: ebRIM Binding for ClassificationSchemeQuUEryccoveveeieccesiecie e 86
= Figure 33: ebRIM Binding for RegistryPackageQUENYcccovirerenininieeeesee e 87
= Figure 34: ebRIM Binding for ExtrinsicObj€CtQUENYccveeeieeie e 89
= Figure 35: ebRIM Binding for Organi zatiONQUENYccererirerereneseeeeeesee e 91
= Figure 36: ebRIM Binding for SErVICEQUENYcceiiiiieieeiesee sttt 95
= Figure 37: The ClalUse SITUCIUIEcoiieie ettt 100
= Figure 38: Abstract Content Indexing Service: Inputs and OULPULS............cceveererereenierienne. 114
= Figure 39: Example of CPP indexing using Default XML Indexer.........ccoeveeviieeveecveennen, 115
= Figure 40: Content INdexing ProtOCOL...........cccveierierecie e 116

Copyright © OASIS, 2002. All Rights Reserved Page 11 of 167

335
336
337
338
339
340
341
342
343
344
345
346

OASIS/ebXML Registry Services Specification v2.0 September 2002

= Figure 41: IndexContentREQUESE SYNLAXccivieiieiiiieiiecsieesie e sree et 117
= Figure 42: IndexContentRESPONSE SYNEAX......cceevuereereeierierieesie e esee e eee e re e e 118
= Figure43: Indexing Service ConfigUIatioN.cueeeeeieeiierenesese st 119
= Figure 44: GetNotificationsReqUESt SYNLaXccecceeiiieiiieiiecsee e 125
= Figure 45: GetNotificatiONSRESPONSE SYNLAX........ecverreerierierieerieseeseeseeseesreeseeseesseeneesseens 126
= Figure 46: Inter-registry Object REFEIENCES.........ccoviiiiiiece e 128
= Figure 47: RegiStry FEAEratiONSccciieiieiee ettt 129
= Figure48: ODJect REPIICALION.........ccuiiiiiiere et 133
Figure 49: ODJECt REIOCALION.coieiiiiiesieeie et e e e 135
= Figure 50: Relocate ObjECtS ProtOCOceeveeiieiieiecie e 137
= Figure 51: RelocateObjectsRequest XML SChema........ccooeiviiviniiineneeeeee e 138

Copyright © OASIS, 2002. All Rights Reserved Page 12 of 167

347

349
350
351
352
353
354
355
356
357
358

OASIS/ebXML Registry Services Specification v2.0 September 2002

Table of Tables

R - o = R (= o [VLU LS = S 17
= Table2: LifeCycle Manager SUMIMAIY.........ccceeuereerieieeseeseseesseeseesseesseessesseessesssssesssesnsens 21
= Table3: QUENY MaANAOETcc.oiiiiieieieee ettt b et b et e e e snenne e ene e 22
= Table4: Standard URI Parameters..........ccoocvviriiininininieeesee st see s sne e 26
= Table5: QueryManager REST INTEITACEcooiiiiiriieeeeee e 26
= Table6: LifecycleManager REST INEIfaCecccoiiiiiiiieececeeseee e 28
= Table7: RegiStryClient SUMMEAIYccccceiieiieeseere st et e st se e ae e sneennens 31
= Table8: Path Filter EXpressions for USE CasesS.......ccviiririeriereresiesiesieses e 84
= Table9: Role to PErmiSSIONS MapPiNgcccuveiuieiieiiie e csiee st s sree et nneas 147
= Table 10: Default Actor to ROIE MaPPINGS.ccvevereerieeieeieseesiesee e see e sre e re e e 148

Copyright © OASIS, 2002. All Rights Reserved Page 13 of 167

359

360

361
362

363
364
365

366

367

368
369

370
371
372

373
374

375

376
377
378

379

380
381
382

383

384
385
386
387
388

OASIS/ebXML Registry Services Specification v2.0 September 2002

3 Introduction

3.1 Summary of Contents of Document

This document defines the interface to the ebXML Registry Services as well as interaction
protocols, message definitions and XML schema.

A separate document, ebXML Registry Information Model [ebRIM], provides information on
the types of metadata that are stored in the Registry as well as the relationships among the
various metadata classes.

3.2 General Conventions

The following conventions are used throughout this document:

UML diagrams are used as a way to concisely describe concepts. They are not intended to
convey any specific Implementation or methodology requirements.

The term “repository item” is used to refer to an object that has resides in arepository for storage
and safekeeping (e.g., an XML document or a DTD). Every repository item is described in the
Registry by a RegistryObject instance.

The term "RegistryEntry" is used to refer to an object that provides metadata about a repository
item.

Capitalized Italic words are defined in the ebXML Glossary.

The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD

NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this document, are to be
interpreted as described in RFC 2119 [Bra97].

3.3 Audience

The target audience for this specification is the community of software developers who are:
?? Implementers of ebXML Registry Services
?? Implementers of ebXML Registry Clients
Related Documents
The following specifications provide some background and related information to the reader:
a) ebXML Registry Information Model [ebRIM]
b) ebXML Message Service Specification [ebM S]
c) ebXML Business Process Specification Schema [ebBPSS]
d) ebXML Collaboration-Protocol Profile and Agreement Specification [ebCPP]

Copyright © OASIS, 2002. All Rights Reserved Page 14 of 167

389

390

391
392
393
394
395

396

397
398
399

400
401
402
403
404
405
406

OASIS/ebXML Registry Services Specification v2.0 September 2002

4 Design Objectives

4.1 Goals

The goals of this version of the specification are to:

?? Communicate functionality of Registry servicesto software developers

?? Specify the interface for Registry clients and the Registry

?? Provide a basis for future support of more complete ebXML Registry requirements
?? Be compatible with other ebXML specifications

4.2 Caveats and Assumptions

This version of the Registry Services Specification is the second in a series of phased
deliverables. Later versions of the document will include additional capability as deemed
appropriate by the OASIS/ebXML Registry Technical Committee. It is assumed that:

Interoperability requirements dictate that at least one of the normative interfaces as referenced in
this specification must be supported.

1. All access to the Registry content is exposed via the interfaces defined for the Registry
Services.

2. The Registry makes use of a Repository for storing and retrieving persistent information
required by the Registry Services. Thisis an implementation detail that will not be
discussed further in this specification.

Copyright © OASIS, 2002. All Rights Reserved Page 15 of 167

407

408

409
410
411
412

413

414
415
416

417
418
419
420
421
422

423

424
425
426
427

428
429
430
431

432
433

435

436

437
438
439

441

OASIS/ebXML Registry Services Specification v2.0 September 2002

5 System Overview

5.1 What The ebXML Registry Does

The ebXML Registry provides a set of services that enable sharing of information between
interested parties for the purpose of enabling business process integration between such parties
based on the ebXML specifications. The shared information is maintained as objectsin a
repository and managed by the ebXML Registry Services defined in this document.

5.2 How The ebXML Registry Works

This section describes at a high level some use cases illustrating how Registry clients may make
use of Registry Services to conduct B2B exchanges. It is meant to be illustrative and not
prescriptive.

The following scenario provides a high level textual example of those use cases in terms of
interaction between Registry clients and the Registry. It is not a complete listing of the use cases
that could be envisioned. It assumes for purposes of example, a buyer and a seller who wish to
conduct B2B exchanges using the RosettaNet PIP3A4 Purchase Order business protocal. It is
assumed that both buyer and seller use the same Registry service provided by athird party. Note
that the architecture supports other possibilities (e.g. each party uses its own private Registry).

5.2.1 Schema Documents Are Submitted

A third party such as an industry consortium or standards group submits the necessary schema
documents required by the RosettaNet PIP3A4 Purchase Order business protocol with the
Registry using the LifeCycleManager service of the Registry described in Section 7.3.

5.2.2 Business Process Documents Are Submitted

A third party, such as an industry consortium or standards group, submits the necessary business
process documents required by the RosettaNet PIP3A4 Purchase Order business protocol with
the Registry using the LifeCycleManager service of the Registry described in Section 7.3.

5.2.3 Seller's Collaboration Protocol Profile Is Submitted

The sdller publishes its Collaboration Protocol Profile or CPP as defined by [ebCPP] to the
Registry. The CPP describes the seller, the role it plays, the services it offers and the technical
details on how those services may be accessed. The seller classifies their Collaboration Protocol
Profile using the Registry’ s flexible Classification capabilities.

5.2.4 Buyer Discovers The Seller

The buyer browses the Registry using Classification schemes defined within the Registry using a
Registry Browser GUI tool to discover a suitable seller. For example the buyer may look for al
parties that are in the Automotive Industry, play a seller role, support the RosettaNet PIP3A4
process and sell Car Stereos.

The buyer discovers the seller’s CPP and decides to engage in a partnership with the seller.

Copyright © OASIS, 2002. All Rights Reserved Page 16 of 167

442
443

445
446

447
448

449

450
451
452

453

OASIS/ebXML Registry Services Specification v2.0

September 2002

5.25 CPA Is Established

The buyer unilaterally creates a Collaboration Protocol Agreement or CPA as defined by
[ebCPP] with the seller using the seller’s CPP and their own CPP as input. The buyer proposes a
trading relationship to the seller using the unilateral CPA. The seller accepts the proposed CPA
and the trading relationship is established.

Once the seller accepts the CPA, the parties may begin to conduct B2B transactions as defined

by [ebMS].

5.3 Registry Users

We describe the actors who use the registry below. Some of the actors are defined in Section
12.7. Note that the same entity may represent different actors. For example, a Registration
Authority and Registry Administrator may have the same identity.

= <=Tablel: Registry Users

: |SO/IEC
Actor Function Comments
11179
RegistrationAuthority | Hosts the RegistryObjects Registration
Authority (RA)
Registry Evaluates and enforces MAY have the same
Administrator registry security policy. identity as
Facilitates definition of the Registration
registry security policy. Authority
Registered User Has a contract with the The contract could
Registration Authority and be aebXML CPA or
MUST be authenticated by some other form of
Registration Authority. contract.
Registry Guest Has no contract with Note that a Registry
Registration Authority. Does Guest isnot a
not have to be authenticated Registry Reader.
for Registry access. Cannot
change contents of the
Registry (MAY be permitted
to read some
RegistryObjects.)
Submitting A Registered User who does | Submitting
Organization lifecycle operations on Organization
permitted RegistryObjects. (SO)
Registry Reader A Registered User who has
only read access
Responsible Creates Registry Objects Responsible RO MAY have the
Organization Organization same identity as SO
(RO)

Copyright © OASIS, 2002. All Rights Reserved

Page 17 of 167

454
455

456
457

458
459
460

461

462
463

464

465
466
467
468
469
470
471

472

473
474

OASIS/ebXML Registry Services Specification v2.0 September 2002

Registry Client Registered User or Registered
Guest
_ _ Registry
Regisiry Client Administrator
% . Registration
Registered User Registry Guest Authority

Submitting Resiponsible

i . o Organization
Registry Reader Organization q

= =Figurel: Actor Relationships

Note:
In the current version of the specification the following are true.

A Submitting Organization and a Responsible Organization are the same.
Registration of a user happens out-of-band, i.e, by means not specified in this specification.
A Registry Administrator and Registration Authority are the same.

5.4 Where the Registry Services May Be Implemented

The Registry Services may be implemented in several ways including, as a public web site, asa
private web site, hosted by an ASP or hosted by a VPN provider.

5.5 Implementation Conformance

An implementation is a conforming ebXML Registry if the implementation meets the conditions
in Section 5.5.1. An implementation is a conforming ebXML Registry Client if the
implementation meets the conditionsin Section 5.5.2. An implementation is a conforming
ebXML Registry and a conforming ebXML Registry Client if the implementation conforms to
the conditions of Section 5.5.1 and Section5.5.2. An implementation shall be a conforming
ebXML Registry, aconforming ebXML Registry Client, or aconforming ebXML Registry and
Registry Client.

5.5.1 Conformance as an ebXML Registry

An implementation conforms to this specification as an ebXML Registry if it meets the
following conditions:

Copyright © OASIS, 2002. All Rights Reserved Page 18 of 167

475
476
ar7
478

479

480
481

482
483

485
486

OASIS/ebXML Registry Services Specification v2.0 September 2002

A w DN P

Conforms to the ebXML Registry Information Model [ebRIM].

Supports the syntax and semantics of the Registry Interfaces and Security Model.
Supports the defined ebXML Registry Schema (Appendix B).

Optionally supports the syntax and semantics of Section 8.3, SQL Query Support.

5.5.2 Conformance as an ebXML Registry Client

An implementation conforms to this specification, as an ebXML Registry Client if it meets the
following conditions:

1.

Supports the ebXML CPA and bootstrapping process.

2. Supports the syntax and the semantics of the Registry Client Interfaces.
3.
4. Supports the defined ebXM L Registry Schema (Appendix B).

Supports the defined ebXML Error Message DTD.

Copyright © OASIS, 2002. All Rights Reserved Page 19 of 167

487

488
489
490

491
492

493

494
495
496
497
498

499
500

501
502
503
504

OASIS/ebXML Registry Services Specification v2.0 September 2002

6 ebXML Registry Architecture

The ebXML Registry architecture consists of an ebXML Registry Service and ebXML Registry
Clients. The ebXML Registry Service provides the methods for managing a repository. An
ebXML Registry Client is an application used to access the Registry.

- -

-

———

<= <=Figure2: ebXML Registry Service Architecture

6.1 Registry Service Described

The ebXML Registry Serviceis comprised of arobust set of interfaces designed to
fundamentally manage the objects and inquiries associated with the ebXML Registry. The two

primary interfaces for the Registry Service consist of:

?? A Life Cycle Management interface that provides a collection of methods for managing
objects within the Registry.

?? A Query Management Interface that controls the discovery and retrieval of information from
the Registry.

A registry client program utilizes the services of the registry by invoking methods on one of the

above interfaces defined by the Registry Service. This specification defines the interfaces

exposed by the Registry Service (Sections Error! Reference sour ce not found. and Error!
Reference source not found.) as well as the interface for the Registry Client (Section 0).

Copyright © OASIS, 2002. All Rights Reserved Page 20 of 167

505

506
507
508
509

510
511
512

513
514
515

516
517

518
519

520

521
522
523
524
525

526

OASIS/ebXML Registry Services Specification v2.0 September 2002

6.2 Abstract Registry Service

The architecture defines the ebXML Registry as an abstract registry service that is defined as:
1. A set of interfaces that must be supported by the registry.

2. The set of methods that must be supported by each interface.

3. The parameters and responses that must be supported by each method.

The abstract registry service neither defines any specific implementation for the ebXML
Registry, nor does it specify any specific protocols used by the registry. Such implementation
details are described by concrete registry services that realize the abstract registry service.

The abstract registry service (Figure 3) shows how an abstract ebXML Registry must provide
two key functional interfaces called Quer yManager! (QM) and Li f eCycl eManager 2
(LM).

Registrsy

ug oy

= <=Figure3: The Abstract ebXML Registry Service

Appendix A provides hyperlinks to the abstract service definition in the Web Service Description
Language (WSDL) syntax.

6.2.1 LifeCycleManager Interface

This is the interface exposed by the Registry Service that implements the object life cycle
management functionality of the Registry. Its methods are invoked by the Registry Client. For
example, the client may use this interface to submit objects, to classify and associate objects and
to deprecate and remove objects. For this specification the semantic meaning of submit, classify,
associate, deprecate and remove is found in [ebRIM].

= =Table2: LifeCycle Manager Summary

Method Summary of LifeCycleManager

Regi st ryResponse|approveObj ect s(Appr oveCbj ect sRequest req)
Approves one or more previously submitted objects.
Regi st ryResponse||depr ecat eObj ect s(Depr ecat eObj ect sRequest req)
Deprecates one or more previously submitted objects.
Regi st ryResponse|renovebj ect s(Renove(Cbj ect sRequest req)
Removes one or more previously submitted objects from
the Registry.

1 Known as ObjectQueryManager in V1.0
2 Known as ObjectManager in V1.0
Copyright © OASIS, 2002. All Rights Reserved Page 21 of 167

527

528
529
530

531

532
533

534

535
536

537
538

539

541
542

OASIS/ebXML Registry Services Specification v2.0 September 2002

Regi st ryResponse||subni t Cbj ect s(Subni t Obj ect sRequest req)
Submits one or more objects and possibly related
metadata such as Associations and Classifications.

Regi st ryResponse|jupdat eCbj ect s(Updat eObj ect sRequest req)

Updates one or more previously submitted objects.

Regi st ryResponse|laddS| ot s(AddSI ot sRequest req)

Add dots to one or more registry entries.

Regi st ryResponse||r enoveS! ot s(RenpbveS| ot sRequest req)

Remove specified slots from one or more registry entries.

6.2.2 QueryManager Interface

Thisis the interface exposed by the Registry that implements the Query management service of
the Registry. Its methods are invoked by the Registry Client. For example, the client may use this
interface to perform browse and drill down queries or ad hoc queries on registry content.

<= =Table3: Query Manager

M ethod Summary of QueryM anager

Regi st ryResponse||subni t AdhocQuer y(AdhocQuer yRequest req)
Submit an ad hoc query request.

Regi st ryObj ect ||get Regi stryQbj ect (String id)

Submit a request to get the RegistryObject that matches
the specified id.

Extri nsi cObj ect [lget Repositoryltem String id)

Submit a request to get the repository item that matches
the specified id.

How to model Repositoryltem in getRepositoryltem??
Missing getContent. Can we remove getContent from this interface? Seems redundant??

6.3 Concrete Registry Services

The architecture allows the abstract registry service to be mapped to one or more concrete
registry services defined as:

?? Implementations of the interfaces defined by the abstract registry service.

?? Bindings of these concrete interfaces to specific communication protocols.

This specification describes the following concrete bindings for the abstract registry service:

?? A SOAP binding using the HTTP protocol

?? An ebXML Messaging Service (ebMS) binding

?? A REST binding

A registry must implement at least one of the SOAP and ebM S concrete bindings for the abstract

registry service as shown in Figure 4. A registry must implement the REST binding for the
abstract registry service as shown in Figure 4.

Copyright © OASIS, 2002. All Rights Reserved Page 22 of 167

546

547

549
550
551

552
553
554
555

556

557

558
559
560
561
562
563
564

565
566
567
568
569

570

571
572

573
574

575
576
577

OASIS/ebXML Registry Services Specification v2.0 September 2002

a0sP

e ML
TREP/AE0AP

= =Figure4: A ConcreteebXML Registry Service

Figure 4 shows a concrete implementation of the abstract ebXML Registry (RegistryService) on
the left side. The RegistryService provides the QueryManager and LifeCycleManager interfaces
available with multiple protocol bindings (SOAP and ebMYS).

Figure 4 also shows two different clients of the ebXML Registry on the right side. The top client
uses SOAP interface to access the registry while the lower client uses ebMS interface. Clients
use the appropriate concrete interface within the RegistryService service based upon their
protocol preference.

6.4 SOAP Binding

6.4.1 WSDL Terminology Primer

This section provides a brief introduction to Web Service Description Language (WSDL) since
the SOAP binding is described using WSDL syntax. WSDL provides the ability to describe a
web service in abstract as well as with concrete bindings to specific protocols. In WSDL, an
abstract service consists of oneor moreport types orend-points. Each port type consists
of acollection of oper at i ons. Each operation is defined in terms of mnessages that define
what data is exchanged as part of that operation. Each message is typically defined in terms of
elements within an XML Schema definition.

An abstract service is not bound to any specific protocol (e.g. SOAP). In WSDL, an abstract
service may be used to define a concrete service by binding it to a specific protocol. This binding
isdone by providing abi ndi ng definition for each abstract port type that defines additional
protocols specific details. Finally, aconcreteser vi ce definition is defined as a collection of
por t s, where each port simply adds address information such as a URL for each concrete port.

6.4.2 Concrete Binding for SOAP
This section assumes that the reader is somewhat familiar with SOAP and WSDL. The SOAP
binding to the ebXML Registry is defined as a web service description in WSDL as follows:

?? A single service element with name “ RegistryService” defines the concrete SOAP binding
for the registry service.

?? The service element includes two port definitions, where each port corresponds with one of
the interfaces defined for the abstract registry service. Each port includes an HTTP URL for
accessing that port.

Copyright © OASIS, 2002. All Rights Reserved Page 23 of 167

594

595
596
597
598
599
600

601
602

603
604
605

606
607
608

609
610

611

612
613
614
615
616
617
618

619
620

OASIS/ebXML Registry Services Specification v2.0 September 2002

?? Each port definition also references a binding element, one for each interface defined in the
WSDL for the abstract registry service.

<servi ce nanme = "Regi stryService">
<port nanme = "QueryManager SOAPBi ndi ng" bi ndi ng = "tns: Quer yManager SOAPBi ndi ng" >
<soap: address | ocation = "http://your_URL_to_your _QueryManager"/>
</ port>

<port nane = "LifeCycl eManager SOAPBi ndi ng" bi ndi ng = "tns: Li f eCycl eManager SOAPBi ndi ng" >
<soap: address | ocation = "http://your URL_to_your _QueryNVanager"/>
</ port >
</ servi ce>

The complete WSDL description for the SOAP binding can be obtained via a hyperlink in
Appendix A.

6.5 ebXML Message Service Binding

6.5.1 Service and Action Elements

When using the ebXML Messaging Services Specification, ebXML Registry Service elements
correspond to Messaging Service elements as follows:

?? The vaue of the Service element in the MessageHeader is an ebXML Registry Service
interface name (e.g., “LifeCycleManager”). The type attribute of the Service element should
have a value of “ebXMLRegistry”.

?? The vaue of the Action element in the MessageHeader is an ebXML Registry Service
method name (e.g., “ submitObjects’).

<eb: Servi ce eb:type="ebXM. Regi stry”>Li f eCycl eManger </ eb: Ser vi ce>
<eb: Acti on>submi t Obj ect s</ eb: Acti on>

Note that the above alows the Registry Client only one interface/method pair per message. This
implies that a Registry Client can only invoke one method on a specified interface for a given
request to aregistry.

6.5.2 Synchronous and Asynchronous Responses
All methods on interfaces exposed by the registry return a response message.

6.5.2.1 Asynchronous response

When a message is sent asynchronoudly, the Registry will return two response messages. The
first message will be an immediate response to the request and does not reflect the actual
response for the request. This message will contain:
?? MessageHeader;
?? RegistryResponse element with empty content (e.g., NO AdHocQueryResponse);

0 status attribute with value Unavailable.

The Registry delivers the actual Registry response element with non-empty content
asynchronoudly at alater time. The delivery is accomplished by the Registry invoking the
onResponse method on the RegistryClient interface as implemented by the registry client

Copyright © OASIS, 2002. All Rights Reserved Page 24 of 167

621
622

623
624
625

626

627
628
629
630
631
632

633

634
635
636
637

638
639
640
641

642

645

646
647

649
650
651
652

653
654
655
656
657
658
659
660

OASIS/ebXML Registry Services Specification v2.0 September 2002

application. The onResponse method includes a RegistryResponse element as shown below:
?? MessageHeader;
?? RegistryResponse element including;

0 Status attribute (Success, Failure);

0 Optiona RegistryErrorList.

6.5.2.2 Synchronous response

When a message is sent synchronously, the Message Service Handler will hold open the
communication mechanism until the Registry returns aresponse. This message will contain:
?? MessageHeader;
?? RegistryResponse element including;

0 Status attribute (Success, Failure);

0 Optiona RegistryErrorList.

6.5.3 ebXML Registry Collaboration Profiles and Agreements

The ebXML CPP specification [ebCPP] defines a Collaboration-Protocol Profile (CPP) and a
CollaborationProtocol Agreement (CPA) as mechanisms for two parties to share information
regarding their respective business processes. That specification assumes that a CPA has been
agreed to by both parties in order for them to engage in B2B interactions.

This specification does not mandate the use of a CPA between the Registry and the Registry
Client. However if the Registry does not use a CPP, the Registry shall provide an alternate
mechanism for the Registry Client to discover the services and other information provided by a
CPP. This aternate mechanism could be asimple URL.

The CPA between clients and the Registry should describe the interfaces that the Registry and
the client expose to each other for Registry-specific interactions. The definition of the Registry
CPP template and a Registry Client CPP template are beyond the scope of this document.

6.6 REST Binding

The ebXML Registry abstract interface defines a REST binding that enables access to the
registry over HTTP protocol.

REST [REST Thesis], which stands for Representational State Transfer, is an architectural style
for distributed hypermedia systems. The REST architectura style suggests that:

0 A service be accessible over HTTP
0 HTTP GET requests are preferred over other HTTP requests
0 All accessto the service capabilities and resources are viaHTTP URLS

REST is more of a concept than atechnology. It is easily implemented using standard facilities
found on aweb server or development environment.

The REST binding maps the abstract registry interfaces to a REST styled HTTP interface. It
defines the URL parameters and their usage patterns that must be used to specify the interface,
method and invocation parameters in order to invoke a method on a registry interface such as the
QueryManager interface.

The REST binding also defines the return values that are sent synchronously sent back to the
client asthe HTTP response for the HTTP request.

Copyright © OASIS, 2002. All Rights Reserved Page 25 of 167

661
662
663
664

665
666

667

668

669
670
671

672

673

674

675
676

677

678
679
680

681

OASIS/ebXML Registry Services Specification v2.0

September 2002

6.6.1 Standard URI Parameters

This section defines the normative URI parameters that must be supported by the REST
Interface. A Registry may implement additional URI parameters in addition to these parameters.

URL Parameter . .
Name Required Description Example

Defines the interface or object ,

Interface YES to call methods on. Example: QueryManager
Defines the method to be Example:

Method YES carried out on the given NS
interface. submitAdhocQueryRequest
Defines named parametersto |Example: param id=888-999-

paranm:-<key> NO be passed into a method call. |8877h

= =Table4: Standard URI Parameters

6.6.2 QueryManager REST Interface

The REST Interface to QueryManager must be supported by all registries.

The REST Interface to QueryManager defines that the interface paremeter must be
"QueryManager”. In addition the following method parameters are defined by the QueryManager
REST Interface.

HTTP
Method Parameters Return Value Request
Type
. . id RegistryObject that matches the
getRegistryObject specified id. GET
. id The repository item that
getRepositoryltem matches the specified id. GET
. AdhocQueryRequest |RegistryResponse for the
submitAdhocQueryRequest specified AdhocQueryRequest. POST

= <=Table5: QueryManager REST Interface

Note that in the examples that follow name space declarations are omitted to conserve space.
Also note that some lines may be wrapped due to lack of space.

6.6.2.1 Sample getRegistryObject Request

GET /rest?interface=QueryManager &ret hod=get Regi st ryObj ect &par am i d=
urn: uui d: a1137d00- 091a- 471e- 8680- eb75b27b84b6 HTTP/ 1.0

Copyright © OASIS, 2002. All Rights Reserved Page 26 of 167

OASIS/ebXML Registry Services Specification v2.0 September 2002

682 6.6.2.2 Sample getRegistryObject Response

683

684 HTTP/ 1.1 200 OK

685 Content-Type: text/xm

686 Content-Length: 555

687

688 <?xm version="1.0"?>

689 <ExtrinsicObject id = "urn:uuid:al137d00-091a-471e-8680-eb75b27b84b6"

690 obj ect Type="ur n: uui d: 32bbb291- 0291- 486d- a80d- cdd6cd625c57" >
691 <Name>

692 <Local i zedStri ng val ue = "Sanple Object"/>

693 </ Name>

694 </ ExtrinsicObject>

695

696 6.6.2.3 Sample getRepositoryltem Request

697
698 GET /rest?interface=QueryManager &ret hod=get Reposi t oryl t em&par am i d=
699 urn:uuid:al137d00-091a- 471e- 8680- eb75b27b84b6 HTTP/ 1.0

700

701 6.6.2.4 Sample getRepositoryltem Response

702 The following example assumes that the repository item was a Collaboration Protocol Profile as defined
703 by [ebCPP].

704

705 HTTP/ 1.1 200 OK

706 Content-Type: text/xmn

707 Content-Length: 555

708

709 <?xm version="1.0"?>

710 < Col |l aborati onProtocol Profil e>
711 ...

712 </ Col | aborati onProtocol Profil e>

713

714 6.6.2.5 Sample submitAdhocQueryRequest Request

715 The following example shows how an HTTP POST request is used to invoke the submit

716

717 POST /rest?interface=QueryManager &et hod=subni t AdhocQuer yRequest HTTP/ 1.0
718 User-Agent: Foo-ebXM./1.0
719 Host: ww.registryserver.com
720 Content-Type: text/xm

721 Content-Length: 555

722

723 <?xm version="1.0"?>

724 <AdhocQuer yRequest >

725 ...

726 </ AdhocQuer yRequest >

727

728 6.6.2.6 Sample submitAdhocQueryRequest Response
729

Copyright © OASIS, 2002. All Rights Reserved Page 27 of 167

730
731
732
733
734
735

736

737

738
739
740
741

742

743

744

745
746

147

748

749
750
751
752
753
754
755
756
757
758
759

760

761

762
763

OASIS/ebXML Registry Services Specification v2.0 September 2002

HTTP/ 1.1 200 OK
Cont ent - Type: text/xm
Cont ent - Lengt h: 555

<?xm version="1.0"?>
<Regi stryResponse />

6.6.3 LifecycleManager REST Interface

The REST Interface to QueryManager may optionally be supported by aregistry.

The REST Interface to LifecycleManager defines that the interface paremeter must be
"LifecycleManager”. In addition the following method parameters are defined by the
LifecycleManager REST Interface.

Method Parameters Return Value HTTP Request Type
approveObjects |ApproveObjectsRequest ||RegistryResponse POST
deprecateObj ects | DeprecateObj ectsRequest |RegistryResponse POST
removeObjects |RemoveObjectsRequest |RegistryResponse POST
submitObjects |SubmitObjectsRequest |RegistryResponse POST
updateObjects |UpdateObjectsRequest |RegistryResponse POST
addSlots AddSlotsRequest RegistryResponse POST
removeSlots RemoveS| otsRequest RegistryResponse POST

= <=Table6: LifecycleManager REST |nterface

Note that in the examples that follow name space declarations are omitted to conserve space.
Also note that some lines may be wrapped due to lack of space.

6.6.3.1 Sample submitObjects Request
The following example shows how an HTTP POST request is used to invoke the submit

POST /rest?interface=Quer yManager &ret hod=submnmi t Cbj ects HTTP/ 1. 0
User - Agent: Foo-ebXM./1.0

Host: www. regi stryserver.com

Cont ent - Type: text/xm

Cont ent - Lengt h: 555

<?xm version="1.0""?>
<Subm t Obj ect sRequest >

</ Submi t Cbj ect Request >

6.6.3.2 Sample submitObjects Response

HTTP/ 1.1 200 OK
Copyright © OASIS, 2002. All Rights Reserved Page 28 of 167

764
765
766
767
768
769
770

771
772

773

774
775
776
777

778

779
780
781
782
783
784
785
786

787

788

789

790
791
792
793
794
795
796
797
798
799

800
801
802
803
804

OASIS/ebXML Registry Services Specification v2.0 September 2002

Cont ent - Type: text/xm
Cont ent - Lengt h: 555

<?xm version="1.0""?>
<Regi stryResponse>

</ i?egi st ryResponse>
How is adigital certificate provided to authenticate the HTTP request above??.

6.6.4 Security Considerations

The REST interface supports the same mechanisms for data integrity and source integrity as are
mentioned in the Registry Services specification. Authentication may be performed by the
registry on a per message basis by verifying any digital signatures present, as well as at the
HTTP transport level using Basic or Digest authentication.

6.6.5 Exception Handling

Since the REST interface is merely an interface to various registry objects, exception handling
will take the same formas they do over other registry transports. Errors must be reported in a
Regi st ryErrorLi st , and sent back to the client on the same connection as the request.

When an error occurs, the HT TP status code and message should be apropriate to the error(s)
being reported in the Regi st ryEr r or Li st . For example, if the Regi st ryErr or Li st iSreporting
that an object wasn't found, therefore cannot be returned, an appropriate error code would be
404, with a message of "Object Not Found". A detailed list of HTTP status codes can be found in
[RFC2616].

6.7 Registry Clients

6.7.1 Registry Client Described

The Registry Client interfaces may be local to the registry or local to the user. Figure 5 depicts
the two possible topologies supported by the registry architecture with respect to the Registry

and Registry Clients. The picture on the left side shows the scenario where the Registry provides
aweb based “thin client” application for accessing the Registry that is available to the user using
a common web browser. In this scenario the Registry Client interfaces reside across the Internet
and are local to the Registry from the user’s view. The picture on the right side shows the
scenario where the user is using a “fat client” Registry Browser application to access the registry.
In this scenario the Registry Client interfaces reside within the Registry Browser tool and are
local to the Registry from the user’s view. The Registry Client interfaces communicate with the
Registry over the Internet in this scenario.

A third topology made possible by the registry architecture is where the Registry Client
interfaces reside in a server side business component such as a Purchasing business component.
In this topology there may be no direct user interface or user intervention involved. Instead, the
Purchasing business component may access the Registry in an automated manner to select
possible sellers or service providers based on current business needs.

Copyright © OASIS, 2002. All Rights Reserved Page 29 of 167

805
806

807

808
809
810
811
812
813
814
815
816
817

818
819
820
821

822

823
824
825
826

827
828

OASIS/ebXML Registry Services Specification v2.0 September 2002

O | Repository ,

| Repositary e b %M :

“"I EBXML [R“-‘gﬂ]
E_Regist_rq +

I e ——— .
~ The Chend mterfaces
| |M| are jeonded by e
| Reaniiry Interfases | cheel zmd nol the
: registry. The chent
I may be a Registry

o TheBegey - Browser applcation
|Regﬁ1w Clert Interfzoes | preeides the Client P
C Initernet

sjiy werfaces toall
s N

[zers wiz awrch based
uger ilerfacs

Uzer aocesng the regatry
uskg & Fegatry bioarer thet
b accesemy Lhe regstny conlaing the Chenl
using commaon web hroveser. wilef fampe

< =Figure5: Registry Architecture Supports Flexible Topologies

6.7.2 Registry Communication Bootstrapping

Before a client can access the services of a Registry, there must be some communication
bootstrapping between the client and the registry. The most essential aspect of this bootstrapping
process is for the client to discover addressing information (e.g. an HTTP URL) to each of the
concrete service interfaces of the Registry. The client may obtain the addressing information by
discovering the ebXML Registry in a public registry such as UDDI or within amother ebXML
Registry.

?? In case of SOAP hinding, al the info needed by the client (e.g. Registry URLS) is available
inaWSDL desription for the registry. This WSDL conforms to the template WSDL
description in Appendix A.1. This WSDL description may be discovered in a public registry
such as UDDI.

?? In case of ebM S binding, the information exchange between the client and the registry may
be accomplished in aregistry specific manner, which may involve establishing a CPA
between the client and the registry. Once the information exchange has occurred the Registry
and the client will have addressing information (e.g. URLS) for the other party.

6.7.2.1 Communication Bootstrapping for SOAP Binding

Each ebXML Registry must provide aWSDL description for its RegistryService as defined by
Appendix A.1. A client uses the WSDL description to determine the address information of the
RegistryService in a protocol specific manner. For example the SOAP/HTTP based ports of the
RegistryService may be accessed viaa URL specified in the WSDL for the registry.

The use of WSDL enables the client to use automated tools such as a WSDL compiler to
generate stubs that provide access to the registry in a language specific manner.

Copyright © OASIS, 2002. All Rights Reserved Page 30 of 167

829
830
831

832

833
834
835
836
837
838
839
840
841
842

845
846
847

849
850

851

852
853

854

855

856
857
858
859

OASIS/ebXML Registry Services Specification v2.0 September 2002

At minimum, any client may access the registry over SOAP/HTTP using the address information
within the WSDL, with minimal infrastructure requirements other than the ability to make
synchronous SOAP call to the SOAP based ports on the RegistryService.

6.7.2.2 Communication Bootstrapping for ebXML Message Service

Since there is no previously established CPA between the Registry and the RegistryClient, the
client must know at least one Transport-specific communication address for the Registry. This
communication address is typically a URL to the Registry, although it could be some other type
of address such as an email address. For example, if the communication used by the Registry is
HTTP, then the communication addressis a URL. In this example, the client uses the Registry’s
public URL to create an implicit CPA with the Registry. When the client sends a request to the
Registry, it provides a URL to itsalf. The Registry uses the client’'s URL to form its version of an
implicit CPA with the client. At this point a session is established within the Registry. For the
duration of the client’s session with the Registry, messages may be exchanged bidirectionally as
required by the interaction protocols defined in this specification.

6.7.3 RegistryClient Interface

This is the principal interface implemented by a Registry client. The client provides this interface
when creating a connection to the Registry. It provides the methods that are used by the Registry
to deliver asynchronous responses to the client. Note that a client need not provide a
RegistryClient interface if the [CPA] between the client and the registry does not support
asynchronous responses.

The registry sends all asynchronous responses to operations via the onResponse method.

= <=Table7: RegistryClient Summary

M ethod Summary of RegistryClient

voi d|jonResponse(Regi stryResponse resp)
Notifies client of the response sent by registry to previously submitted request.

6.7.4 Registry Response

The RegistryResponse is a common class defined by the Registry interface that is used by the
registry to provide responses to client requests.

6.8 Interoperability Requirements

6.8.1 Client Interoperability

The architecture requires that any ebXML compliant registry client can access any ebXML
compliant registry service in an interoperable manner. An ebXML Registry may implement any
number of protocol bindings from the set of normative bindings (currently ebM S and
SOAP/HTTP) defined in this proposal. The support of additional protocol bindingsis optional.

Copyright © OASIS, 2002. All Rights Reserved Page 31 of 167

860

861
862
863
864
865
866

867
868

OASIS/ebXML Registry Services Specification v2.0 September 2002

6.8.2 Inter-Registry Cooperation

This version of the specification does not preclude ebXML Registries from cooperating with
each other to share information, nor does it preclude owners of ebXML Registries from
registering their ebXML registries with other registry systems, catalogs, or directories.
Examples include:

?? An ebXML Registry that serves as aregistry of ebXML Registries.

?? A nonebXML Registry that serves as aregistry of ebXML Registries.

?? Cooperative ebXML Registries, where multiple ebXML registries register with each other in
order to form afederation.

Copyright © OASIS, 2002. All Rights Reserved Page 32 of 167

869

870
871
872
873
874
875

876
877
878

879

880
881
882
883

884
885

886

887
888
889
890
891

OASIS/ebXML Registry Services Specification v2.0 September 2002

7 Life Cycle Management Service

This section defines the LifeCycleManagement service of the Registry. The Life Cycle
Management Service is a sub-service of the Registry service. It provides the functionality
required by RegistryClients to manage the life cycle of repository items (e.g. XML documents
required for ebXML business processes). The Life Cycle Management Service can be used with
all types of repository items as well as the metadata objects specified in [ebRIM] such as
Classification and Association.

The minimum-security policy for an ebXML registry is to accept content from any client if a
certificate issued by a Certificate Authority recognized by the ebXML registry digitally signsthe
content.

7.1 Life Cycle of a Repository Iltem

The main purpose of the LifeCycleManagement service is to manage the life cycle of repository
items. Figure 6 shows the typical life cycle of arepository item. Note that the current version of
this specification does not support Object versioning. Object versioning will be added in a future
version of this specification

» submitOhject Submitted

i

approveOhject

Approved

U

deprecateChject

Deprecated

|

removeObject

R
@ Femuoved

st

<= <=Figure6: Life Cycle of a Repository Item

7.2 RegistryObject Attributes

A repository item is associated with a set of standard metadata defined as attributes of the
RegistryObject class and its sub-classes as described in [ebRIM]. These attributes reside outside
of the actual repository item and catalog descriptive information about the repository item. XML
elements called ExtrinsicObject and other elements (See Appendix B.1 for details) encapsulate
all object metadata attributes defined in [ebRIM] as XML attributes.

Copyright © OASIS, 2002. All Rights Reserved Page 33 of 167

892

893
894
895

896
897

898

899

900
901

902

903
904

905

906
907

908
909

910
911
912

OASIS/ebXML Registry Services Specification v2.0 September 2002

7.3 The Submit Objects Protocol

This section describes the protocol of the Registry Service that allows a RegistryClient to submit
one or more repository items to the repository using the LifeCycleManager on behalf of a
Submitting Organization. It is expressed in UML notation as described in Appendix C.

client lcm
RegistryClient LifeCycleManager

submitOhjects{SubmitOhjectsRequest RenistvResponse |

L]

onResponzelRegistyResponselyvoid |

L:J =

= <=Figure7: Submit Objects Sequence Diagram

For details on the schema for the Business documents shown in this process refer to Appendix B.

7.3.1 SubmitObjectsRequest

The SubmitObjectsRequest is used by a client to submit RegistryObjects and repository items to
the registry.

7.3.1.1 Syntax:

® id# # indexingOption
1] string

+ rim:LeafRegistryDbjectListE
LeafRegistryObjectlizt Type
= =Figure 8. SubmitObjectsRequest Syntax

S
.,

+ SubmitObjectsRequest

7.3.1.2 Parameters:
% indexingOption: This parameter specifies the submitter’s preference governing
the indexing of the objects submitted via this request. Valid values are:

Nolndexing: This specifies that the registry must not index any of the objects
submitted via this request.

IndexModificationNotAllowed: This specifies that the registry may index any of
the objects submitted via this request as long as the original objects are not
modified by the indexing operations.

Copyright © OASIS, 2002. All Rights Reserved Page 34 of 167

913
914
915

916
917

918

919
920

921

922

923
924

925
926

927
928

929
930

931
932

933

934

935
936
937

938
939

940
941

OASIS/ebXML Registry Services Specification v2.0 September 2002

IndexModificationAllowed: This specifies that the registry may index any of the
objects submitted via this request even if the original objects are are modified by
the indexing operations.

=% LeafRegistryObjectsList: This parameter specifies a collection of RegistryObject
instances that are being submitted to the registry.

7.3.1.3 Returns:
This request returns a RegistryResponse. See section 7.3.2 for details.

7.3.1.4 Exceptions:
In addition to the exceptions common to al requests, the following exceptions may be returned:

%5 AuthorizationException: Indicates that the requestor attempted to perform an
operation for which she was not authorized.

%5 ObjectNotFoundException: Indicates that the requestor referenced an object
within the request that was not found.

% |nvalidRequestException: Indicates that the requestor attempted to perform an
operation which was semantically invalid.

2 UnsupportedCapabilityException: Indicates that the requestor attempted to
submit some content that is not supported by the registry.

%5 QuotaExceededException: Indicates that the requestor attempted to submit more
content than the quota allowed for them by the registry.

7.3.2 RegistryResponse

The RegistryResponse is sent by the registry as a response to severa different requests. It isa
simple response that can signal the status of a request and any errors or exceptions that may have
occurred during the processing of that request.

7.3.2.1 Syntax:

@ status 5[@ requestid
AT OKER D

@[a highestSeverity }

ErrorType

+ RegistwResponseE_ @ + RegisthrrorListE_ @ + RegistryError
RedgistryResponzeType string
= <=Figure9: RegistryResponse Syntax

Copyright © OASIS, 2002. All Rights Reserved Page 35 of 167

942

943
944

945
946

947
948
949
950

951
952
953

954

955

956
957
958

959

960
961
962
963
964
965

966
967
968

969

970
971
972
973
974
975
976
977
978
979
980

981

OASIS/ebXML Registry Services Specification v2.0 September 2002

7.3.2.2 Parameters:

%5 requestld: This parameter specifies the if of the request for which thisis a
response of. It is used to correlate the response with its request.

%< status: This parameter specifies the status of the request. Valid values are as
follows:

Quccess: Request was processed successfully.

Failure: Errors were encountered during the processing of the request.
Unavailable: The results are unavailable. Thisis useful in asynchronous
responses.

z%5 RegistryErrorList: This parameter specifies a collection of RegistryErrors.
RegistryError is defined in ?2. A RegistryErrorList includes a highestSeverity
attribute which logs the ErrorType for the most severe error that occurred.

7.3.3 Universally Unique ID Generation

As specified by [ebRIM], all objects in the registry have aunique id. The id must be a
Universally Unique Identifier (UUID) and must conform to the format of a URN that specifies a
DCE 128 bit UUID as specified in [UUID].

(eg.urn: uui d: a2345678- 1234- 1234- 123456789012)

The registry usually generates thisid. The client may optionally supply the id attribute for
submitted objects. If the client suppliesthei d and it conforms to the format of a URN that
specifies a DCE 128 bit UUID then the registry assumes that the client wishes to specify theid
for the abject. In this case, the registry must honour a client-supplied id and use it asthe id
attribute of the object in the registry. If the id is found by the registry to not be globally unique,
the registry must raise the error condition: InvalididError.

If the client does not supply an id for a submitted object then the registry must generate a
universally unique id. Whether the client generates the id or whether the registry generatesiit, it
must be generated using the DCE 128 bit UUID generation algorithm as specified in [UUID].

7.3.4 ID Attribute And Object References

The id attribute of an object may be used by other objects to reference the first object. Such
references are common both within the SubmitObjectsRequest as well as within the registry.
Within a SubmitObjectsRequest, the id attribute may be used to refer to an object within the
SubmitObjectsRequest as well asto refer to an object within the registry. An object in the
SubmitObjectsRequest that needs to be referred to within the request document may be assigned
an id by the submitter so that it can be referenced within the request. The submitter may give the
object a proper uuid URN, inwhich case the id is permanently assigned to the object within the
registry. Alternatively, the submitter may assign an arbitrary id (not a proper uuid URN) aslong
astheid is unique within the request document. In this case the id serves as a linkage mechanism
within the request document but must be ignored by the registry and replaced with a registry
generated id upon submission.

When an object in a SubmitObjectsRequest needs to reference an object that is aready in the
Copyright © OASIS, 2002. All Rights Reserved Page 36 of 167

982
983
984

985

986
987

988

989

990
991
992
993
994
995
996

OASIS/ebXML Registry Services Specification v2.0 September 2002

registry, the request must cortain an ObjectRef element whose id attribute is the id of the object
in the registry. Thisid is by definition a proper uuid URN. An ObjectRef may be viewed as a
proxy within the request for an object that isin the registry.

7.3.5 Audit Trail

The RS must create AuditableEvents object with eventType Created for each RegistryObject
created via a SubmitObjects request.

7.3.6 Error Handling

Need to move to a generic section on error handling??

A SubmitObjects request is atomic and either succeeds or failsin total. In the event of success,
the registry sends a RegistryResponse with a status of “ Success’ back to the client. In the event
of failure, the registry sends a RegistryResponse with a status of “Failure” back to the client. In
the event of an immediate response for an asynchronous request, the registry sends a
RegistryResponse with a status of “Unavailable” back to the client. Failure occurs when one or
more Error conditions are raised in the processing of the submitted objects. Warning messages
do not result in failure of the request.

7.3.7 Sample SubmitObjectsRequest

The following example shows severa different use cases in a single SubmitObjectsRequest. It
does not show the complete SOAP or [ebM S] Message with the message header and additional
payloads in the message for the repository items.

A SubmitObjectsRequest includes a RegistryObjectList which contains any number of objects
that are being submitted. It may also contain any number of ObjectRefs to link objects being
submitted to objects already within the registry.

<?xm version = "1.0" encoding = "UTF-8"?>
<Subm t Obj ect sRequest
xm ns = "urn:oasis: nanes: tc: ebxm -regrep: regi stry: xsd: 2. 0"
xm ns: xsi = "http://ww. w3. or g/ 2001/ XM_Schena-i nst ance"
xsi : schemalLocati on = "urn: oasi s: nanes: tc: ebxm-regrep: rimxsd: 2.0 file:///C:./osws/ebxmrr-
spec/ m sc/ schena/ri m xsd urn: oasi s: nanes: tc: ebxm-regrep: registry: xsd: 2.0
file:///C /osws/ebxmrr-spec/m sc/schema/rs. xsd"
xm ns:rim= "urn: oasi s: nanmes: t c: ebxn - regrep: ri m xsd: 2. 0"
xm ns:rs = "urn:oasi s: names: tc: ebxm-regrep:registry: xsd: 2. 0"
>

<ri m Leaf Regi st ryQbj ect Li st >

<I--

The followi ng 3 objects package specified ExtrinsicCbject in specified
Regi st ryPackage, where both the Regi stryPackage and the ExtrinsicObject are
being submtted
-->

<rim Regi stryPackage id = "acnePackagel" >
<ri m Name>
<rim Local i zedString val ue = "Regi stryPackage #1"/>

</rim Nanme>
<ri m Descri pti on>
<rim Local i zedString val ue = "ACVE s package #1"/>
</rim Description>
</rim Regi st ryPackage>

<rimExtrinsicCbject id = "acmeCPP1" >
<ri m Name>

Copyright © OASIS, 2002. All Rights Reserved Page 37 of 167

OASIS/ebXML Registry Services Specification v2.0 September 2002

<rimLocal i zedString value = "Wdget Profile" />
</ ri m Nane>
<ri m Descri pti on>
<rim Local i zedString value = "ACME' s profile for selling w dgets" />
</rim Descri ption>
</rim Extrinsi cQbj ect >

<rim Associ ation id = "acnePackagel-acneCPPl- Assoc" associ ati onType = "Packages" sourceQj ect
= "acnmePackagel" target Object = "acneCPP1" />

<l--
The foll owing 3 obj ects package specified ExtrinsicQbject in specified Regi stryPackage,
Wiere the RegistryPackage is being submtted and the ExtrinsicOoject is
already in registry
- o>
<ri m Regi stryPackage id = "acnePackage2" >
<ri m Name>
<rim Local i zedString val ue = "Regi stryPackage #2"/>

</ rim Nanme>
<ri m Descri pti on>
<rim Local i zedString val ue = "ACVE s package #2"/>
</rim Description>
</ri m Regi st ryPackage>

<rim Qoj ectRef id = "urn:uuid: a2345678-1234-1234-123456789012"/ >

<rim Associ ation id = "acnePackage2-al r eadySubni t t edCPP- Assoc" associ ati onType = "Packages"
source(hj ect = "acnePackage2" target Chject = "urn:uuid: a2345678- 1234-1234- 123456789012"/ >

<I--
The foll owing 3 objects package specified ExtrinsicCbject in specified RegistryPackage,

where the Regi stryPackage and the ExtrinsicCbject are already in registry
-->

<rim Qbj ect Ref id
<rim Qbj ectRef id

= "urn: uui d: b2345678-1234-1234-123456789012" / >
= "urn:uui d: c2345678-1234-1234-123456789012"/ >

<I-- id is unspecified inmplying that registry nust create a uuid for this object -->

<rim Associ ati on associ ati onType = "Packages" sourceChject = "urn: uui d: b2345678- 1234- 1234-
123456789012" target Cbj ect = "urn: uui d: c2345678- 1234- 1234- 123456789012" / >

<l--
The following 3 objects externally |ink specified ExtrinsicCbject using
speci fi ed External Li nk, where both the External Link and the ExtrinsicObject
are being submtted
-->
<rimExternal Link id = "acneLi nk1" >
<ri m Name>
<rim Local i zedStri ng value = "Link #1"/>

</ ri m Nane>
<ri m Descri pti on>
<rim LocalizedString value = "ACVE s Link #1"/>
</rim Description>
</rim Ext ernal Li nk>

<rimExtrinsicCoject id = "acmeCPP2" >
<ri m Nanme>
<rim Local i zedString val ue = "Sprockets Profile" />
</rim Nanme>
<ri m Descri pti on>
<rim Local i zedString value = "ACVE's profile for selling sprockets"/>
</rim Description>
</rimExtrinsicject>

<rim Associ ation id = "acneLi nkl- acmeCPP2- Assoc" associ ati onType = "External | yLi nks"
sour ce(oj ect = "acnelLi nk1" target Cbj ect = "acnmeCPP2"/>
<I--

The following 2 objects externally |ink specified ExtrinsicCbject using specified
Ext ernal Li nk, where the External Link is being submtted and the Extrinsi cObj ect

Copyright © OASIS, 2002. All Rights Reserved Page 38 of 167

OASIS/ebXML Registry Services Specifi

cation v2.0 September 2002

is already in registry. Note
previous |ine
- >

that the target Cbject points to an (bjectRef in a

<rimExternal Link id = "acneLi nk2">

<ri m Name>
<rim Local i zedStri ng val ue
</ ri m Nane>
<rim Description>
<rim Local i zedString val ue
</rim Description>
</rim Ext ernal Li nk>

= "Link #2"/>

= "ACME' s Link #2"/>

<rim Associ ation id = "acneLi nk2- al readySubmi tt edCPP- Assoc" associ ati onType =
"External | yLi nks" sourceChj ect = "acnelLi nk2" target Cbject = "urn:uuid: a2345678- 1234- 1234-

123456789012"/ >

<I--
The fol |l owing 3 obj ects exter

nal ly identify specified ExtrinsicObject using specified

External I dentifier, where the External ldentifier is being submtted and the
ExtrinsicObject is already in registry. Note that the target Qbject points to an

oj ectRef in a previous line
-->

<rim d assificationSchene id =
<ri m Name>

<rim Local i zedStri ng val ue
</rim Nane>

<ri m Descri pti on>
<rim Local i zedStri ng val ue
</rim Descri ption>
</rim C assificationSchene>

"DUNS-i d" islnternal ="fal se" nodeType="Uni queCode" >
= "DUNS'/ >

= "This is the DUNS schene"/>

<rimExternal Identifier id = "acneDUNSId" identificati onSchene="DUNS id" val ue =

"13456789012" >
<ri m Nane>
<rim Local i zedStri ng val ue
</ri m Name>
<ri m Description>
<rim Local i zedStri ng val ue
</rim Descri ption>
</rimExternal | dentifier>

= "DUNS' />

= "DUNS ID for ACMVE'/>

<rim Associ ation id = "acneDUNSI d-al r eadySubm tt edCPP- Assoc" associ ati onType =

"External | yl denti fi es" sourceChj ect
123456789012"/ >

<l--
The fol |l owi ng show subm ssi on
-->

<rimd assificationSchene id =
<ri m Nanme>

<rim Local i zedStri ng val ue
</ri m Name>

<ri m Descri pti on>
<rim Local i zedString val ue
</rim Descripti on>

<rimd assificationNode id =
"Nort hAnerica" >
<rimd assificati onNode id
"Uni tedStates" />
<rim d assificationNode id
</rimd assificati onNode>

<rim d assificati onNode id =
<rimd assificationNode id

= "acnmeDUNSI d" target Qoj ect = "urn: uui d: a2345678- 1234- 1234-

of a brand new classification schene in its entirety
" CGeogr aphy-i d" islnternal ="true" nodeType="Uni queCode" >

= "Ceography"/>

= "This is a sanpl e Geography schene"/>

"Nort hAnerica-id" parent = "Geography-id" code =
= "UnitedStates-id" parent = "Nort hAmerica-id" code =
= "Canada-i d" parent = "NorthAmerica-id' code = "Canada" />

"Asiaid" parent = "Ceography-id" code = "Asia" >
= "Japan-id" parent = "Asia id" code = "Japan" >

<rimd assificationNode id = "Tokyo-id" parent = "Japan-id" code = "Tokyo" />

</rimd assificati onNode>
</rim d assificati onNode>
</rimd assificationSchene>

Copyright © OASIS, 2002. All Rights Reserved

Page 39 of 167

OASIS/ebXML Registry Services Specification v2.0 September 2002

1181

1182

1183 <l--

1184 The fol | owi ng show submni ssion of a Autonotive sub-tree of d assificati onNodes that
1185 gets added to an existing classification schenme naned ' | ndustry'

1186 that is already in the registry

1187 -

1188

1189 <rim Qbj ectRef id = "urn:uuid: d2345678-1234-1234-123456789012" / >

1190 <rimd assificationNode id = "autonotiveNode" parent = "urn:uuid: d2345678- 1234-1234-
1191 123456789012">

1192 <ri m Nane>

1193 <rim Local i zedString val ue = "Aut onotive" />

1194 </ri m Name>

1195 <rim Descri ption>

1196 <rim Local i zedString val ue = "The Autonotive sub-tree under |ndustry schene"/>
1197 </rim Descri ption>

1198 </rimd assificati onNode>

1199

1200 <rimC assificationNode id = "part Suppl i ersNode" parent = "autonotiveNode">

1201 <ri m Nane>

1202 <rim LocalizedString value = "Parts Supplier" />

1203 </ri m Name>

1204 <rim Descri ption>

1205 <rim Local i zedString value = "The Parts Supplier node under the Autonotive node" />
1206 </rim Descri pti on>

1207 </rimd assi fi cati onNode>

1208

1209 <rim C assificati onNode id = "engi neSuppl i er sNode" parent = "autonoti veNode">

1210 <ri m Nane>

2

<rim Local i zedString val ue = "Engi ne Supplier" />
</ri m Nane>
<ri m Descri pti on>
<rim Local i zedStri ng val ue = "The Engi ne Supplier node under the Autonotive node" />
</rim Description>
</rim d assi ficati onNode>

Y

Y

<l--
The fol | owi ng show subni ssion of 2 dassifications of an object that is already in
the registry using 2 dassificati onNodes. One d assificati onNode
is being submtted in this request (Japan) while the other is already in the registry.
-->

= e e e e

<rimC assification id = "japand assification" classifiedCbject = "urn: uuid: a2345678- 1234-
1234-123456789012" cl assi ficati onNode = "Japan-i d">
<ri m Descripti on>
<rim Local i zedString value = "Classifies object by /Geography/ Asi a/ Japan node"/ >
</rim Descri ption>
</rimd assification>

<rimC assification id = "cl assificationUsi ngExi sti ngNode" cl assi fi edCbj ect =
"urn: uui d: a2345678-1234-1234-123456789012" cl assifi cati onNode = "urn: uui d: e2345678-1234-1234-
123456789012" >

NINININININININININ RINININININININININININD

N
CICILIGINININININININI NININ
NI OO00~NOYUT-RWNIFROWOOO~NOYUTRWNEF

234 <ri m Descri ption>

1235 <rim LocalizedString value = "C assifies object using a node in the registry" />
1236 </rim Descri ption>

1237 </rimd assification>

1238

1239 <rim Cbj ectRef id = "urn:uui d: e2345678-1234- 1234- 123456789012" / >

1240 </rim Leaf Regi st r yObj ect Li st >

1241 </ Subnit vj ect sRequest >

1242

1243 7.4 The Update Objects Protocol

1244 There are issue with UpdateObjectsProtocol. We should consider getting rid of it??

1245 This section describes the protocol of the Registry Service that alows a Registry Client to update
1246 one or more existing Registry Itemsin the registry on behalf of a Submitting Organization. Itis
1247 expressed in UML notation as described in Appendix C.

Copyright © OASIS, 2002. All Rights Reserved Page 40 of 167

1248
1249

1250
1251
1252
1253
1254
1255

1256

1257
1258

1259

1260
1261
1262

OASIS/ebXML Registry Services Specification v2.0 September 2002

client Ilcm
RegistryClient LifeCycleManager

updatesOhjectsilUpdateOhjectzRequest:RenistvResponse |

L

onResponselRegistvResponselvoid |

L:J =

= <=Figure 10: Update Objects Sequence Diagram

For details on the schema for the Business documents shown in this process refer to Appendix B.
The UpdateObjectsRequest message includes a L eafRegistryObjectList element. The
LeafRegistryObjectList element specifies one or more RegistryObjects. Each object in the list
must be a current RegistryObject. RegistryObjects must include all attributes, even those the
user does not intend to change. A missing attribute is interpreted as a request to set that attribute
to NULL.

7.4.1 Audit Trail

The RS must create AuditableEvents object with eventType Updated for each RegistryObject
updated via an UpdateObjects request.

7.5 The Add Slots Protocol

This section describes the protocol of the Registry Service that allows a client to add slotsto a
previously submitted registry entry using the LifeCycleManager. Slots provide a dynamic
mechanism for extending registry entries as defined by [ebRIM].

Copyright © OASIS, 2002. All Rights Reserved Page 41 of 167

1263
1264

1265
1266
1267

1268
1269

1270

1271
1272

1273

1274
1275

1276
1277
1278

1279

OASIS/ebXML Registry Services Specification v2.0 September 2002

client ohjMyr
RegistryClient LifeCycleManager

addSlotsiaddSlotsReguesti RegistryResponse

[]

onResponselRegistyResponselvoid |

: v

<= <=Figure11l: Add Slots Sequence Diagram

In the event of success, the registry sends a RegistryResponse with a status of “ success’ back to
the client. In the event of failure, the registry sends a RegistryResponse with a status of “failure”
back to the client.

7.5.1 AddSlotsRequest
The AddSlotsRequest is used by a client to add slots to an existing RegistryObject in the registry.

7.5.1.1 Syntax:

% 2

* rim:ObjectRefE = 3 # home J

OhjectReiType anylRl

* AddEIutsRequestE= # name # slotType
LongMame LongMame

+ rim:Slot + Yaluelist = +* ‘u’alue%
&} e
St Typed E YalueLliztType H Lo ShortMame

<= <=Figure 12: AddSlotsRequest Syntax

7.5.1.2 Parameters:

%5 ObjectRef: This parameter specifies a reference to a RegistryObject instance to
which the requestor wishes to add dots via this request.

%5 Jot: This parameter specifies one or more Slot objects. Each Slot contains a
ValuelList with one or more Values. Each Slot also has a dot name and a dotType
as described [ebRIM].

Copyright © OASIS, 2002. All Rights Reserved Page 42 of 167

1280
1281

1282

1283

1284
1285

1286
1287

1288
1289

1290

1291

1292
1293

1294
1295

1296

1297
1298

OASIS/ebXML Registry Services Specification v2.0 September 2002

7.5.1.3 Returns:
This request returns a RegistryResponse. See section 7.3.2 for details.

7.5.1.4 Exceptions:

In addition to the exceptions common to all requests, the following exceptions may be returned:

2% AuthorizationException: Indicates that the requestor attempted to perform an
operation for which she was not authorized.

%5 ObjectNotFoundException: Indicates that the requestor referenced an object
within the request that was not found.

%5 | nvalidRequestException: Indicates that the requestor attempted to perform an
operation which was semantically invalid.

7.6 The Remove Slots Protocol

This section describes the protocol of the Registry Service that alows a client to remove dotsto
a previoudy submitted registry entry using the LifeCycleManager.

client lcm
RegistryClient LifeCycleManager

removesSlots(RemoveSiotzRequestiRegistrvResponse |

L

onResponselRegistyResponsedvoid |

L:J =

= <=Figure 13: Remove Slots Sequence Diagram
7.6.1 RemoveSlotsRequest

The RemoveS|otsRequest is used by a client to remove dots from an existing RegistryObject in
the registry.

Copyright © OASIS, 2002. All Rights Reserved Page 43 of 167

1299

1300
1301

1302

1303
1304

1305
1306
1307

1308

1309
1310

1311

1312

1313
1314

1315
1316

1317
1318
1319

1320

1321
1322
1323
1324

OASIS/ebXML Registry Services Specification v2.0 September 2002

7.6.1.1 Syntax:

753

+ rim:ObjectRef ® id# | @ home
OhjectRetType ICx @LanyLIHI
* RemoveElotsRequestE= # name — # s|lotType
LongMame LongMame
+ rim:Slot + Yaluelist = + ‘u’alue%
—1:::' E= F
St Typet = YalueLlistType E b ShortMame

= =Figure 14: RemoveSlotsRequest Syntax

7.6.1.2 Parameters:

=5 ObjectRef: This parameter specifies areference to a RegistryObject instance
from which the requestor wishes to remove dlots via this request.

%5 Jot: This parameter specifies one or more Slot objects. Each slot being removed
isidentified by its name attribute. Any Values specified with the VauelList for the
Slot can be silently ignored.

7.6.1.3 Returns:
This request returns a RegistryResponse. See section 7.3.2 for details.

7.6.1.4 Exceptions:
In addition to the exceptions common to al requests, the following exceptions may be returned:

%5 AuthorizationException: Indicates that the requestor attempted to perform an
operation for which she was not atthorized.

%5 ObjectNotFoundException: Indicates that the requestor referenced an object
within the request that was not found.

% |nvalidRequestException: Indicates that the requestor attempted to perform an
operation which was semantically invalid.

7.7 The Approve Objects Protocol

This section describes the protocol of the Registry Service that alows a client to approve one or
more previously submitted repository items using the LifeCycleManager. Once a repository item
is approved it will become available for use by business parties (e.g. during the assembly of new
CPAs and Collaboration Protocol Profiles).

Copyright © OASIS, 2002. All Rights Reserved Page 44 of 167

1325
1326

1327

1328
1329

1330

1331
1332

1333

1334
1335
1336

1337

1338
1339

1340

1341

1342
1343

1344

OASIS/ebXML Registry Services Specification v2.0 September 2002

client lcm
RegistryClient LifeCycleManager

approveObjectsippproveDbjectsReguest RenistryResponse |

L

onResponselRegistyResponselvoid |

L:J =

= <=Figure 15: Approve Objects Sequence Diagram

7.7.1 ApproveObjectsRequest

The ApproveObjectsRequest is used by a client to approve one or more existing RegistryObject
in the registry.

7.7.1.1 Syntax:

Zges

+ rim:DbjectRefListE = + ObjectRef
OhjectRefLiztType s OhjectRefType

= <=Figure 16: ApproveObjectsRequest Syntax

+ ApproveObjectsRequest

7.7.1.2 Parameters:

%5 ObjectRefList: This parameter specifies a collection of reference to existing
RegistryObject instances in the registry. These are the objects that the requestor
wishes to approve via this regquest.

7.7.1.3 Returns:
This request returns a RegistryResponse. See section 7.3.2 for details.

7.7.1.4 Exceptions:

In addition to the exceptions common to all requests, the following exceptions may be returned:

%5 AuthorizationException: Indicates that the requestor attempted to perform an
operation for which she was not authorized.

%5 ObjectNotFoundException: Indicates that the requestor referenced an object

Copyright © OASIS, 2002. All Rights Reserved Page 45 of 167

1345

1346
1347

1348

1349

1350
1351

1352

1353
1354
1355
1356
1357

1358
1359
1360

1361
1362

1363

1364
1365

OASIS/ebXML Registry Services Specification v2.0

September 2002

within the request that was not found.

%< |nvalidRequestException: Indicates that the requestor attempted to perform an
operation which was semantically invalid.

7.7.2 Audit Trail

The RS must create AuditableEvents object with eventType Approved for each RegistryObject

approved viaan Approve Objects request.

7.8 The Deprecate Objects Protocol

This section describes the protocol of the Registry Service that allows a client to deprecate one or
more previously submitted repository items using the LifeCycleManager. Once an object is
deprecated, no new references (e.g. new Associations, Classifications and ExternalLinks) to that
object can be submitted. However, existing references to a deprecated object continue to function

normally.

client
RegistreClient

deprecatebjects{DeprecatedbjectsRequesfi:RegistResponse

lcim
LifeCycleManager

L]

onResponse(RegistreResponseivoid |

7.8.1.1 Syntax:

I
7
I
] T
I I
I I
I I
I I
I I
I I
I I
[[
= <Figure 17: Deprecate Objects Sequence Diagram
7.8.1 DeprecateObjectsRequest
The DeprecateObjectsRequest is used by a client to deprecate one or more existing
RegistryObject in the registry.
oS
+ DeprecateﬂbjectsRequestE_ + rim:ObjectRefListE = + ObjectRef
OhjectRefListType o OhiectRefType

= =Figure 18: DeprecateObjectsRequest Syntax

Copyright © OASIS, 2002. All Rights Reserved

Page 46 of 167

1366

1367
1368
1369

1370

1371
1372

1373

1374

1375
1376

1377
1378

1379
1380

1381

1382

1383
1384

1385
1386

1387
1388
1389

1390
1391

1392

OASIS/ebXML Registry Services Specification v2.0 September 2002

7.8.1.2 Parameters:

%5 ObjectRefList: This parameter specifies a collection of reference to existing
RegistryObject instances in the registry. These are the objects that the requestor
wishes to deprecate viathis request.

7.8.1.3 Returns:
This request returns a RegistryResponse. See section 7.3.2 for details.

7.8.1.4 Exceptions:

In addition to the exceptions common to al requests, the following exceptions may be returned:

%5 AuthorizationException: Indicates that the requestor attempted to perform an
operation for which she was not authorized.

%5 ObjectNotFoundException: Indicates that the requestor referenced an object
within the request that was not found.

% |nvalidRequestException: Indicates that the requestor attempted to perform an
operation which was semantically invalid.

7.8.2 Audit Trail

The RS must create AuditableEvents object with eventType Deprecated for each RegistryObject
deprecated via a Deprecate Objects request.

Global issue: We need check registryEntry Vs. Repository item term mis-use al over the RS
specillay lifecycle chapter. Check error messages as well ??.

7.9 The Remove Objects Protocol
This section describes the protocol of the Registry Service that allows a client to remove one or
more RegistryObject instances and/or repository items using the LifeCycleManager.

The RemoveObjectsRequest message is sent by a client to remove RegistryObject instances
and/or repository items.

The remove object protocol is expressed in UML notation as described in Appendix C.

Copyright © OASIS, 2002. All Rights Reserved Page 47 of 167

1393
1394

1395

1396

1397
1398

1399

1400
1401

1402

1403
1404

1405
1406
1407
1408

1409
1410
1411
1412
1413

1414

OASIS/ebXML Registry Services Specification v2.0 September 2002

client lcm
RegistryClient LifeCycleManager

removedbjects(RemovelbjectsRequest ReqistryResponse |

L

onResponselRegistyResponselvoid |

L:J =

< <=Figure 19: Remove Objects Sequence Diagram

For details on the schema for the business documents shown in this process refer to Appendix B.

7.9.1 RemoveObjectsRequest

The RemoveObjectsRequest is used by a client to remove one or more existing RegistryObject
from the registry.

7.9.1.1 Syntax:

= K » deletionscopeq
=MW TORER

+ rim:DbjectRefListE = + ObjectRef

OhjectRefliztType R OhbjectRefType

= =Figure 20: RemovalObjectsRequest Syntax

4 RemoveObjectsRequest

7.9.1.2 Parameters:

% deletionScope: This parameter indicates the scope of impact of the
RemoveObjectsRequest. Its valid values may be as follows:

DeleteRepositoryltemOnly: This deletionScope specifies that the request should
delete the repository items for the specified registry entries but not delete the
specified registry entries. Thisis useful in keeping references to the registry
entries valid.

DeleteAll: This deletionScope specifies that the request should delete both the
RegistryObject and the repository item for the specified registry entries. Only if
all references (e.g. Associations, Classifications, ExternalLinks) to a
RegistryObject have been removed, can that RegistryObject then be removed
using a RemoveObjectsRequest with deletionScope DeleteAll.

z%5 ObjectRefList: This parameter specifies a collection of reference to existing

Copyright © OASIS, 2002. All Rights Reserved Page 48 of 167

1415
1416

1417

1418
1419

1420
1421

1422
1423

1424
1425

1426
1427
1428

1429

OASIS/ebXML Registry Services Specification v2.0 September 2002

RegistryObject instances in the registry. These are the objects that the requestor
wishes to remove viathis request.

7.9.1.3 Returns:
This request returns a RegistryResponse. See section 7.3.2 for details.

7.9.1.4 Exceptions:
In addition to the exceptions common to all requests, the following exceptions may be returned:

2% AuthorizationException: Indicates that the requestor attempted to perform an
operation for which she was not authorized.

% ObjectNotFoundException: Indicates that the requestor referenced an object
within the request that was not found.

%5 InvalidRequesException: Indicates that the requestor attempted to perform an
operation which was semantically invalid. Thrown when requestor attempts to
remove a RegistryObject while it still has references.

Copyright © OASIS, 2002. All Rights Reserved Page 49 of 167

1430

1431
1432
1433
1434

1435
1436

1437
1438
1439
1440
1441

1442
1443

1444
1445

1446

1447
1448
1449

1450
1451
1452
1453
1454

1455
1456

OASIS/ebXML Registry Services Specification v2.0 September 2002

8 Query Management Service

This section describes the capabilities of the Registry Service that allow aclient
(QueryManagerClient) to search for or query different kind of registry objectsin the ebXML
Registry using the QueryManager interface of the Registry. The Registry supports the following
query capabilities:

?? Filter Query

?7? SQL Query

The Filter Query mechanism in Section 8.2 SHALL be supported by every Registry
implementation. The SQL Query mechanism is an optional feature and MAY be provided by a
registry implementation. However, if avendor provides an SQL query capability to an ebXML
Registry it SHALL conform to this document. As such this capability is a normative yet optiona
capability.

In afuture version of this specification, the W3C XQuery syntax may be considered as another
query syntax.

The Registry will hold a self-describing capability profile that identifies all supported
AdhocQuery options. This profileis described in Appendix G.

8.1 Ad Hoc Query Request/Response

A client submits an ad hoc query to the QueryManager by sending an AdhocQueryRequest. The
AdhocQueryRequest contains a subelement that defines a query in one of the supported Registry
guery mechanisms.

The QueryManager sends an AdhocQueryResponse either synchronously or asynchronously
back to the client. The AdhocQueryResponse returns a collection of objects whose element type
depends upon the responseOption attribute of the AdhocQueryRequest. These may be objects
representing leaf classes in [ebRIM], references to objects in the registry as well as intermediate
classesin [ebRIM] such as RegistryObject and RegistryEntry.

Any errors in the query request messages are indicated in the corresponding query response
message.

Copyright © OASIS, 2002. All Rights Reserved Page 50 of 167

1457
1458

1459
1460

1461
1462

1463

1464
1465

1466

1467

1468
1469
1470
1471
1472
1473

1474

OASIS/ebXML Registry Services Specification v2.0 September 2002

client queny
RegistryClient QueryManager

submitddhocQuendddhocuenRequesh:RenistvResponse |

L]

onResponselRegistvResponse)lvoid |

L:J =

= =

< <=Figure21: Submit Ad Hoc Query Sequence Diagram

For details on the schema for the business documents shown in this process refer to Appendix
B.2.

8.1.1 AdhocQueryRequest
The AdhocQueryRequest is used to submit queries to the registry.

8.1.1.1 Syntax:

M startlndexd) maxResuItsli
integer integer

* Responseﬂption O
ResponzeCptionT ype

* AdhocuuewRequestE=

* FilterQuery

4®< + S0LQuery

=tring
= =Figure22: AdhocQueryRequest Syntax

8.1.1.2 Parameters:
% FilterQuery: This parameter specifies aregistry Filter Query.

z maxResults This optiona parameter specifies alimit on the maximum number of
results (that are instances of the specified return type), the client wishes the query
to return. If unspecified, the registry should return either all the results, or in case
the result set size exceeds an registry operator specific limit, the registry should
return a sub-set of results that are within the bounds of the registry operator
specific limit.

%5 ResponseOption: This required parameter allows the client to control the format

Copyright © OASIS, 2002. All Rights Reserved Page 51 of 167

1475
1476

1477

1478
1479
1480

1481
1482

1483
1484

1485
1486

1487
1488

1489

1490
1491

1492

1493
1494

1495

1496
1497

1498
1499
1500

1501
1502
1503
1504

OASIS/ebXML Registry Services Specification v2.0 September 2002

and content of the AdhocQueryResponse to this request. See section 8.1.3 for
details.

2 QLQuery: This parameter specifies aregistry SQL Query.

% startindex: This optional integer value is used to indicate which result set
SHOULD be returned first results set when iterating over alarge result set. The
default value is O, which returns result sets starting with index O (first result set).

8.1.1.3 Returns:
This request returns an AdhocQueryResponse. See section 9.6.2 for details.

8.1.1.4 Exceptions:

In addition to the exceptions common to all requests, the following exceptions may be returned:

% |nvalidQueryException: signifies that the query syntax was invalid. Client must
fix the query syntax and re-submit the query.

8.1.2 AdhocQueryResponse
The AdhocQueryRequest sent by the registry as a response to AdhocQueryRequest.

8.1.2.1 Syntax:

startindex # totalResultCount
irteger integer

+ FilteruuewResultE

* AdhocuuewResponseE
+ SOLQueryResult

rirm: RegistryChjectListType
= <=Figure23: AdhocQueryResponse Syntax

8.1.2.2 Parameters:

%< FilterQueryResult: This parameter specifies the result of aregistry Filter Query.
2 QLQueryResult: This parameter specifies the result of aregistry SQL Query.

% startindex: This optional integer value is used to indicate the index for the first
result in the result set returned by the query, within the complete result set
matching the query within the registry. By defaut, thisvaueis 0.

%5 totalResultCount: This optional parameter specifies the size of the complete
result set matching the query within the registry. When this value is unspecified,
the client should assume that value is the size of the result set contained within the
resullt.

Copyright © OASIS, 2002. All Rights Reserved Page 52 of 167

1505

1506

1507
1508

1509
1510

1511
1512

1513

1514

1515
1516
1517
1518

1519
1520
1521

1522

1523

1524

1525
1526
1527

1528
1529
1530
1531
1532
1533
1534

1535
1536

1537
1538
1539
1540
1541

OASIS/ebXML Registry Services Specification v2.0 September 2002

8.1.3 ReponseOption

A client specifies an ResponseOption structure within an AdhocQueryRequest to indicate the
format of the results within the corresponding AdhocQueryResponse.

8.1.3.1 Syntax:

* ResponseﬂptionE & returnTy‘pe# @ returnComposedObjects
FesponzeCptionType MMTOREM hoolean

= <=Figure 24: ResponseOption Syntax

8.1.3.2 Parameters:

% returnComposedObjects. This optional parameter specifies whether the
RegistryObjects returned should include composed objects such as
Classifications, Externalldentifiers etc. The default isto return al composed
objects.

%< returnType: Thisoptional enumeration parameter specifies the type of
RegistryObject to return within the response. Enumeration values for returnType
are explained in section 8.1.3.3.

8.1.3.3 Enumeration returnType

Enumeration values for returnType are as follows:

?? ObjectRef - This option specifies that the AdhocQueryResponse may cortain a collection of
ObjectRef XML elements as defined in [ebRIM Schema]. Purpose of this option isto return
just the identifiers of the registry objects.

?? RegistryObject - This option specifies that the AdhocQueryResponse may contain a
collection of RegistryObject XML elements as defined in [ebRIM Schema]. In this case all
attributes of the registry objects are returned (objectType, name, description, ...) in addition
to id attribute.

?? RegistryEntry - This option specifies that the AdhocQueryResponse may contain a collection
of RegistryEntry or RegistryObject XML elements as defined in [ebRIM Schema], which
correspond to RegistryEntry or RegistryObject attributes.

?? LeafClass - This option specifies that the AdhocQueryResponse may contain a collection of
XML elements that correspond to leaf classes as defined in [ebRIM Schema).

?? LeafClassWithRepositoryltem - This option specifies that the AdhocQueryResponse may
contain a collection of ExtrinsicObject XML elements as defined in [ebRIM Schemal
accompanied with their repository items or RegistryEntry or RegistryObject and their
attributes. Linking of ExtrinsicObject and its repository item is accomplished using the
technique explained in Section 8.4 -Content Retrieval.

Copyright © OASIS, 2002. All Rights Reserved Page 53 of 167

1542
1543
1544
1545
1546

1547

1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560

1561

1562
1563
1564
1565
1566

1567

1568

OASIS/ebXML Registry Services Specification v2.0 September 2002

If “returnType’ is higher then the RegistryObject option, then the highest option that satisfies the
guery is returned. This can be illustrated with a case when OrganizationQuery is asked to return

L eaf ClassWithRepositoryltem. As this is not possible, QueryManager will assume LeafClass
option instead. If OrganizationQuery is asked to retrieve a RegistryEntry as a return type then
RegistryObject metadata will be returned.

8.1.4 lterative Query Support

The AdhocQueryRequest and AdhocQueryResponse support the ability to iterate over alarge
result set matching alogical query by allowing multiple AdhocQueryRequest requests to be
submitted such that each query requests a different liding window within the result set. This
feature enables the registry to handle queries that match avery large result set, in a scalable
manner.

The iterative queries feature is not a true Cursor capability as found in databases. The registry is
not required to maintain transactional consistency or state between iterations of a query. Thus it
is possible for new objects to be added or existing objects to be removed from the complete
result set in between iterations. As a consequence it is possible to have a result set element be
skipped or duplicated between iterations.

Note that while it is not required, it may be possible for implementations to be smart and
implement a transactionaly consistent iterative query feature. It is likely that a future version of
this specification will require a transactionaly consistent iterative query capability.

8.1.4.1 Query lteration Example

Consider the case where there are 1007 Organizations in aregistry. The user wishes to submit a
query that matches all 1007 Organizations. The user wishes to do the query iteratively such that
Organizations are retrieved in chunks of 100. The following table illustrates the parameters of
the AdhocQueryRequest and those of the AdhocQueryResponses for each iterative query in this
example.

AdhocQueryRequest Parameters AdhocQueryResponse Parameters

startlndex maxResults startlndex totalResultCount # of
Results
0 100 0 1007 100
100 100 100 1007 100
200 100 200 1007 100
300 100 300 1007 100
400 100 400 1007 100
500 100 500 1007 100
600 100 600 1007 100
700 100 700 1007 100
800 100 800 1007 100
900 100 900 1007 100
1000 100 1000 1007 7

Copyright © OASIS, 2002. All Rights Reserved Page 54 of 167

1569

1570
1571
1572
1573

1574
1575
1576
1577
1578
1579
1580
1581

1582
1583

1584
1585
1586
1587

1588
1589
1590
1591
1592

1593
1594

1595
1596
1597
1598
1599
1600

OASIS/ebXML Registry Services Specification v2.0 September 2002

8.2 Filter Query Support

FilterQuery isan XML syntax that provides simple query capabilities for any ebXML
conforming Registry implementation. Each query alternative is directed against a single class
defined by the ebXML Registry Information Model (ebRIM). There are two types of filter
gueries depending on which classes are queried on.

?? Firstly, there are RegistryObjectQuery and RegistryEntryQuery. They allow for generic
gueries that might return different subclasses of the class that is queried on. The result of
such aquery isaset of XML elements that correspond to instances of any class that satisfies
the responseOption defined previously in Section Error! Reference sour ce not found.. An
example might be that RegistryObjectQuery with responseOption LeafClass will return all
attributes of all instances that satisfy the query. Thisimplies that response might return XML
elements that correspond to classes like ClassificationScheme, RegistryPackage,
Organization and Service.

?? Secondly, FilterQuery supports queries on selected ebRIM classes in order to define the exact
traversals of these classes. Responses to these queries are accordingly constrained.

A client submits a FilterQuery as part of an AdhocQueryRequest. The QueryManager sends an
AdhocQueryResponse back to the client, enclosing the appropriate FilterQueryResult specified
herein. The sequence diagrams for AdhocQueryRequest and AdhocQueryResponse are specified
in Section 8.1.

Each FilterQuery alternative is associated with an ebRIM Binding that identifies a hierarchy of
classes derived from a single class and its associations with other classes as defined by ebRIM.
Each choice of a class pre-determines a virtual XML document that can be queried as atree. For
example, let C beaclass, let Y and Z be classes that have direct associationsto C, and let V be a
class that is associated with Z. The ebRIM Binding for C might be as in Figure 25

&
Labf!’.i’ Labf!?

Y z

Labgld

<

= =Figure 25: Example ebRIM Binding

Label1 identifies an association from C to Y, Label2 identifies an association from C to Z, and
Label3 identifies an association from Z to V. Labels can be omitted if there is no ambiguity as to
which ebRIM association is intended. The name of the query is determined by the root class, i.e.
thisis an ebRIM Binding for a CQuery. The Y node in the tree is limited to the set of Y instances
that are linked to C by the association identified by Label1l. Similarly, the Z and V nodes are
limited to instances that are linked to their parent node by the identified association.

Copyright © OASIS, 2002. All Rights Reserved Page 55 of 167

1601
1602
1603
1604
1605
1606
1607
1608
1609
1610

1611
1612
1613
1614
1615
1616
1617

1618
1619
1620
1621
1622

1623
1624
1625
1626
1627
1628
1629

1630
1631
1632

1633

1634
1635

1636
1637

1638
1639
1640
1641
1642
1643
1644

OASIS/ebXML Registry Services Specification v2.0 September 2002

Each FilterQuery alternative depends upon one or more class filters, where a classfilter isa
restricted predicate clause over the attributes of a single class. Class methods that are defined in
ebRIM and that return simple types congtitute “visible attributes’ that are valid choices for
predicate clauses. Names of those attributes will be same as hame of the corresponding method
just without the prefix ‘get’. For example, in case of “getLevelNumber” method the
corresponding visible attribute is “levelNumber”. The supported class filters are specified in
Section 8.2.13 and the supported predicate clauses are defined in Section 8.2.14. A FilterQuery
will be composed of elements that traverse the tree to determine which branches satisfy the
designated class filters, and the query result will be the set of instances that support such a
branch.

In the above example, the CQuery element will have three subelements, one a CFilter on the C
class to eliminate C instances that do not satisfy the predicate of the CFilter, another a Y Filter on
the Y classto eiminate branches from C to Y where the target of the association does not satisfy
the Y Filter, and a third to eliminate branches along a path from C through Z to V. The third
element is called a branch element because it allows class filters on each class along the path
from Cto V. In general, a branch element will have subelements that are themselves class filters,
other branch elements, or a full-blown query on the classin the path.

If an association from aclassCto aclassY isone-to-zero or one-to-one, then at most one
branch, filter or query element on Y is alowed. However, if the association is one-to- many, then
multiple branch, filter or query elements are alowed. This alows one to specify that an instance
of C must have associations with multiple instances of Y before the instance of C is said to
satisfy the branch element.

The FilterQuery syntax istied to the structures defined in ebRIM. Since ebRIM is intended to be
stable, the FilterQuery syntax is stable. However, if new structures are added to the ebRIM, then
the FilterQuery syntax and semantics can be extended at the same time. Also, FilterQuery syntax
follows the inheritance hierarchy of ebRIM, which means that subclass queries inherit from their
respective superclass queries. Structures of XML elements that match the ebRIM classes are
explained in [ebRIM Schema]. Names of Filters, Queries and Branches correspond to namesin
ebRIM whenever possible.

The ebRIM Binding paragraphs in Sections 8.2.2 through 8.2.12 below identify the virtual
hierarchy for each FilterQuery aternative. The Semantic Rules for each query alternative specify
the effect of that binding on query semantics.

8.2.1 FilterQuery

Purpose

To identify a set of queries that traverse specific registry class. Each aternative assumes a
specific binding to ebRIM. The status is a success indication or a collection of warnings and/or
exceptions.

Definition

<element name="FilterQuery">
<complexType>
<choice minOccurs="1" maxOccurs="1">
<element ref="tns:RegistryObjectQuery" />
<element ref="tns:RegistryEntryQuery" />

Copyright © OASIS, 2002. All Rights Reserved Page 56 of 167

1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675

1676
1677

1678
1679
1680

1681
1682
1683

1684
1685
1686

1687
1688

1689
1690
1691
1692
1693

OASIS/ebXML Registry Services Specification v2.0 September 2002

<element ref="tns:AssociationQuery” />
<element ref="tns:AuditableEventQuery" />
<element ref="tns.ClassificationQuery” />
<element ref="tns.ClassificationNodeQuery" />
<element ref="tns.ClassificationSchemeQuery" />
<element ref="tns:RegistryPackageQuery" />
<element ref="tns:ExtrinsicObjectQuery" />
<element ref="tns:OrganizationQuery" />
<element ref="tns:ServiceQuery" />
</choice>
</complexType>
</element>

<element name="FilterQueryResult" >
<complexType>

<element ref="tns:RegistryObjectQueryResult” />
<element ref="tns:RegistryEntryQueryResult" />
<element ref="tns:AssociationQueryResult” />
<element ref="tns:AuditableEventQueryResult" />
<element ref="tns:ClassificationQueryResult” />
<element ref="tns:ClassificationNodeQueryResult" />
<element ref="tns:ClassificationSchemeQueryResult" />
<element ref="tns:RegistryPackageQueryResult" />
<element ref="tns:ExtrinsicObjectQueryResult" />
<element ref="tns:OrganizationQueryResult" />
<element ref="tns:ServiceQueryResult" />
</choice>
</complexType>
</element>

Semantic Rules
1. The semantic rulesfor each FilterQuery alternative are specified in subsequent subsections.

2. Semantic rules specify the procedure for implementing the evaluation of Filter Queries.
Implementations do not necessarily have to follow the same procedure provided that the
same effect is achieved.

3. Each FilterQueryResult is a set of XML elements to identify each instance of the result set.
Each XML attribute carries a value derived from the value of an attribute specified in the
Registry Information Model [ebRIM Schema).

4. For each FilterQuery subelement there is only one corresponding FilterQueryResult
subelement that must be returned as a response. Class name of the FilterQueryResult
subelement has to match the class name of the FilterQuery subelement.

5. If aBranch or Query element for a class has no sub-elements then every persistent instance
of that class satisfies the Branch or Query.

6. If anerror condition is raised during any part of the execution of a FilterQuery, then the
status attribute of the XML RegistryResult is set to “failure” and no AdHocQueryResult
element is returned; instead, a RegistryErrorList element must be returned with its
highestSeverity element set to “error”. At least one of the RegistryError elements in the
RegistryErrorList will have its severity attribute set to “error”.

Copyright © OASIS, 2002. All Rights Reserved Page 57 of 167

1694
1695
1696
1697
1698

1699

1700

1701
1702

1703

1704

1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723

OASIS/ebXML Registry Services Specification v2.0 September 2002

7. 1f no error conditions are raised during execution of a FilterQuery, then the status attribute of
the XML RegistryResult is set to “success’ and an appropriate FilterQueryResult element
must be included. If a RegistryErrorList is also returned, then the highestSeverity attribute of
the RegistryErrorList is set to “warning” and the serverity attribute of each RegistryError is
Set to “warning”.

8.2.2 RegistryObjectQuery

Purpose

To identify a set of registry object instances as the result of a query over selected registry
metadata.

ebRIM Binding

Registry Object
Sourfe Taroe
External
v Identifier Sot Value v
Association Classification Association
Tar / \ urce
S Classification
Registry Object or its Classification Node Registry Object or its
subclass Scheme subclass
= <=Figure 26: ebRIM Binding for RegistryObjectQuery
Definition
<complexType name ="RegistryObjectQuery Type">
<seguence>

<element ref="tns:RegistryObjectFilter" minOccurs="0" maxOccurs="1" />
<element ref="tns:ExternalldentifierFilter" minOccurs="0" maxOccurs="unbounded" />
<element ref="tns: AuditableEventQuery" minOccurs="0" maxOccurs="unbounded" />
<element ref="tns:NameBranch" minOccurs="0" maxOccurs="1" />
<element ref="tns:DescriptionBranch" minOccurs="0" maxOccurs="1" />
<element ref="tns:ClassifiedByBranch" minOccurs="0" maxOccurs="unbounded" />
<element ref="tns:SlotBranch” minOccurs="0" maxOccurs="unbounded" />
<element ref="tns:SourceAssociationBranch" minOccurs="0" maxOccurs="unbounded" />
<element ref="tnsTargetAssociationBranch" minOccurs="0" maxOccurs="unbounded" />
</sequence>
</complexType>
<element name=" RegistryObjectQuery" type="tns.RegistryObjectQueryType" />

<complexType name="L eaf RegistryObjectListType">
<choice minOccurs="0" maxOccurs="unbounded">
<element ref="tns.ObjectRef" />

Copyright © OASIS, 2002. All Rights Reserved Page 58 of 167

OASIS/ebXML Registry Services Specification v2.0 September 2002

Copyright © OASIS, 2002. All Rights Reserved Page 59 of 167

OASIS/ebXML Registry Services Specification v2.0 September 2002

Copyright © OASIS, 2002. All Rights Reserved Page 60 of 167

1836

1837
1838
1839

1840

1841
1842
1843

1844
1845
1846
1847
1848
1849
1850

1851
1852
1853
1854

1855
1856
1857
1858
1859
1860

1861
1862
1863
1864
1865
1866

OASIS/ebXML Registry Services Specification v2.0

September 2002

Semantic Rules

1. Let RO denote the set of al persistent RegistryObject instances in the Registry. The
following steps will eliminate instances in RO that do not satisfy the conditions of the
specified filters.

a)
b)

f)

If RO is empty then go to number 2 below.

If a RegistryObjectFilter is not specified then go to the next step; otherwise, let x be a
registry object in RO. If x does not satisfy the RegistryObjectFilter, then remove x from
RO. If RO is empty then continue to the next numbered rule.

If an ExternalldentifierFilter element is not specified, then go to the next step; otherwise,
let x be aremaining registry object in RO. If x is not linked to at |east one
Externalldentifier instance, then remove x from RO; otherwise, treat each
ExternalldentifierFilter element separately as follows: Let El be the set of
Externalldentifier instances that satisfy the ExternalldentifierFilter and are linked to x. If
El is empty, then remove x from RO. If RO is empty then continue to the next numbered
rule.

If an AuditableEventQuery is not specified then go to the next step; otherwise, let x be a
remaining registry object in RO. If x doesn’t have an auditable event that satisfy
AuditableEventQuery as specified in Section 8.2.5 then remove x from RO. If RO is
empty then continue to the next numbered rule.

If a NameBranch is not specified then go to the next step; otherwise, let x be aremaining
registry object in RO. If x does not have a name then remove x from RO. If RO is empty
then continue to the next numbered rule; otherwise treat NameBranch as follows: If any
LocalizedStringFilter that is specified is not satisfied by all of the LocalizedStrings that
condtitute the name of the registry object then remove x from RO. If RO is empty then
continue to the next numbered rule.

If a DescriptionBranch is not specified then go to the next step; otherwise, let x be a
remaining registry object in RO. If x does not have a description then remove x from RO.
If RO is empty then continue to the next numbered rule; otherwise treat
DescriptionBranch as follows: If any LocalizedStringFilter that is specified is not
satisfied by al of the LocalizedStrings that constitute the description of the registry
object then remove x from RO. If RO is empty then continue to the next numbered rule.

Copyright © OASIS, 2002. All Rights Reserved Page 61 of 167

1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882

1883
1884
1885
1886
1887
1888
1889
1890
1891
1892

1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908

1909

OASIS/ebXML Registry Services Specification v2.0 September 2002

9

h)

If a ClassifiedByBranch element is not specified, then go to the next step; otherwise, let x
be aremaining registry object in RO. If x is not the classifiedObject of at least one
Classification instance, then remove x from RO; otherwise, treat each
ClassifiedByBranch element separately as follows: If no ClassificationFilter is specified
within the ClassifiedByBranch, then let CL be the set of al Classification instances that
have x as the classifiedObject; otherwise, let CL be the set of Classification instances that
satisfy the ClassificationFilter and have x as the classifiedObject. If CL is empty, then
remove X from RO and continue to the next numbered rule. Otherwise, if CL is not
empty, and if a ClassificationSchemeQuery is specified, then replace CL by the set of
remaining Classification instances in CL whose defining classification scheme satisfies
the ClassificationSchemeQuery. If the new CL is empty, then remove x from RO and
continue to the next numbered rule. Otherwise, if CL remains not empty, and if a
ClassificationNodeQuery is specified, then replace CL by the set of remaining
Classification instances in CL for which a classification node exists and for which that
classification node satisfies the ClassificationNodeQuery. If the new CL is empty, then
remove X from RO. If RO is empty then continue to the next numbered rule.

If a SlotBranch element is not specified, then go to the next step; otherwise, let X be a
remaining registry object in RO. If x isnot linked to at least one Slot instance, then
remove x from RO. If RO is empty then continue to the next numbered rule; otherwise,
treat each SlotBranch element separately as follows: If a SlotFilter is not specified within
the SlotBranch, then let SL be the set of all Slot instances for x; otherwise, let SL be the
set of Slot instances that satisfy the SlotFilter and are Slot instances for x. If SL is empty,
then remove x from RO and continue to the next numbered rule. Otherwise, if SL
remains not empty, and if a SlotValueFilter is specified, replace SL by the set of
remaining Slot instances in SL for which every specified SlotValueFilter isvalid. If SL is
empty, then remove x from RO. If RO is empty then continue to the next numbered rule.

If a SourceAssociationBranch element is not specified then go to the next step; otherwise,
let X be aremaining registry object in RO. If x is not the source object of at least one
Association instance, then remove x from RO. If RO is empty then continue to the next
numbered rule; otherwise, treat each SourceA ssociationBranch element separately as
follows:

If no AssociationFilter is specified within the SourceA ssociationBranch, then let AF be
the set of all Association instances that have x as a source object; otherwise, let AF be the
set of Association instances that satisfy the AssociationFilter and have x as the source
object. If AF is empty, then remove x from RO.

If RO is empty then continue to the next numbered rule.

If an ExternalLinkFilter is specified within the SourceAssociationBranch, then let ROT
be the set of ExternalLink instances that satisfy the ExternalLinkFilter and are the target
object of some element of AF. If ROT is empty, then remove x from RO. If RO is empty
then continue to the next numbered rule.

Copyright © OASIS, 2002. All Rights Reserved Page 62 of 167

OASIS/ebXML Registry Services Specification v2.0 September 2002

1910 If an ExternalldentifierFilter is specified within the SourceAssociationBranch, then let
1911 ROT be the set of Externalldentifier instances that satisfy the ExternalldentifierFilter and
1912 are the target object of some element of AF. If ROT is empty, then remove x from RO. If
1913 RO is empty then continue to the next numbered rule.

1914

1915 If a RegistryObjectQuery is specified within the SourceAssociationBranch, then let ROT
1916 be the set of RegistryObject instances that satisfy the RegistryObjectQuery and are the
1917 target object of some element of AF. If ROT is empty, then remove x from RO. If RO is
1918 empty then continue to the next numbered rule.

1919

1920 If aRegistryEntryQuery is specified within the SourceAssociationBranch, thenlet ROT
1921 be the set of RegistryEntry instances that satisfy the RegistryEntryQuery and are the
1922 target object of some element of AF. If ROT is empty, then remove x from RO. If RO is
1923 empty then continue to the next numbered rule.

1924

1925 If a ClassificationSchemeQuery is specified within the SourceA ssociationBranch, then let
1926 ROT be the set of ClassificationScheme instances that satisfy the

1927 ClassificationSchemeQuery and are the target object of some element of AF. If ROT is
1928 empty, then remove x from RO. If RO is empty then continue to the next numbered rule.
1929

1930 If a ClassificationNodeQuery is specified within the SourceA ssociationBranch, then let
1931 ROT be the set of ClassificationNode instances that satisfy the ClassificationNodeQuery
1932 and are the target object of some element of AF. If ROT is empty, then remove x from
1933 RO. If RO is empty then continue to the next numbered rule.

1934

1935 If an OrganizationQuery is specified within the SourceAssociationBranch, then let ROT
1936 be the set of Organization instances that satisfy the OrganizationQuery and are the target
1937 object of some element of AF. If ROT is empty, then remove x from RO. If RO is empty
1938 then continue to the next numbered rule.

1939

1940 If an AuditableEventQuery is specified within the SourceA ssociationBranch, then let
1941 ROT be the set of AuditableEvent instances that satisfy the AuditableEventQuery and are
1942 the target object of some element of AF. If ROT is empty, then remove x from RO. If RO
1943 is empty then continue to the next numbered rule.

1944

1945 If a RegistryPackageQuery is specified within the SourceA ssociationBranch, then let
1946 ROT be the set of RegistryPackage instances that satisfy the RegistryPackageQuery and
1947 are the target object of some element of AF. If ROT is empty, then remove x from RO. If
1948 RO is empty then continue to the next numbered rule.

1949

1950 If an ExtrinsicObjectQuery is specified within the SourceAssociationBranch, then let
1951 ROT be the set of ExtrinsicObject instances that satisfy the ExtrinsicObjectQuery and are
1952 the target object of some element of AF. If ROT is empty, then remove x from RO. If RO
1953 is empty then continue to the next numbered rule.

1954

Copyright © OASIS, 2002. All Rights Reserved Page 63 of 167

OASIS/ebXML Registry Services Specification v2.0 September 2002

1955 If a ServiceQuery is specified within the SourceAssociationBranch, then let ROT be the
1956 set of Service instances that satisfy the ServiceQuery and are the target object of some
1957 element of AF. If ROT is empty, then remove x from RO. If RO is empty then continue
1958 to the next numbered rule.

1959

1960 If aUserBranchis specified within the SourceAssociationBranch then let ROT be the set
1961 of User instances that are the target object of some element of AF. If ROT is empty, then
1962 remove X from RO. If RO is empty then continue to the next numbered rule. Let u be the
1963 member of ROT. If a UserFilter element is specified within the UserBranch, and if u does
1964 not satisfy that filter, then remove u from ROT. If ROT is empty, then remove x from
1965 RO. If RO is empty then continue to the next numbered rule. If a Postal AddressFilter
1966 element is specified within the UserBranch, and if the postal address of u does not satisfy
1967 that filter, then remove u from ROT. If ROT is empty, then remove x from RO. If RO is
1968 empty then continue to the next numbered rule. If TelephoneNumberFilter(s) are

1969 specified within the UserBranch and if any of the TelephoneNumberFiltersisn’t satisfied
1970 by al of the telephone numbers of u then remove u from ROT. If ROT is empty, then
1971 remove x from RO. If RO is empty then continue to the next numbered rule. If an

1972 OrganizationQuery element is specified within the UserBranch, then let o be the

1973 Organization instance that is identified by the organization that uis affiliated with. If o
1974 doesn't satisfy OrganizationQuery as defined in Section 8.2.11 then remove u from ROT.
1975 If ROT is empty, then remove x from RO. If RO is empty then continue to the next

1976 numbered rule.

1977

1978 If a ClassificationQuery is specified within the SourceAssociationBranch, then let ROT
1979 be the set of Classification instances that satisfy the ClassificationQuery and are the
1980 target object of some element of AF. If ROT is empty, then remove x from RO. If RO is
1981 empty then continue to the next numbered rule (Rule 2).

1982

1983 If a ServiceBindingBranchis specified within the SourceA ssociationBranch, then let
1984 ROT be the set of ServiceBinding instances that are the target object of some element of
1985 AF. If ROT is empty, then remove x from RO. If RO is empty then continue to the next
1986 numbered rule. Let sb be the member of ROT. If a ServiceBindingFilter element is

1987 specified within the ServiceBindingBranch, and if sb does not satisfy that filter, then
1988 remove sb from ROT. If ROT is empty then remove x from RO. If RO is empty then
1989 continue to the next numbered rule. If a SpecificationLinkBranch is specified within the
1990 ServiceBindingBranch then consider each SpecificationLinkBranch element separately as
1991 follows:

1992

1993 Let sb be aremaining service binding in ROT. Let SL be the set of al specification link
1994 instances dl that describe specification links of sb. If a SpecificationLinkFilter element is
1995 specified within the SpecificationLinkBranch, and if sl does not satisfy thet filter, then
1996 remove d from SL. If SL is empty then remove sb from ROT. If ROT is empty then
1997 remove X from RO. If RO is empty then continue to the next numbered rule. If a

1998 RegistryObjectQuery element is specified within the SpecificationLinkBranch then let d
1999 be aremaining specification link in SL. Treat RegistryObjectQuery element as follows:
2000 Let RO be the result set of the RegistryObjectQuery as defined in Section 8.2.2. If 4 is
2001 not a specification link for at least one registry object in RO, then remove sl from SL. If

Copyright © OASIS, 2002. All Rights Reserved Page 64 of 167

2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036

2037

2038
2039
2040
2041
2042

2043

OASIS/ebXML Registry Services Specification v2.0 September 2002

)

SL is empty then remove sb from ROT. If ROT is empty then remove x from RO. If RO
is empty then continue to the next numbered rule. If a RegistryEntryQuery element is
specified within the SpecificationLinkBranch then let 9l be a remaining specification link
in SL. Treat RegistryEntryQuery element as follows:. Let RE be the result set of the
RegistryEntryQuery as defined in Section 8.2.3. If 9 is not a specification link for at least
one registry entry in RE, then remove d from SL. If SL is empty then remove sb from
ROT. If ROT is empty then remove x from RO. If RO is empty then continue to the next
numbered rule. If a ServiceBindingTargetBranchis specified within the
ServiceBindingBranch, then let SBT be the set of ServiceBinding instances that satisfy
the ServiceBindingTargetBranchand are the target service binding of some element of
ROT. If SBT is empty then remove sb from ROT. If ROT is empty, then remove x from
RO. If RO is empty then continue to the next numbered rule.

If a SpecificationLinkBranch is specified within the SourceAssociationBranch, then let
ROT be the set of SpecificationLink instances that are the target object of some element
of AF. If ROT is empty, then remove x from RO. If RO is empty then continue to the
next numbered rule. Let g be the member of ROT. If a SpecificationLinkFilter element is
specified within the SpecificationLinkBranch, and if sl does not satisfy that filter, then
remove s from ROT. If ROT is empty then remove x from RO. If RO is empty then
continue to the next numbered rule. If a RegistryObjectQuery element is specified within
the SpecificationLinkBranch then let 9 be aremaining specification link in ROT. Treat
RegistryObjectQuery element as follows: Let RO be the result set of the
RegistryObjectQuery as defined in Section 8.2.2. If d is not a specification link for some
registry object in RO, then remove d from ROT. If ROT is empty then remove x from
RO. If RO is empty then continue to the next numbered rule. If a RegistryEntryQuery
element is specified within the SpecificationLinkBranch then let 9 be aremaining
specification link in ROT. Treat RegistryEntryQuery element as follows: Let RE be the
result set of the RegistryEntryQuery as defined in Section 8.2.3. If d is hot a specification
link for at least one registry entry in RE, then remove d from ROT. If ROT is empty then
remove x from RO. If RO is empty then continue to the next numbered rule.

If an AssociationQuery is specified within the SourceAssociationBranch, then let ROT be
the set of Association instances that satisfy the AssociationQuery and are the target object
of some element of AF. If ROT is empty, then remove x from RO. If RO is empty then
continue to the next numbered rule (Rule 2).

If a TargetAssociationBranch element is not specified then go to the next step; otherwise,
let X be aremaining registry object in RO. If x is not the target object of some
Association instance, then remove x from RO. If RO is empty then continue to the next
numbered rule; otherwise, treat each TargetAssociationBranch element separately as
follows:

Copyright © OASIS, 2002. All Rights Reserved Page 65 of 167

OASIS/ebXML Registry Services Specification v2.0 September 2002

2044 If no AssociationFilter is specified within the TargetAssociationBranch, then let AF be
2045 the set of all Association instances that have x as atarget object; otherwise, let AF be the
2046 set of Association instances that satisfy the AssociationFilter and have x as the target
2047 object. If AF is empty, then remove x from RO. If RO is empty then continue to the next
2048 numbered rule.

2049

2050 If an ExternalLinkFilter is specified within the TargetAssociationBranch, then let ROS be
2051 the set of ExternalLink instances that satisfy the External LinkFilter and are the source
2052 object of some element of AF. If ROS is empty, then remove x from RO. If RO is empty
2053 then continue to the next numbered rule.

2054

2055 If an ExternalldentifierFilter is specified within the TargetAssociationBranch, then let
2056 ROS be the set of Externalldentifier instances that satisfy the ExternalldentifierFilter and
2057 are the source object of some element of AF. If ROS is empty, then remove x from RO. If
2058 RO is empty then continue to the next numbered rule.

2059

2060 If a RegistryObjectQuery is specified within the TargetAssociationBranch then let ROS
2061 be the set of RegistryObject instances that satisfy the RegistryObjectQuery and are the
2062 source object of some element of AF. If ROS is empty, then remove x from RO. If RO is
2063 empty then continue to the next numbered rule.

2064

2065 If aRegistryEntryQuery is specified within the TargetAssociationBranch, then let ROS
2066 be the set of

2067 RegistryEntry instances that satisfy the RegistryEntryQuery and are the source object of
2068 some element of AF. If ROS is empty, then remove x from RO. If RO is empty then
2069 continue to the next numbered rule.

2070

2071 If a ClassificationSchemeQuery is specified within the TargetA ssociationBranch, then let
2072 ROS be the set of ClassificationScheme instances that satisfy the

2073 ClassificationSchemeQuery and are the source object of some element of AF. If ROS is
2074 empty, then remove x from RO. If RO is empty then continue to the next numbered rule.
2075

2076 If a ClassificationNodeQuery is specified within the TargetA ssociationBranch, then let
2077 ROS be the set of ClassificationNode instances that satisfy the ClassificationNodeQuery
2078 and are the source object of some element of AF. If ROS is empty, then remove x from
2079 RO. If RO is empty then continue to the next numbered rule.

2080

2081 If an OrganizationQuery is specified within the TargetA ssociationBranch, then let ROS
2082 be the set of Organization instances that satisfy the OrganizationQuery and are the source
2083 object of some element of AF. If ROS is empty, then remove x from RO. If RO is empty
2084 then continue to the next numbered rule.

2085

Copyright © OASIS, 2002. All Rights Reserved Page 66 of 167

OASIS/ebXML Registry Services Specification v2.0 September 2002

2086 If an AuditableEventQueryis specified within the TargetAssociationBranch, then let
2087 ROS be the set of AuditableEvent instances that satisfy the AuditableEventQuery and are
2088 the source object of some element of AF. If ROS is empty, then remove x from RO. If
2089 RO is empty then continue to the next numbered rule.

2090

2091 If a RegistryPackageQuery is specified within the TargetAssociationBranch, then let
2092 ROS be the set of RegistryPackage instances that satisfy the RegistryPackageQuery and
2093 are the source object of some element of AF. If ROS is empty, then remowve x from RO. If
2094 RO is empty then continue to the next numbered rule.

2095

2096 If an ExtrinsicObjectQuery is specified within the TargetAssociationBranch, then let
2097 ROS be the set of ExtrinsicObject instances that satisfy the ExtrinsicObjectQuery and are
2098 the source object of some element of AF. If ROS is empty, then remove x from RO. If
2099 RO is empty then continue to the next numbered rule.

2100

2101 If a ServiceQuery is specified within the TargetAssociationBranch, then let ROS be the
2102 set of Service instances that satisfy the ServiceQuery and are the source object of some
2103 element of AF. If ROS is empty, then remove x from RO. If RO is empty then continue
2104 to the next numbered rule.

2105

2106 If aUserBranchis specified within the TargetA ssociationBranch then let ROS be the set
2107 of User instances that are the source object of some element of AF. If ROS is empty, then
2108 remove x from RO. If RO is empty then continue to the next numbered rule. Let u be the
2109 member of ROS. If a UserFilter element is specified within the UserBranch, and if u does
2110 not satisfy that filter, then remove u from ROS. If ROS is empty, then remove x from
2111 RO. If RO is empty then continue to the next numbered rule. If a Postal AddressFilter
2112 element is specified within the UserBranch, and if the postal address of u does not satisfy
2113 that filter, then remove u from ROS. If ROS is empty, then remove x from RO. If RO is
2114 empty then continue to the next numbered rule. If TelephoneNumberFilter(s) are

2115 specified within the UserBranch and if any of the TelephoneNumberFiltersisn’t satisfied
2116 by al of the telephone numbers of u then remove u from ROS. If ROS is empty, then
2117 remove X from RO. If RO is empty then continue to the next numbered rule. If an

2118 OrganizationQuery element is specified within the UserBranch, then let o be the

2119 Organization instance that is identified by the organization that u is affiliated with. If o
2120 doesn't satisfy OrganizationQuery as defined in Section 8.2.11 then remove u from ROS.
2121 If ROS is empty, then remove x from RO. If RO is empty then continue to the next

2122 numbered rule.

2123

2124 If a ClassificationQuery is specified within the TargetAssociationBranch, then let ROS be
2125 the set of Classification instances that satisfy the ClassificationQuery and are the source
2126 object of some element of AF. If ROS is empty, then remove x from RO. If RO is empty
2127 then continue to the next numbered rule (Rule 2).

2128

Copyright © OASIS, 2002. All Rights Reserved Page 67 of 167

OASIS/ebXML Registry Services Specification v2.0 September 2002

2129 If a ServiceBindingBranchis specified within the TargetAssociationBranch, then let ROS
2130 be the set of ServiceBinding instarces that are the source object of some element of AF.
2131 If ROS is empty, then remove x from RO. If RO is empty then continue to the next

2132 numbered rule. Let sb be the member of ROS. If a ServiceBindingFilter element is

2133 specified within the ServiceBindingBranch, and if sb does not satisfy that filter, then
2134 remove sb from ROS. If ROS is empty then remove x from RO. If RO is empty then
2135 continue to the next numbered rule. If a SpecificationLinkBranch is specified within the
2136 ServiceBindingBranch then consider each SpecificationLinkBranch element separately as
2137 follows:

2138 Let sb be aremaining service binding in ROS. Let SL be the set of all specification link
2139 instances dl that describe specification links of sb. If a SpecificationLinkFilter element is
2140 specified within the SpecificationLinkBranch, and if d does not satisfy that filter, then
2141 remove d from SL. If SL is empty then remove sb from ROS. If ROS is empty then
2142 remove x from RO. If RO is empty then continue to the next numbered rule. If a

2143 RegistryObjectQuery element is specified within the SpecificationLinkBranch then let d
2144 be aremaining specification link in SL. Treat RegistryObjectQuery element as follows:
2145 Let RO be the result set of the RegistryObjectQuery as defined in Section 8.2.2. If 4 is
2146 not a specification link for some registry object in RO, then remove d from SL. If SL is
2147 empty then remove sb from ROS. If ROS is empty then remove x from RO. If RO is
2148 empty then continue to the next numbered rule. If a RegistryEntryQuery element is

2149 specified within the SpecificationLinkBranch then let sl be a remaining specification link
2150 in SL. Treat RegistryEntryQuery element as follows:. Let RE be the result set of the
2151 RegistryEntryQuery as defined in Section 8.2.3. If d is not a specification link for some
2152 registry entry in RE, then remove sl from SL. If SL is empty then remove sb from ROS.
2153 If ROS is empty then remove x from RO. If RO is empty then continue to the next

2154 numbered rule.

2155

Copyright © OASIS, 2002. All Rights Reserved Page 68 of 167

2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177

2178

2179
2180
2181
2182

2183
2184

2185
2186

2187

2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202

OASIS/ebXML Registry Services Specification v2.0 September 2002

If a SpecificationLinkBranch is specified within the TargetAssociationBranch, then let
ROS be the set of SpecificationLink instances that are the source object of some element
of AF. If ROS is empty, then remove x from RO. If RO is empty then continue to the
next numbered rule. Let g be the member of ROS. If a SpecificationLinkFilter element is
specified within the SpecificationLinkBranch, and if sl does not satisfy that filter, then
remove s from ROS. If ROS is empty then remove x from RO. If RO is empty then
continue to the next numbered rule. If a RegistryObjectQuery element is specified within
the SpecificationLinkBranch then let sl be aremaining specification link in ROS. Treat
RegistryObjectQuery element as follows: Let RO be the result set of the
RegistryObjectQuery as defined in Section 8.2.2. If d is not a specification link for some
registry object in RO, then remove d from ROS. If ROS is empty then remove x from
RO. If RO is empty then continue to the next numbered rule. If a RegistryEntryQuery
element is specified within the SpecificationLinkBranch then let o be aremaining
specification link in ROS. Treat RegistryEntryQuery element as follows: Let RE be the
result set of the RegistryEntryQuery as defined in Section 8.2.3. If d is not a specification
link for some registry entry in RE, then remove d from ROS. If ROS is empty then
remove x from RO. If RO is empty then continue to the next numbered rule. If a
ServiceBindingTargetBranchis specified within the ServiceBindingBranch then let SBT
be the set of ServiceBinding instances that satisfy the ServiceBindingTargetBranchand
are the target service binding of some element of ROT. If SBT is empty then remove sb
from ROT. If ROT is empty, then remove x from RO. If RO is empty then continue to the
next numbered rule.

If an AssociationQuery is specified within the TargetAssociationBranch, then let ROS be
the set of Association instances that satisfy the AssociationQuery and are the source
object of some element of AF. If ROS is empty, then remove x from RO. If RO is empty
then continue to the next numbered rule (Rule 2).

2. If RO isempty, then raise the warning: registry object query result is empty; otherwise, set
RO to be the result of the RegistryObjectQuery.

3. Return the result and any accumulated warnings or exceptions (in the RegistryErrorList)
within the RegistryResponse.

Examples

A client application needs all items that are classified by two different classification schemes,
one based on "Industry” and another based on " Geography". Both schemes have been defined by
ebXML and are registered as "urn:ebxml:csiindustry” and "urn:ebxml:cs.geography”,
respectively. The following query identifies registry entries for al registered items that are
classified by Industry as any subnode of "Automotive" and by Geography as any subnode of
"Asia/Japan”.

<AdhocQueryRequest>
<ResponseOption returnType = "RegistryEntry"/>
<FilterQuery>
<RegistryObjectQuery>
<ClassifiedByBranch>
<ClassificationFilter>
<Clause>
<SimpleClause |eftArgument = "path">

Copyright © OASIS, 2002. All Rights Reserved Page 69 of 167

OASIS/ebXML Registry Services Specification v2.0 September 2002

A client application wishes to identify all RegistryObject instances that are classified by some
internal classification scheme and have some given keyword as part of the description of one of
the classification nodes of that classification scheme. The following query identifies al such
RegistryObject instances. The query takes advantage of the knowledge that the classification
scheme isinternal, and thus that all of its nodes are fully described as ClassificationNode
instances.

Copyright © OASIS, 2002. All Rights Reserved Page 70 of 167

2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270

2271

2272

2273
2274

2275
2276

2277

2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302

OASIS/ebXML Registry Services Specification v2.0 September 2002

8.2.3 RegistryEntryQuery

Purpose

To identify a set of registry entry instances as the result of a query over selected registry
metadata.

ebRIM Binding
Registry Entry
Registry
Object
= =Figure27: ebRIM Binding for RegistryEntryQuery
Definition

Copyright © OASIS, 2002. All Rights Reserved Page 71 of 167

2303

2304

2305
2306

2307

2308
2309
2310

2311
2312

2313
2314

2315
2316

2317

2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350

OASIS/ebXML Registry Services Specification v2.0 September 2002

Semantic Rules

1. Let RE denote the set of all persistent RegistryEntry instances in the Registry. The following
steps will eliminate instances in RE that do not satisfy the conditions of the specified filters.

a) If REisempty then continue to the next numbered rule.

b) If aRegistryEntryFilter is not specified then go to the next step; otherwise, let x be a
registry entry in RE. If x does not satisfy the RegistryEntryFilter, then remove x from RE.
If RE is empty then continue to the next numbered rule.

C) Let RE be the set of remaining RegistryEntry instances. Evaluate inherited
RegistryObjectQuery over RE as explained in Section 8.2.2.

2. If RE isempty, then raise the warning: registry entry query result is empty; otherwise, set RE
to be the result of the RegistryEntryQuery.

3. Return the result and any accumulated warnings or exceptions (in the RegistryErrorList)
within the RegistryResponse.

Examples

A client wishes to establish a trading relationship with XY Z Corporation and wants to know if
they have registered any of their business documents in the Registry. The following query
returns a set of registry entry identifiers for currently registered items submitted by any
organization whose name includes the string " XY Z". It does not return any registry entry
identifiers for superseded, replaced, deprecated, or withdrawn items.

<AdhocQueryRequest>
<ResponseOption returnType = " ObjectRef"/>
<FilterQuery>
<RegistryEntryQuery>
<TargetAssociationBranch>
<AssociationFilter>
<Clause>
<SinpleClause |eftArgument = "associationType">
<StringClause stringPredicate = "Equal">SubmitterOf </StringClause>
</SimpleClause>
</Clause>
</AssociationFilter>
<OrganizationQuery>
<NameBranch>
<L ocalizedStringFilter>
<Clause>
<SimpleClause leftArgument = "value">
<StringClause stringPredicate = "Contains'>XY Z</StringClause>
</SimpleClause>
</Clause>
</LocalizedStringFilter>
</NameBranch>
</OrganizationQuery>
</TargetAssociationBranch>
<RegistryEntryFilter>
<Clause>
<SimpleClause |eftArgument = "status">

Copyright © OASIS, 2002. All Rights Reserved Page 72 of 167

OASIS/ebXML Registry Services Specification v2.0 September 2002

A client is using the United Nations Standard Product and Services Classification (UNSPSC)
scheme and wants to identify all companies that deal with products classified as "Integrated
circuit components’, i.e. UNSPSC code "321118". The client knows that companies have
registered their Collaboration Protocol Profile (CPP) documents in the Registry, and that each
such profile has been classified by UNSPSC according to the products the company deals with.
However, the client does not know if the UNSPSC classification scheme isinterna or externa to
this registry. The following query returns a set of approved registry entry instances for CPP's of
companies that deal with integrated circuit components.

Copyright © OASIS, 2002. All Rights Reserved Page 73 of 167

2406
2407
2408
2409
2410
2411

2412

2413
2414

2415
2416

2417

2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440

2441

2442
2443

2444

OASIS/ebXML Registry Services Specification v2.0 September 2002

8.2.4 AssociationQuery

Purpose

To identify a set of association instances as the result of a query over selected registry metadata.

ebRIM Binding
Association
Registry
Object
= <=Figure28: ebRIM Binding for AssociationQuery
Definition

Semantic Rules

1. Let A denote the set of al persistent Association instances in the Registry. The following
steps will eliminate instances in A that do not satisfy the conditions of the specified filters.

a) If A isempty then continue to the next numbered rule.

Copyright © OASIS, 2002. All Rights Reserved Page 74 of 167

2445
2446
2447
2448

2449
2450

2451
2452

2453
2454

2455

2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491

OASIS/ebXML Registry Services Specification v2.0 September 2002

b) If an AssociationFilter element is not directly contained in the AssociationQuery e ement,
then go to the next step; otherwise let x be an association instance in A. If x does not
satisfy the AssociationFilter then remove x from A. If A is empty then continue to the
next numbered rule.

C) Let A bethe set of remaining Association instances. Evaluate inherited
RegistryObjectQuery over A as explained in Section 8.2.2.

2. If A isempty, then raise the warning: association query result is empty; otherwise, set A to
be the result of the AssociationQuery.

3. Return the result and any accumulated warnings or exceptions (in the RegistryErrorList)
within the RegistryResponse.

Examples

A client application wishes to identify a set of associations that are ‘equivalentTo’ a set of other
associations.

Copyright © OASIS, 2002. All Rights Reserved Page 75 of 167

2492

2493

2494
2495

2496

2497

2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523

OASIS/ebXML Registry Services Specification v2.0

September 2002

8.2.5 AuditableEventQuery

l

Registry
Entry

Purpose
To identify a set of auditable event instances as the result of a query over selected registry
metadata.
ebRIM Binding
Auditable Event
Registry
l Object
Registry v
Object User
Postal Telephone
Address Number
h 4
Organization
<= =Figure29: ebRIM Binding for AuditableEventQuery
Definition

Copyright © OASIS, 2002. All Rights Reserved

Page 76 of 167

2524

2525
2526
2527

2528

2529
2530
2531

2532
2533
2534
2535
2536

2537
2538
2539
2540
2541

2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554

2555
2556

2557
2558

2559
2560

2561

2562
2563
2564
2565
2566

OASIS/ebXML Registry Services Specification v2.0 September 2002

Semantic Rules

1. Let AE denote the set of al persistent AuditableEvent instances in the Registry. The
following steps will eliminate instances in AE that do not satisfy the conditions of the
specified filters.

a)
b)

f)

If AE isempty then continue to the next numbered rule.

If an AuditableEventFilter is not specified then go to the next step; otherwise, let x be an
auditable event in AE. If x does not satisfy the AuditableEventFilter, then remove x from
AE. If AE is empty then continue to the next numbered rule.

If a RegistryObjectQuery element is not specified then go to the next step; otherwise, let
x be aremaining auditable event in AE. Treat RegistryObjectQuery element as follows:
Let RO be the result set of the RegistryObjectQuery as defined in Section 8.2.2. If x is
not an auditable event for some registry object in RO, then remove x from AE. If AE is
empty then continue to the next numbered rule.

If a RegistryEntryQuery element is not specified then go to the next step; otherwise, let x
be a remaining auditable event in AE. Treat RegistryEntryQuery element as follows: Let
RE be the result set of the RegistryEntryQuery as defined in Section 8.2.3. If x isnot an
auditable event for some registry entry in RE, then remove x from AE. If AE is empty
then continue to the next numbered rule.

If a UserBranch element is not specified then go to the next step; otherwise, let x be a
remaining auditable event in AE. Let u be the user instance thet invokes x. If a UserFilter
element is specified within the UserBranch, and if u does not satisfy that filter, then
remove x from AE. If a PostalAddressFilter element is specified within the UserBranch,
and if the postal address of u does not satisfy that filter, then remove x from AE. If
TelephoneNumberFilter(s) are specified within the UserBranch and if any of the
TelephoneNumberFiltersisn't satisfied by all of the telephone numbers of u then remove
x from AE. If Email AddressFilter(s) are specified within the UserBranch and if any of
the Email AddressFiltersisn’t satisfied by all of the email addresses of u then remove x
from AE. If an OrganizationQuery element is specified within the UserBranch, then let o
be the Organization instance that is identified by the organization that u is affiliated with.
If 0 doesn’t satisfy OrganizationQuery as defined in Section 8.2.11 then remove x from
AE. If AE isempty then continue to the next numbered rule.

Let AE be the set of remaining AuditableEvent instances. Evaluate inherited
RegistryObjectQuery over AE as explained in Section 8.2.2.

2. If AE isempty, then raise the warning: auditable event query result is empty; otherwise set
AE to be the result of the AuditableEventQuery.

3. Return the result and any accumulated warnings or exceptions (in the RegistryErrorList)
within the RegistryResponse.

Examples

A Registry client has registered an item and it has been assigned a name "urn:path:myitem”. The
client is now interested in al events since the beginning of the year that have impacted that item.
The following query will return a set of AuditableEvent instances for all such events.

<AdhocQueryRequest>

Copyright © OASIS, 2002. All Rights Reserved Page 77 of 167

OASIS/ebXML Registry Services Specification v2.0 September 2002

A client company has many registered objects in the Registry. The Registry alows events

submitted by other organizations to have an impact on your registered items, e.g. new
classifications and new associations. The following query will return a set of identifiers for all

auditable events, invoked by some other party, that had an impact on an item submitted by
1] myorg)! .

Copyright © OASIS, 2002. All Rights Reserved Page 78 of 167

2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642

2643

2644

2645
2646

2647

2648

2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662

OASIS/ebXML Registry Services Specification v2.0 September 2002

8.2.6 ClassificationQuery

Purpose

To identify a set of classification instances as the result of a query over selected registry
metadata.

ebRIM Binding

Classification

Registry
i Object
Registry Object / Registry
Entry

Classification Classification
Scheme Node

= =Figure30: ebRIM Binding for ClassificationQuery

Definition

Copyright © OASIS, 2002. All Rights Reserved Page 79 of 167

2663
2664

2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675

2676

2677
2678

2679

2680
2681
2682
2683

2684
2685
2686
2687

2688
2689
2690
2691

2692
2693
2694
2695
2696

2697
2698
2699
2700
2701

2702
2703

2704
2705

OASIS/ebXML Registry Services Specification v2.0 September 2002

</complexType>
<element name = "ClassificationQuery" type = "tns:ClassificationQueryType"/>

<element name=" ClassificationQueryResult" >
<complexType>
<choice minOccurs="0" maxOccurs="unbounded">
<element ref="rim:ObjectRef" />
<element ref="rim:RegistryObject” />
<element ref="rim:Classification" />
</choice>
</complexType>
</element>

Semantic Rules

1. Let C denote the set of all persistent Classification instances in the Registry. The following
steps will eliminate instances in C that do not satisfy the conditions of the specified filters.

a) If Cisempty then continue to the next numbered rule.

b) If aClassficationFilter element is not directly contained in the ClassificationQuery
element, then go to the next step; otherwise let x be an classification instance in C. If x
does not satisfy the ClassificationFilter then remove x from C. If Cis empty then
continue to the next numbered rule.

c) If aClassificationSchemeQuery is not specified then go to the next step; otherwise, let x
be aremaining classification in C. If the defining classification scheme of x does not
satisfy the ClassificationSchemeQuery as defined in Section 8.2.8, then remove x from C.
If C isempty then continue to the next numbered rule.

d) If aClassificationNodeQuery is not specified then go to the next step; otherwise, let x be
aremaining classification in C. If the classification node of x does not satisfy the
ClassificationNodeQuery as defined in Section 8.2.7, then remove x from C. If Cis
empty then continue to the next numbered rule.

e) If aRegistryObjectQuery element is not specified then go to the next step; otherwise, let
X be aremaining classification in C. Treat RegistryObjectQuery element as follows:. Let
RO be the result set of the RegistryObjectQuery as defined in Section 8.2.2. If x isnot a
classification of at least one registry object in RO, then remove x from C. If C is empty
then continue to the next numbered rule.

f) If aRegistryEntryQuery element is not specified then go to the next step; otherwise, let x
be aremaining classification in C. Treat RegistryEntryQuery element as follows: Let RE
be the result set of the RegistryEntryQuery as defined in Section 8.2.3. If x isnot a
classification of at least one registry entry in RE, then remove x from C. If Cis empty
then continue to the next numbered rule.

2. If Cisempty, then raise the warning: classification query result is empty; otherwise
otherwise, set C to be the result of the ClassificationQuery.

3. Return the result and any accumulated warnings or exceptions (in the RegistryErrorList)
within the RegistryResponse.

Copyright © OASIS, 2002. All Rights Reserved Page 80 of 167

2706

2707

2708
2709

2710

2711

2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739

OASIS/ebXML Registry Services Specification v2.0 September 2002

8.2.7 ClassificationNodeQuery

Purpose

To identify a set of classification node instances as the result of a query over selected registry
metadata.

ebRIM Binding
Classification
Node
Registry
Parent Object Children
v Classification \ 4
Classification Scheme Classification
Node Node
< =Figure31: ebRIM Binding for ClassificationNodeQuery
Definition

Copyright © OASIS, 2002. All Rights Reserved Page 81 of 167

2740

2741
2742
2743

2744

2745
2746
2747

2748
2749
2750
2751

2752
2753
2754

2755
2756
2757
2758
2759
2760
2761
2762
2763

2764
2765

2766
2767
2768
2769
2770
2771

2772
2773
2774
2775
2776
2077
2778
2779
2780
2781
2782

OASIS/ebXML Registry Services Specification v2.0 September 2002

Semantic Rules

1. Let CN denote the set of all persistent ClassificationNode instances in the Registry. The
following steps will eliminate instances in CN that do not satisfy the conditions of the
specified filters.

a)

If CN is empty then continue to the next numbered rule.

b) If a ClassificationNodeFilter is not specified then go to the next step; otherwise, let x be a

classification node in CN. If x does not satisfy the ClassificationNodeFilter then remove
x from CN. If CN is empty then continue to the next numbered rule.

If a ClassificationSchemeQuery is not specified then go to the next step; otherwise, let x
be aremaining classification node in CN. If the defining classification scheme of x does
not satisfy the ClassificationSchemeQuery as defined in Section 8.2.8, then remove x
from CN. If CN is empty then continue to the next numbered rule.

If a ClassificationNodeParentBranch element is not specified, then go to the next step;
otherwise, let x be aremaining classification node in CN and execute the following
paragraph with n=x.

Let n be a classification node instance. If n does not have a parent node (i.e. if nis abase
level node), then remove x from CN and go to the next step; otherwise, let p be the parent
node of n. If a ClassificationNodeFilter element is directly contained in the
ClassificationNodeParentBranch and if p does not satisfy the ClassificationNodeFilter,
then remove x from CN. If CN isempty then continue to the next numbered rule. If a
ClassificationSchemeQuery element is directly contained in the
ClassificationNodeParentBranch and if defining classification scheme of p does not
satisfy the ClassificationSchemeQuery, then remove x from CN. If CN isempty then
continue to the next numbered rule.

If another ClassificationNodeParentBranch element is directly contained within this
ClassificationNodeParentBranch element, then repeat the previous paragraph with n=p.

If a ClassificationNodeChildrenBranch element is not specified, then continue to the next
numbered rule; otherwise, let x be aremaining classification node in CN. If x is not the
parent node of some ClassificationNode instance, then remove x from CN and if CN is
empty continue to the next numbered rule; otherwise, treat each
ClassificationNodeChildrenBranch element separately and execute the following
paragraph with n = x.

Let n be a classification node instance. If a ClassificationNodeFilter element is not
specified within the ClassificationNodeChildrenBranch element then let CNC be the set
of all classification nodes that have n as their parent node; otherwise, let CNC be the set
of all classification nodes that satisfy the ClassificationNodeFilter and have nas their
parent node. If CNC is empty, then remove x from CN and if CN is empty continue to the
next numbered rule; otherwise, let ¢ be any member of CNC. If a
ClassificationSchemeQuery element is directly contained in the
ClassificationNodeChildrenBranchand if the defining classification scheme of ¢ does not
satisfy the ClassificationSchemeQuery then remove ¢ from CNC. If CNC is empty then
remove x from CN. If CN is empty then continue to the next numbered rule; otherwise,
let y be an element of CNC and continue with the next paragraph.

Copyright © OASIS, 2002. All Rights Reserved Page 82 of 167

OASIS/ebXML Registry Services Specification v2.0 September 2002

If the ClassificationNodeChildrenBranch element istermindl, i.e. if it does not directly
contain another ClassificationNodeChildrenBranch element, then continue to the next
numbered rule; otherwise, repeat the previous paragraph with the new
ClassificationNodeChildrenBranch element and with n =y.

f) Let CN be the set of remaining ClassificationNode instances. Evaluate inherited
RegistryObjectQuery over CN as explained in Section 8.2.2.

2. If CN isempty, then raise the warning: classification node query result is empty; otherwise
set CN to be the result of the ClassificationNodeQuery.

3. Return the result and any accumulated warnings or exceptions (in the RegistryErrorList)
within the RegistryResponse.

Path Filter Expression usage in ClassificationNodeFilter

The path filter expression is used to match classification nodes in ClassificationNodeFilter
elementsinvolving the path attribute of the ClassificationNode class as defied by the getPath
method in [ebRIM].

The path filter expressions are based on avery small and proper sub-set of location path syntax
of XPath.

The path filter expression syntax includes support for matching multiple nodes by using wild
card syntax as follows:

?? Useof ‘*’ asawildcard in place of any path element in the pathFilter

?? Useof ‘/I' syntax to denote any descendent of a node in the pathFilter

It is defined by the following BNF grammar:

pathFilter ::="/' schemeld nodePath
nodePath ::= slashes nodeCode

| dashes‘*’

| dashes nodeCode (nodePath)?
Slashes ==/ |'If

In the above grammer, schemeld is the id attribute of the ClassificationScheme instance. In the
above grammar nodeCode is defined by NCName production as defined by
http://www.w3.ora/TR/REC-xml -names/#NT-NCName.

The semantic rules for the ClassificationNodeFilter element allow the use of path attribute as a
filter that is based on the EQUAL clause. The pattern specified for matching the EQUAL clause
isaPATH Filter expression.

Thisisillustrated in the following example that matches all second level nodes in
ClassificationScheme with id * Geography-id’ and with code ‘ Japan':

<C assi fi cati onNodeQuery>
<O assi fi cati onNodeFi | t er>
<Cl ause>
<Si npl ed ause | eft Argunent = "path">
<StringCd ause stringPredi cate = "Equal ">// Geography-i d/ */ Japan</ Stri ngd ause>
</ Si npl ed ause>
</ d ause>
</ d assi ficationNodeFilter>
</ O assi fi cat i onNodeQuer y>

Copyright © OASIS, 2002. All Rights Reserved Page 83 of 167

2844

2845
2846
2847

2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858

OASIS/ebXML Registry Services Specification v2.0 September 2002

Use Cases and Examples of Path Filter Expressions

The following table lists various use cases and examples using the sample Geography scheme
below:

<d assi fi cationSchene i d=' Geography-id nane="Ceography”/>

<0 assi fi cati onNode i d="NorthAnerica-id" parent="Ceography-id" code=NorthAnerica" />
<C assi ficationNode id="UnitedStates-id" parent="NorthAnerica-id" code="UnitedStates" />

<C assificati onNode i d="Asi a-id" parent="Ceography-id" code="Asia" />

<0 assi fi cati onNode i d="Japan-id" parent="Asia-i d" code="Japan" />
<O assi fi cati onNode i d="Tokyo-id" parent="Japan-id" code="Tokyo" />

= <=Table8: Path Filter Expressions for Use Cases

Use Case PATH Expression Description

Match al nodesin first

level that have a specified || /Geography-id/NorthAmerica Find all first level nodes whose

code is 'NorthAmerica

value

Find all children of first Match al nodes whose first leve
level node whose code is ||| /Geography-id/NorthAmerical* | | path e ement has code
“NorthAmerica’ "NorthAmerica'

Match al nodes that have
aspecified value | Geography-id//Japan Find all nodes with code "Japan”
regardless of level

Match all nodesin the
second level that have a /Geography-id/* /Japan
specified value

Find all second level nodes with
code 'Japan’

—

Match all nodesin the
3rd level that have a | Geography-id/*/*/Tokyo
specified value

Find dl third level nodes with
code Tokyo'

Examples

A client application wishes to identify all of the classification nodes in the first three levels of a
classification scheme hierarchy. The client knows that the name of the underlying classification
scheme is “urn:ebxml:cs:myscheme”. The following query identifies all nodes at the first three
levels.

<AdhocQueryRequest>
<ResponseOption returnType = "L eafClass"/>
<FilterQuery>
<ClassificationNodeQuery>
<ClassificationNodeFilter>
<Clause>
<SimpleClause leftArgument = "level Number" >
<Rational Clause logicalPredicate = "LE">
<IntClause>3</IntClause>

Copyright © OASIS, 2002. All Rights Reserved Page 84 of 167

OASIS/ebXML Registry Services Specification v2.0 September 2002

If, instead, the client wishes all levels returned, they could smply delete the
ClassificationNodeFilter element from the query.

The following query finds all children nodes of afirst level node whose code is NorthAmerica

The following query finds al third level nodes with code of Tokyo.

Copyright © OASIS, 2002. All Rights Reserved Page 85 of 167

2914

2915

2916
2917

2918

2919

2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932

2933

2934
2935
2936

2937

2938
2939
2940

2941
2942

2943
2944

2945
2946

2947

2948
2949
2950
2951

OASIS/ebXML Registry Services Specification v2.0 September 2002

8.2.8 ClassificationSchemeQuery

Purpose

To identify a set of classification scheme instances as the result of a query over selected registry
metadata.

ebRIM Binding
Classification Scheme
Registry
Entry
<= =Figure 32: ebRIM Binding for ClassificationSchemeQuery
Definition

<complexType name="ClassificationSchemeQueryType">
<complexContent>
<extension base="tns:RegistryEntryQueryType">
<seguence>

nAan

</sequence>
</extension>
</complexContent>
</complexType>
<element name=" ClassificationSchemeQuery" type="tns:ClassificationSchemeQueryType" />

Semantic Rules

1. Let CSdenotethe set of al persistent ClassificationScheme instances in the Registry. The
following steps will eliminate instances in CS that do not satisfy the conditions of the
specified filters.

a) If CSisempty then continue to the next numbered rule.
b) If aClassificationSchemeFilter is not specified then go to the next step; otherwise, let x

be a classification scheme in CS. If x does not satisfy the ClassificationSchemeFilter,
then remove x from CS. If CSis empty then continue to the next numbered rule.

c) Let CSbethe set of remaining ClassificationScheme instances. Evaluate inherited
RegistryEntryQuery over CS as explained in Section 8.2.3.

2. If CSisempty, then raise the warning: classification scheme query result is empty; otherwise,
set CSto be the result of the ClassificationSchemeQuery.

3. Return the result and any accumulated warnings or exceptions (in the RegistryErrorList)
within the RegistryResponse.

Examples

A client application wishes to identify all classification scheme instances in the Registry.
<AdhocQueryRequest>

<ResponseOption returnType = "L eaf Class"/>

<FilterQuery>

Copyright © OASIS, 2002. All Rights Reserved Page 86 of 167

2952
2953
2954

2955

2956

2957

2958
2959

2960

2961

2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987

OASIS/ebXML Registry Services Specification v2.0 September 2002

8.2.9 RegistryPackageQuery

Purpose

To identify a set of registry package instances as the result of a query over selected registry
metadata.

ebRIM Binding
Registry
Package
Registry
Entry
Reg_istry]
Object R(Egltstry
ntry
= =Figure 33: ebRIM Binding for RegistryPackageQuery
Definition

Copyright © OASIS, 2002. All Rights Reserved Page 87 of 167

2988

2989
2990
2991

2992

2993
2994
2995
2996

2997
2998
2999
3000
3001
3002
3003
3004
3005
3006

3007
3008

3009
3010

3011
3012

3013

3014

3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033

OASIS/ebXML Registry Services Specification v2.0 September 2002

Semantic Rules

1. Let RP denote the set of al persistent RegistryPackage instances in the Registry. The
following steps will eliminate instances in RP that do not satisfy the conditions of the
specified filters.

a)

b)

c)

d)

2. |If

If RP is empty then continue to the next numbered rule.

If a RegistryPackageFilter is not specified, then continue to the next numbered rule;
otherwise, let x be aregistry package instance in RP. If x does not satisfy the
RegistryPackageFilter then remove x from RP. If RP is empty then continue to the next
numbered rule.

If a RegistryObjectQuery element is directly contained in the RegistryPackageQuery
element then treat each RegistryObjectQuery as follows: let RO be the set of
RegistryObject instances returned by the RegistryObjectQuery as defined in Section 8.2.2
and let PO be the subset of RO that are members of the package x. If PO is empty, then
remove X from RP. If RP is empty then continue to the next numbered rule. If a
RegistryEntryQuery element is directly contained in the RegistryPackageQuery element
then treat each RegistryEntryQuery as follows: let RE be the set of RegistryEntry
instances returred by the RegistryEntryQuery as defined in Section 8.2.3 and let PE be
the subset of RE that are members of the package x. If PE is empty, then remove x from
RP. If RP is empty then continue to the next numbered rule.

Let RP be the set of remaining RegistryPackage instances. Evaluate inherited
RegistryEntryQuery over RP as explained in Section 8.2.3.

RP is empty, then raise the warning: registry package query result is empty; otherwise set

RP to be the result of the RegistryPackageQuery.

3. Return the result and any accumulated warnings or exceptions (in the RegistryErrorList)
within the RegistryResponse.

Exam

ples

A client application wishes to identify al package instances in the Registry that contain an
Invoice extrinsic object as amember of the package.

<AdhocQueryRequest>
<ResponseOption returnType = "LeafClass'/>
<FilterQuery>
<RegistryPackageQuery>

<RegistryEntryQuery>
<RegistryEntryFilter>
<Clause>
<SimpleClause |eftArgument = "objectType">
<StringClause stringPredicate = "Equal">I nvoice</StringClause>
</SimpleClause>
</Clause>
</RegistryEntryFilter>
</RegistryEntryQuery>

</RegistryPackageQuery>
</FilterQuery>
</AdhocQueryRequest>

Copyright © OASIS, 2002. All Rights Reserved Page 83 of 167

3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044

3045
3046
3047
3048
3049
3050

3051
3052
3053
3054

3055

3056

3057
3058

3059
3060

3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073

OASIS/ebXML Registry Services Specification v2.0 September 2002

A client application wishes to identify all package instances in the Registry that are not empty.

<AdhocQueryRequest>
<ResponseOption returnType = "Leaf Class'/>
<FilterQuery>
<RegistryPackageQuery>
<RegistryObjectQuery/>
</RegistryPackageQuery>
</FilterQuery>
</AdhocQueryRequest>

A client application wishes to identify all package instances in the Registry that are empty. Since
the RegistryPackageQuery is not set up to do negations, clients will have to do two separate
RegistryPackageQuery requests, one to find all packages and ancther to find all nonempty
packages, and then do the set difference themselves. Alternatively, they could do amore
complex RegistryEntryQuery and check that the packaging association between the package and
its members is non-existent.

Note: A registry package is an intrinsic RegistryEntry instance that is completely determined by
its associations with its members. Thus a RegistryPackageQuery can aways be re-specified asan
equivalent RegistryEntryQuery using appropriate “ Source” and “Target” associations. However,
the equivalent RegistryEntryQuery is often more complicated to write.

8.2.10 ExtrinsicObjectQuery

Purpose

To identify a set of extrinsic object instances as the result of a query over selected registry
metadata.

Extrinsic Object

Registry
Entry

ebRIM Binding
= =Figure 34: ebRIM Binding for ExtrinsicObjectQuery

Definition

<complexType name="ExtrinsicObjectQueryType">
<complexContent>
<extension base="tns:RegistryEntryQueryType" >
<sequence>
<element ref="tns:ExtrinsicObjectFilter" minOccurs="0" maxOccurs="1" />
</sequence>
</extension>
</complexContent>
</complexType>
<element name="ExtrinsicObjectQuery" type="tns:ExtrinsicObjectQueryType" />

Copyright © OASIS, 2002. All Rights Reserved Page 89 of 167

3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084

3085

3086
3087
3088

3089

3090
3091
3092

3093
3094

3095
3096

3097
3098

3099

3100

3101
3102

3103

OASIS/ebXML Registry Services Specification v2.0

September 2002

<element name=" ExtrinsicObjectQueryResult" >
<complexType>
<choice minOccurs="0" maxOccurs="unbounded" >
<element ref="rim:ObjectRef" />
<element ref="rim:RegistryEntry" />
<element ref="rim:RegistryObject” />
<element ref="rim:ExtrinsicObject" />
</choice>
</complexType>
</element>

Semantic Rules

1. Let EO denote the set of all persistent ExtrinsicObject instances in the Registry. The
following steps will eliminate instances in EO that do not satisfy the conditions of the

specified filters.

a) If EO isempty then continue to the next numbered rule.

b) If a ExtrinsicObjectFilter is not specified then go to the next step; otherwise, let x be an
extrinsic object in EO. If x does not satisfy the ExtrinsicObjectFilter then remove x from

EO. If EO is empty then continue to the next numbered rule.

c) Let EO be the set of remaining ExtrinsicObject instances. Evaluate inherited

RegistryEntryQuery over EO as explained in Section 8.2.3.

2. If EO isempty, then raise the warning: extrinsic object query result is empty; otherwise, set

EO to be the result of the ExtrinsicObjectQuery.

3. Return the result and any accumulated warnings or exceptions (in the RegistryErrorList)

within the RegistryResponse.

8.2.11 OrganizationQuery

Purpose

To identify a set of organization instances as the result of a query over selected registry

metadata.

ebRIM Binding

Copyright © OASIS, 2002. All Rights Reserved

Page 90 of 167

3104

3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134

3135

3136
3137
3138

3139

OASIS/ebXML Registry Services Specification v2.0

September 2002

Organization

lChi Idren

Organization

Registry
Parentl Object
Organization l
Postal Telephone
Address User Number
Postal Organization Telephone
Address Number

< <=Figure35: ebRIM Binding for OrganizationQuery

Definition

Semantic Rules

1. Let ORG denote the set of all persistent Organization instances in the Registry. The
following steps will eliminate instances in ORG that do not satisfy the conditions of the

specified filters.

a) If ORG is empty then continue to the next numbered rule.

Copyright © OASIS, 2002. All Rights Reserved

Page 91 of 167

3140
3141
3142
3143

3144
3145
3146
3147

3148
3149
3150
3151

3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165

3166
3167
3168

3169
3170
3171
3172
3173

3174
3175

3176
3177
3178
3179
3180

OASIS/ebXML Registry Services Specification v2.0 September 2002

b)

c)

d)

e)

9)

If an OrganizationFilter element is not directly contained in the OrganizationQuery
element, then go to the next step; otherwise let x be an organization instance in ORG. If x
does not satisfy the OrganizationFilter then remove x from ORG. If ORG is empty then
continue to the next numbered rule.

If a Postal AddressFilter element is not directly contained in the OrganizationQuery
element then go to the next step; otherwise, et x be an extrinsic object in ORG. If postal
address of x does not satisfy the Postal AddressFilter then remove x from ORG. If ORG is
empty then continue to the next numbered rule.

If no TelephoneNumberFilter element is directly contained in the OrganizationQuery
element then go to the next step; otherwise, let x be an extrinsic object in ORG. If any of
the TelephoneNumberFiltersisn’'t satisfied by all of the telephone numbers of x then
remove X from ORG. If ORG is empty then continue to the next numbered rule.

If a UserBranch element is not directly contained in the OrganizationQuery element then
go to the next step; otherwise, let x be an extrinsic object in ORG. Let u be the user
instance that is affiliated with x. If a UserFilter element is specified within the
UserBranch, and if u does not satisfy that filter, then remove x from ORG. If a

Postal AddressFilter element is specified within the UserBranch, and if the postal address
of u does not satisfy that filter, then remove x from ORG. If TelephoneNumberFilter(s)
are specified within the UserBranch and if any of the TelephoneNumberFiltersisn’t
satisfied by all of the telephone numbers of x then remove x from ORG. If

Email AddressFilter(s) are specified within the UserBranch and if any of the

Email AddressFiltersisn’t satisfied by al of the email addresses of x then remove x from
ORG. If an OrganizationQuery element is specified within the UserBranch, then let o be
the Organization instance that is identified by the organization that u is affiliated with. If
0 doesn’t satisfy OrganizationQuery as defined in Section 8.2.11 then remove x from
ORG. If ORG is empty then continue to the next numbered rule.

If a OrganizationParentBranch element is not specified within the OrganizationQuery,
then go to the next step; otherwise, let x be an extrinsic object in ORG. Execute the
following paragraph with o = x:

Let o be an organization instance. If an OrganizationFilter is not specified within the
OrganizationParentBranchand if o has no parent (i.e. if o isaroot organization in the
Organization hierarchy), then remove x from ORG,; otherwise, |et p be the parent
organization of o. If p does not satisfy the OrganizationFilter, then remove x from ORG.
If ORG is empty then continue to the next numbered rule.

If another OrganizationParentBranchelement is directly contained within this
Organi zationParentBranch element, then repeat the previous paragraph with o = p.

If a OrganizationChildrenBranch element is not specified, then continue to the next
numbered rule; otherwise, let X be a remaining organization in ORG. If x is hot the parent
node of some organization instance, then remove x from ORG and if ORG is empty
continue to the next numbered rule; otherwise, treat each OrganizationChildrenBranch
element separately and execute the following paragraph with n = x.

Copyright © OASIS, 2002. All Rights Reserved Page 92 of 167

3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194

3195
3196
3197
3198

3199
3200

3201
3202

3203
3204

3205

3206

3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229

OASIS/ebXML Registry Services Specification v2.0 September 2002

h)

Let n be an organization instance. If an OrganizationFilter element is not specified within
the OrganizationChildrenBranch element then let ORGC be the set of all organizations
that have n as their parent node; otherwise, let ORGC be the set of al organizations that
satisfy the OrganizationFilter and have n as their parent node. If ORGC is empty, then
remove X from ORG and if ORG is empty continue to the next numbered rule; otherwise,
let ¢ be any member of ORGC. If a Postal AddressFilter element is directly contained in
the OrganizationChildrenBranch and if the postal address of ¢ does not satisfy the

Postal AddressFilter then remove ¢ from ORGC. If ORGC is empty then remove x from
ORG. If ORG isempty then continue to the next numbered rule. If no
TelephoneNumberFilter element is directly contained in the OrganizationChildrenBranch
and if any of the TelephoneNumberFiltersisn’t satisfied by all of the telephone numbers
of ¢ then remove c from ORGC. If ORGC is empty then remove x from ORG. If ORG is
empty then continue to the next numbered rule; otherwise, let y be an element of ORGC
and continue with the next paragraph.

I the OrganizationChildrenBranch element is terminal, i.e. if it does not directly contain
another OrganizationChildrenBranch element, then continue to the next numbered rule;
otherwise, repeat the previous paragraph with the new OrganizationChildrenBranch
element and withn =y.

Let ORG be the set of remaining Organization instances. Evaluate inherited
RegistryObjectQuery over ORG as explained in Section 8.2.2.

2. If ORG is empty, then raise the warning: organization query result is empty; otherwise set
ORG to be the result of the OrganizationQuery.

3. Return the result and any accumulated warnings or exceptions (in the RegistryErrorList)
within the RegistryResponse.

Examples

A client application wishes to identify a set of organizations, based in France, that have
submitted a PartyProfile extrinsic object this year.

<AdhocQueryRequest>
<ResponseOption returnType = "LeafClass" returnComposedObjects = "True"/>
<FilterQuery>

<OrganizationQuery>
<SourceAssociationBranch>
<AssociationFilter>
<Clause>
<SimpleClause leftArgument = "associationType'">
<StringClause stringPredicate = "Equal " >SubmitterOf </StringClause>
</SimpleClause>
</Clause>
</AssociationFilter>
<RegistryObjectQuery>
<RegistryObjectFilter>
<Clause>
<SimpleClause leftArgument = "objectType">
<StringClause stringPredicate = "Equal">CPP</StringClause>
</SimpleClause>
</Clause>
</RegistryObjectFilter>
<AuditableEventQuery>

Copyright © OASIS, 2002. All Rights Reserved Page 93 of 167

OASIS/ebXML Registry Services Specification v2.0 September 2002

A client application wishes to identify all organizations that have Corporation named XYZ asa
parent.

8.2.12 ServiceQuery

Purpose

To identify a set of service instances as the result of a query over selected registry metadata.

ebRIM Binding

Copyright © OASIS, 2002. All Rights Reserved Page 94 of 167

OASIS/ebXML Registry Services Specification v2.0 September 2002

Service
Registry Entry
Service Binding
Registry Specification Link Registry
3280 = =Figure36: ebRIM Binding for ServiceQuery

3281 Definition
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306

3307 Semantic Rules

3308 1. Let Sdenotethe set of al persistent Service instances in the Registry. The following steps
3309 will eliminate instances in S that do not satisfy the conditions of the specified filters.

3310 a) If Sisempty then continue to the next numbered rule.

Copyright © OASIS, 2002. All Rights Reserved Page 95 of 167

3311
3312
3313

3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338

3339
3340

3341
3342

3343
3344

3345
3346

3347

3348
3349
3350

3351
3352

OASIS/ebXML Registry Services Specification v2.0 September 2002

b)

d)

If a ServicetFilter is not specified then go to the next step; otherwise, let X be aservicein
S. If x does not satisfy the ServiceFilter, then remove x from S. If Sis empty then
continue to the next numbered rule.

If a ServiceBindingBranch is not specified then continue to the next numbered rule;
otherwise, consider each ServiceBindingBranch element separately as follows:

Let SB be the set of all ServiceBinding instances that describe binding of x. Let sb be the
member of SB. If a ServiceBindingFilter element is specified within the
ServiceBindingBranch, and if sb does not satisfy that filter, then remove sb from SB. If
SB is empty then remove x from S. If Sis empty then continue to the next numbered rule.
If a SpecificationLinkBranch is not specified within the ServiceBindingBranch then
continue to the next numbered rule; otherwise, consider each SpecificationLinkBranch
element separately as follows:

Let sb be aremaining service binding in SB. Let SL be the set of all specification link
instances dl that describe specification links of sb. If a SpecificationLinkFilter element is
specified within the SpecificationLinkBranch, and if d does not satisfy that filter, then
remove d from SL. If SL is empty then remove sb from SB. If SB is empty then remove
x from S. If Sisempty then continue to the next numbered rule. If a RegistryObjectQuery
element is specified within the SpecificationLinkBranch then let o be aremaining
specification link in SL. Treat RegistryObjectQuery element as follows: Let RO be the
result set of the RegistryObjectQuery as defined in Section 8.2.2. If d isnot a
specification link for some registry object in RO, then remove g fromSL. If SL is empty
then remove sb from SB. If SB is empty then remove x from S. If Sis empty then
continue to the next numbered rule. If a RegistryEntryQuery element is specified within
the SpecificationLinkBranch then let sl be aremaining specificationlink in SL. Treat
RegistryEntryQuery element as follows: Let RE be the result set of the
RegistryEntryQuery as defined in Section 8.2.3. If d is not a specification link for some
registry entry in RE, then remove d from SL. If SL is empty then remove sb from SB. If
SB is empty then remove x from S. If Sis empty then continue to the next numbered rule.

Let S be the set of remaining Service instances. Evaluate inherited RegistryEntryQuery
over AE as explained in Section 8.2.3.

2. If Sisempty, then raise the warning: service query result is empty; otherwise set Sto be the
result of the ServiceQuery.

3. Return the result and any accumulated warnings or exceptions (in the RegistryErrorList)
within the RegistryResponse.

Examples

8.2.13 Registry Filters

Purpose

To identify a subset of the set of al persistent instances of a given registry class.

Definition

<complexType name="FilterType">

Copyright © OASIS, 2002. All Rights Reserved Page 96 of 167

3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379

3380
3381

3382
3383
3384
3385
3386

3387
3388
3389
3390
3391

3392
3393
3394
3395
3396

3397
3398
3399
3400
3401

OASIS/ebXML Registry Services Specification v2.0

September 2002

<sequence>

<element ref="tns:Clause' />

</sequence>
</complexType>
<element name="
<element name="
<element name="
<element name="
<element name="
<element name="
<element name="
<element name="
<element name="
<element name="
<element name="
<element name="
<element name="
<element name="
<element name="
<element name="
<element name="
<element name="
<element name="
<element name="
<element name="
<element name="

Semantic Rule

RegistryObjectFilter" type="tns:FilterType" />
RegistryEntryFilter* type="tns:FilterType" />
ExtrinsicObjectFilter" type="tns:FilterType" />
RegistryPackageFilter" type="tns:FilterType" />
OrganizationFilter* type="tns:FilterType" />
ClassificationNodeFilter" type="tns:FilterType" />
AssociationFilter" type="tns:FilterType" />
ClassificationFilter' type="tns:FilterType" />
ClassificationSchemeFilter" type="tns.FilterType" />
ExternalLinkFilter" type="tns.FilterType" />
Externall dentifierFilter" type="tns:FilterType" />
SlotFilter" type="tns.FilterType" />
AuditableEventFilter* type="tns.FilterType" />
UserFilter' type="tns:FilterType" />
SlotValueFilter* type="tns:FilterType" />

Postal AddressFilter* type="tns:FilterType" />
TelephoneNumberFilter" type="tns:FilterType" />
EmailAddressFilter" type="tns:FilterType" />
ServiceFilter" type="tns:FilterType" />
ServiceBindingFilter' type="tns:FilterType" />
SpecificationLinkFilter" type="tns:FilterType" />
LocalizedStringFilter" type="tns.FilterType" />

S

1. The Clause element is defined in Section 8.2.14.

2. For every RegistryObjectFilter XML element, the leftArgument attribute of any containing
SimpleClause shall identify a public attribute of the RegistryObject UML class defined in
[ebRIM]. If not, raise exception: registry object attribute error. The RegistryObjectFilter
returns a set of identifiers for RegistryObject instances whose attribute values evaluate to
True for the Clause predicate.

3. For every RegistryEntryFilter XML element, the leftArgument attribute of any containing
SimpleClause shall identify a public attribute of the RegistryEntry UML class defined in
[ebRIM]. If not, raise exception: registry entry attribute error. The RegistryEntryFilter
returns a set of identifiers for RegistryEntry instances whose attribute values evaluate to True
for the Clause predicate.

4, For every ExtrinsicObjectFilter XML element, the leftArgument attribute of any containing
SimpleClause shall identify a public attribute of the ExtrinsicObject UML class defined in
[ebRIM]. If not, raise exception: extrinsic object attribute error. The ExtrinsicObjectFilter
returns a set of identifiers for ExtrinsicObject instances whose attribute values evaluate to
True for the Clause predicate.

5. For every RegistryPackageFilter XML element, the leftArgument attribute of any containing
SimpleClause shall identify a public attribute of the RegistryPackage UML class defined in
[ebRIM]. If not, raise exception: package attribute error. The RegistryPackageFilter returns
a set of identifiers for RegistryPackage instances whose attribute values evaluate to True for

the Clause

Copyright © OASIS,

predicate.

2002. All Rights Reserved

OASIS/ebXML Registry Services Specification v2.0 September 2002

3402 6. For every OrganizationFilter XML element, the leftArgument attribute of any containing

3403 SimpleClause shall identify a public attribute of the Organization or Postal Address UML
3404 classes defined in [ebRIM]. If not, raise exception: organization attribute error. The

3405 OrganizationFilter returns a set of identifiers for Organization instances whose attribute
3406 values evaluate to True for the Clause predicate.

3407 7. For every ClassificationNodeFilter XML element, the leftArgument attribute of any

3408 containing SimpleClause shall identify a public attribute of the ClassificationNode UML
3409 class defined in [ebRIM]. If not, raise exception: classification node attribute error. If the
3410 leftAttribute is the visible attribute “path” then if stringPredicate of the StringClause is not
3411 “Equal” then raise exception: classification node path attribute error. The

3412 ClassificationNodeFilter returns a set of identifiers for ClassificationNode instances whose
3413 attribute values evaluate to True for the Clause predicate.

3414 8. For every AssociationFilter XML element, the leftArgument attribute of any containing
3415 SimpleClause shall identify a public attribute of the Association UML class defined in

3416 [ebRIM]. If not, raise exception: association attribute error. The AssociationFilter returns a
3417 set of identifiers for Association instances whose attribute values evaluate to True for the
3418 Clause predicate.

3419 9. For every ClassificationFilter XML element, the leftArgument attribute of any containing
3420 SimpleClause shall identify a public attribute of the Classification UML class defined in
3421 [ebRIM]. If not, raise exception: classification attribute error. The ClassificationFilter
3422 returns a set of identifiers for Classification instances whose attribute values evaluate to True
3423 for the Clause predicate.

3424 10. For every ClassificationSchemeFilter XML element, the leftArgument attribute of any

3425 containing SimpleClause shall identify a public attribute of the ClassificationNode UML
3426 class defined in [ebRIM]. If not, raise exception: classification scheme attribute error. The
3427 ClassificationSchemeFilter returns a set of identifiers for ClassificationScheme instances
3428 whose attribute values evaluate to True for the Clause predicate.

3429 11. For every ExternalLinkFilter XML element, the leftArgument attribute of any containing
3430 SimpleClause shall identify a public attribute of the ExternalLink UML class defined in
3431 [ebRIM]. If not, raise exception: external link attribute error. The ExternalLinkFilter returns
3432 a set of identifiers for ExternalLink instances whose attribute values evaluate to True for the
3433 Clause predicate.

3434 12. For every ExternaldentiferFilter XML element, the leftArgument attribute of any containing
3435 SimpleClause shall identify a public attribute of the Externalldentifier UML class defined in
3436 [ebRIM]. If not, raise exception: external identifier attribute error. The

3437 ExternalldentifierFilter returns a set of identifiers for Externalldentifier instances whose
3438 attribute values evaluate to True for the Clause predicate.

3439 13. For every SlotFilter XML element, the leftArgument attribute of any containing

3440 SimpleClause shall identify a public attribute of the Slot UML class defined in [ebRIM]. If
3441 not, raise exception: dot attribute error. The SlotFilter returns a set of identifiers for Slot
3442 instances whose attribute values evaluate to True for the Clause predicate.

Copyright © OASIS, 2002. All Rights Reserved Page 98 of 167

3445
3446
3447

3449
3450
3451

3452
3453

3455
3456
3457
3458
3459

3460
3461
3462
3463
3464

3465
3466
3467
3468
3469

3470
3471
3472
3473
3474

3475
3476
3477
3478

3479
3480
3481
3482
3483

OASIS/ebXML Registry Services Specification v2.0 September 2002

14.

15.

16.

17.

18.

19.

20.

21.

For every AuditableEventFilter XML element, the leftArgument attribute of any containing
SimpleClause shall identify a public attribute of the AuditableEvent UML class defined in
[ebRIM]. If not, raise exception: auditable event attribute error. The AuditableEventFilter
returns a set of identifiers for AuditableEvent instances whose attribute values evaluate to
True for the Clause predicate.

For every UserFilter XML element, the leftArgument attribute of any containing
SimpleClause shall identify a public attribute of the User UML class defined in [ebRIM]. If
not, raise exception: user attribute error. The UserFilter returns a set of identifiers for User
instances whose attribute values evaluate to True for the Clause predicate.

SlotVaue is a derived, non-persistent class based on the Slot class from ebRIM. There is one
SlotVaue instance for each “value” in the “values’ list of a Sot instance. The visible
attribute of SlotValue is‘value’. It is a character string. The dynamic instances of SlotVaue
are derived from the “values’ attribute defined in ebRIM for a Slot instance. For every
SlotVaueFilter XML element, the leftArgument attribute of any containing SimpleClause
shall identify the “value” attribute of the SlotValue class just defined. If not, raise exception:
slot element attribute error. The SlotValueFilter returns a set of Slot instances whose “value”
attribute evaluates to True for the Clause predicate.

For every Postal AddressFilter XML element, the leftArgument attribute of any containing
SimpleClause shall identify a public attribute of the Postal Address UML class defined in
[ebRIM]. If not, raise exception: postal address attribute error. The Postal AddressFilter
returns a set of identifiers for Postal Address instances whose attribute values evaluate to True
for the Clause predicate.

For every TelephoneNumberFilter XML element, the leftArgument attribute of any
containing SimpleClause shall identify a public attribute of the TelephoneNumber UML
class defined in [eébRIM]. If not, raise exception: telephone number identity attribute error.
The TelephoneNumberFilter returns a set of identifiers for TelephoneNumber instances
whose attribute values evaluate to True for the Clause predicate.

For every Email AddressFilter XML element, the leftArgument attribute of any containing
SimpleClause shall identify a public attribute of the Email Address UML class defined in
[ebRIM]. If not, raise exception: email address attribute error. The Email AddressFilter
returns a set of identifiers for Email Addresss instances whose attribute values evaluate to
True for the Clause predicate.

For every ServiceFilter XML element, the leftArgument attribute of any containing
SimpleClause shall identify a public attribute of the Service UML class defined in [ebRIM].
If not, raise exception: service attribute error. The ServiceFilter returns a set of identifiers for
Service instances whose attribute values evaluate to True for the Clause predicate.

For every ServiceBindingFilter XML element, the leftArgument attribute of any containing
SimpleClause shall identify a public attribute of the ServiceBinding UML class defined in
[ebRIM]. If not, raise exception: service binding attribute error. The ServiceBindingFilter
returns a set of identifiers for ServiceBinding instances whose attribute values evaluate to
True for the Clause predicate.

Copyright © OASIS, 2002. All Rights Reserved Page 99 of 167

3485
3486
3487
3488

3489
3490
3491
3492
3493

3494

3495

3496
3497
3498
3499

3500
3501

3502
3503

OASIS/ebXML Registry Services Specification v2.0 September 2002

22. For every SpecificationLinkFilter XML element, the leftArgument attribute of any
containing SimpleClause shall identify a public attribute of the SpecificationLink UML class
defined in [ebRIM]. If not, raise exception: specification link attribute error. The
SpecificationLinkFilter returns a set of identifiers for SpecificationLink instances whose
attribute values evaluate to True for the Clause predicate.

23. For every LocalizedStringFilter XML element, the leftArgument attribute of any containing
SimpleClause shall identify a public attribute of the LocalizedString UML class defined in
[ebRIM]. If not, raise exception: localized string attribute error. The LocalizedStringFilter
returns a set of identifiers for LocalizedString instances whose attribute values evaluate to
True for the Clause predicate.

8.2.14 XML Clause Constraint Representation

Purpose

The simple XML FilterQuery utilizes aformal XML structure based on Predicate Clauses.
Predicate Clauses are utilized to formally define the constraint mechanism, and are referred to
simply as Clauses in this specification.

Conceptual Diagram

The following is a conceptual diagram outlining the Clause structure.

[' leftArgument %

string

4+ BooleanClause O [' bﬁoleanpredicate%
boolean

[' logicalPredicate 4
#IMMTOKEN

* IntClause g
* SimpleClause | inkeger

+ RationalClause E + Floatclause#
Floak

* DateTimeElause

dateTime

+ StringClause [' stringpredicateq
skring * INMTOKER

[' mnnectiuepredicateq
* INMTOKEN

+ Clause &

* CompoundClause | e * Clause

= <=Figure37: The Clause Structure

Copyright © OASIS, 2002. All Rights Reserved Page 100 of 167

3504

3505

3506
3507

3508
3509
3510
3511

3512
3513
3514
3515
3516

3517
3518

3519
3520

3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554

OASIS/ebXML Registry Services Specification v2.0 September 2002

Semantic Rules

Predicates and Arguments are combined into a "L eftArgument - Predicate - RightArgument”
format to form a Clause. There are two types of Clauses: SimpleClauses and CompoundClauses.
SimpleClauses

A SimpleClause aways defines the leftArgument as atext string, sometimes referred to as the
Subject of the Clause. SimpleClause itself is incomplete (abstract) and must be extended.
SimpleClause is extended to support BooleanClause, StringClause, and Rational Clause
(abstract).

BooleanClause implicitly defines the predicate as ‘equal to’, with the right argument as a
boolean. StringClause defines the predicate as an enumerated attribute of appropriate string-
compare operations and aright argument as the element’ s text data. Rational nhumber support is
provided through a common Rational Clause providing an enumeration of appropriate rational
number compare operations, which is further extended to IntClause and FloatClause, each with
appropriate signatures for the right argument.

CompoundClauses

A CompoundClause contains two or more Clauses (Simple or Compound) and a connective
predicate. This provides for arbitrarily complex Clauses to be formed.

Definition

Copyright © OASIS, 2002. All Rights Reserved Page 101 of 167

OASIS/ebXML Registry Services Specification v2.0 September 2002

Copyright © OASIS, 2002. All Rights Reserved Page 102 of 167

OASIS/ebXML Registry Services Specification v2.0 September 2002

Examples

Simple BooleanClause: "Smoker" = True

Simple StringClause: "Smoker" contains "mo"

Simple IntClause: "Age" >=7

Simple FloatClause: "Size" = 4.3

Compound with two Simples (("Smoker" = False)AND("Age" =< 45))

Copyright © OASIS, 2002. All Rights Reserved Page 103 of 167

3664
3665
3666
3667
3668
3669

3670

3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698

3699

3700
3701
3702
3703

3704
3705
3706
3707
3708
3709

3710
3711

OASIS/ebXML Registry Services Specification v2.0 September 2002

Coumpound with one Simple and one Compound

(("Smoker" = False)And(("Age" =< 45)Or("American"=True)))

8.3 SQL Query Support

The Registry may optionally support an SQL based query capability that is designed for Registry
clients that demand more advanced query capability. The optional SQLQuery element in the
AdhocQueryRequest allows a client to submit complex SQL queries using a declarative query
language.

The syntax for the SQLQuery of the Registry is defined by a stylized use of a proper subset of
the “SELECT” statement of Entry level SQL defined by ISO/IEC 9075:1992, Database
Language SQL [SQL], extended to include <sgl i nvoked routi nes> (asoknown as
stored procedures) as specified in ISO/IEC 9075-4 [SQL-PSM] and pre-defined routines defined

in template form in Appendix D.3. The syntax of the Registry query language is defined by the
BNF grammar in D.1.

Note that the use of a subset of SQL syntax for SQLQuery does not imply a requirement to use
relational databases in a Registry implementation.

Copyright © OASIS, 2002. All Rights Reserved Page 104 of 167

3712

3713
3714
3715

3716

3717
3718
3719

3720
3721

3722
3723

3724
3725

3726
3727
3728
3729
3730
3731
3732

3733
3734

3735
3736

3737

3738
3739
3740
3741
3742

3743

3744
3745
3746

3747
3748
3749

3750
3751

OASIS/ebXML Registry Services Specification v2.0 September 2002

8.3.1 SQL Query Syntax Binding To [ebRIM]

SQL Queries are defined based upon the query syntax in in Appendix D.1 and a fixed relational
schema defined in Appendix D.3. The relational schema is an agorithmic binding to [ebRIM] as
described in the following sections.

8.3.1.1 Class Binding

A subset of the class names defined in [ebRIM] map to table names that may be queried by an
SQL query. Appendix D.3 defines the names of the ebRIM classes that may be queried by an

SQL query.

The algorithm used to define the binding of [ebRIM] classes to table definitions in Appendix D.3

is as follows:

?? Classes that have concrete instances are mapped to relational tables. In addition entity classes
(e.g. PostalAddress and TelephoneNumber) are al'so mapped to relational tables.

?? The intermediate classes in the inheritance hierarchy, namely RegistryObject and
RegistryEntry, map to relational views.

?? The names of relational tables and views are the same as the corresponding [ebRIM] class
name. However, the name binding is case insensitive.

?? Each [ebRIM] class that maps to a table in Appendix D.3 includes column definitionsin
Appendix D.3 where the column definitions are based on a subset of attributes defined for
that class in [ebRIM]. The attributes that map to columns include the inherited attributes for
the [ebRIM] class. Comments in Appendix D.3 indicate which ancestor class contributed
which column definitions.

An SQLQuery against atable not defined in Appendix D.3 may raise an error condition:
InvalidQueryException.

The following sections describe the algorithm for mepping attributes of [ebRIM] to SQL column
definitions.

8.3.1.2 Primitive Attributes Binding

Attributes defined by [ebRIM] that are of primitive types (e.g. String) may be used in the same
way as column names in SQL. Again the exact attribute names are defined in the class
definitions in [ebRIM]. Note that while names are in mixed case, SQL-92 is case insensitive. It is
therefore valid for a query to contain attribute names that do not exactly match the case defined
in [ebRIM].

8.3.1.3 Reference Attribute Binding

A few of the [ebRIM] class attributes are of type UUID and are areference to an instance of a
class defined by [ebRIM]. For example, the accessControl Policy attribute of the RegistryObject
class returns a reference to an instance of an AccessControlPolicy object.

In such cases the reference mapsto the i d attribute for the referenced object. The name of the
resulting column is the same as the attribute name in [ebRIM] as defined by 8.3.1.2. The data
type for the column is VARCHAR(64) as defined in Appendix D.3.

When a reference attribute value holds a null reference, it maps to a null value in the SQL
binding and may be tested with the <null specification> (“IS[NOT] NULL” syntax) as defined

Copyright © OASIS, 2002. All Rights Reserved Page 105 of 167

3752
3753

3754

3755
3756
3757
3758
3759
3760
3761
3762
3763

3764
3765
3766
3767

3768

3769
3770
3771
3772

3773

3774
3775

3776
3777

3778

3779
3780
3781

3782

3783
3784

3785
3786

3787
3788
3789

OASIS/ebXML Registry Services Specification v2.0 September 2002

by [SQL].

Reference attribute binding is a special case of a primitive attribute mapping.

8.3.1.4 Complex Attribute Binding

A few of the [ebRIM] interfaces define attributes that are not primitive types. Instead they are of
a complex type as defined by an entity classin [ebRIM]. Examples include attributes of type
TelephoneNumber, Contact, PersonName etc. in class Organization and class User.

The SQL query schema does not map complex attributes as columns in the table for the class for
which the attribute is defined. Instead the complex attributes are mapped to columns in the table
for the domain class that represents the data type for the complex attribute (e.g.
TelephoneNumber). A column links the row in the domain table to the row in the parent table
(e.g. Usar). An additional column named *attribute_name’ identifies the attribute name in the
parent class, in case there are multiple attributes with the same complex attribute type.

This mapping also easily alows for attributes that are a collection of a complex type. For
example, a User may have a collection of TelephoneNumbers. This maps to multiple rows in the
TelephoneNumber table (one for each TelephoneNumber) where each row has a parent identifier
and an attribute_name.

8.3.1.5 Binding of Methods Returning Collections

Severa of the [ebRIM] classes define methods in addition to attributes, where these methods
return collections of references to instances of classes defined by [ebRIM]. For example, the
getPackages method of the RegistryObject class returns a Collection of references to instances of
Packages that the object is a member of.

Such collection returning methods in [ebRIM] classes have been mapped to stored proceduresin
Appendix D.3 such that these stored procedures return a collection of i d attribute values. The
returned value of these stored procedures can be treated as the result of atable sub-query in SQL.

These stored procedures may be used as the right-hand-side of an SQL IN clause to test for
membership of an object in such collections of references.

8.3.2 Semantic Constraints On Query Syntax

This section defines simplifying constraints on the query syntax that cannot be expressed in the
BNF for the query syntax. These constraints must be applied in the semantic analysis of the

query.
1. Class names and attribute names must be processed in a case insensitive manner.

2. The syntax used for stored procedure invocation must be consistent with the syntax of an
SQL procedure invocation as specified by 1SO/IEC 9075-4 [SQL/PSM].

3. For thisversion of the specification, the SQL select column list consists of exactly one
column, and must always bet.i d, wheret is atable reference in the FROM clause.

4. Join operations must be restricted to simple joins involving only those columns that have an
index defined within the normative SQL schema. This constraint is to prevent queries that
may be computationally too expensive.

Copyright © OASIS, 2002. All Rights Reserved Page 106 of 167

OASIS/ebXML Registry Services Specification v2.0 September 2002

8.3.3 SQL Query Results

The result of an SQL query resolves to a collection of objects within the registry. It never
resolves to partia attributes. The objects related to the result set may be returned as an
ObjectRef, RegistryObject, RegistryEntry or leaf ebRIM class depending upon the
responseOption parameter specified by the client on the AdHocQueryRequest. The entire result
set is returned as a SQL QueryResult as defined by the AdHocQueryResponse in Section 8.1.

8.3.4 Simple Metadata Based Queries

The smplest form of an SQL query is based upon metadata attributes specified for a single class
within [ebRIM]. This section gives some examples of simple metadata based queries.

For example, to get the collection of ExtrinsicObjects whose name contains the word ‘ Acme’
and that have a version greater than 1.3, the following query must be submitted:
SELECT eo.id from Extrinsi cCbj ect eo, Name nm where nm val ue LI KE ' %Acne% AND

eo.id = nmparent AND

eo. mgj orVersion >= 1 AND
(eo. maj orVersion >= 2 OR eo. mnorVersion > 3);

Note that the query syntax allows for conjugation of simpler predicates into more complex
gueries as shown in the simple example above.

8.3.5 RegistryObject Queries

The schemafor the SQL query defines a special view called RegistryObject that allows doing a
polymorphic query against al RegistryObject instances regardless of their actual concrete type or
table name.

The following example is the similar to that in Section 8.3.4 except that it is applied against al
RegistryObject instances rather than just ExtrinsicObject instances. The result set will include id
for all qualifying RegistryObject instances whose name contains the word ‘ Acme’ and whose
description contains the word “bicycle’.

SELECT ro.id from Regi stryQoj ect ro, Nane nm Description d where nmval ue LIKE ' %cne% AND

d. val ue LIKE ' %icycle% AND
ro.id = nmparent AND ro.id = d.parent;

8.3.6 RegistryEntry Queries

The schemafor the SQL query defines a specia view called RegistryEntry that alows doing a
polymorphic query against all RegistryEntry instances regardless of their actual concrete type or
table name.

The following example is the same as Section 8.3.4 except that it is applied against all
RegistryEntry instances rather than just ExtrinsicObject instances. The result set will include id
for all qualifying RegistryEntry instances whose name contains the word ‘Acme’ and that have a
version greater than 1.3.

SELECT re.id fromRegistryEntry re, Nane nmwhere nmval ue LIKE ' %cnme% AND
re.id = nmparent AND
re. mgj orVersion >= 1 AND
(re.majorVersion >= 2 CR re. mnorVersion > 3);

Copyright © OASIS, 2002. All Rights Reserved Page 107 of 167

3835

3836
3837

3838

3839
3840
3841
3842

OASIS/ebXML Registry Services Specification v2.0 September 2002

8.3.7 Classification Queries

This section describes the various classification related queries that must be supported.

8.3.7.1 Identifying ClassificationNodes

Like all objectsin [ebRIM], ClassificationNodes are identified by their ID. However, they may
also be identified as a path attribute that specifies an XPATH expression [XPT] from aroot
classification node to the specified classification node in the XML document that would
represent the ClassificationNode tree including the said ClassificationNode.

8.3.7.2 Getting ClassificationSchemes

To get the collection of ClassificationSchemes the following query predicate must be supported:

SELECT schene.id FROM d assi fi cati onSchene scheng;

The above query returns all ClassificationSchemes. Note that the above query may also specify
additional predicates (e.g. name, description etc.) if desired.

8.3.7.3 Getting Children of Specified ClassificationNode

To get the children of a ClassificationNode given the ID of that node the following style of query
must be supported:

SELECT cn.id FROM d assi fi cati onNode cn WHERE parent = <id>

The above query returns all ClassificationNodes that have the node specified by <id> as their
parent attribute.

8.3.7.4 Getting Objects Classified By a ClassificationNode

To get the collection of ExtrinsicObjects classified by specified ClassificationNodes the
following style of query must be supported:

SELECT id FROM Extri nsi cObj ect
WHERE
id |N (SELECT cl assifiedChj ect FROM O assi fication
VWHERE
cl assificationNode I N (SELECT i d FROM d assi fi cat i onNode
WHERE path = ‘/Geography/ Asi a/ Japan’))
AND
id IN (SELECT cl assifi edObj ect FROM O assification
VWHERE
classificationNode | N (SELECT id FROM O assi fi cati onNode
WHERE path = ‘/Industry/Autonotive’))

The above query gets the collection of ExtrinsicObjects that are classified by the Automotive
Industry and the Japan Geography. Note that according to the semantics defined for
GetClassifiedObjectsRequest, the query will also contain any objects that are classified by
descendents of the specified ClassificationNodes.

Copyright © OASIS, 2002. All Rights Reserved Page 108 of 167

OASIS/ebXML Registry Services Specification v2.0 September 2002

8.3.7.5 Getting Classifications That Classify an Object

To get the collection of Classifications that classify a specified Object the following style of
guery must be supported:

SELECT id FROM d assification c
WHERE c. cl assi fiedCbj ect = <id>;

8.3.8 Association Queries

This section describes the various Association related queries that must be supported.

8.3.8.1 Getting All Association With Specified Object As Its Source

To get the collection of Associations that have the specified Object as its source, the following
query must be supported:

SELECT id FROM Associ ati on WHERE sour ce(hj ect = <i d>

8.3.8.2 Getting All Association With Specified Object As Its Target

To get the collection of Associations that have the specified Object as its target, the following
query must be supported:

SELECT id FROM Associ ati on WHERE t ar get Gbj ect = <i d>

8.3.8.3 Getting Associated Objects Based On Association Attributes

To get the collection of Associations that have specified Association attributes, the following
gueries must be supported:

Select Associations that have the specified name.

SELECT id FROM Associ ati on WHERE nane = <nane>

Select Associations that have the specified association type, where association type is a string
containing the corresponding field name described in [ebRIM].

SELECT i d FROM Associ ati on WHERE
associ ati onType = <associ ati onType>

8.3.8.4 Complex Association Queries

The various forms of Association queries may be combined into complex predicates. The
following query selects Associations that have a specific sourceObject, targetObject and
associationType:
SELECT i d FROM Associ ati on WHERE

sourceCbj ect = <i d1> AND

target Qbj ect = <i d2> AND
associ ati onType = <associ ati onType>;

Copyright © OASIS, 2002. All Rights Reserved Page 109 of 167

OASIS/ebXML Registry Services Specification v2.0 September 2002

8.3.9 Package Queries
To find al Packages that a specified RegistryObject belongs to, the following query is specified:

SELECT id FROM Package WHERE id | N (Regi stryOhj ect packages(<i d>));

8.3.9.1 Complex Package Queries

The following query gets all Packages that a specified object belongs to, that are not deprecated
and where name contains "RosettaNet."
SELECT i d FROM Package p, Nane n WHERE

p.id IN (Regi stryQoj ect _packages(<id>)) AND

nm val ue LI KE ' %RosettaNet % AND nm parent = p.id AND
p. status <> ‘ Deprecat ed’

8.3.10 ExternalLink Queries

To find all ExternalLinks that a specified ExtrinsicObject is linked to, the following query is
specified:

SELECT id From External Link WHERE id I N (Regi stryCbj ect _external Li nks(<i d>))

To find al ExtrinsicObjects that are linked by a specified ExternalLink, the following query is
specified:

SELECT id From ExtrinsicQoject WHERE id I N (Regi stryQoj ect_| i nkedObj ect s(<id>))

8.3.10.1 Complex ExternalLink Queries

The following query gets all ExternalLinks that a specified ExtrinsicObject belongs to, that
contain the word ‘legal’ in their description and have a URL for their externa URI.
SELECT id FROM Ext ernal Li nk WHERE

id IN (Regi stryQhj ect _external Li nks(<id>)) AND

description LIKE ‘% egal % AND
external URI LIKE ‘9%ttp://%

8.3.11 Audit Trail Queries

To get the complete collection of AuditableEvent objects for a specified RegistryObject, the
following query is specified:

SELECT i d FROM Audi t abl eEvent WHERE regi stryQhj ect = <id>

8.4 Content Retrieval

A client retrieves content via the Registry by sending the GetContentRequest to the
QueryManager. The GetContentRequest specifies alist of Object references for Objects that
need to be retrieved. The QueryManager returns the specified content by sending a
GetContentResponse message to the RegistryClient interface of the client. If there are no errors
encountered, the GetContentResponse message includes the specified content as additional

Copyright © OASIS, 2002. All Rights Reserved Page 110 of 167

OASIS/ebXML Registry Services Specification v2.0 September 2002

payloads within the message. In addition to the GetContentResponse payload, there is one
additional payload for each content that was requested. If there are errors encountered, the
RegistryResponse payload includes an error and there are no additional content specific
payloads.

8.4.1 Identification Of Content Payloads

Since the GetContentResponse message may include several repository items as additional
payloads, it is necessary to have away to identify each payload in the message. To facilitate this
identification, the Registry must do the following:

?? Usethe ID of the ExtrinsicObject instance as the vaue of the Content-1D header parameter
for the mime multipart that contains the corresponding repository item for the
ExtrinsicObject.

?? Incase of [ebMS] transport, use the ID of the ExtrinsicObject instance in the Reference
element for that object in the Manifest element of the ebXMLHeader.

8.4.2 GetContentResponse Message Structure

The following message fragment illustrates the structure of the GetContentResponse Message
that is returning a Collection of Collaboration Protocol Profiles asaresult of a
GetContentRequest that specified the IDs for the requested objects. Note that the boundary
parameter in the Content-Type headers in the example below are meant to be illustrative not
prescriptive.

Content-type: nultipart/rel ated; boundary="M ME boundary"; type="text/xm";

- -M ME_boundary
Content- | D. <Get Cont ent Request @xanpl e. con>
Cont ent- Type: text/xmn

<?xm version="1.0" encodi ng="UTF-8"?>

<SOAP- ENV: Envel ope xm ns: SOAP- ENV=' htt p: / / schemas. xnl soap. or g/ soap/ envel ope/ "'
xm ns: eb= " http://ww. oasi s- open. or g/ conmi t t ees/ ebxm - nsg/ schena/ dr af t - msg- header- 03. xsd' >
<SQAP- ENV: Header >

<!--ebM5 header goes here if using ebMs ->
<ds: Signature ...>
<!--signature over soap envel ope-->
</ d.s.: 'Si gnat ur e>
</ SOAP- ENV: Header >
<SQAP- ENV: Body>

<!l--ebMs mani fest goes here if using ebMs->

<?xm version="1.0" encodi ng="UTF-8"?>

<Cet Cont ent Response>
<oj ect Ref Li st >
Obj ect Ref i d="urn: uui d: d8163df b-f 45a-4798- 81d9- 88aca29c24ff"/ >
<(bj ect Ref i d="urn: uui d: 212c3a78- 1368- 45d7- acc9- a935197ele4f "/ >
</ oj ect Ref Li st >
</ Get Cont ent Response>

</ SQAP- ENV: Body>
</ SOAP- ENV: Envel ope>

Copyright © OASIS, 2002. All Rights Reserved Page 111 of 167

OASIS/ebXML Registry Services Specification v2.0 September 2002

--M ME_boundary

Content- |1 D: urn: uui d: d8163df b- f 45a- 4798- 81d9- 88aca29c24f f
Cont ent- Type: Miltipart/Rel at ed; boundar y=payl oadl_boundary; type=text/xm
Cont ent- Description: Optionally describe payl oadl here

- -payl oadl_boundary
Cont ent- Type: text/xm; charset=UTF-8
Content- I D si gnature: urn: uui d: d8163df b- f 45a- 4798- 81d9- 88aca29c24f f

<ds: Signature ...>
Si gnature for payl oadl
</ ds: Si gnat ur e>

- -payl oadl_boundary
Content- |1 D: urn: uui d: d8163df b- f 45a- 4798- 81d9- 88aca29c24f f
Cont ent- Type: text/xmn

<?xm version="1.0" encodi ng="UTF-8"?>
<t p: Col | abor ati onProt ocol Profile ...>
</t.p.: Ool | abor at i onPr ot ocol Profil e>

- -payl oadl_boundar y- -

--M ME_boundary

Content- | D urn:uuid: 212c3a78- 1368- 45d7- acc9- a935197ele4f
Cont ent- Type: Miltipart/Rel at ed; boundary=payl oad2_boundary; type=text/xn
Content- Description: Optionally describe payl oad2 here

- - payl oad2_boundary
Cont ent- Type: text/xm; charset=UTF-8
Content- | D signature: urn: uui d: 212c3a78- 1368- 45d7- acc9- a935197ele4f

<ds: Signature ...>
Si gnature for payl oad2
</ ds: Si gnat ur e>
- - payl oad2_boundary
Content- | D urn:uuid: 212c3a78- 1368- 45d7- acc9- a935197ele4f
Cont ent- Type: text/xm

<?xm version="1.0" encodi ng="UTF-8"?>
<t p: Col | abor ati onProt ocol Profile ...>

</t p: Col | abor at i onPr ot ocol Profil e>

- - payl oad2_boundar y- -

--M ME_boundar y- -

Copyright © OASIS, 2002. All Rights Reserved Page 112 of 167

4077

4078
4079
4080
4081

4082
4083
4084
4085
4086
4087
4088

4089
4090
4091

4092
4093

4094

4095
4096

4097

4098
4099

4100

4101
4102
4103

4104

4105
4106
4107
4108

4109

OASIS/ebXML Registry Services Specification v2.0 September 2002

9 Content-based Discovery

This chapter describes the Content-based discovery facility of the ebXML Registry. This facility
enables clients to discover repository items based upon the content contained within the
repository item. The Content-based discovery facility is arequired normative feature of ebXML
Registries compliant to version 3 or later of this specification.

The essence of the content-based discovery feature is based upon the ability to selectively
convert repository item content into metadata consisting of instances of RegistryObject sub-
classes (RegistryObject Metadata).

A registry uses one or more content indexing services to automatically index repository items
when they are submitted to the registry. Indexing arepository item creates RegistryObject
metadata such as Classification instances. The indexed metadata enables clients to discover the
repository item using existing query capabilities of the registry.

Thetermindex is used to refer to RegistryObject Metadata generated from selective repository
item content. It should not be confused with databases indexes. It is named such becauseit is
similar in concept to database indexes, which are metadata generated from content.

9.1 Content-based Discovery: Use Cases

There are many scenarios where content-based discovery is necessary.

9.1.1 Find All CPPs Where Role is “Buyer”

A company that sells a product using the RosettaNet PIP3A4 Purchase Order process wants to
find CPPs for other companies where the Role element of the CPP is that of “Buyer”.

9.1.2 Find All XML Schema’s That Use Specified Namespace

A client may wish to discover all XML Schema documents in the registry that use an XML
namespace containing the word “oasis’.

9.1.3 Find All WSDL Descriptions with a SOAP Binding

An ebXML registry client is attempting to discover all repository items that are WSDL
descriptions that have a SOAP binding defined. Note that SOAP binding related information is
content within the WSDL document and not metadata

9.2 Content Indexing Service

Figure 38 shows that conceptually, a content indexing service (or indexer) accepts as input a
repository item and generates as output one or more RegistryObject Metadata instances that are
used to catalog the ExtrinsicObject for that repository item. In addition an indexer accepts as
control input an index definition file, which is also arepository item.

Copyright © OASIS, 2002. All Rights Reserved Page 113 of 167

4110
4111

4112

4113
4114
4115
4116

4117
4118
4119
4120
4121
4122
4123
4124

OASIS/ebXML Registry Services Specification v2.0 September 2002

Index Definition File
Indexable Content Indexing Index
Content Service Metadata

= =Figure 38: Abstract Content Indexing Service: Inputs and Outputs

9.2.1 lllustrative Example

Figure 39 shows a UML instance diagram to illustrate how a Content Indexing Service is used.
The content indexing service is the normative Default XML Indexing Service described in
section 9.10.

o0 Inthe center we see a Content Indexing Service name defaultXMLIndexer.

0 On theleft we see a CPP repository item and its ExtrinsicObject inputExtObjForCPP
being input as Indexable Content to the defaultX ML Indexer.

0 Ontopweseean XSLT style sheet repository item and its ExtrinsicObject being sent as
an Index Definition File to the defaultX ML Indexer.

0 On the right we see the outputExtObjForCPP, which is the modified ExtrinsicObject for
the CPP. We also see a Classification roleClassification, which classifies the CPP by the
Role element within the CPP. These are the Index M etadata generated as aresult of the
indexer indexing the CPP.

Copyright © OASIS, 2002. All Rights Reserved Page 114 of 167

4125
4126

4127

4128
4129
4130
4131
4132

4133

4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145

OASIS/ebXML Registry Services Specification v2.0 September 2002

cppindexer¥SLT:ExirinsicObject CPP BSLT repository item

0 I >

| | Index Definition File :
e o P |
. Indexable Content \L . Index Metadata ;
' [inpuExtOblForcPP:Extrinsicobiect| - |defaulXMLindexer:Service ' loutputExtObiForCPP:ExtrinsicObiect
! -T2 T .
; |

classifiedOhbject

CPP document repository item ' ' [i ion:Classi

= =Figure 39: Example of CPP indexing using Default XML Indexer

9.3 Index Definition File

The Index Definition File describes the information that the indexer must extract from the
repository item and subsequently map it to the generated RegistryObject Metadata. This
specification does not define the format of the Index Definition File. Each indexer is free to
define its own Index Definition File format in an indexer specific manner. The only constraint in
this specification is that the index definition file must be a repository item.

9.4 Indexable Content

The indexable content is the content that the client wishes to be indexed by the Content Indexing
Service. As such it is the subject of the content indexing action.

This specification does not define the format of indexable content. This specification describes
how a client may register arbitrary indexers for indexing arbitrary content types.

The most common use case for an indexer is for indexing XML documents. Therefore, this
specification also provides a normative definition for a specialized XML Content Indexer in
section 9.10.

An ebXML Registry must provide native built-in support for the normative default XML Content
Indexer.

In addition, an ebXML Registry may optionaly alow clientsto register arbitrary indexers for
arbitrary content. In either case the registry must use the appropriate indexer if one exists, to
index a repository item when it is submitted.

Copyright © OASIS, 2002. All Rights Reserved Page 115 of 167

4146

4147
4148
4149

4150
4151
4152
4153
4154
4155

4156
4157

4158

4159
4160
4161
4162
4163
4164
4165
4166

4167
4168

4169

4170
4171

OASIS/ebXML Registry Services Specification v2.0 September 2002

9.5 Index Metadata

A content indexing service indexes a repository item by processing it and extracting specific
information content as specified by the Index Definition File. The content indexing service must
map the extracted content to index metadata in form of instances of RIM classes.

For example, the index metadata may consists of:

Classification instances

External ldentifier instances

ExternalLink instances

The name attribute for the ExtrinsicObject for the indexable content

0 The description attribute for the ExtrinsicObject for the able-able content

A content indexing service is free to generate any class defined by RIM as index metadata in an
application specific manner.

O O O O

9.6 Content Indexing Protocol

The interface of the content indexing service must implement a single method called
indexContent. The indexContent method accepts an IndexContentRequest as parameter and
returns an IndexContentResponse as its response if there are no errors.

The IndexContentRequest contains repository items that need to be indexed. The resulting
IndexContentResponse contains the metadata that gets generated by the Content Indexing
Service as aresult of indexing the specified repository items.

The content indexing protocol is abstract and does not specify the implementation details of any
specific Content Indexing Service.

reqistry1 indexer
ContentindexingService

indexContent{indexContentReguest): indexContentResponse

: =

= <=Figure40: Content Indexing Protocol

9.6.1 IndexContentRequest

The IndexContentRequest is used to submit repository items to a Content Indexing Service so
that it can create index metadata for the specified repository items.

Copyright © OASIS, 2002. All Rights Reserved Page 116 of 167

4172

4173
4174

4175

4176

4177
4178
4179
4180
4181
4182

4183
4184
4185
4186
4187

4188

4189
4190

4191
4192

4193
4194

4195
4196

4197
4198

4199

4200

4201
4202

4203

OASIS/ebXML Registry Services Specification v2.0 September 2002

9.6.1.1 Syntax:

'id

o

* SubjectExtrinsicObject
* IndexEontentRequest F rim:Extrinsicobject Tvpe

* IndexExtrinsicObject
rim:Extrinsicobject Type

= <=Figure4l: IndexContentRequest Syntax

9.6.1.2 Parameters:

% id: Inherited request id attribute common to all requests.

% IndexExtrinsicObject: This parameter specifies the ExtrinsicObject for the
repository item that the caller wishes to specify as the Index Definition file. This
specification does not specify the format of this repository item. There must a
corresponding repository item as an attachment to this request. The corresponding
repository item should follow the same rules as attachments in
SubmitObj ectsRequest.

%5 UbjectExtrinsicObject: This parameter specifies the ExtrinsicObject for the
repository item that the caller wishes to be indexed. This specification does not
specify the format of this repository item. There must a corresponding repository
item as an attachment to this request. The corresponding repository item should
follow the same rules as attachments in SubmitObjectsRequest.

9.6.1.3 Returns:
This request returns an IndexContentResponse. See section 9.6.2 for detalls.

9.6.1.4 Exceptions:

In addition to the exceptions common to all requests, the following exceptions may be returned:

225 MissingRepositoryltemException: signifies that the caller did not provide a
required repository item as an attachment to this request.

2% UnsupportedlndexException: signifies that this Content Indexing Service did not
support the IndexExtrinsicObject provided by the client.

%5 UnsupportedSubjectException: signifies that this Content Indexing Service did
not support the SubjectExtrinsicObject provided by the client.

9.6.2 IndexContentResponse

The IndexContentRequest is sent by the Content Indexing Service as a response to an
IndexContentRequest.

Copyright © OASIS, 2002. All Rights Reserved Page 117 of 167

4204

4205
4206

4207

4208

4209
4210
4211
4212
4213
4214
4215

4216

4217

4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241

OASIS/ebXML Registry Services Specification v2.0 September 2002

9.6.2.1

9.6.2.2

Syntax:

Yges

* IndexContentResponseE_ #+ |IndexMetadata
ritm:LeafRegizstryOhjeciListType
<= =Figure42: IndexContentResponse Syntax

Parameters:

%5 id: id attribute inherited from RegistryResponseType.

% IndexMetadata: This parameter specifies a collection of RegistryObject instances
that were created as a result of dynamic content indexing by a content indexing
sarvice. It may include a modified ExtrinsicObject for the repository item that has
been indexed by the Content Indexing Service. The Content Indexing Service may
add metadata such as Classifications, Externalldentifiers, name, description etc. to
the IndexedExtrinsicObject element. There must not be an accompanying
repository item as an attachment to this message.

9.7 Publishing a Content Indexing Service

Any publisher may publish an arbitrary content indexing service to an ebXML Registry. The

content indexing service must be published using the existing LifeCycleManager interface.
The publisher must use the existing SubmitObjectsRequest to publish:

(0]

A Service instance that must have a required Association with associationType of
“IndexingServiceFor”. In Figure 43 this is exemplified by the defaultX ML IndexerService
in the upper-left corner. The Service must be the sourceObject while a
ClassificationNode in the canonical ObjectType ClassificationScheme must be the
targetObject.
A ServiceBinding instance contained within the Service instance that must provide the
accessURI to the indexing Service.
An optional ExternalLink instance on the ServiceBinding that is resolvable to a web page
describing:

o0 Theformat of the supported Indexable Content

o0 Theformat of the supported Index Definition File
Note that no SpecificationLink is required since this specification is implicit for Content
Indexing Services.
One or more index definition file(s) that must be an ExtrinsicObject and repository item
pair. The ExtrinsicObject for the index definition must have a required Association with
associationType of “IndexDefinitionFileFor”. In Figure 43 this is exemplified by the
cpplndexerXSLT and the 0agBODIndexerXSLT objects on the left side. The Service
must be the sourceObject while a ClassificationNode in the canonical ObjectType
ClassificationScheme must be the targetObject.
Zero or more ClassificationScheme(s) and ClassifiocationNodes(s) that may be
referenced (used) in the indexed metadata generated by the content indexing Service.

Copyright © OASIS, 2002. All Rights Reserved Page 118 of 167

OASIS/ebXML Registry Services Specification v2.0 September 2002

default¥MLIndexer:Service zmiindexerDoc:ExternalLink ohiectTypes:ClassificationScheme

documentation

"sourceohject /parent parent

indexerAssoc:Association xmiObjectType:ClassificationNode imageObijectType:ClassificationNode
[associationType=IndexingServiceFor]

targetObject

arent arent
cppindexerXS1 T:ExtrinsicObject
targetObject |cppObjectType:ClassificationMode 0agBODObjectType:ClassificationNode
\sourceObject —=
objectType targetOhject arent

indexDef1:Association

[associationType=IndexDefinitionFileF ar]
AckDelivel ceiptObjectType:ClassificationNode
oagBODIndexer XSLT:ExtrinsicObject
\ijectType
\sourceObject
cppDocumentExtrinsicObject AckDeliveryReceiptDocument:ExtrinsicObiject

indexDef2:Association

[associationType=IndexDefinitionFileF ar]
4243 = =Figure43: Indexing Service Configuration

4244 Figure 43 shows the configuration of the default XML indexer which is associated with the
4245 objectType for XML content. Thus this indexer may be used with any XML content that has its
4246 objectType attribute reference the xmlObjectType ClassificationNode or one of its descendents.
4247 Thefigure aso shows two different Index Definition Files, cpplndexerXSLT and

4248 0agBODIndexerXSLT that may be used to index ebXML CPP and OAG Business Object

4249 Documents (BOD) respectively.

4250

4251 9.7.1 Multiple Indexers and Index Definition Files

4252 Cleanup verbage here??

4253 This specification alows clients to submit multiple indexers and index definition files for the
4254 same objectType. How aregistry handles multiple indexer and index definition file submission
4255 for the same type of content is a matter of registry specific policy. If aregistry does not alow
4256 thisthen it must send an InvalidRequestException with a reason, when a duplicate indexer or
4257 index def is submitted. If aregistry allows this then it must provide a conflict resolution

4258 mechanism to select the appropriate indexer and index definition file in some registry specific
4259 manner.

Copyright © OASIS, 2002. All Rights Reserved Page 119 of 167

4260

4261
4262
4263
4264
4265
4266
4267
4268

4269

4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284

4285

4286
4287
4288

4289

4290
4291

4292

4293
4294
4295
4296
4297
4298
4299

OASIS/ebXML Registry Services Specification v2.0 September 2002

9.7.2 Restrictions On Publishing Content Indexing Services

A client may submit any content indexing service or index definition file. A registry may use
registry specific policies to determine whether a client submitted content indexing service or
index definition file are acceptable. For example a registry may require that the content indexing
service or index definition file does not create excessive metadata. A registry may reject a
SubmitObjectRequest with an InvalidRequestException and give a reason why the request was
rejected, upon receiving regquests publishing Content Indexing Service or Index Definition File
that is unreasonable. In effect support for user-defined content indexing services is optional in
this version of the specification.

9.8 Dynamic Content Indexing

Some time during or after a publisher submits a repository item, the registry must check to see if
there is a Content Indexing Service and index definition file registered for that type of repository
item. Thisisreferred to as Content Indexing Service resolution and index definition file
resolution as described in section described in section 9.8.3.

If a Content Indexing Service and index definition file are found then the registry must invoke
that service using the Content Indexing Protocol. In the invocation, it gives arepository item as
Indexable Content and a repository item as Index Definition File within an
IndexContentRequest. The Content Indexing Service must index the content and return the
modified ExtrinsicObject for the Indexable Content such that it has index metadata generated
from relevant portions of the Indexable Content.

The registry must store the repository item along with the modified ExtrinsicObject annotated
with the index metadata once the Content Indexing Protocol is compl eted.

The result of dynamic content indexing is that indexable content gets indexed automatically as a
consequence of being submitted. Once indexed it is possible to use the index metadata to do
dynamic content-based discovery of the indexable content.

9.8.1 Threading Model for Dynamic Content Indexing

A registry may do dynamic content indexing synchronous with the original
SubmitObjectRequest request or it may do so asynchronously sometime after the request is
committed.

9.8.2 Referential Integrity and Dynamic Content Indexing

A registry must maintain referentia integrity between the RegistryObjects and repository items
in the submission and the generated RegistryObjects in the indexed metadata.

9.8.3 Error Handling Model for Dynamic Content Indexing

Any errors generated during dynamic content indexing must not effect the storing of the
RegistryObjects and repository items that were submitted. Such indexing errors are internal
registry errors due to implementation errors or configuration errors.

A registry must return a normal response with status = “Success’ if the submitted content and
metadata is stored successfully even when there are errors encountered during dynamic content
indexing. A registry should log such indexing errors like any other internal registry errors so that
a Registry Operator may be able to explore the problem at alater time.

Copyright © OASIS, 2002. All Rights Reserved Page 120 of 167

4300

4301
4302

4303

4304
4305
4306

4307
4308
4309
4310

4311
4312
4313
4314

4315
4316
4317

4318
4319
4320
4321

4322
4323
4324

4325
4326
4327

4328

4329

4330
4331
4332
4333

OASIS/ebXML Registry Services Specification v2.0 September 2002

9.8.4 Updates and Dynamic Content Indexing

When an ExtrinsicObject and its repository item are updated within a registry, the registry must
remove any previously created indexed metadata and regenerate the index metadata.

9.8.5 Resolution Algorithm For Indexer and Index Definition File

When aregistry receives a submission of an ExtrinsicObject EO1 and repository item pair, it
must use the following algorithm to determine or resolve the content indexing service and index
definition file to be used to index that content:

1. Get the objectType attribute of the ExtrinsicObject. If the objectTypeisaUUID to a
classificationNode (refered to as objectType ClassificationNode) then proceed to next
step. Need to update objectType in ébRIM to say it must be aref to anode in
ObjectType. For backward compatibility allow non-UUID vaues??

2. Query to seeif the objectType ClassificationNode is the targetObject of an Association of
type "IndexingServiceFor". If not then repeat this step with the parent ClassificationNode
of this ClassificationNode. Repeat until the parent is the ClassificationScheme or until the
desired Association is found. If desired Association is found proceed to next step.

3. Check if the sourceObject of the desired Association is a Service instance. If not throw an
InvalidRequestException. If it is a Service instance, then use this Service as the content
indexing service for the ExtrinsicObject.

4. Query to seeif the objectType ClassificationNode is the targetObject of an Association of
type "IndexDefinitionFileFor”. If not then repeat this step with the parent
ClassificationNode of this ClassificationNode. Repeat until the parent is the
ClassificationScheme or until the desired Association is found.

5. Check if the sourceObject of the desired Association is an ExtrinsicObject instance. If not
throw an InvalidRequestException. If it is a ExtrinsicObject instance, then use this
ExtrinsicObject and its repository item as the index definition file.

The above agorithm allows for objectType hierarchy to be used to configure indexer and index
definition files with varying degrees of specificity or specialization with respect to the type of
content.

If no indexer or index definition file is found then content should not be indexed.

9.9 Dynamic Content-based Discovery

As described earlier, indexable content is automatically indexed when it is submitted to the
registry. This content may subsequently be dynamically discovered using the index metadata
within existing AdhocQueryRequest. Because the index metadata is based upon indexable
content, an AdhocQueryRequest can perform dynamic content- based discovery.

Copyright © OASIS, 2002. All Rights Reserved Page 121 of 167

4334

4335
4336
4337
4338
4339
4340
4341
4342

4345
4346
4347

4349

4350
4351
4352
4353

4354

4355
4356
4357
4358

4359

OASIS/ebXML Registry Services Specification v2.0 September 2002

9.10Default XML Content Indexer

An ebXML Registry must provide the XML Content Indexing Service natively as abuilt-in
service. The XML content indexing service accepts an XML instance document as its input and
it accepts an XSLT Style sheet as a Content Definition File. Each type of content should have its
own unique XSLT style sheet. For example and ebX ML CPP document should have a specialize
ebXML CPP index definition style sheet. The XML content indexing service must apply the
XSLT style sheet to the XML instance document input to generate the index metadata. Since a
single style sheet must be applied to both the ExtrinsicObject and the Indexable Content, we
must assume the two documents to be composed within a single virtua document the schema for
which is as follows:

<chd:MetaDataAndContent>
<rim:ExtrinsicObject/>
<someXMLTag/>

</chd:MetaDataAndContent>

9.10.1 Publishing of Default XML Content Indexer

The default XML Content Indexing Service need not be explicitly published to an ebXML
Registry. An ebXML Registry must provide the XML Content Indexing Service natively as a
built-in service. This built-in service must be published to the registry as part of the intrinsic
bootstrapping of required data within the registry.

9.11Canonical Index Definition Files

It is desirable to have identical index definition files and indexing services for a given object type
across all registry implementations. This provides a consistent behavior for dynamic content
indexing across registries. To facilitate consistency a non-normative set of canonical index
definition files will be maintained at:

http://www.0as s-open.org/committees/regrep/documents/3.0/contentBasedDiscovery

Copyright © OASIS, 2002. All Rights Reserved Page 122 of 167

OASIS/ebXML Registry Services Specification v2.0 September 2002

4360 10 Event Notification

4361 This chapter defines the Event Notification feature of the OASIS ebXML Registry. The Event
4362 Notification feature is a normative optional feature of the ebXML Registry.

4363 Event Notification feature allows OASIS ebXML Registries to notify its users and / or other
4364 registries about events of interest. It allows users to stay informed about registry events without
4365 being forced to periodically poll the registry. It also allows a registry to propagate internal

4366 changes to other registries whose content might be affected by those changes.

4367 ebXML registries support content-based Notification where interested parties express their

4368 interest in form of aquery. Thisis different from subject (sometimes referred to as topic) — based
4369 Notification where information is categorized by subjects and interested parties express their
4370 interestsin those predefined subjects.

4371 10.1Use Cases

4372 Thefollowing use cases illustrate different ways in which ebXML registries notify users or other
4373 registries.

4374 10.1.1 New Service is Offered

4375 A user wishes to know when a new Plumbing service is offered in her town. When that happens,
4376 she might try to learn more about that service and compare it with her current Plumbing service
4377 provider's offering.

4378 10.1.2 Monitor Download of Content

4379 User wishesto know whenever her CPP [ebCPP] is downloaded in order to evaluate on an
4380 ongoing basis the success of her recent advertising campaign. She might also want to analyze
4381 who theinterested parties are.

4382 10.1.3 Monitor Price Changes

4383 User wishes to know when the price of a product that she is interested to buy drops below a
4384 certain amount. If she buys it she would also like to be notified when the product has been
4385 shipped to her.

4386 10.1.4 Keep Replicas Consistent With Source Object

4387 In order to improve performance and availability of accessing some registry objects, alocal
4388 registry may make replicas of certain objects that are hosted by another registry. The registry
4389 would like to be notified when the source object for areplicais updated so that it can

4390 synchronize the replica with the latest state of the source object.

4391 10.2Registry Events

4392 Activities within a registry result in meaningful events. Typically, registry events are generated
4393 when aregistry processes client requests. In addition, certain registry events may be caused by
4394 administrative actions performed by aregistry operator. [ebRIM] defines the AuditableEvent
4395 class, instances of which represent registry events. An AuditableEvent is generated by the
4396 registry in response to a registry event.

Copyright © OASIS, 2002. All Rights Reserved Page 123 of 167

OASIS/ebXML Registry Services Specification v2.0 September 2002

4397 10.3Subscribing to Events

4398 A User may create a subscription with aregistry if she wishes to receive notification for a

4399 specific type of event. A User creates a subscription by submitting a Subscription instance to a
4400 registry using the SubmitObjectsRequest. If a Subscription is submitted to aregistry that does
4401 not support event notification then the registry must return an UnsupportedCapabilityException.

4402 10.3.1 Event Selection

4403 In order for aUser to only be notified of specific events of interest, she must specify a Selector
4404 within the Subscription instance. A Selector contains a query that determines whether an event
4405 qualifiesfor that Subscription or not. The query syntax is the normal ad hoc query syntax
4406 describesin chapter 8.

4407 10.3.2 Notification Action

4408 When creating a Subscription, a User may also specify what the registry should do when an
4409 event matching the Selector for that Subscription (Subscription’s event) transpires. A User may
4410 specify Actions within the Subscription. Each Action defines an action that the registry must
4411 undertake when a Subscription’s event transpires. If no Actions are defined within the

4412 Subscription that implies that the user does not wish to be notified asynchronoudly by the
4413 registry and instead intends to periodically poll the registry and pull the pending Notifications.
4414 [ebRIM] defines two standard Actions that alow delivery of event notifications via email to a
4415 human user or by invocation web service based programmatic interface.

4416 For each event that transpires in the registry, if the registry supports event notification, it must
4417 check all registered and active Subscriptions and see if any Subscriptions match the event. If a
4418 match is found then the registry must perform all the Action’s described by the Subscription.
4419 Performing the Actions for a Subscription by a registry does the actual delivery of events.

4420 10.3.3 Subscription Authorization

4421 A registry may use registry specific policies to decide which User is authorized to create a
4422 subscription. A Registry must return an AuthorizationException in the event that an
4423 Unauthorized User submits a Subscription to aregistry.

4424 10.3.4 Subscription Quotas

4425 A registry may use registry specific policies to decide an upper limit on the number of

4426 Subscriptions a User is allowed to create. A Registry must return a QuotaExceededException in
4427 the event that an Authorized User submits more Subscriptions than allowed by their registry
4428 specific quota.

4429 10.3.5 Subscription Expiration

4430 Each subscription defines a startDate and and endDate attribute which determines the period
4431 within which a Subscription is active. Outside the bounds of the active period, a Subsription may
4432 existsin an inactive state within the registry. A Registry must not consider inactive Subscriptions
4433 when delivering notifications for an event to its Subscriptions.

Copyright © OASIS, 2002. All Rights Reserved Page 124 of 167

4435
4436
4437

4438
4439

4441

4442

4445
4446
4447

4449
4450
4451

4452

4453
4454
4455
4456

4457

4458
4459

4460

4461
4462

4463

4464
4465

4466
4467

OASIS/ebXML Registry Services Specification v2.0 September 2002

10.4Unsubscribing from Events

A User may terminate a Subscription with aregistry if she no longer wishes to be notified of
eventsrelated to that Subscription. A User terminates a Subscription by deleting the
corresponding Subscription object using the RemoveObjectsRequest to the registry.

A registry itself may remove a Subscription instance after it has expired. In such cases the
identity of a RegistryOperator User must be used for the request in order to have sufficient
authorization to remove a User’ s Subscription.

Removal of a Subscription object follows the same rules as removal of any other object.

10.5 Notification of Events

A registry performs the Actions for a Subscription in order to actually deliver the events.
However, regardless of the specific delivery action, the registry must communicate the
Subscription’s events. The Subscription’s events are delivered within a Notification instance as
described by [ebRIM].

[ebRIM] defines an extensible description of Notifications, making it possible to allow for
registry or application specific Notifications. It defines several normative types of Notifications
A client may specify the type of Notification they wish to receive using the notificationOption
attribute of the Action within the Subscription they register with aregistry as a hint to the
registry. The registry may override this hint based upon registry specific operational policies.

10.6 Retrieval of Events

The registry provides asynchronous PUSH style delivery of Notifications via notify Actions as
described earlier. However, aclient may also use a PULL style to retrieve any pending events for
their Subscriptions. Pulling of eventsis dore using the GetNotificationsRequest protocol as
described next.

10.6.1 GetNotificationsRequest

The GetNotificationsRequest is used by a client to pull retrieve any pending events for their
Subscriptions.

10.6.1.1 Syntax:

+ subscriptionRefs El
rirm: ChjectRefListType

= =Figure44: GetNotificationsRequest Syntax

+ GetNotificationsRequest

10.6.1.2 Parameters:

% subscriptionRefs. This parameter specifies a collection of ObjectRefs to
Subscription objects for which the client wishes to get Notifications.

Copyright © OASIS, 2002. All Rights Reserved Page 125 of 167

OASIS/ebXML Registry Services Specification v2.0 September 2002

4468

4469 10.6.1.3 Returns:
4470 Thisrequest returns a GetNotificationsResponse. See section 10.6.2 for details.

4471 10.6.1.4 Exceptions:

4472 In addition to the exceptions common to all requests, the following exceptions may be returned:
4473 %5 ObjectNotFoundException: signifies that a specified Subscription was not found

4474 in the registry.
4475 10.6.2 GetNotificationsResponse

4476 The GetNotificationsResponse is sent by the registry as a response to GetNotificationsRequest. It
4477 contains the Notifications for the Subscription specified in the GetNotificationsRequest.

4478

4479 10.6.2.1 Syntax:

status # requestld
HHMTOKEN I

= ¥ RegistryErrorListE

* notificationE +* subscription4
4480 MotificationType ICs

4481 = <=Figure45: GetNotificationsResponse Syntax

+ GetNotificationsResponse

4482 10.6.2.2 Parameters:

4483 g5 notification: This parameter specifies a notification contained within the
4484 GetNotificationsResponse. The notification is actually delivered as a more
4485 specialized sub-type (e.g. EventRefsNotification) as defined by [ebRIM].
4436

4487

4488 10.7 Event Management Policies

4489 This section needs to be assimilated into other sections similar to Quota section etc.??.

4490 There might be several registry specific characteristics that might differ between different

4491 registries. These characteristics could be seen as some kind of configuration / policy parameters.
4492 It seemsthat natural home for those parameters would be Registry class, and in case of

4493 cooperation registries Federation class (for Registry and Federation definitions see Cooperating
4494 Registries proposal). Registry parameters that are related to Event Notification might define:
4495 ?? What is audited and whether dynamic Auditing (don’t audit everything all the time) is
4496 supported or not.

Copyright © OASIS, 2002. All Rights Reserved Page 126 of 167

4497
4498
4499
4500
4501

4502
4503

4504
4505
4506

4507

4508
4509
4510
4511

4512
4513

4514
4515
4516
4517
4518

OASIS/ebXML Registry Services Specification v2.0 September 2002

?? Whether only Registered actors (use the terminology from security sections) can

subscribe. This might not be a policy, but a spec requirement.

?? What action types are supported.

?? Who can be notified of what (security concerns that some events has to be kept private).
?? When to purge Subscriptions and related Notifications / Events.

?? How long is the retention period in which Events and / or Natifications for undelivered

pending notifications won’'t be purged?

As this functionality is beyond the scope of this proposal, it is assumed that there will be an
effort to design policy management in which case Event Natification policy parameters would
follow that design.

10.8 Notes

These notes are here to not loose the thought and will be merged into the proposal later.

What to do with user defined subject (topic) — based notifications?
Do we need discovery of supported Events/ Notifications (what event type, source, ...)?
Filter Query changes to support new objects like Subscriptions.

Security issues: How to control what notifications others receive about my content or
events.

How about a style sheet on EmailNotification to make notification be human readable?

Terminology issue: Action Vs. Natification is confusing. Can we find another name for
NotificationType in xsd.

Copyright © OASIS, 2002. All Rights Reserved Page 127 of 167

4519

4520
4521

4522

4523
4524

4525
4526
4527

4528
4529

4530
4531

4532

4533

4534
4535
4536
4537

4538

4539
4540
4541
4542

4543

4545
4546

OASIS/ebXML Registry Services Specification v2.0 September 2002

11 Cooperating Registries Support

This chapter describes the capabilities and protocols that enable multiple ebXML registries to
cooperate with each other to meet advanced use cases as described next.

11.1 Cooperating Registries Use Cases

Thefollowing isalist of use cases that illustrate different ways that ebXML registries cooperate
with each other.

11.1.1 Inter-registry Object References

A Submitting Organization wishes to submit a RegistryObject to aregistry such that the
submitted object references a RegistryObject in another registry.

An example might be where a RegistryObject in one registry is associated with a RegistryObject
in another registry.

Registry-1 Registry-2
. s
E/Aszaﬁon-l T h
Organization-A Organization-B

= <=Figure46: Inter -registry Object References

11.1.2 Federated Queries

A client wishes to issue a single query against multiple registries and get back a single response
that contains results based on al the data contained in all the registries. From the client’s
perspective it isissuing its query against asingle logical registry that has the union of all data
within all the physical registries.

11.1.3 Local Caching of Data from Another Registry

A destination registry wishes to cache some or all the data of another source registry that is
willing to share its data. The shared dataset is copied from the source registry to the destination
registry and is visible to queries on the destination registry even when the source registry is not
available.

Local caching of data may be desirable in order to improve performance and availability of
accessing that object.

An example might be where a RegistryObject in one registry is associated with a RegistryObject
in another registry, and the first registry caches the second RegistryObject locally.

Copyright © OASIS, 2002. All Rights Reserved Page 128 of 167

4547

4549

4550

4551
4552
4553
4554

4555
4556

4557
4558
4559
4560
4561
4562
4563

4564

4565

4566
4567
4568
4569
4570
4571

4572

OASIS/ebXML Registry Services Specification v2.0 September 2002

11.1.4 Object Relocation

A Submitting Organization wishes to relocate its RegistryObjects and/or repository items from
the registry where it was submitted to another registry.

11.2 Registry Federations

A registry federation is a group of registries that have voluntarily agreed to form aloosely
coupled union. Such a federation may be based on common business interests and specialties that
the registries may share. Registry federations appear as asingle logical registry, to registry
clients.

Registry-1

b b

(Organization-A . Organization-A
Registry-2 j

Organization-B _ Organization-B .

Individual Registries Registry Federation
= <=Figure47: Registry Federations

Registry federations are based on a peer-to-peer (P2P) model where all participating registries
are equal. Each participating registry is called aregistry peer. There is no distinction between the
registry operator that created a federation and those registry operators that joined that Federation
later.

Any registry operator may form aregistry federation at any time. When a federation is created it

must have exactly one registry peer which is the registry operated by the registry operator that
created the federation.

Any registry may choose to voluntarily join or leave a federation at any time.

11.2.1 Federation Metadata

The Registry Information model defines the Registry and Federation classes, instances of these
classes and the associations between these instances describe a federation and its members. Such
instance datais referred to as Feder at i on Met adat a. The Registry and Federation classes
are described in detail in [ebRIM].

They Federation information model is summarized here as follows:
0 A Federation instance represents a registry federation.
0 A Registry instance represents a registry

Copyright © OASIS, 2002. All Rights Reserved Page 129 of 167

4573
4574
4575

4576

4577

4578
4579
4580
4581

4582

4583
4584

4585
4586

4587

4588
4589
4590
4591
4592
4593
4594
4595

4596

4597
4598
4599
4600
4601

4602

4603

4604
4605
4606
4607
4608

OASIS/ebXML Registry Services Specification v2.0 September 2002

0 An Association instance with associationType “ HasFederationMember” between a
Federation instance and a Registry instance represents that the registry is a member of the
federation.

11.2.2 Local Vs. Federated Queries

A federation appears to registry clients as a single unified logical registry. An
AdhocQueryRequest sent by a client to a federation member may be local or federated. A new
boolean attribute named f eder at ed is added to AdhocQueryRequest to indicate whether the
query is federated or not.

11.2.2.1 Local Queries
When the federated attribute of AdhocQueryRequest has the value of f al se then the query isa
local query. In the absence of afederated attribute the default value of federated attribute is false.

A local AdhocQueryRequest is only processed by the registry that receives the request. A local
AdhocQueryRequest does not operate on data that belongs to other registries.

11.2.2.2 Federated Queries

When the federated attribute of AdhocQueryRequest has the value of t r ue then the query isa
federated query.

A federated query to any federation member, must be routed by that member to all other
federation member registries as parallel-distributed queries. A federated query operates on data
that belongs to all members of the federation. Need to indicate whether results were partial
because a member was not avail able??

A registry that is not a federation member must silently handle a federated query by treating it as
alocd query.

11.2.2.3 Membership in Multiple Federations

A registry may be a member of multiple federations. In such casesif the federated attribute of
AdhocQueryRequest has the value of t r ue then the registry must route the federated query to
all federations that it is a member of.

Alternatively, the client may specify the id of a specific federation that the registry is a member
of, asthe value of thef eder at i on parameter. The type of the federation parameter is ID.

In such cases the registry must route the federated query to the specified federation only.

11.2.3 Federated Life Cycle Management Operations
Details on how to create and delete federations and how to join and leave a federation are
described in 11.2.8.

All lifecycle operations must be performed on a RegistryObject within its home registry using
the operations defined by the LifeCycleManager interface. Unlike query requests, lifecycle
management operations do not support any federated capabilities.

Copyright © OASIS, 2002. All Rights Reserved Page 130 of 167

4609

4610
4611
4612
4613
4614
4615
4616

4617

4618

4619
4620
4621
4622
4623
4624
4625
4626

4627

4628
4629
4630
4631

4632

4633
4634

4635

4636
4637
4638

4639

4640

4641
4642
4643
4644

OASIS/ebXML Registry Services Specification v2.0 September 2002

11.2.4 Federations and Local Caching of Remote Data

A federation member is not required to maintain alocal cache of replicas of RegistryObjects and
repository items that belong to other members of the federation.

A registry may choose to locally cache some or al data from any other registry whether that
registry is a federation member or not. Data caching is orthogonal to registry federation and is
described in section 11.3.

Since by default there is minimal replication in the members of afederation, the federation
architecture scales well with respect to memory and disk utilization at each registry.

Data replication is often necessary for performance, scalability and fault-tolerance reasons.

11.2.5 Caching of Federation Metadata

A specid case for local caching is the caching of the Federation and Registry instances and
related Associations that define a federation and its members. Such datais referred to as
federation metadata. A federation member is required to locally cache the federation metadata,
from the federation home for each federation that it is a member of. The federation member must
keep the cached federation metadata synchronized with the master copy in the Federation home,
within the time period specified by the replicationSyncL atency attribute of the Federation.
Synchronization of cached Federation metadata may be done via synchronous polling or
asynchronous event notification using the event notification feature of the registry.

11.2.6 Time Synchronization Between Registry Peers

Federation members are not required to synchronize their system clocks with each other.
However, it is recommended that a Federation member keep its clock synchronized with an
atomic clock server within the latency described by the replicationSyncLatency attribute of the
Federation.

11.2.7 Federations and Security

Federation life cycle management operations abide by the same security rules as normal life
cycle management.

11.2.8 Federation Life Cycle Management Protocols

This chapter describes the various operations that manage the life cycle of afederation and its
membership. A key design objective isto allow federation life cycle operations to be done using
existing LifeCycleManager interface of the registry in a stylized manner.

11.2.8.1 Joining a Federation

The following rules govern how aregistry joins a federation:

?? Each registry must have exactly one Registry instance within that registry for which it is
ahome. The Registry instance is owned by the RegistryOperator and may be placed in
the registry using any operator specific means. The Registry instance must never change
its home registry via Object Relocation.

Copyright © OASIS, 2002. All Rights Reserved Page 131 of 167

4645
4646
4647
4648

4649
4650

4651

4652
4653
4654
4655
4656
4657

4658

4659

4660
4661
4662

4663

4664
4665
4666

4667
4668

4669
4670
4671
4672

4673

4674

4675
4676
4677
4678
4679
4680
4681

4682

OASIS/ebXML Registry Services Specification v2.0 September 2002

?? A registry may request to join an existing federation by submitting an instance of an
Extramural Association that associates the Federation instance as sourceObject, to its
Registry instance as targetObject, using an associationType of “HasFederationM ember”.
The home registry for the Association and the Federation objects must be the same.

?? The owner of the Federation instance must confirm the Extramural Association in order
for the registry to be accepted as a member of the federation.

11.2.8.2 Creating a Federation

The following rules govern how a federation is created:
?? A Federation is created by submitting a Federation instance to a registry using
SubmitObjectsRequest.
?? The registry where the Federation is submitted is referred to as the federation home.
?? The federation home may or may not be a member of that Federation.
?? A federation home may cortain multiple Federation instances.

11.2.8.3 Leaving a Federation

The following rules govern how aregistry leaves a federation:

A registry may leave afederation at any time by removing its “HasFederationM ember”
Association instance that links it with the Federation instance. This is done using the normal
RemoveObjectsRequest.

11.2.8.4 Dissolving a Federation

The following rules govern how a federation is dissolved:

?? A federation is dissolved by removing its Federation instance by sending a
RemoveObjectsRequest to its home registry.

?? Theremova of a Federation instance is controlled by the same Access Control Policies
that govern any RegistryObject.

?? Theremoval of a Federation instance is controlled by the same life cycle management
rules that govern any RegistryObject. Typicaly, this means that a federation may not be
dissolved while it has federation members. It may however be deprecated at any time.
Once a Federation is deprecated no new members can join it.

11.30bject Replication

RegistryObjects within aregistry may be replicated in another registry. A replicated copy of a
remote object isreferred to as areplica of the remote object. The remote object may be the
original object or it may itself be areplica. A replicafrom an original isreferred to as afirst-
generation replica. A replicaof areplicais referred to as a second-generation replica (and so on).
The registry that replicates a remote object locally is referred to as the destination registry for the
replication. The registry that contains the remote object being replicated is referred to as the
source registry for the replication.

Copyright © OASIS, 2002. All Rights Reserved Page 132 of 167

4683
4684

4685

4686

4687
4688

4689
4690
4691
4692
4693
4694
4695

4696

4697
4698
4699

4700
4701
4702

4703

4704
4705

OASIS/ebXML Registry Services Specification v2.0 September 2002

Registry-1 Registry-1

Organization-A

. Organization-A
Registry-2 ' Registry-2

-

g

N Feplica of ..
Organization-B Organization-A Organization-B
Before Replication After Replication

= <=Figure48: Object Replication

11.3.1 Use Cases for Object Replication

A registry may create a local replica of aremote object for a variety of reasons. A few sample
use cases follow:

0 Improve access time and fault tolerance via locally caching remote objects. For example,
aregistry may automatically create alocal replica when a remote ObjectRef is submitted
to the registry.

o Improve scalability by distributing access to hotly contested object, such as NAICS
scheme, across multiple replicas.

0 Enable cooperating registry features such as hierarchical registry topology and local
caching of federation metadata.

11.3.2 Queries And Replicas

A registry must support client queries to consider alocal replica of remote object asif it were a
local object. Local replicas are considered within the extent of the data set of aregistry asfar as
local queries are concerned.

When a client submits alocal query that retrieves a remote object by itsid attribute, if the
registry contains alocal replica of that object then the registry should return the state defined by
the local replica.

11.3.3 Lifecycle Operations And Replicas

A registry must not allow life cycle management operations on objects that are local replicas of
remote objects. In such cases it should send an InvalidRequestException.

Copyright © OASIS, 2002. All Rights Reserved Page 133 of 167

4706

4707
4708
4709

4710

4711
4712
4713

4714
4715

4716
4717

4718
4719
4720
4721

4722
4723
4724

4725
4726

4727
4728

4729

4730
4731
4732

4733

4734

4735
4736
4737
4738
4739

4740

4741
4742
4743

OASIS/ebXML Registry Services Specification v2.0 September 2002

11.3.4 Object Replication and Federated Registries

Object replication capability is orthogonal to the registry federation capability. Objects may be
replicated from any registry to any other registry without any requirement that the registries
belong to the same federation.

11.3.5 Creating a Local Replica

Any Submitting Organization can create a replica by using the existing SubmitObjectsRequest. If
aregistry receives a SubmitObjectRequest which has an RegistryObjectList containing a remote
ObjectRef, then it must create areplica for that remote ObjectRef.

In addition to Submitting Organizations, aregistry itself may create areplica under specific
gituations in aregistry specific manner.

Creating alocal replica requires the destination registry to read the state of the remote object
from the source registry and then create alocal replica of the remote object.

A registry may use normal QueryManager interface to read the state of a remote object (whether
itisanorigina or areplica). No new APIs are needed to read the state of a remote object. Since
guery functionality does not need prior registration, no prior registration or contract is needed for
aregistry to read the state of a remote object.

Once the state of the remote object has been read, a registry may use registry specific meansto
create alocal replica of the remote object. Such registry specific means may include the use of
the LifeCycleManager interface.

How to distinguish a replica from an original ??
0 Add isReplicato RegistryObject??

0 Add home attribute to RegistryObject??
0 Should we have a sub-class of ObjectRef called RemoteObjectRef??

11.3.6 Transactional Replication

Transactional replication enables aregistry to replicate events in another registry in a
transactionally consistent manner. Thisistypically the case when entire registries are replicated
to another registry.

Registry implementations are not required to implement transactional replication

11.3.7 Keeping Replicas Current

A registry must keep its replicas current within the latency specified by the value of the
replicationSyncL atency attribute defined by the registry. This includes removal of the replica
when its original is removed from its home registry.

Replicas may be kept current using the event notification feature of the registry or via periodic
polling.

11.3.8 Write Operations on Local Replica

Local Replicas are read-only objects. Lifecycle management operations of RegistryObjects are
not permitted on local replicas. All lifecycle management operation to RegistryObjects must be
performed in the home registry for the object.

Copyright © OASIS, 2002. All Rights Reserved Page 134 of 167

4744

4745
4746
4747
4748
4749

4750

4751
4752
4753

4754

4755
4756
4757

4758

4759

4760
4761
4762

4763
4764

4765
4766

4767
4768

OASIS/ebXML Registry Services Specification v2.0 September 2002

11.3.9 Tracking Location of a Replica

A local replica of aremote RegistryObject instance must have exactly one ObjectRef instance
within the local registry. The home attribute of the ObjectRef associated with the replica tracks
its home location. A RegistryObject must have exactly one home. The home for a RegistryObject
may change via Object Relocation as described in section 11.4. It is optional for aregistry to
track location changes for replicas within it.

11.3.10 Remote Object References to a Replica

It is possible to have a remote ObjectRef to a RegistryObject that is a replica of another
RegistryObject. In such cases the home contains the base URI to the home registry for the
replica.

11.3.11 Removing a Local Replica

A Submitting Organization can remove areplica by using the DeleteObjectsRequest. If aregistry
receives a DeleteObjectRequest which has an ObjectRefList containing a remote ObjectRef, then
it must remove the local replica for that remote ObjectRef.

11.4Object Relocation Protocol

Need to replace this with Registry Import/Export capability??

Every RegistryObject has a home registry and a User within the home registry that is
the publisher or owner of that object. Initially, the home registry is the where the object
is originally submitted. Initially, the owner is the User that submitted the object.

A RegistryObject may be relocated from one home registry to another home registry
using the Object Relocation protocol.

Within the Object Relocation protocol, the new home registry is referred to as the
destination registry while the previous home registry is called the source registry.

sourceRegistry sourceRegistry
Organization-A User-1 . % User-1
destinationRegistry destinationRegistry
b h OTRTIER
................................. -
User-2 Organization-A User-2
Before After

Figure 49: Object Relocation

Copyright © OASIS, 2002. All Rights Reserved Page 135 of 167

4769
4770
4771
4772
4773
4774
4775
4776

arri7

4778
4779

4780
4781

4782
4783
4784
4785
4786

4787
4788

4789
4790

4791
4792
4793
4794

OASIS/ebXML Registry Services Specification v2.0 September 2002

The User at the source registry who owns the objects being relocated is referred to as
the ownerAtSource. The User at the destination registry, who is the new oner of the
objects, is referred to as the ownerAtDestination. While the ownerAtSource and the
ownerAtDestination may often be the same identity, the Object Relocation protocol
treats them as two distinct identities.

A specia case usage of the Object Relocation protocol isto transfer ownership of
RegistryObjects from one User to another within the same registry. In such cases the protocol is
the same except for the fact that the source and destination registries are the same.

Following are some notable points regarding object relocation:

?? Object relocation does not require that the source and destination registries be in the same
federation or that either registry have a prior contract with the other.

?? Object relocation must preserve object id. While the home registry for a RegistryObject
may change due to object relocation, itsid never changes.

?? ObjectRelocation must preserve referential integrity of RegistryObjects. Relocated
objects that have references to an object that did not get relocated must preserve their
reference. Similarly objects that have references to arelocated object must also preserve
their reference. Thus, relocating an object may result in making the value of a reference
attribute go from being alocal reference to being a remote reference or vice versa.

?? AcceptObjectsRequest does not include ObjectRefList. It only includes an opaque
transactonld identifying the relocateObjects transaction.

?? The requests defined by the Relocate Objects protocol must be sent to the source or
destination registry only.

?? When an object is relocated an AuditableEvent of type “Relocated” happens. Relocated
events must have the source and target registry’ s base URIs recorded as two Slots on the
Relocated event. The names of these Slots are sourceRegistry and targetRegistry
respectively.

Copyright © OASIS, 2002. All Rights Reserved Page 136 of 167

OASIS/ebXML Registry Services Specification v2.0 September 2002

owneritSource sourceRegistry destinationReqgistry owneritDestination
Lzer LifeCyclelanager LifeCycleManager Lger

| I |
| relocateQbjects(RelboateObjectsRequest:RégistyResponse

|
relocateChjectsiRelochteObjectsRequest RegistrvResponse

out-of-band L,
notification | »[I

L

| | au:cept%jﬂs(ﬁccept@hjectsRequest):Regiserespnnse

| I
acceptOhjectﬁ(Acn:eptObjectsRequept}:ﬁegistwRespnnse

: e [j submitOhjects{SubmitOhjectsRequest) RenistyResponse

I

|
|
|
|
|
|
|
| removedbjects(RemoveOhjectsRequest)RegistvyResponse
|
|
|
|
|
|

4795
4796 = =Figure50: Relocate Objects Protocol

4797 Figure 40 illustrates the Relocate Objects Protocol. The particpants in the protocol are the
4798 ownerAtSource and ownerAtDestination User instances as well as the LifeCycleManager
4799 interfaces of the sourceRegistry and dedinationRegistry.

4800 The stepsin the protocol are described next:

4801 1. The protocol isinitiated by the ownerAtSource sending a Rel ocateObjectsRequest
4802 message to the LifeCycleManager interface of the sourceRegistry. The sourceRegistry
4803 must make sure that the ownerAtSource is authorized to perform this request. The id of
4804 this RelocateObjectsRequest is used as the transaction identifier for this instance of the
4805 protocol. This RelocateObjectsRequest message must contain an ObjectRefList element
4806 specifying the objectsthat are to be rel ocated.

4807 2. Next, the sourceRegistry must send a different Rel ocateObjectsRequest message to the
43808 LifeCycleManager interface of the destinationRegistry. This RelocateObjectsRequest
4809 message must not contain the ObjectRefList element. This message signals the

4810 detsinationRegistry to participate in relocation protocol.

4811 3. The destinationRegistry must relay the Rel ocateObjectsRequest message to the

4812 ownerAtDestination using the event notification feature of the registry as described in
4813 chapter 10. This concludes the sequence of events that were a result of the

4814 ownerAtSource sending the Rel ocateObjectsRequest message to the sourceRegistry.
4815 4. The ownerAtDestination at a later time may send an AcceptObjectsRequest message to
4816 the destinationRegistry. This request must identify the object relocation transaction via
4817 the relocateObjectsRequestld. The value of this attribute must be the id of the original
43818 Rel ocateObj ectsRequest.

Copyright © OASIS, 2002. All Rights Reserved Page 137 of 167

4819
4820

4821
4822
4823

4824
4825

4826
4827

4828

4829
4830

4831
4832

4833

4834
4835
4836

4837

4838
4839

4841
4842

OASIS/ebXML Registry Services Specification v2.0 September 2002

5. The destinationRegistry relays the AcceptObjectsRequest message to the sourceRegistry.
The source registry returns the objects being relocated as an AdhocQueryResponse.

6. The registry submits the relocated data to itself assigning the identity of the
ownerAtDestination as the owner. The relocated data may be submitted to the destination
registry using any registry specific means or a SubmitObjectsRequest.

7. The destinationRegistry notifies the sourceRegistry that the relocated objects have been
safely committed. Need to decide on the signal message name here??

8. The sourceRegistry removes the relocated objects using any registry specific means or a
RemoveObjectsRequest. This concludes the Object Relocation transaction.

11.4.1 RelocateObjectsRequest

753

% + ObjectRefListE

* sourceRegisth
rirm:objectRef Type

* RelocateﬂbjectsRequestE= +* destinationRegistryE
rirm: ObjectRef Type

+ owherAtSource
rirm:ObjectRef Type

+ ownherAtDastination O
rirm: ObjectRef Type

<= =Figure51: RelocateObjectsRequest XML Schema

11.4.1.1 Attribute id
The attribute id provides the transaction identifier for this instance of the protocol.

11.4.1.2 Element ObjectRefList

This element specifies the set of id attributes of RegistryObjects that are being relocated. This
attribute must be present when the message is sent by the ownerAtSource to the sourceRegistry.
This attribute must not be present when the message is sent on any other occasion.

11.4.1.3 Element sourceRegistry

This element specifies the ObjectRef to the sourceRegistry Registry instance. The value of this
attribute must be alocal reference when the message is sent by the ownerAtSource to the
sourceRegistry.

11.4.1.4 Element destinationRegistry
This element specifies the ObjectRef to the destinationRegistry Registry instance.

11.4.1.5 Element ownerAtSource

This element specifies the ObjectRef to the ownerAtSource User instance.

Copyright © OASIS, 2002. All Rights Reserved Page 138 of 167

4846

4847

4849

4850
4851

4852
4853

4854
4855
4856
4857
4858
4859
4860
4861
4862

4863
4864

4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881

OASIS/ebXML Registry Services Specification v2.0 September 2002

11.4.1.6 Element ownerAtDestination
This element specifies the ObjectRef to the ownerAtDestination User instance.

11.4.2 AcceptObjectsRequest

+ AcceptObjectsRequest Q[E [o relocateObjectsRequestld
D D

11.4.2.1 Attribute relocateObjectsRequestld

The attribute relocateObjectsRequestld provides the transaction identifier for this instance of the
protocol.

11.4.3 Object Relocation and Remote ObjectRefs
The following scenario describes what typically happens when a person moves:

1.

w

5.

When a person moves from one house to another, other persons may have their old postal
addresses.

When a person moves, they leave their new address as the forwarding address with the
post office.

The post office forwards their mail for some time to their new address.
Eventualy the forwarding request expires and the post office no longer forwards mail for
that person.

During this forwarding interval the person notifies interested parties of their change of
address.

The registry must support a similar model for relocation of RegistryObjects. The following steps
describe the expected behavior when an object is relocated.

1.

When a RegistryObject O1 is relocated from one registry R1 to another registry R2, other
RegistryObjects may have remote ObjectRefs to O1.

The registry R1 must leave an AuditableEvent of type Relocated that includes the home
URI for the new registry R2.

Aslong as the AuditableEvent existsin R1, if R1 gets a request to retrieve O1 by id, it
must forward the request to R2 and transparently retrieve O1 from R2 and deliver it to the
client. The object O1 must include the home URI to R2 within the optional home
attribute of RegistryObject. Clients are advised to check the home attribute and update
the home attribute of their local ObjectRef to match the new home URI value for the
object.

Eventually the AuditableEvent is cleaned up after aregistry specific interval. R1 is no
longer required to relay requests for O1 to R2 transparent to the client. Instead R1 must
return an ObjectNotFoundException.

Clients that are interested in the relocation of O1 and being notified of its new address
may choose to be notified by having a prior subscription using the event notification
facility of the registry. For example a Registry that has a remote ObjectRefs to O1 may
create a subscription on relocation events for O1. This however, is not required behavior.

Copyright © OASIS, 2002. All Rights Reserved Page 139 of 167

OASIS/ebXML Registry Services Specification v2.0 September 2002

4882 11.4.4 Notification of Object Relocation

4883 This section describes how the destinationRegistry uses the event notification feature of the
4884 registry to notify the ownerAtDestination of a Relocated event.

4885 <details TBD>

4886 11.4.5 Object Relocation and Timeouts

4887 No timeouts are specified for the Object Relocation protocol. Registry implementations may
4888 cleanup incomplete Object Relocation transactions in a registry specific manner as an
4889 administrative task using registry specific policies.

Copyright © OASIS, 2002. All Rights Reserved Page 140 of 167

4890

4891
4892
4893

4894

4895
4896
4897
4898
4899

4900

4901
4902
4903
4904
4905
4906
4907
4908
4909

4910

49011
4912

4913

4914
4915
4916
4917
4918
4919
4920
4921
4922

4923

4924
4925

4926
4927

4928

OASIS/ebXML Registry Services Specification v2.0 September 2002

12 Registry Security

This chapter describes the security features of the ebXML Registry. It is assumed that the reader
is familiar with the security related classes in the Registry information model as described in
[ebRIM]. Security glossary terms can be referenced from RFC 2828.

12.1 Security Concerns

In the current version of this specification, we address data integrity and source integrity (item 1
in Appendix E.1). We have used a minimalist approach to address the access control concern as
initem 2 of Appendix E.1. Essentially, “any known entity (Submitting Organization) can publish
content and anyone can view published content.” The Registry information model has been
designed to allow more sophisticated security policies in future versions of this specification.

12.2 Integrity of Registry Content

It is assumed that most business registries do not have the resources to validate the veracity of
the content submitted to them. "The mechanisms described in this section can be used to ensure
that any tampering with the content submitted by a Submitting Organization can be detected.
Furthermore, these mechanisms support unambiguous identification of the Responsible
Organization for any registry content. The Registry Client has to sign the contents before
submission — otherwise the content will be rgected. Note that in the discussions in this section
we assume a Submitting Organization to be also the Responsible Organization. Future version of
this specification may provide more examples and scenarios where a Submitting Organization
and Responsible Organization are different.

12.2.1 Message Payload Signature

The integrity of the Registry content requires that all submitted content be signed by the Registry
client. The signature on the submitted content ensures that:

?? Any tampering of the content can be detected.

?? The content’ s veracity can be ascertained by its association with a specific Submitting
Organization.

This section specifies the requirements for generation, packaging and validation of payload

signatures. A payload signature is packaged with the payload. Therefore the requirements apply

regardless of whether the Registry Client and the Registration Authority communicate over

vanilla SOAP with Attachments or ebXML Messaging Service [ebMS]. Currently, ebXML

Messaging Service does not specify the generation, validation and packaging of payload

signatures. The specification of payload signatures is left upto the application (such as Registry).

So the requirements on the payload signatures augment the [ebM S] specification.

Use Case

This Use Case illustrates the use of header and payload signatures (we discuss header signatures
later).

?? RCL1 (Registry Client 1) signs the content (generating a payload signature) and publishes the
content along with the payload signature to the Registry.

?? RC2 (Registry Client 2) retrieves RC1's content from the Registry.

Copyright © OASIS, 2002. All Rights Reserved Page 141 of 167

4929
4930
4931
4932
4933
4934
4935
4936
4937
4938

4939

4940

4941
4942
4943
4944
4945

4946
4947

4948

4949
4950

4951

4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969

OASIS/ebXML Registry Services Specification v2.0 September 2002

?? RC2 wants to verify that RC1 published the content. In order to do this, when RC2 retrieves
the content, the response from the Registration Authority to RC2 contains the following:

o Payload containing the content that has been published by RC1.

0 RC1 spayload signature (represented by a ds:Signature element) over RC1’s published
content.

0 The public key for validating RC1’s payload signature in ds.Signature element (using the
Keylnfo element as specified in [XMLDSIG]) so RC2 can obtain the public key for
signature (e.g. retrieve a certificate containing the public key for RC1).

0 A ds:Signature element containing the header signature. Note that the Registration
Authority (not RC1) generates this signature.

12.2.2 Payload Signature Requirements

12.2.2.1 Payload Signature Packaging Requirements

A payload signature is represented by a ds.Signature element. The payload signature must be

packaged with the payload as specified here. This packaging assumes that the payload is always

signed.

?? The payload and its signature must be enclosed in a MIME multipart message with a
Content-Type of multipart/related.

?? Thefirst body part must contain the XML signature as specified in Section 12.2.2.2,
“Payload Signature Generation Requirements’.

?? The second body part must be the content.

The packaging of the payload signature with two payloads is as shown in the example in Section
8.4.2.

12.2.2.2 Payload Signature Generation Requirements

The ds:Signature element [XMLDSIG] for a payload signature must be generated as specified in

this section. Note: the “ds’ name space reference is to http://www.w3.0rg/2000/09/xmldsi g#

?? ds.SignatureMethod must be present. [XMLDSIG] requires that the algorithm be identified
using the Algorithm attribute. [XMLDSIG] alows more than one Algorithm attribute, and a
client may use any of these attributes. However, signing using the following Algorithm
attribute; http://www.w3.0rg/2000/09/xmldsig#dsashal Will alow interoperability with all
XMLDSIG compliant implementations, since XMLDSIG requires the implementation of this
algorithm.

The ds:Signedinfo element must contain a ds:CanonicalizationMethod element. The following

Canonicalization algorithm (specified in [XMLDSIG]) must be supported

http://www.w3.0rg/TR/2001/REC-xml -c14n-20010315

?? One ds.Reference el ement to reference each of the payloads that needs to be signed must be
created. The ds:Reference element:

0 Must identify the payload to be signed using the URI attribute of the ds:Reference
element.

0 Must contain the <ds:DigestMethod> as specified in [XMLDSIG]. A client must be
support the following digest algorithm:

O http://www.w3.0rg/2000/09/xmlidsig#shal

Copyright © OASIS, 2002. All Rights Reserved Page 142 of 167

4970
4971

4972
4973

4974
4975

4976

4977
4978

4979
4980

4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992

4993

4994
4995
4996
4997
4998
4999
5000
5001

5002
5003
5004
5005

5006
5007
5008
5009

OASIS/ebXML Registry Services Specification v2.0 September 2002

0 Must contain a <ds:DigestVaue> which is computed as specified in [XMLDSIG].
The ds:SignatureVaue must be generated as specified in [XMLDSIG].

The ds:KeyInfo element may be present. However, when present, the ds:KeylInfo field is subject
to the requirements stated in Section 12.4, “KeyDistrbution and Keylnfo element”.

12.2.2.3 Message Payload Signature Validation
The ds:Signature element must be validated by the Registry as specified in the [XMLDSIG].

12.2.2.4 Payload Signature Example

The following example shows the format of the payload signature:

<ds: Si gnature xm ns: ds="http://ww. w3. or g/ 2000/ 09/ xm dsi g#" >
<ds: Si gnedl! nf 0>

<Si gnat ur eMet hod Al gori t hne” http://www.w3.0rg/TR/2000/09/xmldsig#dsa-shal” / >
<ds: Canoni cal i zat i onMet hod>
Al gorithm="http://ww. w3. or g/ TR/ 2001/ REG xm -c14n-20010315" >
</ ds: Canoni cal i zati onMet hod>
<ds: Ref erence URI =#Payl| oad1>
<ds: Di gest Met hod Di gest Al gorit hn¥"http://ww. w3. or g/ TR/ 2000/ 09/ xm dsi g#shal" >
<ds: Di gest Val ue> ... </ds: D gest Val ue>

</ ds: Ref er ence>
</ ds: Si gnedI nf 0>
<ds: Si gnatureValue> ... </ds: SignatureVal ue>
</ ds: Si gnat ur e>

12.3 Authentication

The Registry must be able to authenticate the identity of the Principal associated with client
requests. The identity of the Principal can be identified by verifying the message header
signature with the certificate of the Principal. The certificate may be in the message itself or
provided to the registry through means unspecified in this specification. If not provided in the
message, this specification does not specify how the Registry correlates a specific message with
a certificate. Authentication of each payload must also be possible by using the signature
associated with each payload. Authentication is also required to identify the "privileges' a
Principal is authorized ("authorization") to have with respect to specific objects in the Registry.

The Registry must perform authentication on a per message basis. From a security point of view,
all messages are independent and there is no concept of a session encompassing multiple
messages or conversations. Session support may be added as an optimization feature in future
versions of this specification.

It is important to note that the message header signature can only guarantee data integrity and it
may be used for Authentication knowing that it is vulnerable to replay types of attacks. True
support for authentication requires timestamps or nonce (nonrecurring series of numbers to
identify each message) that are signed.

Copyright © OASIS, 2002. All Rights Reserved Page 143 of 167

5010

5011
5012

5013

5014
5015
5016
5017
5018

5019
5020
5021
5022
5023
5024
5025
5026

5027

5028
5029
5030

5031

5032
5033
5034
5035
5036

5037

5038
5039
5040
5041
5042

5043
5044
5045
5046

5047

5048
5049

OASIS/ebXML Registry Services Specification v2.0 September 2002

12.3.1 Message Header Signature

Message headers are signed to provide data integrity while the message is in transit. Note that the
signature within the message header also signs the digests of the payloads.

Header Signature Requirements

Message headers can be signed and are referred to as a header signature. When arequest is sent
by a Registered User, the Registration Authority may use the pre-established contract or a default
policy to determine whether the response contains a header signature. . When arequest is sent
by a Registery Guest, the Registration Authority may use a default policy to determine whether
the response contains a header signature.

This section specifies the requirements for generation, packaging and validation of a header
signature. These requirements apply when the Registry Client and Registration Authority
communicate using vanilla SOAP with Attachments. When ebXML MSiis used for
communication, then the message handler (i.e. [ebMS]) specifies the generation, packaging and
validation of XML signatures in the SOAP header. Therefore the header signature requirements
do not apply when the ebXML MSis used for communication. However, payload signature
generation requirements (specified elsewhere in this document) do apply whether vanilla SOAP
with Attachments or ebXML MS is used for communication.

12.3.1.1 Packaging Requirements

A header signature is represented by a ds.Signature element. The ds.Signature element generated
must be packaged in a<SOAP-ENV:Header> element. The packaging of the ds.Signature
element in the SOAP header field is shown in Section 8.4.2.

12.3.1.2 Header Signature Generation Requirements

The ds:Signature element [XMLDSIG] for a header signature must be generated as specified in
this section. A ds:Signature element contains:

?? ds:Signedinfo

?? ds.SignatureVaue

?? dsKeylnfo

The ds:Signedinfo element must be generated as follows:

1. ds:SignatureMethod must be present. [XMLDSIG] requires that the algorithm be identified
using the Algorithm attribute. While [XMLDSIG] alows more than one Algorithm Attribute,
aclient must be capable of signing using only the following Algorithm attribute:
http://www.w3.0rg/2000/09/xmlidsig#dsashal This algorithm is being chosen because all
XMLDSIG implementations conforming to the [XMLDSIG] specification support it.

2. The ds:Signedinfo e ment must contain a ds:CanonicalizationMethod element. The
following Canonicalization algorithm (specified in [XMLDSIG]) must be supported:

http://www.w3.0rg/TR/2001/REC-xml-c14n-20010315
3. A ds:Reference element to include the <SOAP-ENV :Envelope> in the signature calculation.
This signs the entire ds:Reference element and:

0 Must include the following ds. Transform:
http://www.w3.0rg/2000/09/xml dsi g#tenvel oped-signature

Copyright © OASIS, 2002. All Rights Reserved Page 144 of 167

5050
5051
5052
5053
5054
5055
5056

5057
5058

5059
5060

5061

5062
5063

5064
5065
5066
5067
5068

5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083

5084

5085
5086
5087
5088

5089

OASIS/ebXML Registry Services Specification v2.0 September 2002

This ensures that the signature (which is embedded in the <SOAP-ENV :Header>
element) is not included in the signature calculation.

0 Must identify the <SOAP-ENV:Envelope> element using the URI attribute of the
ds:Reference element (The URI attribute is optional in the [XMLDSIG] specification.) .
The URI attribute must be “”.

0 Must contain the <ds:DigestMethod> as specified in [XMLDSIG]. A client must support
the following digest algorithm: http://www.w3.0rg/2000/09/xml dsi g#shal

0 Must contain a<ds:DigestValue>, which is computed as specified in [XMLDSIG].
The ds:SignatureVaue must be generated as specified in [XMLDSIG].

The ds:KeyInfo element may be present. When present, it is subject to the requirements stated in
Section 12.4, “KeyDistrbution and Keylnfo element”.

12.3.1.3 Header Signature Validation Requirements

The ds:Signature element for the ebXML message header must be validated by the recipient as
specified by [XMLDSIG].

12.3.1.4 Header Signature Example
The following example shows the format of a header signature:

<ds: Si gnature xm ns: ds="htt p://ww. w3. or g/ 2000/ 09/ xm dsi g#" >
<ds: Si gnedl nf 0>
<Si gnat ur eMet hod Al gor i t hnehttp://www.w3.org/TR/2000/09/xmldsig#dsashal/ >
<ds: Canoni cal i zat i onMet hod>
Al gorithn"http://ww. w3. or g/ TR/ 2000/ CR xm - c14n-2001026" >
</ ds: Canoni cal i zat i onMet hod>

<ds: Reference URI = “">
<ds: Tr ansf or n»
http://iwww.w3.0rg/2000/09/x mldsi g#envel oped-Signature
</ ds: Tr ansf or m»>
<ds: Di gest Met hod Di gest Al gorit hm="./xnl dsi g#shal" >
<ds: Di gest Val ue> ... </ds: D gest Val ue>

</ ds: Ref er ence>
</ ds: Si gnedlI nf 0>
<ds: Si gnatureValue> ... </ds: SignatureVal ue>
</ ds: Si gnat ur e>

12.4Key Distribution and KeyInfo Element

To validate a signature, the recipient of the signature needs the public key corresponding to the
signer’s private key. The participants may use the Keylnfo field of ds:Signature, or distribute the
public keys out-of-band. In this section we consider the case when the public key is sent in the
KeylInfo field. The following use cases need to be handled:

?? Registration Authority needs the public key of the Registry Client to validate the signature

Copyright © OASIS, 2002. All Rights Reserved Page 145 of 167

5090
5091

5092
5093

5094
5095
5096
5097
5098
5099
5100
5101

5102
5103

5104
5105

5106
5107

5108

5109

5110

5111
5112
5113

5114

5115
5116
5117
5118

5119

5120
5121
5122
5123
5124
5125

OASIS/ebXML Registry Services Specification v2.0 September 2002

?? Registry Client needs the public key of the Registration Authority to validate the Registry’s
signature.

?? Registry Client RC1 needs the public key of Registry Client (RC2) to validate the content
signed by RC1.

?? [XMLDSIG] provides adsKeylnfo element that can be used to pass the recipient
information for retrieving the public key. dsKeylnfois an optional element as specified in
[XMLDSIG]. This field together with the procedures outlined in this section is used to
securely pass the public key to arecipient. ds:Keyinfo can be used to pass information such
as keys, certificates, names etc. The intended usage of Keylnfo field is to send the X509
Certificate, and subsequently extract the public key from the certificate. Therefore, the
Keylnfo field must contain a X509 Certificate as specified in [XMLDSIG], if the Keylnfo
field is present.

The following assumptions are also made:
1. A Cetificate is associated both with the Registration Authority and a Registry Client.

2. A Registry Client registers its certificate with the Registration Authority. The mechanism
used for thisis not specified here.

3. A Registry Client obtains the Registration Authority’s certificate and stores it in its own local
key store. The mechanism is not specified here.

Couple of scenarios on the use of Keylnfo field isin Appendix F.8.

12.5 Confidentiality

12.5.1 On-the-wire Message Confidentiality

It is suggested but not required that message payloads exchanged between clients and the
Registry be encrypted during transmission. This specification does not specify how payload
encryption is to be done.

12.5.2 Confidentiality of Registry Content

In the current version of this specification, there are no provisions for confidentiality of Registry
content. All content submitted to the Registry may be discovered and read by any client. This
implies that the Registry and the client need to have an a priori agreement regarding encryption
algorithm, key exchange agreements, etc. This service is not addressed in this specification.

12.6 Authorization

The Registry must provide an authorization mechanism based on the information model defined
in [ebRIM]. In this version of the specification the authorization mechanism is based on a default
Access Control Policy defined for a pre-defined set of roles for Registry users. Future versions of
this specification will allow for custom Access Control Policies to be defined by the Submitting
Organization. The authorization is going to be applied on a specific set of privileges. A
privilege is the ability to carry a specific action.

Copyright © OASIS, 2002. All Rights Reserved Page 146 of 167

5126

5127
5128
5129
5130
5131
5132
5133
5134
5135
5136

5137

5138
5139
5140
5141

5142

OASIS/ebXML Registry Services Specification v2.0 September 2002

12.6.1 Actions

Life Cycle Actions
submitObjects
updateObjects
addSlots
removeSlots
approveObjects
deprecateObjects
removeObjects

Read Actions

The various getXXX() methods in QueryManagement Service.

12.7 Access Control

The Registry must create a default AccessControlPolicy object that grants the default
permissions to Registry users (as defined in Section 5.3 of this document) to access Registry
Objects based upon their assigned role. The following table defines the Permissions granted by
the Registry to the various pre-defined roles for Registry users.

<= <=Table9: Roleto Permissions Mapping

Role Per missions

Access to all methods on Registry Objects that are owned by

ContentOwner the actor who is assigned this role.

RegistryAdministrator ||Access to all methods on all Registry Objects

Access to some read-only (getX X X) methods on some Registry
GuestReader Objects (read-only access to some content) as defined in the
default access control policy.

Copyright © OASIS, 2002. All Rights Reserved Page 147 of 167

OASIS/ebXML Registry Services Specification v2.0

September 2002

5143 The mapping of actors listed in Section 5.3 and their default roles in the following table.
= <=Table 10: Default Actor to Role Mappings

5144

5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163

5164
5165

Actor

Role

Submitting Organization
Responsible Organization

ContentOwner

Registry Administrator
Registration Authority

RegistryAdministrator

Registry Guest

GuestReader

Registry Reader

GuestReader

The Registry must implement the default AccessControlPolicy and associate it with al Objects

in the Registry. The following list summarizes the role-based AccessControl Policy:

?? Only aRegistered User can publish content.

?? Any unauthenticated Registry Client can only access some read-only (getXXX) methods
permitted for GuestReader role. The Registry must assign the default GuestReader role to

such Registry Clients.

?? The SubmittingOrganization has access to all methods of Registry Objects submitted or
updated by the Submitting Organization. This version of the specification does not
distinguish between Submitting Organization and Responsible Organization, and assumes
that the Submitting Organization is a so the Responsible Organization.

?? The RegistryAdministrator and Registry Authority have access to all methods on all

Registry Objects

?? At the time of content submission, the Registry must assign the default ContentOwner role to
the Submitting Organization (SO) as authenticated by the credentials in the submission
message. In the current version of this specification, the Submitting Organization will be the
DN (Distinguished Name) as identified by the certificate presented during authentication.
This version of the specification does not specify where credentials go in the message.

?? A Registry Reader can access someread-only (getX X X) methods on some Registry Objects
(read-only access to some content) as defined in the custom access control policy agreed

upon in a contract between the Registry and Registry Reader. Such access MAY be a
superset of access granted to the GuestReader role.

Copyright © OASIS, 2002. All Rights Reserved

Page 148 of 167

5166

5167

5168
5169
5170

5171

5172

5173
5174
5175

5176

OASIS/ebXML Registry Services Specification v2.0 September 2002

Appendix A Web Service Architecture

A.1 Registry Service Abstract Specification

The normative definition of the Abstract Registry Service in WSDL is defined at the following
location on the web:
http://www.oasis-open.org/committees/regrep/documents/3.0/services/Registry.wsdl

Need to update WSDL for V3??

A.2 Registry Service SOAP Binding

The normative definition of the concrete Registry Service binding to SOAP in WSDL is defined
at the following location on the web:
http://www.0asi s-open.org/committees/regrep/documents/3.0/services/Registry SOA PBinding.wsdl

Copyright © OASIS, 2002. All Rights Reserved Page 149 of 167

OASIS/ebXML Registry Services Specification v2.0 September 2002

5177 Appendix B ebXML Registry Schema Definitions

5178 B.1 RIM Schema

5179 The normative XML Schema definition that maps [ebRIM] classes to XML can be found at the
5180 following location on the web:
5181 http://www.oasis-open.org/committees/regrep/documents/3.0/schemalrim.xsd

5182 B.2 Query Schema

5183 The normative XML Schema definition for the XML query syntax for the registry service
5184 interface can be found at the following location on the web:
5185 http://www.oasis-open.org/committees/regrep/documents/3.0/schemalquery .xsd

5186 B.3 Registry Services Interface Schema

5187 The normative XML Schema definition that defines the XML requests and responses supported
5188 by the registry service interfaces in this document can be found at the following location on the
5189 web:

5190 http://www.oasis-open.org/committees/regrep/documents/3.0/schemalrs.xsd

5191 B.4 Examples of Instance Documents

5192 A growing number of non-normative XML instance documents that conform to the normative
5193 Schema definitions described earlier may be found at the following location on the web:
5194 http://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/ebxmirr/ebxmirr -spec/misc/samples/

5195

Copyright © OASIS, 2002. All Rights Reserved Page 150 of 167

5196

5197
5198

5199

5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211

5212

5213
5214
5215
5216
5217
5218
5219
5220

5221
5222
5223
5224

OASIS/ebXML Registry Services Specification v2.0 September 2002

Appendix C Interpretation of UML Diagrams

This section describes in abstract termsthe conventions used to define ebXML business process
description in UML.

C.1 UML Class Diagram

A UML class diagram is used to describe the Service | nterfaces required to implement an
ebXML Registry Services and clients. The UML class diagram contains:

1. A collection of UML interfaces where each interface represents a Service Interface for a
Registry service.

2. Tabular description of methods on each interface where each method represents an
Action (as defined by [ebCPP]) within the Service Interface representing the UML
interface.

3. Each method within a UML interface specifies one or more parameters, where the type of
each method argument represents the ebXM L message type that is exchanged as part of
the Action corresponding to the method. Multiple arguments imply multiple payload
documents within the body of the corresponding ebXML message.

C.2 UML Sequence Diagram

A UML sequence diagram is used to specify the business protocol representing the interactions
between the UML interfaces for a Registry specific ebXML business process. A UML sequence
diagram provides the necessary information to determine the sequencing of messages, request to
response association as well as request to error response association.

Each sequence diagram shows the sequence for a specific conversation protocol as method calls
from the requestor to the responder. Method invocation may be synchronous or asynchronous
based on the UML notation used on the arrow- head for the link. A half arrow-head represents
asynchronous communication. A full arrow-head represents synchronous communication.

Each method invocation may be followed by a response method invocation from the responder to
the requestor to indicate the ResponseName for the previous Request. Possible error response is
indicated by a conditiona response method invocation from the responder to the requestor. See
Figure 7 on page 34 for an example.

Copyright © OASIS, 2002. All Rights Reserved Page 151 of 167

OASIS/ebXML Registry Services Specification v2.0 September 2002

Appendix D SQL Query

D.1 SQL Query Syntax Specification

This section specifies the rules that define the SQL Query syntax as a subset of SQL-92. The
terms enclosed in angle brackets are defined in [SQL] or in [SQL/PSM]. The SQL query syntax
conforms to the <query specification>, modulo the restrictions identified below:

1. A <select list> may contain at most one <select sublist>.

2. Ina<select list> must be is a single column whose data type is UUID, from the table in the
<from clause>.

3. A <derived column> may not have an <as clause>.

4. <table expression> does not contain the optional <group by clause> and <having clause>
clauses.

5. A <table reference>can only consist of <table name> and <correlation hame>.

6. A <table reference> does not have the optional AS between <table name> and
<correlation name>.

7. There can only be one <table r eference> in the <from clause>.

. Redtricted use of sub-queriesis allowed by the syntax as follows. The <in predicate> alows
for the right hand side of the <in predicate> to be limited to a restricted <query
gpecification> as defined above.

9. A <search condition> within the <wher e clause> may not include a<query expression>.

10. Smplejoins are alowed only if they are based on indexed columns within the relational
schema.

11. The SQL query syntax allows for the use of <sgl invoked routines> invocation from
[SQL/PSM] asthe RHS of the <in predicate>.

D.2 Non-Normative BNF for Query Syntax Grammar

The following BNF exemplifies the grammar for the registry query syntax. It is provided here as
an aid to implementers. Since this BNF is not based on [SQL] it is provided as non-normative
syntax. For the normative syntax rules see Appendix D.1.

/***********************)\‘)\‘**

* The Registry Query (Subset of SQ-92) grammar starts here

I L I N Ty
Regi stryQuery = SQ.Select [";"]

SQ Sel ect = "SELECT" ["DI STINCT"] SQ.Sel ect Col s "FROM' SQ.Tabl eLi st [SQ.-Were]
SQ . Sel ectCols = ID

SQ.Tabl eLi st = SQ.Tabl eRef

SQL.Tabl eRef = ID

SQ. Wiere = "WHERE" SQLOr Expr

SQLO Expr = SQLAndExpr ("OR' SQ.AndExpr)*

Copyright © OASIS, 2002. All Rights Reserved Page 152 of 167

OASIS/ebXML Registry Services Specification v2.0

September 2002

SQLANdExpr = SQ.Not Expr ("AND' SQ.Not Expr)*
SQ Not Expr = ["NOT"] SQ.Conpar eExpr
SQ.Conpar eExpr =

(SQ.Col Ref "1S") SQ.IsC ause
| SQLSunExpr [SQ.Conpar eExprRi ght]

SQ.Conpar eExpr R ght =
SQ.Li ked ause
| SQLI nd ause

| SQ.Conpar eCp SQLSunExpr
SQ.ConpareQ =

| o
| ">
| v>="
| "<
| "<="
SQInCause = ["NOr*] "IN "(" SQLValueList ")"
SQ.LVal ueLi st = SQ.LVal ueEl erent ("," SQ.LVal ueEl enent)*
SQ.LVal ueEl emrent = "NULL" | SQSel ect
SQIsC ause = SQ.Col Ref "IS" ["NOT"] "NULL"
SQ.Li ked ause = ["NOI"] "LIKE' SQ.Pattern
SQ.Pattern = STRI NG LI TERAL
SQlLiteral =

STRI NG_LI TERAL

| | NTEGER LI TERAL

| FLOATI NG_PO NT_LI TERAL
SQ.Col Ref = SQ.Lval ue

SQ Lvalue = SQ.Lval ueTerm

SQLval ueTerm=ID("." ID)*
SQ.SunExpr = SQ.Product Expr (("+" | "-") SQProduct Expr)*
SQ.Product Expr = SQ.UnaryExpr (("*" | "/") SQ.UnaryExpr)*
SQuUnaryBxpr = [("+ | "-")] SQ.Term
SQTerm= "(" SQLO Expr ")"

| SQLCol Ref

| SQ.Literal

I NTEGER LI TERAL = (["0"-"9"])+

FLQATI NG_PQO NT_ LI TERAL =

(["o"-"9"])+ »." (["0"-"9"])+ (EXPONENT)?
([0"-"9"])+ (EXPONENT) ?

| (["0"-"9"])+ EXPONENT

| (["0"-"9"])+ (EXPONENT)?
EXPONENT = ["e","E'] (["+","-"])? (["0"-"9"])+
STRING LI TERAL: """ (~["'"]1)* (""" (~["'"])*)* "'"
ID=(<LETTER>)+ ("_" | "$" | "#" | <DIGT> | <LETTER>)*
LETTER = ["A"-"Z", "a"-"z"]

E
DAT =["0"-"9"]

Copyright © OASIS, 2002. All Rights Reserved

Page 153 of 167

5341

5342
5343
5344
5345
5346
5347
5348
5349

OASIS/ebXML Registry Services Specification v2.0 September 2002

D.3 Relational Schema For SQL Queries

The normative Relational Schema definition for SQL queries can be found at the following
location on the web:
http://www.0asi s-open.org/committees/regrep/documents/3.0/sgl/database. sgl

The stored procedures that must be supported by the SQL query feature are defined at the following
|ocation on the web:
http://www.oasis-open.org/committees/regrep/documents/3.0/sgl/storedProcedures.sal

Copyright © OASIS, 2002. All Rights Reserved Page 154 of 167

5350

5351
5352
5353
5354

5355

5356
5357
5358

5359

5360
5361
5362
5363
5364

5365

5366
5367
5368

5369
5370

5371
5372

5373
5374

5375
5376

5377

5378
5379

5380
5381

5382
5383

5384

5385
5386
5387

5388

OASIS/ebXML Registry Services Specification v2.0 September 2002

Appendix E Security Implementation Guideline

This section provides a suggested blueprint for how security processing may be implemented in
the Registry. It is meant to be illustrative not prescriptive. Registries may choose to have
different implementations as long as they support the default security roles and authorization
rules described in this document.

E.1 Security Concerns

The security risks broadly stem from the following concerns. After a description of these
concerns and potentia solutions, we identify the concerns that we address in the current
specification

1. Isthe content of the registry (data) trustworthy?

a) How to make sure “what isin the registry” is “what is put there” by a submitting
organization? This concern can be addressed by ensuring that the publisher is
authenticated using digital signature (Source Integrity), message is not corrupted during
transfer using digital signature (Data Integrity), and the datais not altered by
unauthorized subjects based on access control policy (Authorization)

b) How to protect data while in transmission?

Communication integrity has two ingredients — Data Integrity (addressed in 1) and Data
Confidentiality that can be addressed by encrypting the data in transmission. How to
protect against areplay attack?

¢) Isthe content up to date? The versioning as well as any time stamp processing, when
done securely will ensure the “latest content” is guaranteed to be the latest content.

d) How to ensure only bona fide responsible organizations add contents to registry?
Ensuring Source Integrity (asin 1a).

€) How to ensure that bona fide publishers add contents to registry only at authorized
locations? (System Integrity)

f) What if the publishers deny modifying certain content after-the-fact? To prevent this
(Nonrepudiation) audit trails may be kept which contain signed message digests.

g What if the reader denies getting information from the registry?

2. How to provide selective access to registry content? The broad answer is, by using an access
control policy — appliesto (a), (b), and (c) directly.

a) How does a submitting organization restrict access to the content to only specific registry
readers?

b) How can a submitting organizationallow some “partners’ (fellow publishers) to modify
content?

c) How to provide selective access to partners the registry usage data?

d) How to prevent accidental access to data by unauthorized users? Especially with hw/sw
failure of the registry security comporents? The solution to this problem is by having

System Integrity.
€) Data confidentiality of RegistryObject

Copyright © OASIS, 2002. All Rights Reserved Page 155 of 167

5389
5390
5391

5392
5393
5394
5395

5396
5397
5398

5399

5400
5401

5402
5403

5405
5406

5407

5408

5409
5410
5411
5412
5413

5414

5415
5416
5417

5418
5419
5420

5421

5422
5423

OASIS/ebXML Registry Services Specification v2.0 September 2002

3. How do we make “who can see what” policy itself visible to limited parties, even excluding
the administrator (self & confidential maintenance of access control policy). By making sure
there is an access control policy for accessing the policies themselves.

4. How to transfer credentials? The broad solution is to use credentials assertion (such as being
worked on in Security Assertions Markup Language (SAML)). Currently, Registry does not
support the notion of a session. Therefore, some of these concerns are not relevant to the
current specification.

a) How to transfer credentials (authorization/authentication) to federated registries?
b) How do aggregators get credentials (authorization/authentication) transferred to them?
c) How to store credentials through a session?

E.2 Authentication

1. Assoon as amessage is received, the first work is the authentication. A principa object is
created.

2. If the message is signed, it is verified (including the validity of the certificate) and the DN of
the certificate becomes the identity of the principal. Then the Registry is searched for the
principal and if found, the roles and groups are filled in.

3. If the message is not signed, an empty principal is created with the role RegistryGuest. This
step isfor symmetry and to decouple the rest of the processing.

4. Then the message is processed for the command and the objects it will act on.

E.3 Authorization

For every object, the access controller will iterate through al the AccessControlPolicy objects
with the object and see if there is a chain through the permission objects to verify that the
requested method is permitted for the Principal. If any of the permission objects which the object
is associated with has a common role, or identity, or group with the principal, the action is
permitted.

E.4 Registry Bootstrap

When a Registry is newly created, a default Principal object should be created with the identity
of the Registry Admin’s certificate DN with arole RegistryAdmin. This way, any message
signed by the Registry Admin will get all the privileges.

When a Registry is newly created, a singleton instance of AccessControlPolicy is created as the
default AccessControlPolicy. This includes the creation of the necessary Permission instances as
well as the Privileges and Privilege attributes.

E.5 Content Submission — Client Responsibility

The Registry client must sign the contents before submission — otherwise the content will be
rejected.

Copyright © OASIS, 2002. All Rights Reserved Page 156 of 167

5424
5425
5426
5427
5428

5429
5430

5431

5432

5433

5435

5436
5437
5438

5439

5441
5442

5446
5447

5449
5450
5451

5452
5453

5454
5455
5456
5457

5458

OASIS/ebXML Registry Services Specification v2.0 September 2002

E.6 Content Submission — Registry Responsibility

1. Aswith any other request, the client will first be authenticated. In this case, the Principal
object will get the DN from the certificate.

2. As per the request in the message, the RegistryEntry will be created.

3. The RegistryEntry is assigned the singleton default AccessControlPolicy.

4. If aprincipal with the identity of the SO is not available, an identity object with the SO’s DN
IS created.

5. A principa with this identity is created.

E.7 Content Delete/Deprecate — Client Responsibility

The Registry client must sign the header before submission, for authentication purposes;
otherwise, the request will be rejected

E.8 Content Delete/Deprecate — Registry Responsibility

1. Aswith any other request, the client will first be authenticated. In this case, the Principal
object will get the DN from the certificate. Asthere will be a principa with this identity in
the Registry, the Principal object will get all the roles from that object

2. As per the request in the message (delete or deprecate), the appropriate method in the
RegistryObject class will be accessed.

3. The access controller performs the authorization by iterating through the Permission objects
associated with this object via the singleton default AccessControlPolicy.

4. If authorization succeeds then the action will be permitted. Otherwise an error response is
sent back with a suitable AuthorizationException error message.

E.9 Using ds:KeylInfo Field

Two typica usage scenarios for ds:Keylnfo are described below.

Scenario 1

1. Registry Client (RC) signs the payload and the SOAP envelope using its private key.

The certificate of RC is passed to the Registry in Keylnfo field of the header signature.

The certificate of RC is passed to the Registry in Keylnfo field of the payload signature.
Registration Authority retrieves the certificate from the Keylnfo field in the header signature

o~ w DN

Registration Authority validates the header signature using the public key from the
certificate.

6. Registration Authority validates the payload signature by repeating steps 4 and 5 using the
certificate from the Keylnfo field of the payload signature. Note that this step is not an
essential one if the onus of validation is that of the eventual user, another Registry Client, of
the content.

Scenario 2

Copyright © OASIS, 2002. All Rights Reserved Page 157 of 167

OASIS/ebXML Registry Services Specification v2.0 September 2002

5459 1. RC1 signsthe payload and SOAP envelope using its private key and publishes to the
5460 Registry.

5461 2. The certificate of RCL1 is passed to the Registry in the KeyInfo field of the header signature.

5462 3. The certificate of RCL is passed to the Registry in the Keylnfo field of the payload signature.
5463 This step is required in addition to step 2 because when RC2 retrieves content, it should see
5464 RC1's signature with the payload.

5465 4. RC2 retrieves content from the Registry.
5466 5. Registration Authority signs the SOAP envelope using its private key. Registration Authority

5467 sends RCY's content and the RC1' s signature (signed by RC1).

5468 6. Registration Authority need not send its certificate in the KeyInfo field sinceRC2 is assumed
5469 to have obtained the Registration Authority’s certificate out of band and installed it in its
5470 local key store.

5471 7. RC2 obtains Registration Authority’s certificate out of itslocal key store and verifies the
5472 Registration Authority’s signature.

5473 8. RC2 obtains RC1's certificate from the Keylnfo field of the payload signature and validates
5474 the signature on the payload.

Copyright © OASIS, 2002. All Rights Reserved Page 158 of 167

5475

5476

5477
5478
5479
5480
5481
5482
5483

5485

5486
5487

5488

OASIS/ebXML Registry Services Specification v2.0 September 2002

Appendix F Native Language Support (NLS)

F.1 Definitions

Although this section discusses only character set and language, the following terms have to be
defined clearly.

F.1.1 Coded Character Set (CCS):

CCSisamapping from a set of abstract characters to a set of integers. [RFC 2130]. Examples of
CCS are ISO-10646, US-ASCII, 1SO-8859-1, and so on.

F.1.2 Character Encoding Scheme (CES):

CESisamapping from a CCS (or several) to a set of octets. [RFC 2130]. Examples of CES are
|SO-2022, UTF-8.

F.1.3 Character Set (charset):

?? charset isaset of rules for mapping from a sequence of octets to a sequence of
characters.[RFC 2277],[RFC 2278]. Examples of character set are | SO-2022-JP, EUC-KR.

?? A list of registered character sets can be found at [IANA].

F.2 NLS And Request / Response Messages

For the accurate processing of datain both registry client and registry services, it is essential to
know which character set is used. Although the body part of the transaction may contain the
charset in xml encoding declaration, registry client and registry services shall specify charset
parameter in MIME header when they use text/xml. Because as defined in [RFC 3023], if a
text/xml entity is received with the charset parameter omitted, MIME processors and XML
processors MUST use the default charset value of "us-ascii”. For example:

Cont ent- Type: text/xm; charset=I SO-2022-JP

Also, when an application/xml entity is used, the charset parameter is optional, and registry
client and registry services must follow the requirements in Section 4.3.3 of [REC-XML] which
directly address this contingency.

If another Content-Type is chosen to be used, usage of charset must follow [RFC 3023].

F.3 NLS And Storing of RegistryObject

This section provides NLS guidelines on how aregistry should store RegistryObject instances.

A single instance of a concrete sub-class of RegistryObject is capable of supporting multiple
locales. Thus there is no language or character set associated with a specific RegistryObject
instance.

A single instance of a concrete sub-class of RegistryObject supports multiple locales as follows.
Each attribute of the RegistryObject that is 118N capable (e.g. name and description attributes in

Copyright © OASIS, 2002. All Rights Reserved Page 159 of 167

5510
5511
5512
5513
5514

5515

5516
5517

5518
5519

5520

5521
5522

5523
5524

5525

5526
5527

5528
5529

5530
5531

5532
5533

5534

5535
5536
5537

5538
5539
5540
5541
5542

OASIS/ebXML Registry Services Specification v2.0 September 2002

RegistryObject class) as defined by [ebRIM], may have multiple locale specific values expressed
as LocalizedString sub-elements within the XML element representing the 118N capable
attribute. Each LocalizedString sub-element defines the value of the 118N capable attribute in a
specific locale. Each LocalizedString element has a charset and lang attribute as well as a value
attribute of type string.

F.3.1 Character Set of LocalizedString

The character set used by alocale specific String (LocalizedString) is defined by the charset
attribute. It is highly recommended to use UTF-8 or UTF-16 for maximum interoperability.

F.3.2 Language Information of LocalizedString

The language may be specified in xml:lang attribute (Section 2.12 [REC-XML]).

F.4 NLS And Storing of Repository Items

This section provides NL S guidelines on how a registry should store repository items.

While a single instance of an ExtrinsicObject is capable of supporting multiple locales, it is
always associated with a single repository item. The repository item may be in asingle locale or
may be in multiple locales. This specification does not specify the repository item.

F.4.1 Character Set of Repository Items

The MIME Cont ent - Type mime header for the mime multi-part containing the repository
item MAY contain a'char set " attribute that specifies the character set used by the repository
item. For example:

Cont ent- Type: text/xm ; charset="UTF8"

It is highly recommended to use UTF-16 or UTF-8 for maximum inter-operability. The charset
of arepository item must be preserved as it is originaly specified in the transaction.

F.4.2 Language information of repository item

The Content-language mime header for the mime bodypart containing the repository item may
specify the language for a locale specific repository item. The value of the Content- language
mime header property must conform to [RFC 1766].

This document currently specifies only the method of sending the information of character set
and language, and how it is stored in a registry. However, the language information may be used
as one of the query criteria, such asretrieving only DTD written in French. Furthermore, a
language negotiation procedure, like registry client is asking a favorite language for messages
from registry services, could be another functionality for the future revision of this document.

Copyright © OASIS, 2002. All Rights Reserved Page 160 of 167

OASIS/ebXML Registry Services Specification v2.0 September 2002

5543 Appendix G Registry Profile

5544 Every registry must support exactly one Registry Profile. The Registry Profileisan XML
5545 document that describes the capabilities of the registry. The profile document must conform to
5546 the RegistryProfile element as described in the Registry Services Interface schema defined in
5547 Appendix B. The registry must make the RegistryProfile accessible over HTTP protocol viaa
5548 URL. The URL must conform to the pattern:

5549 http://<baseurl>/registryProfile
5550

Copyright © OASIS, 2002. All Rights Reserved Page 161 of 167

5551

5552

5553
5554

5555
5556

5557
5558

5559
5560

5561
5562

5563
5564

5565
5566

5567
5568
5569

5570
5571

5572
5573

5574
5575

5576
9577

5578
5579
5580

5581
5582

5583

5584
5585

5586
5587
5588
5589

5590
5591

5592

5593
5594

OASIS/ebXML Registry Services Specification v2.0 September 2002

13 References

[Bra97] Keywords for use in RFCs to Indicate Requirement Levels.

[ebRIM] ebXML Registry Information Model version 3.0
http://www.oasis-open.org/committees/regrep/documents/3.0/specs/ebRIM . pdf

[ebRIM Schema] ebXML Registry Information Model Schema
http://www.0asi s-open.org/committees/regrep/documents/3.0/schema/rim.xsd

[ebBPSS] ebXML Business Process Specification Schema
http://www.ebxml.org/specs

[ebCPP] ebXML CollaborationProtocol Profile and Agreement Specification
http://www.ebxml.org/specs/

[ebMS] ebXML Messaging Service Specification, Version 1.0
http://www.ebxml.org/specs/

[XPT] XML Path Language (XPath) Version 1.0
http://www.w3.org/TR/xpath

[SQL] Structured Query Language (FIPS PUB 127-2)
http://www.itl .nist.gov/fipspubs/fip127-2.htm

[SQL/PSM] Database Language SQL — Part 4: Persistent Stored Modules
(SQL/PSM) [ISO/IEC 9075-4:1996]
[TANA] IANA (Internet Assigned Numbers Authority).

Official Names for Character Sets, ed. Keld Simonsen et dl.
ftp://ftp.isi.edu/in-notes/ianal/assignments/character-sets

[RESTThesis| Roy Thomas Fielding. Architectural Stylesand the Design of Network -based Software
Architectures . Doctoral Dissertation, University of California, Irvine. 2000.

http://www.ics.uci.edu/~fiel ding/pubs/dissertation/top.htm
[RFC 1766] IETF (Internet Engineering Task Force). RFC 1766:

Tags for the Identification of Languages, ed. H. Alvestrand. 1995.
http://www.cis.ohio-state.edu/htbin/rfc/rfcl766.html

[RFC 2119] IETF (Internet Engineering Task Force). RFC 2119
[RFC 2130] IETF (Internet Engineering Task Force). RFC 2130
[RFC 2277] |IETF (Internet Engineering Task Force). RFC 2277:

IETF policy on character sets and languages, ed. H. Alvestrand. 1998.
http://www.cis.ohio-state.edu/htbin/rfc/rfc2277.html

[RFC 2278] IETF (Internet Engineering Task Force). RFC 2278:

IANA Charset Registration Procedures, ed. N. Freed and J. Postel. 1998.
http://www.cis.ohio-state.edu/htbin/rfc/rfc2278.html

[RFC2616] RFC 2616:
Fielding et a. Hypertext Transfer Protocol -- HTTP/1.1 . 1999.
http://www.w3.org/Protocol §/rfc2616/rfc2616.html

[RFC 2828] IETF (Internet Engineering Task Force). RFC 2828:
Internet Security Glossary, ed. R. Shirey. May 2000.
http://www.cis.ohio-state.edu/htbin/rfc/rfc2828.html

[RFC 3023] ETF (Internet Engineering Task Force). RFC 3023:

XML Media Types, ed. M. Murata. 2001.
ftp://ftp.isi.edu/in-notes/rfc3023.txt

Copyright © OASIS, 2002. All Rights Reserved Page 162 of 167

5595
5596

5597
5598
5599

5600
5601

5602
5603

5604
5605

5606
5607

OASIS/ebXML Registry Services Specification v2.0 September 2002

[REC-XML] W3C Recommendation. Extensible Markup language(XML)1.0(Second Edition)
http://www.w3.ora/ TR/REC-xml

[UUID] DCE 128 bit Universal Unique Identifier
http://www.opengroup.org/onlinepubs/009629399/apdxa.htm#tagcjih_20
http://www.opengroup.org/publications/catal og/c706.htmttp://www.w3.0rg/ TR/REC-xml

[WSDL] W3C Note. Web Services Description Language (WSDL) 1.1
http://www.w3.0rg/TR/wsdl

[SOAP11] W3C Note. Simple Object Access Protocol, May 2000,
http://www.w3.0rg/TR/SOAP

[SOAPALt] W3C Note: SOAP with Attachments, Dec 2000,
http://www.w3.0rg/ TR/SOA P-attachments

[XMLDSIG] XML-Signature Syntax and Processing,
http://www.w3.org/TR/2001/PR-xmldsig-core-20010820/

Copyright © OASIS, 2002. All Rights Reserved Page 163 of 167

5608

5609
5610
5611
5612

OASIS/ebXML Registry Services Specification v2.0

September 2002

14 Disclaimer

The views and specification expressed in this document are those of the authors and are not
necessarily those of their employers. The authors and their employers specifically disclaim
responsibility for any problems arising from correct or incorrect implementation or use of this

design.

Copyright © OASIS, 2002. All Rights Reserved

Page 164 of 167

5613

5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640

OASIS/ebXML Registry Services Specification v2.0

September 2002

15 Contact Information

Team Leader
Name:
Company:
Street:
City, State, Postal Code:
Country:
Phone:
Email:

Editor
Name:
Company:
Street:
City, State, Postal Code:
Country:
Phone:
Email:

Technica Editor
Name:
Company:
Street:
City, State, Postal Code:
Country:
Phone:
Email:

Copyright © OASIS, 2002. All Rights Reserved

Kathryn R. Breininger

The Boeing Company

P.O. Box 3707 MC 62-LC
Sesattle, WA 98124-2207

USA

425-965-0182
kathryn.r.breininger @boeing.com

Farrukh S. Najmi

Sun Microsystems

1 Network Dr., MS BUR02-302
Burlington, MA, 01803-0902
USA

(781) 442-0703

farrukh.nami @sun.com

Farrukh S. Ngjmi

Sun Microsystems

1 Network Dr., MS BUR02-302
Burlington, MA, 01803-0902
USA

(781) 442-0703

farrukh.najmi @sun.com

Page 165 of 167

5641

5642

5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660

5661
5662
5663
5664
5665
5666
5667
5668
5669

5670
5671
5672

OASIS/ebXML Registry Services Specification v2.0 September 2002

16 Copyright Statement
Portions of this document are copyright (c) 2001 OASIS and UN/CEFACT.

Copyright (C) The Organization for the Advancement of Structured Information
Standards[OASI S|, 2002. All Rights Reserved.

This document and tranglations of it may be copied and furnished to others, and derivative works
that comment on or otherwise explain it or assist in its implementation may be prepared, copied,
published and distributed, in whole or in part, without restriction of any kind, provided that the
above copyright notice and this paragraph are included on al such copies and derivative works.
However, this document itself may not be modified in any way, such as by removing the
copyright notice or references to OASIS, except as needed for the purpose of developing OASIS
specifications, in which case the procedures for copyrights defined in the OASIS Intellectual
Property Rights document must be followed, or as required to trandate it into languages other
than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its
SUCCESSOr's or assigns.

This document and the information contained herein is provided on an "AS IS" basisand OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN
WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

OASI S takes no position regarding the validity or scope of any intellectual property or other
rights that might be claimed to pertain to the implementation or use of the technology described
in this document or the extent to which any license under such rights might or might not be
available; neither does it represent that it has made any effort to identify any such rights.
Information on OASIS's procedures with respect to rights in OASIS specifications can be found
at the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general
license or permission for the use of such proprietary rights by implementers or users of this
specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent
applications, or other proprietary rights which may cover technology that may be required to
implement this specification. Please address the information to the OASIS Executive Director.

Copyright © OASIS, 2002. All Rights Reserved Page 166 of 167

5673

5674
5675

5676
5677

5678

5679
5680

5681

OASIS/ebXML Registry Services Specification v2.0 September 2002

17 Notes

These notes are here to not lose the thought and will be merged into the spec later as issues get
resolved.

0 CBD:IndexContentResponse: how to handle any non-composed metadata such as
Externalldentifier, Package etc.?

CBD: Need to fix schemafor virtual document processed by default XML Indexer.

CBD: How to track generated metadata separate from submitted metadata (and to do so
efficiently)? Should we aso log which indexer and index file created it?

Copyright © OASIS, 2002. All Rights Reserved Page 167 of 167

