

ebXML Registry – A Tutorial

Version 0.5

Draft Technical Note, 15 Avril, 2005

Document identifier:
regrep-tutorial-05

Location:

http://www.oasis-open.org/committees/regrep/documents/...

Editors:
Name Affiliation

Farrukh Najmi Sun Microsystems
Nikola Stojanovic RosettaNet

Contributors:
Name Affiliation

Diego Ballve Individual
Ivan Bedini France Telecom

Abstract:
This document is a tutorial on how to effectively customize and use an ebXML Registry
Repository for specific domains and applications. The document includes a standard
methodology for mapping a domain specific information model (in UML format) to the ebXML
Registry Information Model.

Status:
This document is an OASIS ebXML Registry Technical Committee Working Draft Technical
Note.

Committee members should send comments on this specification to the regrep@lists.oasis-
open.org list. Others should subscribe to and send comments to the regrep-
comment@lists.oasis-open.org list. To subscribe, send an email message to regrep-comment-
request@lists.oasis-open.org with the word "subscribe" as the body of the message.

For information on whether any patents have been disclosed that may be essential to
implementing this specification, and any offers of patent licensing terms, please refer to the
Intellectual Property Rights section of the OASIS ebXML Registry TC web page
(http://www.oasis-open.org/committees/regrep/).

regrep-tutorial-05 Apr 28, 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 1 of 41

1

2

3

4

5

6

7

8

9

10

11

12

13

14
15
16
17

18

19

20
21

22
23
24
25

26
27
28
29

Table of Contents
1 Introduction... ..5

1.1 Terminology.. ..5

1.2 Conventions......................... ..5

2 Overview... ...7

2.1 Overview of UML.. ...7

2.2 Overview of Person Information Model...7

2.3 Overview of ebXML Registry Information Model...8

2.3.1 RegistryObject................................. ...10

2.3.2 Object Identification............................ ...10

2.3.3 Object Naming and Description...11

2.3.4 Object Attributes...11
2.3.4.1 Slot Attributes...11

2.3.5 Object Classification..12

2.3.6 Object Association.. ...13

2.3.7 Object References To Web Content.......................... ...13

2.3.8 Object Packaging................................ ..14

2.3.9 Service Description.. ..14

3 Mapping a Domain Specific Model to ebRIM..15

3.1 Class Mapping.......................... ..15

3.1.1 Defining a Sub-Class of ExtrinsicObject...15

3.2 Interface Mapping.. ..17

3.3 Inheritance Mapping... ..17

3.3.1 Mapping of Multiple Inheritance........................ ...17

3.4 Method Mapping:... ..17

3.5 Association Mapping................................. ...18

3.5.1 Navigability / Direction Mapping.. ...18

3.5.2 Role Name / Association Name Mapping..18

1.1.1.1Defining a New Association Type................................ ...18

3.5.4 Aggregation Mapping.. ...20

3.5.5 Composition Mapping..20

3.5.6 N-ary Association Mapping...21

3.5.7 XOR Associations...21

3.6 Attribute Mapping..22

3.6.1 Mapping to Identifier..23
3.6.1.1 Mapping to id Attribute...23

3.6.1.2 Mapping to Logical Id (lid) Attribute...23

3.6.1.3 Mapping to ExternalIdentier...24

3.6.2 Mapping to Name and Description...24

3.6.3 Mapping to Classification... ...25

3.6.4 Mapping to ExternalLink............................... ..25

3.6.5 Direct Mapping to ebRIM Attribute...26

3.6.6 Mapping to Slot... ..26
3.6.6.1 Mapping to rim.Slot.slotName...26

regrep-tutorial-05 Apr 28, 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 2 of 41

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

3.6.6.2 Mapping to rim.Slot.slotType..27

3.6.6.3 Mapping to rim.Slot.values...27

3.7 Enumerated Type Mapping....................... ..28

4 Using ClassificationSchemes...................................... ...29

4.1 Use Cases for ClassificationSchemes..29

4.2 Canonical ClassificationSchemes...29

4.3 Extending ClassificationSchemes...30

4.3.1 Use Cases for Extending ClassificationSchemes...30

4.4 Defining New ClassificationSchemes.............................. ..30

4.4.1 Use Cases for Defining New ClassificationSchemes........................30

5 Defining Content Management Services................................ ..31

5.1 Defining Content Validation Services...................... ..31

5.2 Defining Content Cataloging Services................................. ..31

6 Defining Domain Specific Queries...32

6.1 Identifying Common Discovery Use Cases..32

7 Using the Event Notification Feature...................... ...33

7.1 Use Cases for Event Notification33

7.2 Creating Subscriptions for Events..33

8 Defining Access Control... ...36

8.1 Subject Role Extension.. ...36

8.2 Subject Group Extension..36

8.2.1 Defining Custom Access Control Policies36

9 Known Issues.. ..37

regrep-tutorial-05 Apr 28, 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 3 of 41

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

Illustration Index

Figure 1: Person Information Model: A Sample Domain Specific Model..7

Figure 2: Person Information Model: Inheritance View...8

Figure 3: ebXML Registry Information Model, High Level Public View..9

Figure 4: ebXML Registry Information Model, Inheritance View...10

Figure 5: ObjectType ClassificationScheme: Before and After Extension for LifeEvent........................17

Figure 6: ObjectType ClassificationScheme: Before and After Extension For Spouse.........................19

Figure 7: Sample Association instance between a Husband and Wife pair..20

Figure 8: Attribute Mapping Algorithm Flowchart...22

Figure 9: Geography ClassificationScheme Example...29

regrep-tutorial-05 Apr 28, 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 4 of 41

98

1 Introduction
This document is a tutorial on how to effectively customize and use an ebXML Registry for specific
domains and applications. The document includes a standard methodology for mapping a domain
specific information model to the ebXML Registry Information Model.

As more and more organization are adopting ebXML Registry standard they are faced with the recurring
need to map between their domain specific information model to the ebXML Registry Information Model
[ebRIM] in order to use the registry to manage their domain specific artifacts. Currently this mapping is
being done in an ad hoc manner.

This technical note provides the necessary guidelines, design patterns and algorithms to customize an
ebXML Registry for a specific domain. Specifically, it enables a consistent mapping from domain specific
information models to ebXML Registry Information Model.

It is not the purpose of this document to educate the reader on ebXML Registry [ebRIM], [ebRS],
information modeling or the Unified Modeling Language [UML]. The reader of this document should have
a good understanding of the ebXML Registry specifications and the UML 1.5 specification.

1.1 Terminology

The key words MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT,
RECOMMENDED, MAY, and OPTIONAL in this document are to be interpreted as described in
[RFC2119].

1.2 Conventions

Throughout the document the following conventions are employed to define the data structures used.
The following text formatting conventions are used to aide readability:

• UML Diagrams

UML diagrams are used as a way to concisely describe information models in a standard way. They
are not intended to convey any specific Implementation or methodology requirements.

• Identifier Placeholders

Listings may contain values that reference ebXML Registry objects by their id attribute. These id
values uniquely identify the objects within the ebXML Registry. For convenience and better
readability, these key values are replaced by meaningful textual variables to represent such id
values.
For example, the following placeholder refers to the unique id defined for the canonical
ClassificationNode that defines the Organization ObjectType defined in [ebRIM]:

<id="${CANONICAL_OBJECT_TYPE_ID _ORGANIZATION}" >

• Constants

Constant values are printed in the Courier New font always, regardless of whether they are
defined by this document or a referenced document. In addition, constant values defined by this

document are printed using bold face . The following example shows the canonical id and lid for
the canonical ObjectType ClassificationScheme defined by [ebRIM]:

<rim:ClassificationScheme

lid=" urn:oasis:names:tc:ebxml-

regrep:classificationScheme:ObjectType "

id=" urn:uuid:3188a449- 18ac- 41fb- be9f- 99a1adca02cb ">

regrep-tutorial-05 Apr 28, 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 5 of 41

99

100
101
102

103
104
105
106

107
108
109

110
111
112

113

114
115
116

117

118
119

120

121
122

123

124
125
126
127
128
129

130

131

132

133

134

135

136

137

138

139

140

1. Example Values

These values are represented in italic font. In the following, an example of a RegistryObject’s
name “ACME Inc.” is shown:

 <rim:Name>

 <rim:LocalizedString value=" ACME Inc. " xml:lang="en-

US"/>

 </rim:Name>

regrep-tutorial-05 Apr 28, 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 6 of 41

141

142
143

144

145

146

147

148

149

2 Overview
This chapter provides an overview of ebXML Registry Information Model [ebRIM] and the sample domain
specific Person Information Model (PIM). The PIM is the source information model for the mapping
patterns defined by this document. The [ebRIM] is the target for the mapping patterns defined by this
document.

The information presented is informative and is not intended to replace the normative information defined
by ebXML Registry and UML specifications.

2.1 Overview of UML

This document will not provide an overview of UML. The reader SHOULD review UML tutorials [TUT] to
get a rapid understanding of [UML]. The reader MAY refer to [UML] if a deeper understanding is needed.

Although UML defines many different types of diagrams the focus of this document is the UML Class
diagram. The reader SHOULD familiarize themselves with the UML Class Diagram notation using [TUT]
and [UML].

2.2 Overview of Person Information Model

Throughout this document we use a sample domain specific information model called Person Information
Model (PIM). This document will demonstrate the mapping principals described using the PIM as source
model and [ebRIM] as the target model for the mapping.

 Figure 1: Person Information Model: A Sample Domain Specific Model

regrep-tutorial-05 Apr 28, 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 7 of 41

150

151
152
153
154

155
156

157

158
159

160
161
162

163

164
165
166

167
168

Figure 1 shows the UML Class diagram for the Person Information Model. The model shows that:

1. A Person has several LifeEvents:

o BirthEvent: Marks the birth of the associated Person

o MarriageEvent: Marks a marriage of the associated Person

o BirthingEvent: Marks a delivery of one or more babies where the associated person is
a parent.

o DeathEvent: Marks the death of the associated Person

2. A Person has a PhysycalTraits which is a collection of various physical traits that describe the
Person.

3. A Person has a birth mother and birth father which are also Person

4. A Person has chidlren which are also Person

5. Each class MAY define various attributes as shown within the box for each class.

Figure 2: Person Information Model: Inheritance View

Figure 2 above shows another class diagram for the model that shows the inheritance view of the model.
Here we see that the various Event classes inherit from the same LifeEvent base class and further
specialize it for that specific event.

2.3 Overview of ebXML Registry Information Model

This section summarizes the ebXML Registry Information Model [ebRIM]. This model is the target of the
mapping defined in this document. The reader SHOULD read [CMRR] for a more detailed overview of
ebXML Registry as a whole

regrep-tutorial-05 Apr 28, 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 8 of 41

169

170

171

172

173

174

175

176
177

178

179

180

181

182

183

184

185

186
187
188

189

190
191
192

193

 Figure 3: ebXML Registry Information Model, High Level Public View

The ebXML registry defines a Registry Information Model [ebRIM] that specifies

the standard metadata that may be submitted to the registry. Figure 3 presents the UML class diagram
representing the Registry Information Model. Figure 4, shows the inheritance relationships in among the
classes of the ebXML Registry Information Model.

 Figure 4: ebXML Registry Information Model, Inheritance View

The next few sections describe the main features of the information model.

2.3.1 RegistryObject

This is an abstract base class used by most classes in the model. It provides minimal

metadata for registry objects. The following sections use the Organization sub-class of RegistryObject as
an example to illustrate features of the model.

regrep-tutorial-05 Apr 28, 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 9 of 41

194

195

196

197
198
199

200

201

202

203

204

205

206
207

2.3.2 Object Identification

A RegistryObject has a globally unique id which is a UUID based URN:

<rim:Organization id=" urn:uuid:dafa4da3- 1d92- 4757- 8fd8-

ff2b8ce7a1bf " >

 Listing 1: Example of id attribute

Since a RegistryObject MAY have several versions, a logical id (called lid) is also defined which is
unique for different logical objects. However the lid attribute value MUST be the same for all versions of
the same logical object. The lid attribute value is a URN that MAY potentially be human friendly:

<rim:Organization id=${ACME_ORG_ID}

lid=" urn:acme:ACMEOrganization ">

 Listing 2: Example of lid Attribute

A RegistryObject MAY also have any number of ExternalIdentifiers which may be any string value within
an identified ClassificationScheme.

regrep-tutorial-05 Apr 28, 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 10 of 41

209

210

211

212

213

214

215

216
217
218

219

220

221

222

223

224
225

226

<rim:Organization id=${ACME_ORG_ID}

lid="urn:acme:ACMEOrganization" >

<rim:ExternalIdentifier id=${EXTERNAL_IDENTIFIER_ID}

identificationScheme=${DUNS_CLASSIFICATIONSCHEME_ID}

value="ACME"/>

 </rim:ExternalIdentifier>

</rim:Organization>

 Listing 3: Example of ExternalIdentifier

2.3.3 Object Naming and Description

A RegistryObject MAY have a name and a description which consists of one or more strings in one or
more local languages. Name and description need not be unique acrossRegistryObjects.

<rim:Organization id=${ACME_ORG_ID}

lid="urn:acme:ACMEOrganization" >

 <rim:Name>

 <rim:LocalizedString value="ACME Inc." xml:lang="en- US"/>

 </rim:Name>

 <rim:Description>

 <rim:LocalizedString value="ACME is a provider of Java

software."

xml:lang="en- US"/>

 </rim:Description>

<rim:ExternalIdentifier id=${EXTERNAL_IDENTIFIER_ID}

identificationScheme=${DUNS_CLASSIFICATIONSCHEME_ID}

value="ACME"/>

 </rim:ExternalIdentifier>

</rim:Organization>

 Listing 4: Example of Name and Description

2.3.4 Object Attributes

For each class in the model, [ebRIM] defines specific attributes. Examples of several of these attributes
such as id, lid, name and description have already been introduced.

2.3.4.1 Slot Attributes

In addition the model provides a way to add custom attributes to any RegistryObject instance using
instances of the Slot class. The Slot instance has a Slot name which holds the attribute name and MUST
be unique within the set of Slot names in that RegistryObject. The Slot instance also has a ValueList that
is a collection of one or more string values.

The following example shows how a custom attribute named “urn:acme:slot:NASDAQSymbol” and value
“ACME” MAY be added to a RegistryObject using a Slot instance.

regrep-tutorial-05 Apr 28, 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 11 of 41

227

228
229

230

231

232

233
234

235

236

237

238
239

240

241

242
243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261
262

263

264
265
266
267

268
269

270

<rim:Organization id=${ACME_ORG_ID}

lid="urn:acme:ACMEOrganization" >

 <rim:Slot name="urn:acme:slot:NASDAQSymbol">

 <rim:ValueList>

 <rim:Value>ACME</rim:Value>

 </rim:ValueList>

 </rim:Slot>

<rim:Name>

 <rim:LocalizedString value="ACME Inc." xml:lang="en-

US"/>

 </rim:Name>

 <rim:Description>

 <rim:LocalizedString value="ACME makes Java. Provider of

free Java software."

xml:lang="en- US"/>

 </rim:Description>

<rim:ExternalIdentifier id=${EXTERNAL_IDENTIFIER_ID}

identificationScheme=${DUNS_CLASSIFICATIONSCHEME_ID}

value="ACME"/>

 </rim:ExternalIdentifier>

</rim:Organization>

 Listing 5: Example of a Dynamic Attribute Using Slot

2.3.5 Object Classification

Any RegistryObject may be classified using any number of Classification instance. A Classification
instance references an instance of a ClassificationNode as defined by [ebRIM]. The ClassificationNode
represents a value within the ClassificationScheme. The ClassificationScheme represents the
classification taxonomy.

<rim:Organization id=${ACME_ORG_ID}

lid="urn:acme:ACMEOrganization" >

 <rim:Slot name="urn:acme:slot:NASDAQSymbol">

 <rim:ValueList>

 <rim:Value>ACME</rim:Value>

 </rim:ValueList>

 </rim:Slot>

<rim:Name>

 <rim:LocalizedString value="ACME Inc." xml:lang="en-

US"/>

 </rim:Name>

 <rim:Description>

 <rim:LocalizedString value="ACME makes Java. Provider of

free Java software."

xml:lang="en- US"/>

 </rim:Description>

<rim:ExternalIdentifier id=${EXTERNAL_IDENTIFIER_ID}

identificationScheme=${DUNS_CLASSIFICATIONSCHEME_ID}

value="ACME"/>

 </rim:ExternalIdentifier>

regrep-tutorial-05 Apr 28, 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 12 of 41

271

272
273

274

275

276

277

278
279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296
297
298
299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

<!- -Classify Organization as a Software Publisher using

NAICS Taxonomy- ->

 <rim:Classification id=${CLASSIFICATION_ID}

classificationNode=${NAICS_SOFTWARE_PUBLISHER_NODE_ID}

classifiedObject=${ACME_ORG_ID}>

</rim:Organization>

 Listing 6: Example of Object Classification

2.3.6 Object Association

Any RegistryObject MAY be associated with any other RegistryObject

using an Association instance where one object is the sourceObject

and the other is the targetObject of the Association instance. An Association

instance MAY have an associationType which defines the nature of the association.

There are a number of predefined Association Types that a registry must

support to be [ebRIM] compliant as shown in Table 1. [ebRIM] allows this

list to be extensible.

The following example shows an Association between the ACME Organization instance and a Service
instance with the associationType of “OffersService”. This indicates that ACME Organization offers the
specified service (Service instance is not shown).

<rim:Associa tio n

id=${ASSOCIA TIO N_ ID}

associationT ype =$

{CANONICAL_A SSO CI ATI ON _TYP E_O FF ER S_S ER VICE _ID }

sourceObject =${ AC ME_ OR G_ID }

targetObject =${ AC ME_ SE RVIC E1_ ID }/ >

 Listing 7: Example of Object Association

2.3.7 Object References To Web Content

Any RegistryObject MAY reference web content that are maintained outside the registry using
association to an ExternalLink instance that contains the URL to the external web content. The following
example shows the ACME Organization with an Association to an ExternalLink instance which contains
the URL to ACME’s web site. The associationType of the Association MUST be of type “ExternallyLinks”
as defined by [ebRIM].

<rim:ExternalLink externalURI=" http://www.acme.com "

id=${ACME_WEBSITE_EXTERNAL_ID}>

<rim:Association

id=${EXTERNALLYLINKS_ASSOCIATION_ID}

associationType=$

{CANONICAL_ASSOCIATION_TYPE_EXTERNALLY_LINKS_ID}

sourceObject=${ACME_WEBSITE_EXTERNAL_ID}

targetObject=${ACME_ORG_ID}/>

regrep-tutorial-05 Apr 28, 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 13 of 41

321

322

323

324

325

326
327

328

329

330

331

332

333

334

335

336

337

338

339
340
341

342

343

344

345

346

347

348

349

350

351
352
353
354
355

356

357

358

359

360

361

362

363

364

 Listing 8: Example of Reference to Web Content Using ExternalLink

2.3.8 Object Packaging

RegistryObjects may be packaged or organized in a hierarchical structure using a familiar file and folder
metaphor. RegistryPackage instances serve as folders while RegistryObject instances serve as files in
this metaphor. A RegistryPackage instances groups logically related RegistryObject instances together
as members of that RegistryPackage.

The following example creates a RegistryPackage for Services offered by ACME Organization organized
in RegistryPackages according to the nature of the Service. Each Service is referenced using the
ObjectRef type defined by [ebRIM].

<rim: RegistryPackage

id=${ACME_SE RVI CE S_P AC KAGE _ID } >

<rim:Registr yOb je ctL is t>

<rim:ObjectR ef id=${ACME_SERVIC E1 _ID }

<rim: RegistryPackage

id=$

{ACME_PURCHA SIN G_ SER VI CES_ PAC KA GE _ID } >

<rim:ObjectR ef id=${ACME_

PURCHASING_S ERV IC E1_ ID }

<rim:ObjectR ef id=${ACME_

PURCHASING_S ERV IC E2_ ID }

</rim: RegistryPackage >

<rim: RegistryPackage

id=${ACME_HR _SE RV ICE S_ PACK AGE _I D} >

<rim:ObjectR ef id=${ACME_

HR_SERVICE1_ ID}

<rim:ObjectR ef id=${ACME_

HR_SERVICE2_ ID}

</rim: RegistryPackage >

</rim:Regist ryO bj ect Li st>

</rim: RegistryPackage >

 Listing 9: Example of Object Packaging Using RegistryPackages

2.3.9 Service Description

Service description MAY be defined within the registry using the Service, ServiceBinding and
SpecificationLink classes defined by [ebRIM]. This MAY be used to

Publish service descriptions such as WSDL and ebXML CPP/A.

regrep-tutorial-05 Apr 28, 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 14 of 41

365

366

367
368
369
370

371
372
373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399
400

401

3 Mapping a Domain Specific Model to ebRIM
This chapter identifies several common mapping patterns that are encountered when a domain specific
information model is mapped to [ebRIM]. For each such pattern we define a consistent heuristic or
algorithm to perform the mapping. The goal is to make it easier for domain experts to utilize the ebXML
Registry for their domain and to have consistency across all domain-specific uses of ebXML Registry.

A source model may be in many different formats such as Java, XML, SQL and so on.

[UML] is a standard for information model description and therefore this document assumes the source
information model is described in UML. [UML] terminology and notation is consistently used throughout
this chapter and this document.

It should be understood that the mappings produced by applying the heuristics and algorithms described
in this document will be only as good as the input UML model (this is the old garbage-in, garbage-out
principal). A person applying these mapping patterns (the mapper) MAY choose to deviate from these
patterns to compensate for special situations in the input UML model. Any mapping pattern not covered
by this document MAY be addressed in an ad hoc manner by the mapping. Suggestions for
improvements to the mapping should be sent to the Editors listed on the title page of this document.

3.1 Class Mapping

This section defines how a class in the source model is mapped to a class in [ebRIM]. Mapping of
attributes of the source class will be discussed in section 3.6.

A class in the source model is mapped to [ebRIM] using the following algorithm:

1. Direct Class Mapping To Rim: First determine if there is a class in ebRIM that closely
matches the class in the source model. For example the Person class in PIM matches closely
to the Person class in [ebRIM]. Thus it is preferred that the Person class in PIM is mapped to
the Person class in [ebRIM].

2. Mapping To ExtrinsicObject Sub-Class: If no class in [ebRIM] is a good match then define a
new sub-class of ExtrinsicObject class in [ebRIM] and map the source class to the new sub-
class. See section 3.1.1 on how to define a new sub-class of ExtrinsicObject. For example the
various LifeEvent classes in PIM SHOULD be mapped to sub-classes of ExtrinsicObject
where the class names match the various LifeEvent class names.

3.1.1 Defining a Sub-Class of ExtrinsicObject

This section provides the steps to define a new sub-class of ExtrinsicObject class.

To define a sub-class of ExtrinsicObject you MUST extend the canonical ObjectType
ClassificationScheme and add a new ClassificationNode as a child or descendent of the canonical
ClassificationNode for ExtrinsicObject in the ObjectType ClassificationScheme.

For example to extend the ObjectType ClassificationScheme for the LifeEvent classes in PIM the
following ClassificationNode hierarchy MUST be submitted to the ebXML Registry via a
SubmitObjectsRequest.

Note that:

• The id attribute values SHOULD have actual id values. See 9 for generating unique id values.

• The parent attribute of the LifeEvent ClassificationNode is the id of the ExtrinsicObject
ClassificationNode in the ObjectType ClassificationScheme.

• Figure 5 shows the structure of the ObjectType ClassificationScheme before and after the
extension for mapping the LifeEvent classes from PIM.

regrep-tutorial-05 Apr 28, 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 15 of 41

402

403
404
405
406

407

408
409
410

411
412
413
414
415
416

417

418
419

420

421

422

423
424
425

426

427
428
429
430

431

432

433

434
435
436

437
438
439

440

441

442

443

444

445

<!- - Add LifeEvent classes to ObjectType

Classificati onS ch eme - ->

<rim:Classif ica ti onN od e code="LifeEvent"

id="${LIFE_E VEN T_ NOD E_ ID}"

parent=" urn:uuid:ba a2e 6c8 - 873e- 4624- 8f2d-

b9c7230eb4f8 ">

 <rim:Name>

 <rim:LocalizedStrin g charset="UTF- 8"

value="LifeE ven t" />

 </rim:Name>

 <rim:Classificatio nN od e code="Birth Eve nt"

id="${BIRTH_ EVE NT _NO DE _ID} ">

 <rim:Name>

 <rim:Locali zed Str in g charset="UTF- 8" value="

BirthEvent "/>

 </rim:Name>

 </rim:Classificati on No de>

 <rim:Classificatio nN od e code="Marri age Eve nt "

 id="${MARRIA GE_ EV ENT _N ODE_ ID} ">

 <rim:Name>

 <rim:Locali zed Str in g charset="UTF- 8" value="

MarriageEven t "/>

 </rim:Name>

 <rim:Classificatio nN od e code="Birth ing Eve nt "

 id="${BIRTHI NG_ EV ENT _N ODE_ ID} ">

 <rim:Name>

 <rim:Locali zed Str in g charset="UTF- 8" value="

BirthingEven t "/>

 </rim:Name>

 </rim:Classificati on No de>

 <rim:Classificatio nN od e code="Death Eve nt"

 id="${DEATH_ EVE NT _NO DE _ID} ">

 <rim:Name>

 <rim:Locali zed Str in g charset="UTF- 8" value="

DeathEvent "/>

 </rim:Name>

 </rim:Classificati on No de>

</rim:Classi fic at ion No de>

 Listing 10: Example of Adding LifeEvent Classes to ObjectType ClassificationScheme

regrep-tutorial-05 Apr 28, 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 16 of 41

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

 Figure 5: ObjectType ClassificationScheme: Before and After Extension for LifeEvent

3.2 Interface Mapping

Interfaces are classes that only have methods and have no attributes (they may contain constant
attributes). They should be mapped in a manner similar to Class mapping. The only difference is that
Interface methods that follow the getter method design pattern MAY be mapped to corresponding
attributes.

For example, if the Person class in PIM model was an interface that had a method called getAge(), then
that method MAY be mapped to an age attribute in the corresponding [ebRIM] class.

3.3 Inheritance Mapping

A class in the source model may have a generalization or inheritance relationship with another class in
the model. For example, the BirthEvent, MarriageEvent, BirthingEvent and DeathEvent classes have an
inheritance relationship with the LifeEvent class in PIM.

Such inheritance relationships SHOULD be reflected in the mapping to [ebRIM] by defining a
corresponding inheritance relationship among the ClassificationNodes defined when extending the
ObjectType scheme. This has already been illustrated in section 3.1.1 and Figure 5.

3.3.1 Mapping of Multiple Inheritance

A special case is “multiple inheritance” where the source model has multiple base classes for the same
derived class. There is no direct support for multiple inheritance in [ebRIM]. In case the source model
has a derived class with multiple base classes, the mapping SHOULD choose one base class to map as
the base ClassificationNode in the ObjectType ClassificationScheme. The remaining base classes
SHOULD be mapped as ClassificationNodes in the ObjectType ClassificationScheme and should be
associated with the derived class using an Association whose associationType is the id for the canonical
ClassificationNode “Extends” or “Implements” within the canonical AssociationType
ClassificationScheme.

3.4 Method Mapping:

There is no support for mapping methods from a source model to [ebRIM]. Methods that follow a getter
method MAY be mapped to an attribute as defined in section 3.3.

regrep-tutorial-05 Apr 28, 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 17 of 41

487

488

489

490
491
492
493

494
495

496

497
498
499

500
501
502

503

504
505
506
507
508
509
510
511

512

513
514

3.5 Association Mapping

A UML Association in the source model SHOULD be mapped to an [ebRIM] Association.

3.5.1 Navigability / Direction Mapping

Associations in UML MAY be directed or undirected. Associations in [ebRIM] are always implicitly
directed from the sourceObject to the targetObject of an Association.

Directed UML associations MUST map the Class at the arrowhead end as targetObject and the Class at
the other as sourceObject. In case of Undirected UML associations the mapper MAY specify the
mapping of the Classes at each end to sourceObject or targetObject using their best judgement.

3.5.2 Role Name / Association Name Mapping

UML defines for an association, an association name as well as two role names (one for each end of the
association).

The role name in the UML mapping at the targetObject end of the association, if present, SHOULD be
mapped to the associationType. If the role name at the targetObject end (target role name) is not present
then the association name SHOULD be mapped to the associationType.

In addition, the target role name (or UML association name) MAY also be mapped to the Association
name in ebRIM.

1.1.1.1 Defining a New Association Type

This section provides the steps to define a new Association Type.

To define a Association Type you MUST extend the canonical AssociationType ClassificationScheme
and add a new ClassificationNode as a child or descendent of the AssociationType
ClassificationScheme.

For example to extend the AssociationType ClassificationScheme for the “spouse”, “husband” and “wife”
association in PIM the following ClassificationNode hierarchy SHOULD be submitted to the ebXML
Registry via a SubmitObjectsRequest.

Note that:

• Figure 5 shows the structure of the AssociationType ClassificationScheme before and after the
extension for mapping the Spouse Association Types from PIM.

• It is a good idea to organize AssociationTypes hierarchically even though the source model may
not have those semantics defined. For example it makes good sense to define the “Husband”
and “Wife” AssociationTypes as children of the “Spouse” AssociationType.

<!- - Add Spouse, Husband, Wife to AssociationType

Classificati onS ch eme - ->

<rim:Classif ica ti onN od e code="Spouse"

id="${SPOUSE _NO DE _ID }"

parent=" urn:uuid:69 026 75f - 2f18- 44b8- 888b-

c91db8b96b4d ">

 <rim:Name>

 <rim:LocalizedStrin g charset="UTF- 8"

value="Spous e"/ >

 </rim:Name>

 <rim:Classificatio nN od e code="Husba nd"

id="${HUSBAN D_N OD E_I D} ">

regrep-tutorial-05 Apr 28, 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 18 of 41

515

516

517

518
519

520
521
522

523

524
525

526
527
528

529
530

531

532

533
534
535

536
537
538

539

540

541

542

543
544

545

546

547

548

549

550

551

552

553

554

555

556

557

 <rim:Name>

 <rim:Locali zed Str in g charset="UTF- 8" value="

Husband "/>

 </rim:Name>

 </rim:Classificati on No de>

 <rim:Classificatio nN od e code="Wife"

 id="${WIFE_N ODE _I D}" >

 <rim:Name>

 <rim:Locali zed Str in g charset="UTF- 8" value=" Wife

"/>

 </rim:Name>

</rim:Classi fic at ion No de>

 Listing 11: Example of Adding Spouse Association Types

 Figure 6: ObjectType ClassificationScheme: Before and After Extension For Spouse

Figure 7 shows an example UML instance diagram to show two Associations between Person
“PierreCurie” and Person “MarieCurie” in PIM. Note that the husbandToWife association has
“PierreCurie” as the sourceObject and “MarieCurie” as the targetObject while the wifeToHusband
associations has the two reversed.

regrep-tutorial-05 Apr 28, 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 19 of 41

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574
575
576
577

 Figure 7: Sample Association instance between a Husband and Wife pair

3.5.4 Aggregation Mapping

A UML Aggregation maps to multiple [ebRIM] Associations in a manner consistent with earlier sections.

Give example here later??

3.5.5 Composition Mapping

When a UML Class (Container) wholly contains another class (Contained) then the UML Association
between the two is called a UML Composition. The Composition Association is denoted with a filled
diamond at the source end of the Association.

An example of composition in PIM is where the Person class is the container while the PhysicalTraits
class is the contained class.

A composition association in UML is mapped [ebRIM] as follow:

1. The container class and the contained class map to [ebRIM] as defined by section 3.1.

2. The composition Association maps to a Slot instance that is defined for the container
RegistryObject.

3. The composition Slot MUST have as the value of its “name” attribute,

a. The target role name from the UML Association, or if that is not present
b. The name of the UML Association

4. The composition Slot MUST have as the value of its “slotType” attribute, the logical lid of the
canonical DataType “ObjectRef”. This value is:

urn:oasis:names:tc :e bxml- regrep:DataType:Obje ctRef

5. The composition Slot MUST have as the value of its “values” attribute, a list of String where
each String MUST be the value of the id attribute of an object that is composed or contained by

regrep-tutorial-05 Apr 28, 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 20 of 41

578
579

580

581

582

583

584

585
586
587

588
589

590

591

592

593
594

595

596
597

598
599

600

601
602

the container RegistryObject

Note that the ebXML Registry does not enforce the semantics of composition Associations. Specifically,
deleting a container object does not automatically delete contained objects.

The following example shows how the composition association between a Person instance and a
PhysicalTraits instance in PIM maps to [ebRIM].

<- -The ExtrinsicObj ect of objectType Person for Person

PierreCurie - ->

<rim:Extrins icO bj ect id="${PIERRECURIE _PER SON _I D} "

mimeType="te xt/ xm l"

objectType=" ${O BJ ECT _T YPE_ PER SO N_ ID} ">

<rim:Slot name="physi cal Tr ait s"

slotType="ur n:o as is: na mes: tc: eb xm l-

regrep:DataT ype :O bje ct Ref ">

<rim:ValueLi st>

<rim:Value>$

{PIERRECURIE _PH YS ICA L_ TRAI TS_ ID }< /ri m: Valu e>

</rim:ValueL ist >

</rim:Slot>

…

</rim:Extrin sic Ob jec t>

<- -The ExtrinsicObj ect of objectType PhysicalTraits for

Person PierreCurie - ->

<rim:Extrins icO bj ect id="${PIERRECURIE _PHY S_T RA IT S_I D} "

mimeType="te xt/ xm l"

objectType=" ${O BJ ECT _T YPE_ PHY S_ TR AIT S_ ID}" >

…

</rim:Extrin sic Ob jec t>

 Listing 12: Example of Composition of PhsyicalTraits Instance Within Person Instance

3.5.6 N-ary Association Mapping

UML N-ary associations involving three or more Classes is not commonly used and is not covered by
this document in detail. It is suggested that RegistryPackage may be considered as a mapping for such
n-ary Associations.

3.5.7 XOR Associations

XOR Associations as defined by UML are not commonly used in source models. XOR Associations may
be mapped to [ebRIM] Associations and it MUST be the responsibility of the mapping to enforce the
XOR constraints in an application specific manner.

regrep-tutorial-05 Apr 28, 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 21 of 41

603

604

605
606

607

608
609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625
626

627

628

629

630

631

632

633
634

635

636

637
638
639

640

641
642
643

3.6 Attribute Mapping

This section defines how attributes of a class in the source model are mapped to [ebRIM]. Mapping of
the source class to [ebRIM] has been discussed in section 3.1.

Figure 8 provides the flowchart for the algorithm that SHOULD be used to map attributes from the source
model to [ebRIM]. Each box in right column maps to a section later in the document that describes the
mapping in detail.

 Figure 8: Attribute Mapping Algorithm Flowchart

regrep-tutorial-05 Apr 28, 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 22 of 41

644

645
646

647
648
649

650

651
652

653

3.6.1 Mapping to Identifier

Section 2.3.2 describes the various ways that a RegistryObject may be identified in [ebRIM].

3.6.1.1 Mapping to id Attribute

If the identifier value in source model conforms to a UUID based URN as shown below,

urn:uuid:dafa4da3- 1d92- 4757- 8fd8- ff2b8ce7a1bf

 Listing 13: Example of id attribute

and if it provides a globally unique identifier for the source class then it MUST be mapped to the id
attribute in the target [ebRIM] class. Note that if the identifier value in the source model MUST be the
same across different versions of the same logical instance of the source class then it MUST not be
mapped to the id attribute. Instead it SHOULD be mapped to the Logical id (lid) attribute as defined next.

For a detailed description of the versioning capabilities of ebXML Registry and the lid attribute please
see [ebRS] and [ebRIM] respectively.

3.6.1.2 Mapping to Logical Id (lid) Attribute

If the identifier value in the source model may be the same across all versions of an instance of the class
then it SHOULD be mapped to the lid attribute of the target class in [ebRIM]. The registry requires that
the lid attribute value:

• SHOULD be a URN

• MUST be unique across all logical RegistryObjects in the registry

• MUST be the same across all versions of the same logical RegistryObject

The lid attribute is a good way to assign a meaningful identifier to a RegistryObject. If the source
attribute is a human friendly identifier for the source class then it MAY be a good candidate to be
mapped to the lid attribute. Note that the source attribute value need not be a URN. If it is not a URN,
then the mapping SHOULD define a deterministic algorithm for mapping the non-URN value to a URN
value that meets above constraints on lid attribute values.

For example, the name attribute of a Person instance in PIM MAY be mapped to the lid attribute on the
Person class in [ebRIM] sing the following algorithm:

lid = “urn:pim:” + Person.name

For example the rim.Person instance for “MarieCurie” would look like:

<rim:Person id=${MARIECURIE_P ER SO N_I D}

lid = "urn:pim:MarieCurie ">

…

</rim:Person >

Note that above example is slightly flawed because use of a person’s name in the algorithm does not
guarantee that the lid would be unique since another person could have the same exact name. Also note
that the urn:pim namespace MUST be registered with IANA to truly guarantee that it is a unique name
space.

regrep-tutorial-05 Apr 28, 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 23 of 41

654

655

656

657

658

659

660

661
662
663
664

665
666

667

668
669
670

671

672

673

674

675
676
677
678
679

680

681
682

683

684

685

686

687

688

689

690

691

692

693
694
695
696

3.6.1.3 Mapping to ExternalIdentifier

If the attribute in the source model is an identifier for the source class instances but does not map to an
id or lid attribute then it SHOULD be mapped to an ExternalIdentifier in [ebRIM]. The mapping MUST
specify a ClassificationScheme instance that MUST be used as identificationScheme for the
ExternalIdentifier.

For example, the nationalId attribute of the Person class in PIM may be mapped to an ExternalIdentifier
that uses a ClassificationScheme named “NationalIdentifierScheme” as its identificationScheme attribute
value. The mapping is responsible for defining the “NationalIdentifierScheme” ClassificationScheme as
described in section 4.2.

<rim:Person id=${MARIECURIE_PERSON_ID}

lid="urn:pim:MarieCurie" >

<rim:ExternalIdentifier id=$

{NATIONAL_ID_EXTERNAL_IDENTIFIER_ID}

identificationScheme=$

{NATIONAL_ID_CLASSIFICATIONSCHEME_ID}

value="123- 45- 6789"/>

 </rim:ExternalIdentifier>

…

</rim:Person>

 Listing 14: Example of Mapping to ExternalIdentifier

3.6.2 Mapping to Name and Description

If the source attribute provides a name or description for the source class instance then it SHOULD be
mapped to the name or description attribute of the RegistryObject class in [ebRIM]. The
rim.RegistryObject.name and rim.RegistryObject.description attributes are of type InternationalString
which can contain the name and description value is multiple locales as composed LocalizedString
instances. This means that the mapping SHOULD map the name and description to the appropriate
locale.

For example the pim.Person class has a name attribute of datatype String. The mapping SHOULD map
it to the rim.Person.name attribute as shown below:

<rim:Person id=${MARIECURIE_PERSON_ID}

lid="urn:pim:MarieCurie" >

 <rim:Name>

 <rim:LocalizedString value="Marie Curie" xml:lang="en-

US"/>

 <rim:LocalizedString value="Marie Curie" xml:lang="fr"/>

 </rim:Name>

…

</rim:Person>

 Listing 15: Example of Mapping to name Attribute

Note that the xml:lang attribute in above example SHOULD be omitted when the default locale is implied.

regrep-tutorial-05 Apr 28, 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 24 of 41

697

698
699
700
701

702
703
704
705

706

707

708

709
710

711

712

713

714

715

716
717

718

719

720

721

722

723
724
725
726
727
728

729
730

731

732

733
734

735

736

737

738

739

740

741

742

743

Since a person’s name does not change with locale the above example would be better off specifying a
single LocalizedString with no xml:lang attribute specified. It is showing multiple locales for illustration
purposes only.

3.6.3 Mapping to Classification

If the source attribute is somehow classifying or categorizing the class instance then it SHOULD be
mapped to a Classification in [ebRIM]. For an overview of Classification see section 2.3.6.

For example, the rim.Person.gender attribute is of datatype Gender which is an Enumeration class
where the enumerated set of values are “Male”, “Female” and “Other”. The mapping MAY map
pim.Person.gender to a Classification on a rim.Person instance. Since a Classification requires a
ClassificationScheme, the mapping MUST specify the ClassificationScheme.

<rim:Person id=${MARIECURIE_PERSON_ID}

lid="urn:pim:MarieCurie" >

<!- -Classify Person as a Female using the Gender Taxonomy- ->

 <rim:Classification id=${GENDER_CLASSIFICATION_ID}

classificationNode=${GENDER_FEMALE_NODE_ID}

classifiedObject=${MARIECURIE_PERSON_ID}>

…

</rim:Person>

 Listing 16: Example of Mapping to name Attribute

Note that in above example the Gender ClassificationScheme is indirectly referenced via the
ClassificationNode for “Female” within that taxonomy.

3.6.4 Mapping to ExternalLink

If the source attribute will always contain a URL (or a URN) then it SHOULD be mapped to an
ExternalLink. For an overview of ExternalLink see section 2.3.7.

For example, the rim.Person.homepage attribute, if not null, always contain the URL for the Person’s
homepage. It SHOULD therefore be mapped to an ExternalLink as hown below.

Note that an ExternalLink MUST be related to a RegistryObject using an Association instance in [ebRIM].
This allows the same ExternalLink to be shared by many RegistryObject instances.

<rim:Person id=${MARIECURIE_PERSON_ID}

lid="urn:pim:MarieCurie" >

…

</rim:Person>

<rim:ExternalLink externalURI=" http://www.aip.org/history/curie/ "

id=${MARIECURIE_WEBSITE_EXTERNAL_LINK_ID}>

<rim:Association

id=${MARIECURIE_HOMEPAGE_EXTERNALLYLINKS_ASSOCIATION_ID}

associationType=$

{CANONICAL_ASSOCIATION_TYPE_EXTERNALLY_LINKS_ID}

sourceObject= ${MARIECURIE_WEBSITE_EXTERNAL_LINK_ID}

targetObject=${MARIECURIE_PERSON_ID}/>

regrep-tutorial-05 Apr 28, 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 25 of 41

744
745
746

747

748
749

750
751
752
753

754

755

756
757

758

759

760

761

762

763

764

765

766
767

768

769
770

771
772

773
774

775

776

777

778

779
780

781

782
783

784

785

786

787

788

789

 Listing 17: Example of Mapping to ExternalLink

3.6.5 Direct Mapping to ebRIM Attribute

In some cases an attribute in the source model class class may closely match an attribute in the [ebRIM]
class. This is the most direct and preferred attribute mapping.

For example the Person class in PIM has an attribute “phone” (referred to as pim.Person.phone) whose
semantics closely match the attribute “telephoneNumbers” in the Person class in [ebRIM] (refered to as
rim.Person.telephoneNumbers). Thus it is preferred that the pim.Person.phone attribute is mapped to
rim.Person.telephoneNumbers. Impedance mismatches between the source attribute data type and
target attribute data type MAY be handled by the mapper using domain specific knowledge. For example
the pim.Person.phone attribute is of datatype String while the rim.Person.telephoneNumbers attribute is
of datatype TelephoneNumber where TelephoneName consists of several String attributes:

• “areaCode”

• “countryCode”

• “number”

Thus the mapper MUST choose which rim. TelephoneNumber attribute the pim.Person.phone attribute
maps to. As an example they MAY chose to map it the rim. TelephoneNumber.number attribute.
Alternatively, they may define a domain specific algorithm for splitting the pim.Person.phone attribute into
one, two or three components that map to the various TelephoneNumber attributes in a deterministic
manner.

3.6.6 Mapping to Slot

When all other options for mapping the source attribute are inadequate then the attribute MUST be
mapped to a Slot.

3.6.6.1 Mapping to rim.Slot.slotName

The source attribute name SHOULD be mapped to the rim.Slot.slotName attribute. To prevent name
conflicts the mapping SHOULD define a mapping algorithm that generates a URN with the source
attribute name as its last component. It is also suggested that the source class name be the second last
component of the URN.

For example, the pim.Person.profession attribute SHOULD be mapped to a URN like:

<rim:Person id=${MARIECURIE_PERSON_ID}

lid="urn:pim:MarieCurie" >

 <rim:Slot name=" urn:pim:Person:profession ">

…

 </rim:Slot>

…

</rim:Person>

 Listing 18: Example of Mapping pim.Person.Profession to slotName

regrep-tutorial-05 Apr 28, 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 26 of 41

790

791

792

793

794
795

796
797
798
799
800
801
802

803

804

805

806

807

808
809
810
811
812

813

814
815

816

817
818
819
820

821

822

823

824

825

826

827

828

829

830

831

3.6.6.2 Mapping to rim.Slot.slotType

The rim.Slot.slotType attribute value SHOULD be defined so it conveys the datatype semantics of the
Slot value. The value of the rim.Slot.slotType attribute MUST be the lid attribute value of a
ClassificationNode in the canonical DataType ClassificationScheme.

For example, the datatype of the pim.Person.profession in PIM is String. It MUST therefore be mapped
to the rim.Slot.slotType value of:

<rim:Person id=${MARIECURIE_PERSON_ID}

lid="urn:pim:MarieCurie" >

 <rim:Slot name=" urn:pim:Person:prof es si on "

slotType="urn:oasis:names:ebXML- regrep:DataType:String" >

…

 </rim:Slot>

…

</rim:Person>

 Listing 19: Example of Mapping DataType to slotType

Note that if the datatype happens to be a Collection then the slotType should reflect the datatype of the
Collection elements. In case of a heterogeneous Collection the most specific datatype from the
DataType ClassificationScheme MUST be used.

3.6.6.3 Mapping to rim.Slot.values

The rim.Slot.values (ValueList in XML Schema) SHOULD be defined as follows:

• If the value is a reference (datatype/slotType is urn:oasis:names:ebXML-
regrep:DataType:ObjectRef) to another RegistryObject then the value MUST be the
value of the id attribute of the RegistryObject being referenced.

• If the datatype of the source attribute is not a Collection then there should only be a
single “rim:Value” within the ValueList.

• If the datatype of the source attribute is a Collection then there MAY be a multiple
“rim:Value” within the ValueList.

The following example shows how the pim.Person.profession attribute is specified when mapping a
pim.Person instance to a rim.Person instance.

<rim:Person id=${MARIECURIE_PERSON_ID}

lid="urn:pim:MarieCurie" >

 <rim:Slot name=" urn:pim:Person:prof es si on "

slotType="urn:oasis:names:ebXML- regrep:DataType:String">

 <rim:ValueList>

 <rim:Value> Scientist </rim:Value>

 </rim:ValueList>

 </rim:Slot>

…

</rim:Person>

 Listing 20: Example of Mapping Attribute value to Value

regrep-tutorial-05 Apr 28, 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 27 of 41

832

833
834
835

836
837

838

839

840

841

842

843

844

845

846

847

848
849
850

851

852

853

854

855

856

857

858

859

860

861

862
863

864

865

866

867

868

869

870

871

872

873

874

875

3.7 Enumerated Type Mapping

A source attribute whose datatype is an Enumeration class SHOULD be mapped to a Classification on
the target RegistryObject. An example of this has been provided with the mapping of the
pim.Person.gender attribute in section 3.6.3.

regrep-tutorial-05 Apr 28, 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 28 of 41

876

877
878
879

4 Using ClassificationSchemes
The ebXML Registry provides a powerful, simple and flexible capability to create, extend and apply
taxonomies to address a wide set of use cases. A taxonomy in ebRIM is called a ClassificationScheme.
The allowed values in a ClassificationScheme are represented by ClassificationNode instances within
ebRIM.

 Figure 9: Geography ClassificationScheme Example

Figure 9 shows a geography ClassificationScheme. It is a hierarchical tree structure where the root of the
tree “iso-ch:3166:1999” is the name of the ClassificationScheme while the rest of the nodes in the tree
are ClassificationNodes.

Note that most ebXML Registry implementations [IMPL] provide a GUI tool to create and manage
ClassificationSchemes graphically.

4.1 Use Cases for ClassificationSchemes

The following are some of the many use cases for ClassificationSchemes in an ebXML Registry:

• Used to classify RegistryObjects to facilitate discovery based upon that classification.
This is the primary role of ClassificationSchemes in ebXML Registry.

• Used to define all possible values of an Enumeration class. For example, the pim.Gender
class is represented in ebRIM as a Gender ClassificationScheme.

• Used to define the datatypes supported by an registry (DataType scheme).
• Used to define the Classes supported by a registry (ObjectType scheme).
• Used to define the association types supported by the registry (AssociationType scheme).
• Used to define the security roles that may be defined for users of the registry

(SubjectRole scheme).
• Used to define the security groups that may be defined for users of the registry

(SubjectGroup scheme).

4.2 Canonical ClassificationSchemes

There are several ClassificationSchemes that are specified by ebRIM and required to be present in every
ebXML Registry. Such standard ClassificationSchemes are referred to as “canonical”
ClassificationSchemes.

An ebXML Registry user MAY extend existing canonical ClassificationsSchemes or add new domain

regrep-tutorial-05 Apr 28, 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 29 of 41

880

881
882
883
884

885

886
887

888
889
890

891
892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909
910
911

912

specific ClassificationSchemes. However, they cannot update/delete the existing canonical
ClassificationScheme or update/delete its ClassificationNodes.

4.3 Extending ClassificationSchemes

A registry user MAY extend an existing ClassificationScheme regardless of whether it is a canonical
scheme or a user defined scheme as long as the Access Control Policies for the scheme and its nodes
allow the user that privilege. The user may extend an existing scheme by submitting new
ClassificationNodes to the registry that reference existing ClassificationNodes or an existing
ClassificationScheme as the value of their “parent” attribute. The user SHOULD assign a logical id (lid) to
all user defined ClassifinationNodes for ease of identification.

4.3.1 Use Cases for Extending ClassificationSchemes

The following are some of the most common use cases for extending ClassificationSchemes:

• Extending the ObjectType scheme to define new Classes supported by a registry. Listing 10 shows
an example of extending the ObjectType scheme.

• Extending the AssociationType scheme to define the association types supported by the registry.
Listing 11 shows an example of extending the AssociationType scheme.

• Extending the SubjectRole scheme to define the security roles that may be defined for users of the
registry.

4.4 Defining New ClassificationSchemes

A user may submit an entirely new ClassificationScheme to the registry. Often the scheme is a domain
specific scheme for a specialized purpose. When mapping a domain specific model there are many
situations where a new ClassificationScheme needs to be defined.

4.4.1 Use Cases for Defining New ClassificationSchemes

4.5

regrep-tutorial-05 Apr 28, 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 30 of 41

913
914

915

916
917
918
919
920
921

922

923

924

925

926

927

928

929

930

931
932
933

934

935

5 Defining Content Management Services

5.1 Defining Content Validation Services

Use of jCAM to validate XML instance docs?

5.2 Defining Content Cataloging Services

The ebXML Regitsry provides the ability for a user defined content cataloging service to be configure for
each ObjectType defined by the mapping. The purpose of cataloging service is to selectively convert
content into ebRIM compatible metadata when the content is submitted. The generated metadata
enables the selected content to be used as parameter(s) in a domain specific parameterized query.

regrep-tutorial-05 Apr 28, 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 31 of 41

936

937

938

939

940
941
942
943

6 Defining Domain Specific Queries
The ebXML Registry provides the ability for domain specific queries to be defined as parameterized
stored queries within the Registry as instances of the AdhocQuery class. When mapping a domain
specific model one SHOULD define such domain specific queries.

6.1 Identifying Common Discovery Use Cases

The first step in defining these domain specific queries is to identify the common use cases for
discovering domain specific objects in the registry using natural language.

For the Person Information model we identify the following sample domain specific discovery use cases
as likely to be commonly needed:

o Find Persons by:

o Name

o Gender

o Age

o # of Children

o Physical trait

o # of marriages

o Married to specified person

o Parent of specified person

o Child of specified person

o Ancestor of specified person

o Descendent of specified person

6.1.1

regrep-tutorial-05 Apr 28, 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 32 of 41

944

945
946
947

948

949
950

951
952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

7 Using the Event Notification Feature
The ebXML Registry provides the ability for a user or an automated service to create a subscription to
events that match a specified criterea. Whenever an event matching the specified criteria occurs, the
registry notifies the subscriber that the event transpired.

A mapping of a domain specific model to ebRIM SHOULD define template Subscriptions for the typical
use cases for event notification within that domain.

7.1 Use Cases for Event Notification

The following are some common use cases that may benefit from the event notification feature:
• A user may be using an object in the registry and may want to know when it changes. For example, they may

be using an XML Schema as the schema for their XML documents. When a new version of that XML Schema
is created they may wish to be notified so that they can plan the migration of their business sprocesses to the
new version of the XML Schema.

• A user may be interested in a certain type of object that does not yet exist in the registry. They may
wish to be notified when such an object is published to the registry. For example, assume that a
registry provides a dating service based upon PIM. Let us A person may create a subscription
specifying interest in a female that has never been married before, has brown eyes, is between the
age of 30 and 40 and who is a Doctor. Whenever, a Person instance is submitted that matches this
criteria, the registry will notify the user.

• An automated service such as a software agent may be interested in certain types of events in the
registry. For example, a state coroners office may operate a service that wishes to be notified of
deaths where the cause of death was a bullet wound. To receive such notifications, the coroners
office may create a subscription for pim.DeathEvents where pim.DeathEvent.causeOfDeath
contained the word “bullet”.

7.2 Creating Subscriptions for Events

A user may create a subscription to events of interest by submitting a Subscription object to the registry
as defined by ebRIM. The Subscription object MUST specify a selector parameter that identifies a stored
query that the registry should use to select events that are of interest to the user for that Subscription.

<SubmitObjec tsR eq ues t >

 <rim:RegistryObjec tL is t>

 <rim:Subscription id=${DEATH_ SUB SC RIP TI ON _ID }

 selector="${ SEL EC TOR _Q UERY _ID }" >

 <!- - email address endPoint for receiving

notification via email - ->

 <rim:Notify Act ion

notification Opt io n=" ur n:uu id: 84 00 5f6 d- 419e- 4138- a789-

fb9fecb88f44 " endPoint="ma ilt o: fa rru kh .naj mi@ su n. com "/ >

 <!—Web Service endPoint for receiving notification

via SOAP - ->

regrep-tutorial-05 Apr 28, 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 33 of 41

968

969
970
971

972
973

974

975

976

977
978
979

980

981
982
983
984
985

986

987
988
989
990

991

992
993
994

995

996
997

998

999

1000

1001

1002

1003

1004

1005
1006

1007

1008

 <rim:Notify Act ion

notification Opt io n=" ur n:uu id: 84 00 5f6 d- 419e- 4138- a789-

fb9fecb88f44 " endPoint="ur n:u ui d: 2a1 3e 694- b3ae- 4cda-

995a- aee6b2bab3d8"/>

 </rim:Subscription>

 <!- - The query used as a selector for Subscription .

- ->

 <query:SQLQuery id="${SELECTOR_QUE RY_ ID }" >

 <query:Quer ySt rin g> SELE CT * FROM ExtrinsicObje ct

eo WHERE eo.objectType =

''${DEATH_EV ENT _C LAS SI FICA TIO N_ NO DE_ ID }''< /qu er y: Que ry St

ring>

 </query:SQLQuery>

 <!- - The notificatio n listener web service and its

binding -- >

 <rim:Service

id="${DEATH_ EVE NT _LI ST ENER _SE RV IC E_I D} ">

 <rim:Name>

 <rim:Locali zed Str in g value="Listens for Death

Events involving bullet wounds" xml:lang="en - US"/>

 </rim:Name>

 <rim:ServiceBindin g service=$

{DEATH_EVENT _LI ST ENE R_ SERV ICE _I D}

accessURI="h ttp :/ /lo ca lhos t:8 08 0/ Not if icat ion Li st ene r/ no

tificationLi ste ne r"

id=${DEATH_E VEN T_ LIS TE NER_ SER VI CE _BI ND ING_ ID} >

 <rim:Name>

 <rim:Locali zed Str in g value="Death events

listener web service binding"

xml:lang="en - US"/>

 </rim:Name>

 </rim:Servi ceB ind in g>

 </rim:Service>

 </rim:RegistryObje ct Li st>

</SubmitObje cts Re que st >

 Listing 21: Example of Defining a Subscription for DeathEvent

The above example show how a state coroner's office may create a Subscription to DeathEvents
involving bullet wounds.

The following notes describe the example:

regrep-tutorial-05 Apr 28, 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 34 of 41

1009

1010

1011

1012

1013
1014

1015

1016

1017

1018

1019

1020

1021

1022
1023

1024

1025

1026

1027

1028

1029

1030

1031
1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050
1051

1052

1053

• The Subscription is submitted by sending a SubmitObjectsRequest to the registry as is the
case when publishing any other type of RegistryObject.

• The Subscription object is assigned a unique id, lid and optional name and description like any
other RegistryObject.

• The Subscription specifies the id of its selector query using the selector attribute.

• The SubmitObjectsRequest also contains an SQLQuery object that specifies the query used to
select DeathEvents. The query could be further specialized to match only those death events
where the cause of death has the word “bullet” in it.

• The subscription contains one or more NotifyActions describing how the registry should deliver
notification of events matching the selector query for this subscription.

• The subscription contains a NotifyAction that specifies an email address where the registry
should send email based notification of events matching the selector query for this subscription.

• The subscription also contains a NotifyAction that specifies the id of a ServiceBinding. This is the
ServiceBinding for the automated listener service where the registry should send SOAP based
based notification of events matching the selector query for this subscription.

• The selector query and the Service / ServiceBinding MAY be submitted prior to the submission
of the Subscription in a separate request.

• Note that registry implementations [IMPL] may simplify the task of creating and managing
subscriptions by providing GUI tools.

regrep-tutorial-05 Apr 28, 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 35 of 41

1054

1055

1056

1057

1058

1059

1060
1061

1062

1063

1064

1065

1066

1067
1068

1069

1070

1071

1072

1073

8 Defining Access Control
The ebXML Registry provides a powerful and extensible access control feature that makes sure that a
user may only perform those actions on a RegistryObject or repository item for which they are
authorized.

If you are familiar with concept of Access Control Lists (ACLs), you may think of the registry access
control feature as a similar though functionally much richer capability.

The registry provides a Role Based Access Control (RBAC) where access to objects may be granted or
denied based upon:

• Identity of the user. An example is to grant Sally the privilege of updating the Person
instance for Marie Curie.

• Role(s) played by user. An example is to grant anyone with role of Coroner to update a
DeathEvent instance.

• Group(s) the user belongs to. An example is to grant anyone who belongs to the group
MarieCurieInstitute the privilege of updating the Person instance for Marie Curie.

8.1 Subject Role Extension

The ebXML Registry defines a set of pre-defined roles in the SubjectRole scheme. A domain specific
mapping to ebRIM MAY define additional domain specific roles by extending the SubjectRole scheme.
SubjectRole scheme may be extended like any other scheme as defined in section 4.3.

8.2 Subject Group Extension

The ebXML Registry defines a set of pre-defined roles in the SubjectGroup scheme. A domain specific
mapping to ebRIM MAY define additional domain specific groups by extending the SubjectGroup
scheme. SubjectGroup scheme may be extended like any other scheme as defined in section 4.3.

8.2.1 Defining Custom Access Control Policies

8.3

regrep-tutorial-05 Apr 28, 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 36 of 41

1074

1075
1076
1077

1078
1079

1080
1081

1082

1083

1084

1085

1086

1087

1088

1089
1090
1091

1092

1093
1094
1095

1096

1097

1098

9 Known Issues
These generic mapping patterns should be formalized via RIM artifacts and stored in the registry.

• UML cardinality needs to be expressed generically, like for Slots, Associations, …

• Expanding RIM ObjectType hierarchy beyond ExtrinsicObject subtree

• Objective criteria for when to use ObjectRefs vs. Values, like "NameAsRole" could refer to
something like RoleTaxonomy instead of using value of UML role.

• Aggregation and Composition are Association in UML. There mapping to ebRIM is
inconsistent.

• Need to give example of mapping an Association class (e.g. MarriageEvent)

regrep-tutorial-05 Apr 28, 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 37 of 41

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

Appendix A - PIM to ebRIM: The Complete Mapping

regrep-tutorial-05 Apr 28, 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 38 of 41

1110

Appendix B - Tips and Tricks

Appendix C - Generating Unique UUIDs

Appendix D - Assigning Logical Id

Appendix E - Organizing Object in RegistryPackages

regrep-tutorial-05 Apr 28, 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 39 of 41

1111

1112

1113

1114

1115

Appendix F - Revision History
Rev Date By Whom What
0.1 September 22,

2004
Farrukh Najmi,
Nikola Stojanovic

Initial version with core mapping pattern
for input from CCTS mappers.

0.2 September 23,
2004

Farrukh Najmi,
Nikola Stojanovic

Minor bug fixes.

0.3 September 24,
2004

Farrukh Najmi,
Nikola Stojanovic

Added some content to chapters 4-8.

0.3 September 29,
2004

Farrukh Najmi,
Nikola Stojanovic

Minor fixes based upon feedback from
initial reviewers.

0.5 Avril 15, 2005 Ivan Bedini Updated to version [ebRIM] v3.0

Changed file format

regrep-tutorial-05 Apr 28, 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 40 of 41

1116

1117

Appendix G - References

Appendix H - Normative

 [ebRIM] ebXML Registry Information Model version 3.0

http://www.oasis-open.org/committees/regrep/documents/3.0/specs/ebRIM.pdf

[ebRS] ebXML Registry Services Specification version 3.0

http://www.oasisopen.org/committees/regrep/documents/3.0/specs/ebRS.pdf

[UML] Unified Modeling Language version 1.5
http://www.omg.org/cgi-bin/apps/doc?formal/03-03-01.pdf

Appendix IInformative

[CMRR] Web Content Management Using OASIS ebXML Registry
http://ebxmlrr.sourceforge.net/presentations/xmlEurope2004/04-02-02.pdf
http://ebxmlrr.sourceforge.net/presentations/xmlEurope2004/xmlEurope2004-webcm-
ebxmlrr.sxi
http://ebxmlrr.sourceforge.net/presentations/xmlEurope2004/xmlEurope2004-webcm-
ebxmlrr.ppt

[IMPL] ebXML Registry 3.0 Implementations
freebXML Registry: A royalty free, open source ebXML Registry Implementation
http://ebxmlrr.sourceforge.net
Need other implementations listed here??

[TUT] UML Tutorials
Borland Tutorial
http://bdn.borland.com/article/0,1410,31863,00.html
Sparx Systems UML Tutorial
http://www.sparxsystems.com.au/UML_Tutorial.htm

regrep-tutorial-05 Apr 28, 2005
Copyright © OASIS Open 2005. All Rights Reserved. Page 41 of 41

1118

1119

1120

1121

1122

1123

1124

1125
1126

1127

1128

1129

1130

1131

1132

1133

1134
1135
1136
1137

1138
1139
1140
1141
1142

