
1

2

3

4
5

6

7
8
9

10
11

12
13
14
15
16
17
18
19
20
21
22

Technical Note
Registering Web Services in an ebXML Registry, Version
2.0

June 2005

Authors

Joseph M. Chiusano, Booz Allen Hamilton
Farrukh Najmi, Sun Microsystems

Abstract

This document describes the current best practice for registering Web services in an
ebXML Registry. It conforms to the following specifications:

OASIS/ebXML Registry Information Model (ebRIM) v3.0
OASIS/ebXML Registry Services Specification (ebRS), v3.0

This version supercedes the March 2003 version, which was based on earlier v3.0
specification versions that were not yet ratified.

These specifications can be found at http://www.oasis-open.org/committees/regrep/. 23

24

25
26
27
28
29
30

Status of this Document

This document is an OASIS Registry Technical Committee Technical Note. Distribution
of this document is unlimited.

Copyright © UN/CEFACT and OASIS, 2003. All Rights Reserved

http://www.oasis-open.org/committees/regrep/

ebXML Registry June 2005

Registering Web Services in an ebXML Registry Page 2

31

32

33

34

35

36

37
38

39

40

41

42

43

44

45

46

47

48

49

50

51
52

TABLE OF CONTENTS

ABSTRACT ..1

STATUS OF THIS DOCUMENT...1

1 INTRODUCTION ...4

1 INTRODUCTION ...4

2 WEB SERVICES ...4

3 RELEVANT EBXML REGISTRY CLASSES.......ERROR! BOOKMARK NOT
DEFINED.

3.1 Class Service .. 5

3.2 Class ServiceBinding .. 6

3.3 Class SpecificationLink .. 7

4 FULL SUBMITOBJECTSREQUEST EXAMPLE ..8

5 EXTENDED SCENARIOS...9

5.1 Versioning of Web Services.. 9

5.2 Associating a Web Service with an Organization .. 11

5.3 Associating a Web Service with an Access Control Policy.............................. 12

5.4 Registering a Service Description that is External to the Registry 12

5.5 Web Service Redirection .. 13

5.6 Customizing Metadata Using Slots.. 14

APPENDIX A WSDL INTRODUCTION ...15

APPENDIX B OASIS/EBXML COLLABORATION-PROTOCOL PROFILE
AND AGREEMENT (CPP/A) INTRODUCTION..15

Copyright © UN/CEFACT and OASIS, 2005. All Rights Reserved

ebXML Registry June 2005

Registering Web Services in an ebXML Registry Page 3

53
54
55

56
57

58

59

APPENDIX C DAML-S INTRODUCTION ..16

Figures

FIGURE 1: RELATIONSHIP BETWEEN RIM CLASSES SERVICE,
SERVICEBINDING, AND SPECIFICATIONLINK .. 5

FIGURE 2: ASSOCIATING A WEB SERVICE WITH AN ORGANIZATION......11

FIGURE 3: REGISTERING AN EXTERNAL SERVICE DESCRIPTION............13

1

Copyright © UN/CEFACT and OASIS, 2005. All Rights Reserved

ebXML Registry June 2005

Registering Web Services in an ebXML Registry Page 4

60

61
62
63
64
65
66
67
68
69

70

71
72
73
74
75
76
77

78

79
80
81
82
83

Introduction
An ebXML Registry is an information system that securely manages any content type
and the standardized metadata that describes it. The ebXML Registry also provides a set
of services that enable sharing of content and metadata between organizational entities in
a federated environment. Submitted content may be XML schema and documents,
process descriptions, Web services, ebXML Core Components, context descriptions,
UML models, information about parties and even software components.

The purpose of this document is to provide a Best Practice for registering Web services
and their associated entities in an ebXML Registry.

2 Describing Web Services
The most common mechanism for describing Web services today is the Web Services
Description Language, or WSDL [WSDL]; however, the Service description that is
registered can be in any format such as OASIS/ebXML Collaboration-Protocol Profile
and Agreement (CPP/A [ebCPP]) or the emerging OWL-S [OWL-S].

More information on WSDL, CPP/A, and OWL-S are given in the appendices of this
document.

3 Service Information Model
The ebXML Registry Service Information Model defines classes in the information
model support registration of service descriptions. A Web service can be represented in
an ebXML Registry through several Registry Information Model [ebRIM] classes:
Service, ServiceBinding, and SpecificationLink. The relationship between these RIM
classes is illustrated in the figure below.

Copyright © UN/CEFACT and OASIS, 2005. All Rights Reserved

ebXML Registry June 2005

 84
85
86
87
88
89

90
91
92
93
94
95
96
97
98
99

100

101
102
103
104

105
106
107

Figure 1: Relationship between RIM classes Service, ServiceBinding, and
SpecificationLink

The following sections provide more information on each of the above RIM classes,
specifically:

• A definition of the class
• The XML schema representation for the class within a

SubmitObjectsRequest
• A sample XML instance that conforms to the schema representation

The reader is referred to the Registry Information Model Specification v3.0 for attributes
and methods associated with each of these classes.

It should be noted that all namespace declarations are omitted from this document, for
purposes of brevity.

2.1 Class Service
Service instances describe services, such as Web services.

2.1.1 Submission XML Schema Representation
The following is the XML schema representation of the Service class within the RIM.xsd
schema [ebRIM Schema].

Registering Web Services in an ebXML Registry Page 5

Copyright © UN/CEFACT and OASIS, 2005. All Rights Reserved

ebXML Registry June 2005

Registering Web Services in an ebXML Registry Page 6

108 109
110
111
112
113
114
115
116
117
118
119
120
121
122

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

138

139
140
141
142
143
144

145
146
147
148 149
150
151
152
153
154
155
156
157
158
159
160
161

<element name = "Service" type = "tns:ServiceType"/>

<complexType name = "ServiceType">
 <complexContent>
 <extension base = "tns:RegistryObjectType">
 <sequence>
 <element ref = "tns:ServiceBinding" minOccurs = "0"
 maxOccurs = "unbounded"/>
 </sequence>
 </extension>
 </complexContent>
</complexType>

2.1.2 Sample XML Instance
The following sample XML instance illustrates the definition of a Service called
“AcmePurchaseOrderService” that accepts purchase orders for Acme Corporation. Note
that the ServiceBinding element is discussed later.

<Service id="urn:acme:services:purchaseorder">
 <Name>
 <LocalizedString lang="en_US" value = "Acme Purchase Order Web Service"/>
 </Name>
 <Description>

 <LocalizedString lang="en_US" value = "This Web service will accept purchase orders
 for Acme Corporation. It will validate the contents of each purchase order, and, if valid,
 will process the purchase order and automatically generate an Invoice."/>

 </Description>
 …ServiceBinding element is placed here…
</Service>

2.2 Class ServiceBinding

ServiceBinding instances are RegistryObject instances that represent technical
information on a specific way to access a Service instance. An example is where a
ServiceBinding is defined for each protocol that may be used to access the service. A
Service has a collection of ServiceBindings.

2.2.1 Submission XML Schema Representation
The following is the XML schema representation of the ServiceBinding class within the
RIM.xsd schema.

<element name = "ServiceBinding" type = "tns:ServiceBindingType"/>

<complexType name = "ServiceBindingType">
 <complexContent>
 <extension base = "tns:RegistryObjectType">
 <sequence>
 <element ref = "tns:SpecificationLink" minOccurs = "0"
 maxOccurs = "unbounded"/>
 </sequence>
 <attribute name = "service" use="required" type = "tns:referenceURI"/>
 <attribute name = "accessURI" use="optional" type = "anyURI"/>
 <attribute name = "targetBinding" use="optional" type = "tns:referenceURI"/>
 </extension>
 </complexContent>

Copyright © UN/CEFACT and OASIS, 2005. All Rights Reserved

ebXML Registry June 2005

Registering Web Services in an ebXML Registry Page 7

162
163
164

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185

186

187
188
189
190
191
192
193

194
195
196
197 198
199
200
201
202
203
204
205
206
207
208

</complexType>

2.2.2 Sample XML Instance
The following sample XML instance extends the earlier example by adding a
ServiceBinding for AcmePurchaseOrderService. The “accessURI” attribute contains the
address (access point) of the Web service that is being described1. Note that the “service”
attribute refers back to the service that was represented earlier. Note also that the
SpecificationLink element is discussed later.

<Service id="urn:acme:services:purchaseorder">
 <Name>
 <LocalizedString lang="en_US" value = "Acme Purchase Order Web Service"/>
 </Name>
 <Description>

 <LocalizedString lang="en_US" value = "This Web service will accept purchase orders
 for Acme Corporation. It will validate the contents of each purchase order, and, if valid,
 will process the purchase order and automatically generate an Invoice."/>

 </Description>
 <ServiceBinding id="urn:acme:services:bindings:purchaseorder"
 service="AcmePurchaseOrderService"
 accessURI="http://www.acme.com/purchaseorderservice">
 ….SpecificationLink element is placed here…
 </ServiceBinding>
 </Service>

2.3 Class SpecificationLink

A SpecificationLink provides the linkage between a ServiceBinding and one of its
technical specifications that describes how to use the service with that ServiceBinding.
For example, a ServiceBinding may have SpecificationLink instances that describe how
to access the service using a technical specification such as a WSDL document or a
CORBA IDL document.

2.3.1 Submission XML Schema Representation
The following is the XML schema representation of the SpecificationLink class within
the RIM.xsd schema.

<element name = "SpecificationLink" type = "tns:SpecificationLinkType"/>

<complexType name = "SpecificationLinkType">
 <complexContent>
 <extension base = "tns:RegistryObjectType">
 <sequence minOccurs = "0" maxOccurs = "1">
 <element ref = "tns:UsageDescription" minOccurs = "0"
 maxOccurs="1" />
 <element ref = "tns:UsageParameter" minOccurs = "0"
 maxOccurs="unbounded" />
 </sequence>
 <attribute name = "serviceBinding" use="required" type = "tns:referenceURI"/>

1 It should be noted that with a WSDL SOAP binding, the “location” attribute of the “soap:address” element performs the
same function as the “accessURI attribute”. The OASIS/ebXML Registry v3 specifications do not specify the behavior in
cases where the two addresses are different (i.e. which address takes precedence). This is considered an
implementation issue.

Copyright © UN/CEFACT and OASIS, 2005. All Rights Reserved

ebXML Registry June 2005

Registering Web Services in an ebXML Registry Page 8

209
210
211
212 213
214
215
216
217

218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253

254

255
256
257
258
259 260
261 262

 <attribute name = "specificationObject" use="required" type = "tns:referenceURI"/>
 </extension>
 </complexContent>
</complexType>

<element name = "UsageDescription" type = "tns:InternationalStringType" />
<element name = "UsageParameter" type = "tns:FreeFormText" />

2.3.2 Sample XML Instance
The following sample XML instance extends the earlier example by adding a
SpecificationLink for the ServiceBinding. This SpecificationLink provides a linkage
between the ServiceBinding and a WSDL document that describes the
AcmePurchaseOrderService. Note that the “serviceBinding” attribute refers back to the
ServiceBinding that was represented earlier.

<Service id= “urn:acme:services:purchaseorder”>
 <Name>
 <LocalizedString lang="en_US" value = "Acme Purchase Order Web Service"/>
 </Name>
 <Description>

 <LocalizedString lang="en_US" value = "This Web service will accept purchase orders
 for Acme Corporation. It will validate the contents of each purchase order, and, if valid,
 will process the purchase order and automatically generate an Invoice."/>

 </Description>
 <ServiceBinding accessURI="http://www.acme.com/purchaseorderservice">
 <SpecificationLink serviceBinding="urn:acme:services:bindings:purchaseorder"
 specificationObject="wsdlForPurchaseOrder">
 <UsageDescription>

 <LocalizedString lang="en_US" value = "This is the WSDL
 document that describes the Acme Purchase Order Web Service"/>

 </UsageDescription>
 </SpecificationLink>
 </ServiceBinding>
</Service>

The RegistryObject referenced in the “specificationObject” attribute above (the WSDL
document) would first need to be registered as an ExtrinsicObject. The following is an
example of how this would be represented within a SubmitObjectsRequest:

<ExtrinsicObject id="urn:acme:services:descriptions:purchaseorder" mimeType="text/xml">
 <Name>
 <LocalizedString lang="en_US" value = "The WSDL document for the Acme Purchase Order Web
 Service"/>
 </Name>
</ExtrinsicObject>

3 Full SubmitObjectsRequest Example
The following is a full SubmitObjectsRequest XML instance example that combines all
XML instance examples shown above:
<SubmitObjectsRequest comment=”This is the initial submission of the Acme Purchase Order Web
 Service”>
 <rim: RegistryObjectList>

 <!--Service objects-->

Copyright © UN/CEFACT and OASIS, 2005. All Rights Reserved

ebXML Registry June 2005

Registering Web Services in an ebXML Registry Page 9

263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283 284
285 286
287
288
289
290
291
292 293
294
295

296
297
298
299
300

301

302
303
304
305
306
307
308
309

310
311
312

 <Service id="urn:acme:services:purchaseorder">
 <Name>
 <LocalizedString lang="en_US" value = "Acme Purchase Order Web Service"/>
 </Name>
 <Description>

 <LocalizedString lang="en_US" value = "This Web service will accept purchase orders
 for Acme Corporation. It will validate the contents of each purchase order, and, if valid,
 will process the purchase order and automatically generate an Invoice."/>

 </Description>
 <ServiceBinding id="urn:acme:services:bindings:purchaseorder"
 service="AcmePurchaseOrderService"
 accessURI="http://www.acme.com/purchaseorderservice">
 <SpecificationLink serviceBinding="urn:acme:services:bindings:purchaseorder"
 specificationObject="wsdlForPurchaseOrder">
 <UsageDescription>

 <LocalizedString lang="en_US" value = "This is the WSDL
 document that describes the Acme Purchase Order Web Service"/>

 </UsageDescription>
 </SpecificationLink>
 </ServiceBinding>
 </Service>

 <!—WSDL document – ExtrinsicObject -->

 <ExtrinsicObject id="urn:acme:services:descriptions:purchaseorder" mimeType="text/xml">
 <Name>
 <LocalizedString lang="en_US" value = "The WSDL document for the Acme Purchase Order Web
 Service"/>
 </Name>

 </ExtrinsicObject>

 </rim: RegistryObjectList>
</SubmitObjectsRequest>

4 Extended Scenarios
This section includes scenarios that apply various registry features that were not
described in the earlier examples. Since most of these examples are based on XML
Schema representations that were already described in previous examples, XML Schema
representations will not be included in the scenarios below.

4.1 Versioning of Web Services
ebXML Registry contains registry-managed version control features that support
independent versioning of both RegistryObject metadata as well as repository item
content. The Registry Information Model defines version attributes for both the
RegistryObject and ExtrinsicObject classes.

Each RegistryObject instance may have a versionInfo attribute, whose value is of type
VersionInfo. The versionInfo class encapsulates information about the specific version of
a RegistryObject. It has the following attributes:

• versionName: Defines the version name identifying the VersionInfo for a
specific RegistryObject version. Automatically generated by the Registry
implementation.

Copyright © UN/CEFACT and OASIS, 2005. All Rights Reserved

ebXML Registry June 2005

Registering Web Services in an ebXML Registry Page 10

313
314
315
316
317
318
319
320
321
322
323

324
325
326
327
328
329
330
331
332
333 334
335
336
337
338
339
340
341
342
343
344 345
346 347
348
349
350
351 352
353
354
355 356
357
358
359
360
361
362

• comment: Defines the comment associated with the VersionInfo for a
specific RegistryObject version. Value is indirectly provided by the client
as a value of the comment attribute of the <rim:Request> object, and is
automatically set by the Registry implementation if such a value exists.

Each ExtrinsicObject instance may have a contentVersionInfo attribute, whose value is
also of type VersionInfo. The contentversionInfo class provides information about the
specific version of the RepositoryItem associated with an ExtrinsicObject. It is set by the
registry.

4.1.1 Sample XML Instance
The following sample XML instance illustrates a change in a version to an existing
Service instance, through the submission of a new version of the Service instance and a
“Supersedes” association reflecting the relationship between the previous version and this
new version. The registry will automatically assign versioning attributes as described
above, including copying the comment provided for the SubmitObjectsRequest to the
RegistryObject.version attribute for the submitted Service:

<SubmitObjectsRequest comment=”This is an updated version of the Acme Purchase Order Web
 Service based on new requirements”>
 <rim:RegistryObjectList>

 <Service id="urn:acme:services:purchaseorder:v2.0">
 <Name>
 <LocalizedString lang="en_US" value = "Acme Purchase Order Web Service – Version
 2.0"/>
 </Name>
 <Description>

 <LocalizedString lang="en_US" value = "This Web service will accept purchase orders
 for Acme Corporation. It will validate the contents of each purchase order, and, if valid,
 will process the purchase order and automatically generate an Invoice."/>

 </Description>

 <rim:ObjectRef id = "urn:acme:services:purchaseorder"/>

 <!--
 The following association supersedes the current version of the Service instance with the new
 version that is being submitted.
 -->

 <rim:Association id = "New-AcmePurchaseOrderService-Assoc" associationType =
 "urn:oasis:names:tc:ebxml-regrep:AssociationType:Supersedes" sourceObject =
 " urn:acme:services:purchaseorder:v2.0" targetObject = "urn:acme:services:purchaseorder"/>

 </rim:RegistryObjectList>
</SubmitObjectsRequest>

In the association above, the “sourceObject” attribute contains the URN of the new
Service instance, while the “targetObject” attribute contains the URN of the old (version
1.0) Service instance.

Copyright © UN/CEFACT and OASIS, 2005. All Rights Reserved

ebXML Registry June 2005

Registering Web Services in an ebXML Registry Page 11

363

364
365
366
367
368

4.2 Associating a Web Service with an Organization
It is possible to associate a Web service with the Organization that implements the Web
service. This allows for hierarchical discovery in an ebXML Registry of Organizations
and their corresponding Web service offerings (or vice-versa).

 369
370
371
372
373

374
375
376
377
378
379
380
381 382
383
384
385
386
387 388
389
390
391
392
393
394
395 396
397
398
399
400
401
402

Figure 2: Associating a Web Service with an Organization

4.2.1 Sample XML Instance
The following sample XML instance associates Acme Corporation with its Purchase
Order Service through an “OffersService” association. It is assumed that an Organization
instance already exists for Acme Corporation, and the Purchase Order Service and any
associated instances, such as ServiceBinding and SpecificationLink, have been registered
as well.

<SubmitObjectsRequest>
 <rim:RegistryObjectList>

 <!--
The following association denotes that Acme Corporation offers a Purchase Order Service. The
sourceObject is the URN of Acme Corporation’s Organization instance, while the targetObject is
the URN of the Purchase Order Service’s Service instance.

 -->

 <rim:Association id = "AcmePurchaseOrderService-Assoc" associationType =
 "urn:uuid_for_OffersService_association" sourceObject = "urn:uuid:a2345678-1234-1234-
 3345678901292" targetObject = "urn:uuid:a2345678-1234-1234-93456789012"/>

 <rim:Association id = "AcmePurchaseOrderService-Assoc" associationType =
 "urn:oasis:names:tc:ebxml-regrep:AssociationType:OffersService" sourceObject =
 " u

rn:acme:organization" targetObject = "urn:acme:services:purchaseorder"/>
 </rim:RegistryObjectList>
</SubmitObjectsRequest>

In the association above, the “sourceObject” attribute contains the URN of Acme
Corporation’s Organization instance, while the “targetObject” attribute contains the URN
of the Purchase Order Service’s Service instance.

Copyright © UN/CEFACT and OASIS, 2005. All Rights Reserved

ebXML Registry June 2005

Registering Web Services in an ebXML Registry Page 12

403
404

405

406
407
408
409
410
411

412
413
414
415
416
417
418
419 420
421
422
423
424
425 426
427
428
429 430
431
432
433
434
435
436

437
438

439
440
441

[UPDATES END HERE]

4.3 Associating a Web Service with an Access Control Policy
It is possible to associate a Web service with an Access Control Policy in order to
authorize access to methods associated with the Service instance. This can help ensure
that only authorized users can (for example) perform life cycle operations on the Service
instance.

4.3.1 Sample XML Instance
The following sample XML instance associates Acme Corporation’s Purchase Order
Service with an Access Control Policy through an “AccessControlPolicyFor” association.
It is assumed that an AccessControlPolicy instance already exists for the Access Control
Policy, and the Purchase Order Service and any associated instances, such as
ServiceBinding and SpecificationLink, have been registered as well.

<SubmitObjectsRequest>
 <rim:LeafRegistryObjectList>

 <!--
The following association relates an existing Access Control Policy to Acme Corporation’s
Purchase Order Service. The sourceObject is the UUID of Acme Corporation’s Purchase Order
Service instance, while the targetObject is the UUID of the Access Control Policy instance.

 -->

 <rim:Association id = "AcmePurchaseOrderService-AccessPolicyAssoc" associationType =
 "urn:uuid_for_AccessControlPolicyFor_association" sourceObject = "urn:uuid:a2345678-1234-
 1234-8345678901262" targetObject = "urn:uuid:a2345678-1234-1234-03456789015"/>

 </rim:LeafRegistryObjectList>
</SubmitObjectsRequest>

In the association above, the “sourceObject” attribute contains the UUID of Acme
Corporation’s Purchase Order Service instance, while the “targetObject” attribute
contains the UUID of the Access Control Policy instance.

4.4 Registering a Service Description that is External to the
Registry

It is possible to associate a Web service with a Service description that is external to the
registry by using the SpecificationLink class as shown below.

Copyright © UN/CEFACT and OASIS, 2005. All Rights Reserved

ebXML Registry June 2005

 442
443
444
445

446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470

471

472
473
474
475
476

Figure 3: Registering an External Service Description

4.4.1 Sample XML Instance
The following sample XML instance is similar to that of Section 3.3.2 above, with the
only difference being that the “specificationObject” attribute contains the URL of the
external Service description.

<Service id="AcmePurchaseOrderService">
 <Name>
 <LocalizedString lang="en_US" value = "Acme Purchase Order Web Service"/>
 </Name>
 <Description>

 <LocalizedString lang="en_US" value = "This Web service will accept purchase orders
 for Acme Corporation. It will validate the contents of each purchase order, and, if valid,
 will process the purchase order and automatically generate an Invoice."/>

 </Description>
 <ServiceBinding accessURI="http://www.acme.com/purchaseorderservice">
 <SpecificationLink specificationObject="urn:uuid_for_ExternalLink_instance">
 <UsageDescription>

 <LocalizedString lang="en_US" value = "This is the WSDL
 document that describes the Acme Purchase Order Web Service"/>

 </UsageDescription>
 </SpecificationLink>
 </ServiceBinding>
</Service>

The “specificationObject” attribute above references an ExternalLink instance that
contains the URI for the WSDL document.

4.5 Web Service Redirection
The “targetBinding” attribute of the ServiceBinding class is used to redirect a Web
service to another access point. This may be done, for example, if the service is rehosted
by another service provider. If the “targetBinding” attribute is specified in a
ServiceBinding instance, the “accessURI” attribute is ignored.

Registering Web Services in an ebXML Registry Page 13

Copyright © UN/CEFACT and OASIS, 2005. All Rights Reserved

ebXML Registry June 2005

Registering Web Services in an ebXML Registry Page 14

477

478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498

499

500
501
502
503
504
505
506

507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523

4.5.1 Sample XML Instance
The following sample XML instance is similar to the XML instance in Section 3.2.2
above, with the exception that the “targetBinding” attribute has been added:

<Service id="AcmePurchaseOrderService">
 <Name>
 <LocalizedString lang="en_US" value = "Acme Purchase Order Web Service"/>
 </Name>
 <Description>

 <LocalizedString lang="en_US" value = "This Web service will accept purchase orders
 for Acme Corporation. It will validate the contents of each purchase order, and, if valid,
 will process the purchase order and automatically generate an Invoice."/>

 </Description>
 <ServiceBinding accessURI="http://www.acme.com/purchaseorderservice"
 targetBinding=" urn:uuid_for_ExternalLink_instance">
 ….SpecificationLink element goes here…
 </ServiceBinding>
 </Service>

In the above example, Acme Corporation’s Purchase Order Service has been rehosted to
a URI that is specified in the ExternalLink instance referenced by the “targetBinding”
attribute above.

4.6 Customizing Metadata Using Slots
The Slot class provides a dynamic way to add arbitrary attributes to RegistryObject
instances through the specification of name/value pairs. This ability to add attributes
dynamically to RegistryObject instances enables extensibility within the Registry
Information Model. Slots can be used with Web Service definitions to define information
that is unique to an organization’s needs.

4.6.1 Sample XML Instance
The following sample XML instance extends the example in Section 3.2.2 by adding
slots for the internal Web Service Administrator Name and whether the Web service is
HTTP(REST)-based or SOAP-based2:

<Service id="AcmePurchaseOrderService">
 <Name>
 <LocalizedString lang="en_US" value = "Acme Purchase Order Web Service"/>
 </Name>
 <Description>

 <LocalizedString lang="en_US" value = "This Web service will accept purchase orders
 for Acme Corporation. It will validate the contents of each purchase order, and, if valid,
 will process the purchase order and automatically generate an Invoice."/>

 </Description>
 <Slot name = 'Web Service Administrator Name'>
 <ValueList>
 <Value>John Smith</Value>
 </ValueList>

2 Although this information can be obtained by inspecting a WSDL document, it can be more efficient to specify it at this
metadata level so as to avoid the need to automatically open and inspect a WSDL document.

Copyright © UN/CEFACT and OASIS, 2005. All Rights Reserved

ebXML Registry June 2005

Registering Web Services in an ebXML Registry Page 15

524
525
526
527
528
529
530
531
532
533

534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554

555
556
557
558
559
560
561
562
563
564
565
566
567

 </Slot >
 <Slot name = 'HTTP or SOAP’>
 <ValueList>
 <Value>SOAP</Value>
 </ValueList>
 </Slot >
 <ServiceBinding accessURI="http://www.acme.com/purchaseorderservice">
 ….SpecificationLink element goes here…
 </ServiceBinding>
 </Service>

Appendix A WSDL Introduction
The Web Service Description Language (WSDL) provides the ability to describe a Web
service in abstract as well as with concrete bindings to specific protocols. In WSDL, an
abstract service consists of one or more port types or end-points. Each port type consists
of a collection of operations. Each operation is defined in terms of messages that define
what data is exchanged as part of that operation. Each message is typically defined in
terms of elements within an XML Schema definition. An abstract service is not bound to
any specific protocol (e.g. SOAP). In WSDL, an abstract service may be used to define a
concrete service by binding it to a specific protocol. This binding is done by providing a
binding definition for each abstract port type that defines additional protocols specific
details. Finally, a concrete service definition is defined as a collection of ports, where
each port simply adds address information such as a URL for each concrete port.

One of the most distinctive features of WSDL is that the abstract information can be
separated from the concrete information, to form an abstract service interface definition
and one or more concrete service implementation definitions. This separation allows for
the creation of clearer service definitions by separating the definitions according to their
level of abstraction. It also maximizes the ability to reuse service definitions of all kinds.
As a result, WSDL documents structured in this way are easier to use and maintain
[UDDI].

Appendix B OASIS/ebXML Collaboration-Protocol
Profile and Agreement (CPP/A) Introduction
The OASIS/ebXML Collaboration-Protocol Profile and Agreement (CPP/A)
specification defines the structure and contents of ebXML Collaboration Protocol Profiles
(CPPs) and Collaboration Protocol Agreements (CPAs), both of which are used for
business integration and trading partner discovery purposes. A CPP describes the
message-exchange capabilities of a Party, while a CPA defines the capabilities that two
Parties need to agree upon to enable them to engage in electronic business for the
purposes of the particular CPA. A CPA may be created by computing the intersection of
the two Partners’ CPPs.

Included in the CPP and CPA are details of transport, messaging, security constraints,
and bindings to a Business Process Specification document (which may conform to the

Copyright © UN/CEFACT and OASIS, 2005. All Rights Reserved

ebXML Registry June 2005

Registering Web Services in an ebXML Registry Page 16

568
569
570
571

572
573
574
575
576
577
578
579
580
581
582
583
584
585

586

587

ebXML Business Process Specification Schema, or BPSS) that contains the definition of
the interactions between the two Parties while engaging in a specified electronic Business
Collaboration. A Business Process Specification document, CPP, and CPA may all be
stored in an ebXML Registry.

Appendix C DAML-S Introduction
DAML-S is an emerging DAML+OIL ontology for Semantic Web Services. It is a
collaborative effort between BBN Technologies, Carnegie Mellon University, Nokia
Research Center, SRI International, Stanford University, and Yale University. The
Semantic Web is rapidly becoming a reality through the development of Semantic Web
markup languages such as DAML+OIL, and these markup languages enable the creation
of arbitrary domain ontologies (such as DAML-S) that support the unambiguous
description of Web content.

While WSDL provides a low-level description of Web services, DAML-S complements
WSDL by providing Web service descriptions at the application layer – that is, describing
what a service can do, not just how it does it. A DAML-S/WSDL binding (known as a
“grounding”) has been defined that involves a complementary use of the two languages.

References
[DAML-S] DAML-S: Web Service Descriptions for the Semantic Web

588
589
590

http:// xml.coverpages.org/ISWC2002-DAMLS

[ebCPP] ebXML Collaboration-Protocol Profile and Agreement Specification

591
592
593

594

http://www.oasis-open.org/committees/ebxml-cppa/documents/ebcpp-2.0.pdf

[ebRIM] ebXML Registry Information Model Specification v3.0 (release pending)

[ebRIM Schema] ebXML Registry Information Model Schema v3.0
595

596
597

http://www.oasis-open.org/committees/regrep/documents/3.0/schema/rim.xsd

[ebRS] ebXML Registry Services Specification v3.0 (release pending)

UDDI] Using WSDL in a UDDI Registry, Version 1.8

http://www.oasis-open.org/committees/uddi-spec/doc/bp/uddi-spec-tc-bp-using-598
wsdl-v108-20021110.htm599

600 [WSA] W3C Web Services Activity

 http://www.w3.org/2002/ws/601

602 [WSDL] Web Services Description Language (WSDL)

 http://www.w3.org/TR/2002/WD-wsdl12-20020709/603

Copyright © UN/CEFACT and OASIS, 2005. All Rights Reserved

http://%20xml.coverpages.org/ISWC2002-
http://www.oasis-open.org/committees/regrep/documents/3.0/schema/rim.xsd
http://www.oasis-open.org/committees/uddi-spec/doc/bp/uddi-spec-tc-bp-using-wsdl-v108-20021110.htm
http://www.oasis-open.org/committees/uddi-spec/doc/bp/uddi-spec-tc-bp-using-wsdl-v108-20021110.htm
http://www.w3.org/2002/ws/
http://www.w3.org/TR/2002/WD-wsdl12-20020709/

ebXML Registry June 2005

Registering Web Services in an ebXML Registry Page 17

604

Copyright © UN/CEFACT and OASIS, 2005. All Rights Reserved

	Authors
	Abstract
	Status of this Document
	 Introduction
	2 Describing Web Services
	3 Service Information Model
	2.1 Class Service
	2.1.1 Submission XML Schema Representation
	2.1.2 Sample XML Instance

	2.2 Class ServiceBinding
	2.2.1 Submission XML Schema Representation
	2.2.2 Sample XML Instance

	2.3 Class SpecificationLink
	2.3.1 Submission XML Schema Representation
	2.3.2 Sample XML Instance

	3 Full SubmitObjectsRequest Example
	4 Extended Scenarios
	4.1 Versioning of Web Services
	4.1.1 Sample XML Instance

	4.2 Associating a Web Service with an Organization
	4.2.1 Sample XML Instance

	4.3 Associating a Web Service with an Access Control Policy
	4.3.1 Sample XML Instance

	4.4 Registering a Service Description that is External to the Registry
	4.4.1 Sample XML Instance

	4.5 Web Service Redirection
	4.5.1 Sample XML Instance

	4.6 Customizing Metadata Using Slots
	4.6.1 Sample XML Instance

