

ebXML Registry Services and Protocols
Version 3.0.1

Committee Draft, Aug 23, 2007
Document identifier:

regrep-rs

Location:
Latest Version: http://docs.oasis-open.org/regrep-rs/latest/
This Version: http://docs.oasis-open.org/regrep-rs/v3.0.1/
Previous Version: http://docs.oasis-open.org/regrep-rs/v3.0/

Editors:
Name Affiliation

Kathryn Breininger The Boeing Company
Farrukh Najmi Wellfleet Software Corporation
Nikola Stojanovic GS1 US

Contributors:
Name Affiliation

Ivan Bedini France Telecom
Ted Haas GS1 US
Paul Macias LMI
Carl Mattocks MetLife
Monica Martin Sun Microsystems
David Webber Individual

Abstract:
This document defines the services and protocols for an ebXML Registry

A separate document, ebXML Registry: Information Model [ebRIM], defines the types of metadata
and content that can be stored in an ebXML Registry.

Status:
This document is an OASIS ebXML Registry Technical Committee Approved Draft Specification.

Committee members should send comments on this specification to the regrep@lists.oasis-
open.org list. Others should subscribe to and send comments to the regrep-comment@lists.oasis-
open.org list. To subscribe, send an email message to regrep-comment-request@lists.oasis-
open.org with the word "subscribe" as the body of the message.

For information on whether any patents have been disclosed that may be essential to implementing
this specification, and any offers of patent licensing terms, please refer to the Intellectual Property
Rights section of the OASIS ebXML Registry TC web page (http://www.oasis-
open.org/committees/regrep/).

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 1 of 129

1

2

3

4

5
6

7

8

9

10

11

12

13

14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

http://www.oasis-open.org/committees/regrep/
http://www.oasis-open.org/committees/regrep/
http://www.oasis-open.org/committees/regrep/
http://www.oasis-open.org/committees/regrep/
http://www.oasis-open.org/committees/regrep/
http://www.oasis-open.org/committees/regrep/
mailto:regrep-comment-request@lists.oasis-open.org?body=subscribe
mailto:regrep-comment-request@lists.oasis-open.org?body=subscribe
mailto:regrep-comment-request@lists.oasis-open.org?body=subscribe
mailto:regrep-comment-request@lists.oasis-open.org?body=subscribe
mailto:regrep-comment-request@lists.oasis-open.org?body=subscribe
mailto:regrep-comment-request@lists.oasis-open.org?body=subscribe
mailto:regrep-comment@lists.oasis-open.org
mailto:regrep-comment@lists.oasis-open.org
mailto:regrep-comment@lists.oasis-open.org
mailto:regrep-comment@lists.oasis-open.org
mailto:regrep-comment@lists.oasis-open.org
mailto:regrep-comment@lists.oasis-open.org
mailto:regrep@lists.oasis-open.org
mailto:regrep@lists.oasis-open.org
mailto:regrep@lists.oasis-open.org
mailto:regrep@lists.oasis-open.org
mailto:regrep@lists.oasis-open.org
mailto:regrep@lists.oasis-open.org
http://docs.oasis-open.org/regrep-rs/v3.0/
http://docs.oasis-open.org/regrep-rs/v3.0/
http://docs.oasis-open.org/regrep-rs/v3.0/
http://docs.oasis-open.org/regrep-rs/v3.0.1/
http://docs.oasis-open.org/regrep-rs/v3.0.1/
http://docs.oasis-open.org/regrep-rs/v3.0.1/
http://docs.oasis-open.org/regrep-rs/latest/
http://docs.oasis-open.org/regrep-rs/latest/
http://docs.oasis-open.org/regrep-rs/latest/

Table of Contents
1 Introduction...12

1.1 Audience..12

1.2 Terminology...12

1.3 Notational Conventions...12

1.3.1 UML Diagrams...12

1.3.2 Identifier Placeholders...12

1.3.3 Constants...12

1.3.4 Bold Text..13

1.3.5 Example Values...13

1.4 XML Schema Conventions..13

1.4.1 Schemas Defined by ebXML Registry...13

1.4.2 Schemas Used By ebXML Registry..14

1.5 Registry Actors..15

1.6 Registry Use Cases..15

1.7 Registry Architecture...15

1.7.1 Registry Clients...16
1.7.1.1 Client API...16

1.7.2 Registry Service Interfaces..16

1.7.3 Service Interface: Protocol Bindings..16

1.7.4 Authentication and Authorization...17

1.7.5 Metadata Registry and Content Repository..17

2 Registry Protocols..18

2.1 Requests and Responses...18

2.1.1 RegistryRequestType..18
2.1.1.1 Syntax:...18

2.1.1.2 Parameters:..19

2.1.1.3 Returns:..19

2.1.1.4 Exceptions:...19

2.1.2 RegistryRequest..19

2.1.3 RegistryResponseType...19
2.1.3.1 Syntax:...20

2.1.3.2 Parameters:..20

2.1.4 RegistryResponse...20

2.1.5 RegistryErrorList..20
2.1.5.1 Syntax:...21

2.1.5.2 Parameters:..21

2.1.6 RegistryError..21
2.1.6.1 Syntax:...21

2.1.6.2 Parameters:..21

3 SOAP Binding...23

3.1 ebXML Registry Service Interfaces: Abstract Definition..23

3.2 ebXML Registry Service Interfaces SOAP Binding...23

3.3 ebXML Registry Service Interfaces SOAP Service Template...24

3.4 Mapping of Exception to SOAP Fault ..24

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 2 of 129

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

4 HTTP Binding...26

4.1 HTTP Interface URL Pattern...26

4.2 RPC Encoding URL..26

4.2.1 Standard URL Parameters..26

4.2.2 QueryManager Binding..27
4.2.2.1 Sample getRegistryObject Request.. ..27

4.2.2.2 Sample getRegistryObject Response...27

4.2.2.3 Sample getRepositoryItem Request...28

4.2.2.4 Sample getRepositoryItem Response..28

4.2.3 LifeCycleManager HTTP Interface..28

4.3 Submitter Defined URL...28

4.3.1 Submitter defined URL Syntax..29

4.3.2 Assigning URL to a RegistryObject ..29

4.3.3 Assigning URL to a Repository Item ...30

4.4 File Path Based URL...30

4.4.1 File Folder Metaphor..30

4.4.2 File Path of a RegistryObject...30
4.4.2.1 File Path Example...30

4.4.3 Matching URL To Objects..31

4.4.4 URL Matches a Single Object..31

4.4.5 URL Matches Multiple Object..32

4.4.6 Directory Listing...32

4.4.7 Access Control In RegistryPackage Hierarchy..32

4.5 URL Resolution Algorithm...33

4.6 Security Consideration..33

4.7 Exception Handling...33

5 Lifecycle Management Protocols..34

5.1 Submit Objects Protocol..34

5.1.1 SubmitObjectsRequest..34
5.1.1.1 Syntax:...34

5.1.1.2 Parameters:..35

5.1.1.3 Returns:..35

5.1.1.4 Exceptions:...35

5.1.2 Unique ID Generation..35

5.1.3 ID Attribute And Object References...35

5.1.4 Audit Trail...36

5.1.5 Sample SubmitObjectsRequest...36

5.2 The Update Objects Protocol..36

5.2.1 UpdateObjectsRequest...37
5.2.1.1 Syntax:...37

5.2.1.2 Parameters:..37

5.2.1.3 Returns:..38

5.2.1.4 Exceptions:...38

5.2.2 Audit Trail...38

5.3 The Approve Objects Protocol..38

5.3.1 ApproveObjectsRequest..38
5.3.1.1 Syntax:...39

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 3 of 129

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

5.3.1.2 Parameters:..39

5.3.1.3 Returns:..39

5.3.1.4 Exceptions:...39

5.3.2 Audit Trail...39

5.4 The Deprecate Objects Protocol...39

5.4.1 DeprecateObjectsRequest..40
5.4.1.1 Syntax:...40

5.4.1.2 Parameters:..40

5.4.1.3 Returns:..40

5.4.1.4 Exceptions:...41

5.4.2 Audit Trail...41

5.5 The Undeprecate Objects Protocol...41

5.5.1 UndeprecateObjectsRequest..41
5.5.1.1 Syntax:...41

5.5.1.2 Parameters:..42

5.5.1.3 Returns:..42

5.5.1.4 Exceptions:...42

5.5.2 Audit Trail...42

5.6 The Remove Objects Protocol..42

5.6.1 RemoveObjectsRequest..43
5.6.1.1 Syntax:...43

5.6.1.2 Parameters:..43

5.6.1.3 Returns:..44

5.6.1.4 Exceptions:...44

5.7 Registry Managed Version Control...44

5.7.1 Version Controlled Resources...44

5.7.2 Versioning and Object Identification..44

5.7.3 Logical ID...44

5.7.4 Version Identification..45
5.7.4.1 Version Identification for a RegistryObject..45

5.7.4.2 Version Identification for a RepositoryItem...45

5.7.5 Versioning of ExtrinsicObject and Repository Items..45
5.7.5.1 ExtrinsicObject and Shared RepositoryItem...46

5.7.6 Versioning and Composed Objects...46

5.7.7 Versioning and References..46

5.7.8 Versioning and Audit Trail..47

5.7.9 Inter-versions Association..47

5.7.10 Client Initiated Version Removal..47

5.7.11 Registry Initiated Version Removal..47

5.7.12 Locking and Concurrent Modifications..47

5.7.13 Version Creation..47

5.7.14 Versioning Override...48

6 Query Management Protocols..49

6.1 Ad Hoc Query Protocol..49

6.1.1 AdhocQueryRequest..50
6.1.1.1 Syntax:...50

6.1.1.2 Parameters:..50

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 4 of 129

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

6.1.1.3 Returns:..51

6.1.1.4 Exceptions:...51

6.1.2 AdhocQueryResponse...51
6.1.2.1 Syntax:...51

6.1.2.2 Parameters:..51

6.1.3 AdhocQuery...52
6.1.3.1 Syntax:...52

6.1.3.2 Parameters:..52

6.1.4 ReponseOption..52
6.1.4.1 Syntax:...52

6.1.4.2 Parameters:..52

6.2 Iterative Query Support...53

6.2.1 Query Iteration Example..53

6.3 Stored Query Support...54

6.3.1 Submitting a Stored Query..54
6.3.1.1 Declaring Query Parameters..54

6.3.1.2 Canonical Context Parameters...55

6.3.2 Invoking a Stored Query..55
6.3.2.1 Specifying Query Invocation Parameters...55

6.3.3 Response to Stored Query Invocation...56

6.3.4 Access Control on a Stored Query..56

6.3.5 Canonical Query: Get Client’s User Object...56

6.4 SQL Query Syntax..57

6.4.1 Relational Schema for SQL Queries..57

6.4.2 SQL Query Results..57

6.5 Filter Query Syntax...58

6.5.1 Filter Query Structure..58

6.5.2 Query Elements...58

6.5.3 Filter Elements...59
6.5.3.1 FilterType...60

6.5.3.2 SimpleFilterType...60

6.5.3.3 BooleanFilter..61

6.5.3.4 FloatFilter...61

6.5.3.5 IntegerFilter..61

6.5.3.6 DateTimeFilter... ..62

6.5.3.7 StringFilter.. ...62

6.5.3.8 CompoundFilter...62

6.5.4 Nested Query Elements..63

6.5.5 Branch Elements...63

6.6 Query Examples..64

6.6.1 Name and Description Queries...64

6.6.2 Classification Queries..64
6.6.2.1 Retrieving ClassificationSchemes..65

6.6.2.2 Retrieving Children of Specified ClassificationNode..65

6.6.2.3 Retrieving Objects Classified By a ClassificationNode..65

6.6.2.4 Retrieving Classifications that Classify an Object..65

6.6.3 Association Queries...66
6.6.3.1 Retrieving All Associations With Specified Object As Source...66

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 5 of 129

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

6.6.3.2 Retrieving All Associations With Specified Object As Target..66

6.6.3.3 Retrieving Associated Objects Based On Association Type...66

6.6.3.4 Complex Association Query... ...67

6.6.4 Package Queries...67

6.6.5 ExternalLink Queries...67

6.6.6 Audit Trail Queries...68

7 Event Notification Protocols..69

7.1 Use Cases...69

7.1.1 CPP Has Changed..69

7.1.2 New Service is Offered..69

7.1.3 Monitor Download of Content..69

7.1.4 Monitor Price Changes..69

7.1.5 Keep Replicas Consistent With Source Object...69

7.2 Registry Events...69

7.3 Subscribing to Events...70

7.3.1 Event Selection..70

7.3.2 Notification Action..70

7.3.3 Subscription Authorization...71

7.3.4 Subscription Quotas..71

7.3.5 Subscription Expiration..71

7.3.6 Subscription Rejection...71

7.4 Unsubscribing from Events...71

7.5 Notification of Events..71

7.6 Retrieval of Events..72

7.7 Pruning of Events..72

8 Content Management Services..73

8.1 Content Validation...73

8.1.1 Content Validation: Use Cases..73
8.1.1.1 Validation of HL7 Conformance Profiles...73

8.1.1.2 Validation of Business Processes...73

8.1.1.3 Validation of UBL Business Documents... .73

8.2 Content Cataloging...74

8.2.1 Content-based Discovery: Use Cases..74
8.2.1.1 Find All CPPs Where Role is “Buyer”...74

8.2.1.2 Find All XML Schema’s That Use Specified Namespace...74

8.2.1.3 Find All WSDL Descriptions with a SOAP Binding...74

8.3 Abstract Content Management Service..74

8.3.1 Inline Invocation Model ...75

8.3.2 Decoupled Invocation Model...76

8.4 Content Management Service Protocol..77

8.4.1 ContentManagementServiceRequestType..77
8.4.1.1 Syntax:...77

8.4.1.2 Parameters:..78

8.4.1.3 Returns:..78

8.4.1.4 Exceptions:...78

8.4.2 ContentManagementServiceResponseType...78
8.4.2.1 Syntax:...78

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 6 of 129

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

8.4.2.2 Parameters:..78

8.5 Publishing / Configuration of a Content Management Service...79

8.5.1 Multiple Content Management Services and Invocation Control Files..80

8.6 Invocation of a Content Management Service..81

8.6.1 Resolution Algorithm For Service and Invocation Control File..81

8.6.2 Audit Trail and Cataloged Content...81

8.6.3 Referential Integrity...81

8.6.4 Error Handling..81

8.7 Validate Content Protocol..82

8.7.1 ValidateContentRequest..82
8.7.1.1 Syntax:...82

8.7.1.2 Parameters:..83

8.7.1.3 Returns:..83

8.7.1.4 Exceptions:...83

8.7.2 ValidateContentResponse...83
8.7.2.1 Syntax:...83

8.7.2.2 Parameters:..83

8.8 Catalog Content Protocol..84

8.8.1 CatalogContentRequest..84
8.8.1.1 Syntax:...84

8.8.1.2 Parameters:..85

8.8.1.3 Returns:..85

8.8.1.4 Exceptions:...85

8.8.2 CatalogContentResponse...85
8.8.2.1 Syntax:...85

8.8.2.2 Parameters:..86

8.9 Illustrative Example: Canonical XML Cataloging Service...86

8.10 Canonical XML Content Cataloging Service...87

8.10.1 Publishing of Canonical XML Content Cataloging Service..87

9 Cooperating Registries Support...88

9.1 Cooperating Registries Use Cases..88

9.1.1 Inter-registry Object References..88

9.1.2 Federated Queries...88

9.1.3 Local Caching of Data from Another Registry...88

9.1.4 Object Relocation..88

9.2 Registry Federations...89

9.2.1 Federation Metadata..89

9.2.2 Local Vs. Federated Queries...90
9.2.2.1 Local Queries...90

9.2.2.2 Federated Queries...90

9.2.2.3 Membership in Multiple Federations...91

9.2.3 Federated Lifecycle Management Operations...91

9.2.4 Federations and Local Caching of Remote Data..91

9.2.5 Caching of Federation Metadata...91

9.2.6 Time Synchronization Between Registry Peers..91

9.2.7 Federations and Security...92

9.2.8 Federation Lifecycle Management Protocols ...92

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 7 of 129

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

9.2.8.1 Joining a Federation..92

9.2.8.2 Creating a Federation..92

9.2.8.3 Leaving a Federation..92

9.2.8.4 Dissolving a Federation..92

9.3 Object Replication...93

9.3.1 Use Cases for Object Replication..93

9.3.2 Queries And Replicas..94

9.3.3 Lifecycle Operations And Replicas..94

9.3.4 Object Replication and Federated Registries..94

9.3.5 Creating a Local Replica...94

9.3.6 Transactional Replication..94

9.3.7 Keeping Replicas Current..95

9.3.8 Lifecycle Management of Local Replicas..95

9.3.9 Tracking Location of a Replica..95

9.3.10 Remote Object References to a Replica...95

9.3.11 Removing a Local Replica...95

9.4 Object Relocation Protocol..95

9.4.1 RelocateObjectsRequest...98
9.4.1.1 Parameters:..98

9.4.1.2 Returns:..98

9.4.1.3 Exceptions:...98

9.4.2 AcceptObjectsRequest..98
9.4.2.1 Parameters:..99

9.4.2.2 Returns:..99

9.4.2.3 Exceptions:...99

9.4.3 Object Relocation and Remote ObjectRefs...99

9.4.4 Notification of Object Relocation To ownerAtDestination..100

9.4.5 Notification of Object Commit To sourceRegistry..100

9.4.6 Object Ownership and Owner Reassignment...100

9.4.7 Object Relocation and Timeouts..100

10 Registry Security..101

10.1 Security Use Cases..101

10.1.1 Identity Management...101

10.1.2 Message Security..101

10.1.3 Repository Item Security...101

10.1.4 Authentication..101

10.1.5 Authorization and Access Control..101

10.1.6 Audit Trail...101

10.2 Identity Management...102

10.3 Message Security..102

10.3.1 Transport Layer Security...102

10.3.2 SOAP Message Security...102
10.3.2.1 Request Message Signature..102

10.3.2.2 Response Message Signature.. ..102

10.3.2.3 KeyInfo Requirements..103

10.3.2.4 Message Signature Validation..103

10.3.2.5 Message Signature Example...103

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 8 of 129

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

10.3.2.6 Message With RepositoryItem: Signature Example...104

10.3.2.7 SOAP Message Security and HTTP/S...105

10.3.3 Message Confidentiality..106

10.3.4 Key Distribution Requirements..106

10.4 Authentication..106

10.4.1 Registry as Authentication Authority..106

10.4.2 External Authentication Authority...107

10.4.3 Authenticated Session Support...107

10.5 Authorization and Access Control...107

10.6 Audit Trail..107

11 Registry SAML Profile...108

11.1 Terminology...108

11.2 Use Cases for SAML Profile..108

11.2.1 Registry as SSO Participant: ..109

11.3 SAML Roles Played By Registry...109

11.3.1 Service Provider Role..109
11.3.1.1 Service Provider Requirements..109

11.4 Registry SAML Interface..110

11.5 Requirements for Registry SAML Profile ...110

11.6 SSO Operation...111

11.6.1 Scenario Actors..111

11.6.2 SSO Operation – Unauthenticated HTTP Requestor...111
11.6.2.1 Scenario Sequence...112

11.6.3 SSO Operation – Authenticated HTTP Requestor...113

11.6.4 SSO Operation – Unuthenticated SOAP Requestor..113
11.6.4.1 Scenario Sequence...114

11.6.5 SSO Operation – Authenticated SOAP Requestor..114
11.6.5.1 Scenario Sequence...115

11.6.6 <samlp:AuthnRequest> Generation Rules..116

11.6.7 <samlp:Response> Processing Rules...116

11.6.8 Mapping Subject to User..116

11.7 External Users...117

12 Native Language Support (NLS)...118

12.1 Terminology...118

12.2 NLS and Registry Protcol Messages..118

12.3 NLS Support in RegistryObjects ..118

12.3.1 Character Set of LocalizedString...120

12.3.2 Language of LocalizedString...120

12.4 NLS and Repository Items ...120

12.4.1 Character Set of Repository Items..120

12.4.2 Language of Repository Items...120

13 Conformance..121

13.1 Conformance Profiles..121

13.2 Feature Matrix...121

14 References...125

14.1 Normative References..125

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 9 of 129

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

14.2 Informative..127

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 10 of 129

403

404

Illustration Index

Figure 1: Simplified View of ebXML Registry Architecture..16

Figure 2: Registry Protocol Request-Response Pattern...18

Figure 3: Example Registry Package Hierarchy..31

Figure 4: Example of a Directory Listing...32

Figure 5: Submit Objects Protocol...34

Figure 6: Update Objects Protocol..37

Figure 7: Approve Objects Protocol...38

Figure 8: Deprecate Objects Protocol...40

Figure 9: Undeprecate Objects Protocol...41

Figure 10: Remove Objects Protocol...43

Figure 11: Ad Hoc Query Protocol...50

Figure 12: Filter Type Hierarchy..60

Figure 13: Content Validation Service...73

Figure 14: Content Cataloging Service..74

Figure 15: Content Management Service: Inline Invocation Model..76

Figure 16: Content Management Service: Decoupled Invocation Model..77

Figure 17: Cataloging Service Configuration...80

Figure 18: Validate Content Protocol...82

Figure 19: Catalog Content Protocol...84

Figure 20: Example of CPP cataloging using Canonical XML Cataloging Service...86

Figure 21: Inter-registry Object References..88

Figure 22: Registry Federations..89

Figure 23: Federation Metadata Example...90

Figure 24: Object Replication..93

Figure 25: Object Relocation...96

Figure 26: Relocate Objects Protocol..97

Figure 27: SAML SSO Typical Scenario..109

Figure 28: SSO Operation – Unauthenticated HTTP Requestor...112

Figure 29: SSO Operation - Unauthenticated SOAP Requestor...114

Figure 30: SSO Operation - Authenticated SOAP Requestor..115

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 11 of 129

405

1 Introduction
An ebXML Registry is an information system that securely manages any content type and the standardized
metadata that describes it.

The ebXML Registry provides a set of services that enable sharing of content and metadata between
organizational entities in a federated environment. An ebXML Registry may be deployed within an
application server, a web server or some other service container. The registry MAY be available to clients as
a public, semi-public or private web site.

This document defines the services provided by an ebXML Registry and the protocols used by clients of the
registry to interact with these services.

A separate document, ebXML Registry: Information Model [ebRIM], defines the types of metadata and
content that can be stored in an ebXML Registry.

1.1 Audience
The target audience for this specification is the community of software developers who are:

• Implementers of ebXML Registry Services
• Implementers of ebXML Registry Clients

1.2 Terminology
The key words MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT,
RECOMMENDED, MAY, and OPTIONAL in this document are to be interpreted as described in IETF RFC
2119 [RFC2119].

The term “repository item” is used to refer to content (e.g., an XML document or a DTD) that resides in a
repository for storage and safekeeping. Each repository item is described by a RegistryObject instance. The
RegistryObject catalogs the RepositoryItem with metadata.

1.3 Notational Conventions
Throughout the document the following conventions are employed to define the data structures used. The
following text formatting conventions are used to aide readability:

1.3.1 UML Diagrams
Unified Modeling Language [UML] diagrams are used as a way to concisely describe concepts. They are
not intended to convey any specific Implementation or methodology requirements.

1.3.2 Identifier Placeholders
Listings may contain values that reference ebXML Registry objects by their id attribute. These id values
uniquely identify the objects within the ebXML Registry. For convenience and better readability, these key
values are replaced by meaningful textual variables to represent such id values.
For example, the placeholder in the listing below refers to the unique id defined for an example Service
object:

<rim:Service id="${EXAMPLE_SERVICE_ID}">

1.3.3 Constants

Constant values are printed in the Courier New font always, regardless of whether they are defined by
this document or a referenced document.

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 12 of 129

406

407

408

409

410
411

412

413

414

415

416

417

418

419

420

421

422
423

424

425

426
427

428

429
430

431

432
433

434

435
436

437
438

439

440

441

442

443

444

1.3.4 Bold Text
Bold text is used in listings to highlight those aspects that are most relevant to the issue being
discussed. In the listing below, an example value for the contentLocator slot is shown in italics if that
is what the reader should focus on in the listing:

<rim:Slot name="urn:oasis:names:tc:ebxml-
regrep:rim:RegistryObject:contentLocator">
...
</rim:Slot>

1.3.5 Example Values
These values are represented in italic font. In the listing below, an example value for the
contentLocator slot is shown in italics:

<rim:Slot name="urn:oasis:names:tc:ebxml-regrep:rim:RegistryObject:contentLocator">
<rim:ValueList>

<rim:Value>http://example.com/myschema.xsd</rim:Value>
</rim:ValueList>

</rim:Slot>

1.4 XML Schema Conventions
This specification uses schema documents conforming to W3C XML Schema [Schema1] and normative text
to describe the syntax and semantics of XML-encoded objects and protocol messages. In cases of
disagreement between the ebXML Registry schema documents and schema listings in this specification, the
schema documents take precedence. Note that in some cases the normative text of this specification
imposes constraints beyond those indicated by the schema documents.

Conventional XML namespace prefixes are used throughout this specification to stand for their respective
namespaces as follows, whether or not a namespace declaration is present in the example. The use of
these namespace prefixes in instance documents is non-normative. However, for consistency and
understandability instance documents SHOULD use these namespace prefixes.

1.4.1 Schemas Defined by ebXML Registry

Prefix XML Namespace Comments

rim: urn:oasis:names:tc:ebxml-regrep:xsd:rim:3.0 This is the Registry Information Model
namespace [ebRIM]. The prefix is
generally elided in mentions of Registry
Information Model elements in text.

rs: urn:oasis:names:tc:ebxml-regrep:xsd:rs:3.0 This is the ebXML Registry namespace
that defines base types for registry
service requests and responses [ebRS].
The prefix is generally elided in mentions
of ebXML Registry protocol-related
elements in text.

query: urn:oasis:names:tc:ebxml-regrep:xsd:query:3.0 This is the ebXML Registry query
namespace that is used in the query
protocols used between clients and the
QueryManager service [ebRS].

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 13 of 129

445

446

447
448

449

450
451
452
453

454

455

456
457

458

459
460
461
462
463

464

465

466
467

468
469

470

471

472
473

474

475

476

Prefix XML Namespace Comments

lcm: urn:oasis:names:tc:ebxml-regrep:xsd:lcm:3.0 This is the ebXML Registry Life Cycle
Management namespace that is used in
the life cycle management protocols used
between clients and the
LifeCycleManager service [ebRS].

cms: urn:oasis:names:tc:ebxml-regrep:xsd:cms:3.0 This is the ebXML Registry Content
Management Services namespace that is
used in the content management
protocols used between registry and
pluggable content managent services
[ebRS].

1.4.2 Schemas Used By ebXML Registry

Prefix XML Namespace Comments

saml: urn:oasis:names:tc:SAML:2.0:assertion This is the SAML V2.0 assertion
namespace [SAMLCore]. The prefix is
generally elided in mentions of SAML
assertion-related elements in text.

samlp: urn:oasis:names:tc:SAML:2.0:protocol This is the SAML V2.0 protocol
namespace [SAMLCore]. The prefix is
generally elided in mentions of XML
protocol-related elements in text.

ecp: urn:oasis:names:tc:SAML:2.0:profiles:SSO:ecp This is the SAML V2.0 Enhanced Client
Proxy profile namespace, specified in this
document and in a schema [SAMLECP-
xsd].

ds: http://www.w3.org/2000/09/xmldsig# This is the XML Signature namespace
[XMLSig].

xenc: http://www.w3.org/2001/04/xmlenc# This is the XML Encryption namespace
[XMLEnc].

SOAP-
ENV:

http://schemas.xmlsoap.org/soap/envelope This is the SOAP V1.1 namespace
[SOAP1.1].

paos: urn:liberty:paos:2003-08 This is the Liberty Alliance PAOS (reverse
SOAP) namespace.

xsi: http://www.w3.org/2001/XMLSchema-instance This namespace is defined in the W3C
XML Schema specification [Schema1] for
schema-related markup that appears in
XML instances.

wsse: http://docs.oasis-open.org/wss/2004/01/oasis-
200401-wss-wssecurity-secext-1.0.xsd

This namespace is defined by the Web
Services Security: SOAP Message
Security 1.0 specification [WSS-SMS]. It
is used by registry to secure soap
message communication.

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 14 of 129

477

478

479

Prefix XML Namespace Comments

wsu: http://docs.oasis-open.org/wss/2004/01/oasis-
200401-wss-wssecurity-utility-1.0.xsd

This namespace is defined by the Web
Services Security: SOAP Message
Security 1.0 specification [WSS-SMS]. It
is used by registry to secure soap
message communication.

1.5 Registry Actors
This section describes the various actors who interact with the registry.

Actor Description

Registry Operator An organization that operates an ebXMl Registry and
makes it's services available.

Registry Administrator A privileged user of the registry that is responsible for
performing administrative tasks necessary for the ongoing
operation of the registry. Such a user is analogous to a
“super user” that is authorized to perform any action.

Registry Guest A user of the registry whose identity is not known to the
registry. Such a user has limited privileges within the
registry.

Registered User A user of the registry whose identity is known to the
registry as an authorized user of the registry.

Submitter A user that submits content and or metadata to the
registry. A Submitter MUST be a Registered User.

Registry Client A software program that interacts with the registry using
registry protocols.

1.6 Registry Use Cases
Once deployed, the ebXML Registry provides generic content and metadata management services and as
such supports an open-ended and broad set of use cases. The following are some common use cases that
are being addressed by ebXML Registry.

• Web Services Registry: publish, management, discovery and reuse of web service discriptions in WSDL,
ebXML CPPA and other forms.

• Controlled Vocabulary Registry: Enables publish, management, discovery and reuse of controlled
vocabularies including taxonomies, code lists, ebXML Core Components, XML Schema and UBL
schema.

• Business Process Registry: Enables publish, management, discovery and reuse of Business Process
specifications such as ebXML BPSS, BPEL and other forms.

• Electronic Medical Records Repository

• Geological Information System (GIS) Repository that stores GIS data from sensors

1.7 Registry Architecture
The following figure provides a simplified view of the architecture of the ebXML Registry.

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 15 of 129

480

481

482

483

484

485
486

487

488

489

490

491
492

493
494

495

496

497

498

499

500

1.7.1 Registry Clients
A Registry Client is a software program that interacts with the registry using registry protocols. The Registry
Client MAY be a Graphical User Interface (GUI), software service or agent. The Registry Client typically
accesses the registry using SOAP 1.1 with Attachments [SwA] protocol.

A Registry Client may run on a client machine or may be a web tier service running on a server and may
accessed by a web browser. In either case the Registry Client interacts with the registry using registry
protocols.

1.7.1.1 Client API

A Registry client MAY access a registry interface directly. Alternatively, it MAY use a registry client API such
as the Java API for XML Registries [JAXR] to access the registry. Client APIs such as [JAXR] provide
programming convenience and are typically specific to a programming language.

1.7.2 Registry Service Interfaces
The ebXML Registry consists of the following service interfaces:

• A LifecycleManager interface that provides a collection of operations for end-to-end lifecycle
management of metadata and content within the registry. This includes publishing, update, approval and
deletion of metadata and content.

• A QueryManager interface that provides a collection of operations for the discovery and retrieval of
metadata and content within the registry.

[RS-Interface-WSDL] provides an abstract (protocol neutral) definition of these Registry Service interfaces
in WSDL format.

1.7.3 Service Interface: Protocol Bindings
This specification defines the following concrete protocol binding for the abstract service interfaces of the
ebXML Registry:

• SOAP Binding that allows a Registry Client to access the registry using SOAP 1.1 with

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 16 of 129

Figure 1: Simplified View of ebXML Registry Architecture

502

503
504

505

506

507
508

509

510

511
512

513

514

515

516
517

518
519

520
521

522

523
524

525

Attachments [SwA]. [RS-Bindings-WSDL] defines the binding of the abstract Registry Service
interfaces to the SOAP protocol in WSDL format.

• HTTP Binding that allows a Web Browser client to access the registry using HTTP 1.1 protocol.

Additional bindings may be defined in the future as needed by the community.

1.7.4 Authentication and Authorization
A Registry Client SHOULD be authenticated by the registry to determine the identity associated with them.
Typically, this is the identity of the user associated with the Registry Client. Once the registry determines the
identity it MUST perform authorization and access control checks before permitting the Registry Client's
request to be processed.

1.7.5 Metadata Registry and Content Repository
An ebXML Registry is both a registry of metadata and a repository of content. A typical ebXML Registry
implementation uses some form of persistent store such as a database to store its metadata and content.
Architecturally, registry is distinct from the repository. However, all access to the registry as well as
repository is through the operations defined by the Registry Service interfaces.

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 17 of 129

526

527

528

529

530

531

532
533

534

535

536

537
538

539

2 Registry Protocols
This chapter introduces the registry protocols supported by the registry service interfaces. Specifically it
introduces the generic message exchange patterns that are common to all registry protocols.

2.1 Requests and Responses
Specific registry request and response messages derive from common types defined in XML Schema in
[RR-RS-XSD]. The Registry Client sends an element derived from RegistryRequestType to a registry, and
the registry generates an element adhering to or deriving from RegistryResponseType, as shown next.

Throughout this section, text mentions of elements and types are indicated with a namespace prefix. The
namespace prefix conventions are defined in the “Introduction” chapter.

Each registry request is atomic and either succeeds or fails in entirety. In the event of success, the registry
sends a RegistryResponse with a status of “Success” back to the client. In the event of failure, the registry
sends a RegistryResponse with a status of “Failure” back to the client. In the event of an immediate
response for an asynchronous request, the registry sends a RegistryResponse with a status of
“Unavailable” back to the client. Failure occurs when one or more Error conditions are raised in the
processing of the submitted objects. Warning messages do not result in failure of the request.

2.1.1 RegistryRequestType
The RegistryRequestType type is used as a common base type for all registry request messages.

2.1.1.1 Syntax:

 <complexType name="RegistryRequestType">
 <sequence>
 <!-- every request may be extended using Slots. -->
 <element maxOccurs="1" minOccurs="0" name="RequestSlotList"
type="rim:SlotListType"/>
 </sequence>
 <attribute name="id" type="anyURI" use="required"/>
 <!--Comment may be used by requestor to describe the request. Used in
VersionInfo.comment-->

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 18 of 129

Figure 2: Registry Protocol Request-Response Pattern

540

541

542

543

544

545
546

548

549
550

551
552

553
554

555
556

557

558

559

560
561
562
563
564
565
566
567
568

 <attribute name="comment" type="string" use="optional"/>
 </complexType>
 <element name="RegistryRequest" type="tns:RegistryRequestType"/>

2.1.1.2 Parameters:

 comment: This parameter allows the requestor to specify a string value that describes the
action being performed by the request. This parameter is used by the “Registry Managed
Version Control” feature of the registry.

 id: This parameter specifies a request identifier that is used by the corresponding
response to correlate the response with its request. It MAY also be used to correlate a
request with another related request. The value of the id parameter MUST abide by the
same constraints as the value of the id attribute for the <rim:IdentifiableType> type.

 RequestSlotList: This parameter specifies a collection of Slot instances. A
RegistryReuqestType MAY include Slots as an extensibility mechanism that provides a
means of adding additional attributes to the request in form of Slots. The use of registry
implementation specific slots MUST be ignored silently by a registry that does not support
such Slots and MAY not be interoperable across registry implementations.

2.1.1.3 Returns:

All RegistryRequests return a response derived from the common RegistryResponseType base type.

2.1.1.4 Exceptions:

The following exceptions are common to all registry protocol requests:

 AuthorizationException: Indicates that the requestor attempted to perform an operation
for which he or she was not authorized.

 InvalidRequestException: Indicates that the requestor attempted to perform an operation
that was semantically invalid.

 SignatureValidationException: Indicates that a Signature specified for the request failed
to validate.

 TimeoutException: Indicates that the processing time for the request exceeded a registry
specific limit.

 UnsupportedCapabilityException: Indicates that this registry did not support the
capability required to service the request.

In addition to above exceptions there are additional exceptions defined by [WSS-SMS] that a registry
protocol request MUST return when certain errors occur during the processing of the <wsse:Security>
SOAP Header element.

2.1.2 RegistryRequest
RegistryRequest is an element whose base type is RegistryRequestType. It adds no additional elements or
attributes beyond those described in RegistryRequestType. The RegistryRequest element MAY be used by
a registry to support implementation specific registry requests.

2.1.3 RegistryResponseType
The RegistryResponseType type is used as a common base type for all registry responses.

2.1.3.1 Syntax:

 <complexType name="RegistryResponseType">
 <sequence>
 <!-- every response may be extended using Slots. -->

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 19 of 129

569
570
571

572

573
574

575

576

577
578

579

580

581
582

583
584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601
602

603

604
605

606

607

608

609

610
611
612

 <element maxOccurs="1" minOccurs="0" name="ResponseSlotList"
type="rim:SlotListType"/>
 <element minOccurs="0" ref="tns:RegistryErrorList"/>
 </sequence>
 <attribute name="status" type="rim:referenceURI" use="required"/>
 <!-- id is the request if for the request for which this is a
response -->
 <attribute name="requestId" type="anyURI" use="optional"/>
 </complexType>
 <element name="RegistryResponse" type="tns:RegistryResponseType"/>

2.1.3.2 Parameters:

 status: The status attribute is used to indicate the status of the request. The value of the
status attribute MUST be a reference to a ClassificationNode within the canonical
ResponseStatusType ClassificationScheme as described in [ebRIM]. A Registry MUST
support the status types as defined by the canonical ResponseStatusType
ClassificationScheme. The canonical ResponseStatusType ClassificationScheme may be
extended by adding additional ClassificationNodes to it.

The following canonical values are defined for the ResponseStatusType
ClassificationScheme:

• Success - This status specifies that the request was successful.

• Failure - This status specifies that the request encountered a failure. One or more
errors MUST be included in the RegistryErrorList in this case or returned as a SOAP
Fault.

• Unavailable – This status specifies that the response is not yet available. This may be
the case if this RegistryResponseType represents an immediate response to an
asynchronous request where the actual response is not yet available.

 requestId: This parameter specifies the id of the request for which this is a response. It
matches value of the id attribute of the corresponding RegistryRequestType.

 ResponseSlotList: This parameter specifies a collection of Slot instances. A
RegistryResponseType MAY include Slots as an extensibility mechanism that provides a
means of adding dynamic attributes in form of Slots. The use of registry implementation
specific slots MUST be ignored silently by a Registry Client that does not support such
Slots and MAY not be interoperable across registry implementations.

 RegistryErrorList: This parameter specifies an optional collection of RegistryError
elements in the event that there are one or more errors that were encountered while the
registry processed the request for this response. This is described in more detail in 6.9.4.

2.1.4 RegistryResponse
RegistryResponse is an element whose base type is RegistryResponseType. It adds no additional elements
or attributes beyond those described in RegistryResponseType. RegistryResponse is used by many registry
protocols as their response.

2.1.5 RegistryErrorList
A RegistryErrorList specifies an optional collection of RegistryError elements in the event that there are one
or more errors that were encountered while the registry processed a request.

2.1.5.1 Syntax:

<element name="RegistryErrorList">
 <complexType>

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 20 of 129

613
614
615
616
617
618
619
620
621
622

623

624

625
626

627
628

629

630

631

632

633

634

635

636

637
638

639
640

641
642

643
644

645

646

647
648

649

650
651

652

653

654

655

656

657
658

 <complexContent>
 <restriction base="{http://www.w3.org/2001/XMLSchema}anyType">
 <sequence>
 <element ref="rs:RegistryError" maxOccurs="unbounded"/>
 </sequence>
 <attribute name="highestSeverity" type="rim:referenceURI" />
 </restriction>
 </complexContent>
 </complexType>
 </element>

2.1.5.2 Parameters:

 highestSeverity: This parameter specifies the ErrorType for the highest severity
RegistryError in the RegistryErrorList. Values for highestSeverity are defined by ErrorType
in .

 RegistryError: A RegistryErrorList has one or more RegistryErrors. A RegistryError specifies
an error or warning message that is encountered while the registry processes a request.
RegistryError is defined in 2.1.6.

2.1.6 RegistryError
A RegistryError specifies an error or warning message that is encountered while the registry processes a
request.

2.1.6.1 Syntax:

 <element name="RegistryError">
 <complexType>
 <simpleContent>
 <extension base="string">
 <attribute name="codeContext" type="string" use="required"/>
 <attribute name="errorCode" type="string" use="required"/>
 <attribute default="urn:oasis:names:tc:ebxml-
regrep:ErrorSeverityType:Error" name="severity" type="rim:referenceURI"
/>
 <attribute name="location" type="string" use="optional"/>
 </extension>
 </simpleContent>
 </complexType>
 </element>

2.1.6.2 Parameters:

 codeContext: This attribute specifies a string that indicates contextual text that provides
additional detail to the errorCode. For example, if the errorCode is InvalidRequestException
the codeContext MAY provide the reason why the request was invalid.

 errorCode: This attribute specifies a string that indicates the error that was encountered.
Implementations MUST set this attribute to the Exception or Error as defined by this
specification (e.g. InvalidRequestException).

 severity: This attribute indicates the severity of error that was encountered. The value of the
severity attribute MUST be a reference to a ClassificationNode within the canonical
ErrorSeverityType ClassificationScheme as described in [ebRIM]. A Registry MUST support
the error severity types as defined by the canonical ErrorSeverityType
ClassificationScheme. The canonical ErrorSeverityType ClassificationScheme may be

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 21 of 129

659
660
661
662
663
664
665
666
667
668

669

670

671
672

673
674

675

676

677

678
679

680

681
682
683
684
685
686
687
688
689
690
691
692
693
694

695

696

697
698

699
700

701

702

703
704

705
706

extended by adding additional ClassificationNodes to it.

The following canonical values are defined for the ErrorSeverityType ClassificationScheme:

• Error – An Error is a fatal error encountered by the registry while processing a request.
A registry MUST return a status of Failure in the RegistryResponse for a request that
encountered Errors during its processing.

• Warning – A Warning is a non-fatal error encountered by the registry while processing
a request. A registry MUST return a status of Success in the RegistryResponse for a
request that only encountered Warnings during its processing and encountered no
Errors.

 location: This attribute specifies a string that indicated where in the code the error occured.
Implementations SHOULD show the stack trace and/or, code module and line number
information where the error was encountered in code.

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 22 of 129

707

708

709

710
711

712

713

714
715

716
717

718

3 SOAP Binding
This chapter defines the SOAP protocol binding for the ebXML Registry service interfaces. The SOAP
binding enables access to the registry over the SOAP 1.1 with Attachments [SwA] protocol. The complete
SOAP Binding is described by the following WSDL description files:

• ebXML Registry Service Interfaces: Abstract Definition [RR-INT-WSDL]

• ebXML Registry Service Interfaces: SOAP Binding [RR-SOAPB-WSDL]

• ebXML Registry Service Interfaces: SOAP Service [RR-SOAPS-WSDL]

3.1 ebXML Registry Service Interfaces: Abstract Definition
In [RR-INT-WSDL], each registry Service Interface is mapped to an abstract WSDL portType as follows:

• A portType is defined for each Service Interface:

 <portType name="QueryManagerPortType">
 ...
 </portType>
 <portType name="LifeCycleManagerPortType">
 ...
 </portType>

• Within each portType an operation is defined for each protcol supported by the service interafce:

 <portType name="QueryManagerPortType">
 <operation name="submitAdhocQuery">
 ...
 </operation>
 </portType>

• Within each operation the the request and response message for the corresponding protocol are defined
as input and output for the operation:

 <portType name="QueryManagerPortType">
 <operation name="submitAdhocQuery">
 <input message="tns:msgAdhocQueryRequest"/>
 <output message="tns:msgAdhocQueryResponse"/>
 </operation>
 </portType>

• For each message used in an operation a message element is defined that references the element
corresponding to the registry protocol request or response message from the XML Schema for the
registry service interface [RR-LCM-XSD], [RR-QM-XSD]:

 <message name="msgAdhocQueryRequest">
 <part element="query:AdhocQueryRequest"
 name="partAdhocQueryRequest"/>
 </message>
 <message name="msgAdhocQueryRespone">
 <part element="query:AdhocQueryResponse"
 name="partAdhocQueryResponse"/>
 </message>

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 23 of 129

719

720

721
722

723

724

725

726

727

728

729

730
731
732
733
734
735

736

737

738
739
740
741
742
743

744

745
746
747
748
749
750
751
752

753

754

755
756

757

758
759
760
761
762
763
764
765

3.2 ebXML Registry Service Interfaces SOAP Binding
In [RR-SOAPB-WSDL], a SOAP Binding is defined for the registry service interfaces as follows:

• For each portType corresponding to a registry service interface and defined in [RR-INT-WSDL] a
<binding> element is defined which has name <ServiceInterfaceName>Binding

• The <binding> element references the portType defined in [RR-INT-WSDL] via its type attribute

• The <soap:binding> extension element uses the “document” style

• An operation element is defined for each protocol defined for the service interface. The operation name
relates to the protocol request message.

• The <soap:operation> extension element has <input> and <output> elements that have <soap:body>
elements with use="literal".

 <binding name="QueryManagerBinding"
type="interfaces:QueryManagerPortType">
 <soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="submitAdhocQuery">
 <soap:operation soapAction="urn:oasis:names:tc:ebxml-
regrep:wsdl:registry:bindings:3.0:QueryManagerPortType#submitAdhocQuery"/
>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 </binding>

3.3 ebXML Registry Service Interfaces SOAP Service Template
In [RR-SOAPS-WSDL], a non-normative template is provided for a WSDL Service that uses the SOAP
Binding from the registry service interfaces as follows:

• A single service element defines the concrete ebXML Registry SOAP Service. The template uses the
name “ebXMLRegistrySOAPService”.

• The service element includes a port definitions, where each port corresponds with one of the service
interfaces defined for the registry. Each port includes an HTTP URL for accessing that port specified by
the location attribute of the <soap:address> element. The HTTP URL to the SOAP Service MUST
conform to the pattern <base URL>/soap where <base URL> MUST be the same as the value of the
home attribute of the instance of the Registry class defined by [ebRIM] that represents this registry.

• Each port definition also references a SOAP binding element described in the previous section.

 <service name="ebXMLRegistrySOAPService">
 <port binding="bindings:QueryManagerBinding" name="QueryManagerPort">
 <soap:address location="http://your.server.com/soap"/>
 </port>
 <port binding="bindings:LifeCycleManagerBinding"
name="LifeCycleManagerPort">
 <soap:address location="http://your.server.com/soap"/>
 </port>
 </service>

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 24 of 129

766

767

768
769

770

771

772
773

774
775

776

777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792

793

794

795
796

797
798

799
800

801
802

803

804

805
806
807
808
809
810
811
812
813
814

815

3.4 Mapping of Exception to SOAP Fault
The registry protocols defined in this specification include the specification of Exceptions that a registry
MUST return when certain exceptional conditions are encountered during the processing of the protocol
request message. A registry MUST return Exceptions specified in registry protocol messages as SOAP
Faults as described in this section. In addition a registry MUST conform to [WSI-BP] when generating the
SOAP Fault. A registry MUST NOT sign a SOAP Fault message it returns.

The following table provides details on how a registry MUST map exceptions to SOAP Faults.

SOAP Fault
Element

Description Example

faultcode The faultCode MUST be present and MUST
be the name of the Exception qualified by the
URN prefix:
urn:oasis:names:tc:ebxml-
regrep:rs:exception:

urn:oasis:names:tc:ebxml-
regrep:rs:exception:ObjectNot
FoundException

faultstring The faultstring MUST be present and
SHOULD provide some information
explaining the nature of the exception.

Object with id
urn:freebxml:registry:demoDB:Extrinsic
Object:zeusDescription not found in
registry.

detail At least one detail element MUST be present.
The detail element SHOULD include the
stack trace and/or, code module and line
number information where the Exception was
encountered in code. If the Exception has
nested Exceptions within it then the registry
SHOULD include the nested exceptions as
nested detail elements within the top level
detail element.

faultactor At least one faultactor MUST be present. The
first faultactor MUST be the base URL of the
registry.

http://example.server.com:8080/oma
r/registry

Table 1: Mapping a Registry Exception to SOAP Fault

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 25 of 129

816

817

818
819

820
821

822

823

4 HTTP Binding
This chapter defines the HTTP protocol binding for the ebXML Registry abstract service interfaces. The
HTTP binding enables access to the registry over the HTTP 1.1 protocol.

The HTTP interface provides multiple options for accessing RegistryObjects and RepositoryItems via the
HTTP protocol. These options are:

• RPC Encoding URL: Allows client access to objects via a URL that is based on encoding a Remote
Procedure Call (RPC) to a registry interface as an HTTP protocol request.

• Submitter Defined URL: Allows client access to objects via Submitter defined URLs.

• File Path Based URL: Allows clients access to objects via a URL based upon a file path derived
from membership of object in a RegistryPackage membership hierarchy.

Each of the above methods has its advantages and disadvantages and each method may be better suited
for different use cases as illustrated by table below:

HTTP Acceess Method Advantages Disadvantages
RPC Encoding URL • The URL is constant and

deterministic
• Submitter need not

explicitly assign URL

• The URL is long and not
human-friendly to
remember

Submitter Defined URL • Very human-friendly URL
• Submitter may assign any

URL
• The URL is constant and

deterministic

• Submitter must explicitly
assign URL

• Requires additional
resources in the registry

File Path Based URL • Submitter need not
explicitly assign URL

• Intuitive URL that is based
upon a familiar file / folder
metaphor

• The URL is NOT constant
and deterministic

• Requires placing objects
as members in
RegistryPackages

Table 2: Comparison of HTTP Access Methods

4.1 HTTP Interface URL Pattern
The HTTP URLs used by the HTTP Binding MUST conform to the pattern <base URL>/http/<url suffix>
where <base URL> MUST be the same as the value of the home attribute of the instance of the Registry
class defined by [ebRIM] that represents this registry. The <url suffix> depends upon the HTTP Access
Method and various request specific parameters that will be described later in this chapter.

4.2 RPC Encoding URL
The RPC Encoding URL method of the HTTP interface maps the operations defined by the abstract registry
interfaces to the HTTP protocol using an RPC style. It defines how URL parameters are used to specify the
interface, method and invocation parameters needed to invoke an operation on a registry interface such as
the QueryManager interface.

The RPC Encoding URL method also defines how an HTTP response is used to carry the response
generated by the operation specified in the request.

4.2.1 Standard URL Parameters
The following table specifies the URL parameters supported by RPC Encoding URLs. A Registry MAY
implement additional URL parameters in addition to these parameters. Note that the URL Parameter names

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 26 of 129

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840
841

842

843

844

845
846

847

848

849

850

851

852

MUST be processed by the registry in a case-insensitive manner while the parameter values MUST be
processed in a case-sensitive manner.

URL Parameter Required Description Example

interface YES Defines the service interface
that is the target of the request.

QueryManager

method YES Defines the method
(operation)within the interface
that is the target of the request.

 getRegistryObject

param-<key> NO Defines named parameters to be
passed into a method call. Note
that some methods require
specific parameters.

param-id=
urn:freebxml:registry:demoDB
:ExtrinsicObject:zeusDescripti
on

Table 3: Standard URL Parameters

4.2.2 QueryManager Binding
A registry MUST support a RPC Encoded URL HTTP binding to QueryManager service interface. To specify
the QueryManager interface as its target, the interface parameter of the URL MUST be “QueryManager.” In
addition the following URL parameters are defined by the QueryManager HTTP Interface.

Method Parameter Return Value HTTP Request Type

getRegistryObject id The RegistryObject that
matches the specified id.

GET

getRepositoryItem id The RepositoryItem that
matches the specified id.
Note that a
RepositoryItem may be
arbitrary content (e.g. a
GIF image).

GET

Table 4: RPC Encoded URL: Query Manager Methods

Note that in the examples that follow, name space declarations are omitted to conserve space. Also note
that some lines may be wrapped due to lack of space.

4.2.2.1 Sample getRegistryObject Request

The following example shows a getRegistryObject request.

GET /http?interface=QueryManager&method=getRegistryObject¶m-id=
urn:freebxml:registry:demoDB:ExtrinsicObject:zeusDescription HTTP/1.1

4.2.2.2 Sample getRegistryObject Response

The following example shows an ExtrinsicObject, which is a concrete sub-class of RegistryObject being
returned as a response to the getRegistryObject method invocation.

HTTP/1.1 200 OK
Content-Type: text/xml
Content-Length: 555

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 27 of 129

853

854

855

856

857
858

859

860

861
862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

<?xml version="1.0"?>
<ExtrinsicObject

id =
"urn:freebxml:registry:demoDB:ExtrinsicObject:zeusDescription"

objectType="${OBJECT_TYPE}">
...
</ExtrinsicObject>

4.2.2.3 Sample getRepositoryItem Request

The following example shows a getRepositoryItem request.

GET /http?interface=QueryManager&method=getRepositoryItem¶m-id=
urn:freebxml:registry:demoDB:ExtrinsicObject:zeusDescription HTTP/1.1

4.2.2.4 Sample getRepositoryItem Response

The following example assumes that the repository item was a Collaboration Protocol Profile as defined by
[ebCPP]. It could return any type of content (e.g. a GIF image).

HTTP/1.1 200 OK
Content-Type: text/xml
Content-Length: 555

<?xml version="1.0"?>
<CollaborationProtocolProfile>
...
</CollaborationProtocolProfile>

4.2.3 LifeCycleManager HTTP Interface
The RPC Encoded URL mechanism of the HTTP Binding does not support the LifeCycleManager interface.
The reason is that the LifeCycleManager operations require HTTP POST which is already supported by the
SOAP binding.

4.3 Submitter Defined URL

A Submitter MAY specify zero or more Submitter defined URLs for a RegistryObject or RepositoryItem.
These URLs MAY then be used by clients to access the object using the GET request of the HTTP protocol.
Submitter defined URLs serve as an alternative to the RPC Encoding URL defined by the HTTP binding for
the QueryManager interface. The benefit of Submitter defined URLs is that objects are made accessible via
a URL that is meaningful and memorable to the user. The cost of Submitter defined URLs is that the
Submitter needs to specify the Submitter defined URL and that the Submitter defined URL takes additional
storage resources within the registry.

Consider the examples below to see how Submitter defined URLs compare with the URL defined by the
HTTP binding for the QueryManager interface.

Following is a sample URL defined by the HTTP binding for the QueryManager interface to access a
RegistryObject that is an ExtrinsicObject describing a GIF image:

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 28 of 129

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906
907

908

909
910

911
912

913
914

915

916

917

918

919
920

http://localhost:8080/ebxmlrr/registry/http/?interface=QueryManager&metho
d=getRegistryObject¶m-
id=urn:freebxml:registry:demoDB:ExtrinsicObject:zeusDescription

The same RegistryObject (an ExtrinsicObject) may be accessed via the following Submitter defined URL:

http://localhost:8080/ebxmlrr/registry/http/pictures/nikola/zeus.xml

Following is a sample URL defined by the HTTP binding for the QueryManager interface to access a
repository item that is a GIF image:

http://localhost:8080/ebxmlrr/registry/http/?interface=QueryManager&metho
d=getRepositoryItem¶m-
id=urn:freebxml:registry:demoDB:ExtrinsicObject:zeusDescription

The same repository item may be accessed via the following Submitter defined URL:

http://localhost:8080/ebxmlrr/registry/http/pictures/nikola/zeus.jpg

4.3.1 Submitter defined URL Syntax

A Submitter MUST specify a Submitter defined URL as a URL suffix that is relative to the base URL of the
registry. The URL suffix for a Submitter defined URL MUST be unique across all Submitter defined URLs
defined for all objects within a registry.

The use of relative URLs is illustrated as follows:

• Base URL for Registry: http://localhost:8080/ebxml/registry

• Implied Prefix URL for HTTP interface: http://localhost:8080/ebxml/registry/http

• Submitter Defined URL suffix: /pictures/nikola/zeus

• Complete URL: http://localhost:8080/ebxmlrr/registry/http/pictures/nikola/zeus

4.3.2 Assigning URL to a RegistryObject
A Submitter MAY assign one or more Submitter defined URLs to a RegistryObject.

The Submitter defined URL(s) MAY be assigned by the Submitter using a canonical slot on the
RegistryObject. The Slot is identified by the name:

urn:oasis:names:tc:ebxml-regrep:rim:RegistryObject:locator

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 29 of 129

921
922
923
924
925

926

927
928

929
930
931

932

933

934
935
936
937
938
939
940

941

942
943

944
945
946

947

948

949
950

951

952

953

954

955

956

957

958

959

960

961

962
963
964

http://localhost:8080/ebxmlrr/registry/http/pictures/nikola/zeus
http://localhost:8080/ebxmlrr/registry/http/pictures/nikola/zeus
http://localhost:8080/ebxmlrr/registry/http/pictures/nikola/zeus
http://localhost:8080/ebxml/registry/http
http://localhost:8080/ebxml/registry/http
http://localhost:8080/ebxml/registry/http
http://localhost:8080/ebxml/registry
http://localhost:8080/ebxml/registry
http://localhost:8080/ebxml/registry

Each value in the collection of values for this Slot specifies a Submitter defined URL suffix for that
RegistryObject. The registry MUST return the RegistryObject when the HTTP client sends an HTTP GET
request whose URL matches any of the URLs specified within the locator Slot (if any) for that
RegistryObject.

4.3.3 Assigning URL to a Repository Item
A Submitter MAY assign one or more Submitter defined URLs to a Repository Item.

The Submitter defined URL(s) may be assigned by the Submitter using a canonical slot on the
ExtrinsicObject for the repository item. The Slot is identified by the name:

urn:oasis:names:tc:ebxml-regrep:rim:RegistryObject:contentLocator

Each value in the collection of values for this Slot specifies a Submitter defined URL suffix for the
RepositoryItem associated with the ExtrinsicObject. The registry MUST return the RepositoryItem when the
HTTP client sends an HTTP GET request whose URL matches any of the URLs specified within the
contentLocator slot (if any) for the ExtrinsicObject for that RepositoryItem.

4.4 File Path Based URL
The File Path Based URL mechanism enables HTTP clients to access RegistryObjects and RepositoryItems
using a URL that is derived from the RegistryPackage membership hierarchy for the RegistryObject or
RepositoryItem.

4.4.1 File Folder Metaphor
The RegistryPackage class as defined by [ebRIM] enables objects to be structurally organized by a
RegistryPackage membership hierarchy. As such, a RegistryPackage serves a role similar to that of a
Folder within the File and Folder metaphor that is common within filesystems in most operating systems.
Similarly, the members of a RegistryPackage serve a role similar to the files within a folder in the File and
Folder metaphor.

In this file-folder metaphor, a Submitter creates a RegistryPackage to create the functional equivalent of a
folder and creates a RegistryObject to create the functional equivalent of a file. The Submitter adds a
RegistryObjects as a member of a RegistryPackage to create the functional equivalent of adding a file to a
folder.

4.4.2 File Path of a RegistryObject
Each RegistryObject has an implicit file path. The file path of a RegistryObject is a path structure similar to
the Unix file path structure. The file path is composed of file path segments. Analogous to the Unix file path,
the last segment within the file path represents the RegistryObject, while preceding segments represent the
RegistryPackage(s) within the membership hierarchy of the RegistryObject. Each segment consists of the
name of the RegistryPackage or the RegistryObject. Because the name attribute is of type
InternationalString the path segment matches the name of an object within a specific locale.

4.4.2.1 File Path Example

Consider the example where a registry has a RegistryPackage hierarchy as illustrated below using the
name of the objects in locale “en_US”:

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 30 of 129

965

966
967

968

969

970

971
972

973

974
975
976

977

978
979

980

981

982

983
984

985

986
987

988
989

990

991

992
993

994

995

996

997
998

999
1000

1001

1002

1003
1004

1005

Figure 3: Example Registry Package Hierarchy

Now let us assume that the RegistryPackage named “2004” has an ExtrinsicObject named “baby.gif” for a
repository item that is a photograph in the GIF format. In this example the file paths for various objects in
locale “en_US” are shown in table below:

Object Name File Path
userData /userData
Sally /userData/Sally
pictures /userData/Sally/pictures
2004 /userData/Sally/pictures/2004
baby.gif /userData/Sally/pictures/2004/baby.gif

Table 5: File Path Examples

Note that above example assumes that the RegistryPackage named userData is a root level package (not
contained within another RegistryPackage).

4.4.3 Matching URL To Objects
A registry client MAY access RegistryObjects and RepositoryItems over the HTTP GET request using URL
patterns that are based upon the File Path for the target objects. This section describes how a registry
resolves File Path URLs specified by an HTTP client.

The registry MUST process each path segment from the beginning of the path to the end and for each path
segment match the segment to the value attribute of a LocalizedString in the name attribute of a
RegistryObject. For all but the last path segment, the matched RegistryObject MUST be a RegistryPackage.
The last path segment MAY match any RegistryObject including a RegistryPackage. If any path segment
fails to be matched then the URL is not resolvable by the File Path based URL method. When matching any
segment other than the first segment the registry MUST also ensure that the matched RegistryObject is a
member of the RegistryPackage that matches the previous segment.

4.4.4 URL Matches a Single Object
When a File Path based URL matches a single object the there are two possible responses.

• If the URL pattern does not end in a '/' character or the last segment does not match a
RegistryPackage then the Registry MUST send as response an XML document that is the
XML representation of the RegistryObject that matches the last segment. If the last
segment matches an ExtrinsicObject then if the URL specifies the HTTP GET parameter
with name 'getRepositoryItem' and value of 'true' then the registry MUST return as
response the repository item associated with the ExtrinsicObject.

• If the URL pattern ends in a '/' character and the last segment matches a RegistryPackage
then the Registry MUST send as response an HTML document that is the directory listing
(section 4.4.6) of all RegistryObjects that are members of the RegistryPackage that
matches the last segment.

4.4.5 URL Matches Multiple Object
A registry MUST show a partial Directory Listing of a Registry Package when a File Path

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 31 of 129

1006

1007
1008

1009

1010

1011
1012

1013

1014
1015

1016

1017

1018
1019

1020
1021

1022
1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

based URL matches multiple objects.

A File Path based URL may match multiple objects if:

• Multiple objects with the same name exist in the same RegistryPackage

• The segment contains wildcard characters such as '%' or '?' to match the names of multiple objects
within the same RegistryPackage. Note that wildcard characters must be URL encoded as defined
by the HTTP protocol. For example the '%' character is encoded as '%25'.

4.4.6 Directory Listing
A registry MUST return a directory listing as a response under certain circumstances as describes earlier.
The directory listing MUST show a list of objects within a specific RegistryPackage.

A registry SHOULD structure a directory listing such that each item in the listing provides information about
a RegistryObject within the RegistryPackage. A registry MAY format its directory listing page in a registry
specific manner. However, it is suggested that a registry SHOULD format it as an HTML page that minimally
includes the objectType, name and description attributes for each RegistryObject in the directory listing.

Figure 4 shows a non-normative example of a directory listing that matches all root level objects that have a
name that begins with ‘Sun’ (path /Sun%25).

Figure 4: Example of a Directory Listing

4.4.7 Access Control In RegistryPackage Hierarchy
The ability to control who can add files and sub-folders to a folder is important in a file system. The same is
true for the File Path Based URL mechanism.

A Submitter MAY assign a custom Access Control Policy to a Registry Package to create the functional
equivalent of assigning access control to a folder in the file-folder metaphor. The custom Access Control
Policy SHOULD use the “reference” action to control who can add RegistryObjects as members of the folder
as described in [ebRIM].

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 32 of 129

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049
1050

1051
1052

1053
1054

1055
1056

1057

1058

1059

1060
1061

1062
1063

1064
1065

4.5 URL Resolution Algorithm
Since the HTTP Binding supports multiple mechanisms to resolve an HTTP URL a registry SHOULD
implement an algorithm to determine the correct HTTP Binding mechanism to resolve a URL.

This section gives a non-normative URL resolution algorithm that a registry SHOULD use to determine
which of the various HTTP Binding mechanisms to use to resolve an HTTP URL.

Upon receiving an HTTP GET request a registry SHOULD first check if the URL is an RPC Encoded URL.
This MAY be done by checking if the interface URL parameter is specified in the URL. If specified the
registry SHOULD resolve the URL using the RPC Encoded URL method as defined by section 4.2. If the
interface URL parameter is not specified then the registry SHOULD use the Submitter specified URL
method to check if the URL is resolvable. If the URL is still unresolvable then the registry SHOULD check if
the URL is resolvable using the File Path based URL method. If the URL is still unresolvable then the
registry should return an HTTP 404 (NotFound) error as defined by the HTTP protocol.

4.6 Security Consideration

A registry MUST enforce all Access Control Policies including restriction on the READ action when
processing a request to the HTTP binding of a service interface. This implies that a Registry MUST not
resolve a URL to a RegistryObject or RepositoryItem if the client is not authorized to read that object.

4.7 Exception Handling
If a service interface method generates an Exception it MUST be reported in a RegistryErrorList, and
sent back to the client within the HTTP response for the HTTP request.

When errors occur, the HTTP status code and message SHOULD correspond to the error(s) being reported
in the RegistryErrorList. For example, if the RegistryErrorList reports that an object wasn't
found, therefore cannot be returned, an appropriate error code SHOULD be 404, with a message of
"ObjectNotFoundException". A detailed list of HTTP status codes can be found in [RFC2616]. The mapping
between registry exceptions and HTTP status codes is currently unspecified.

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 33 of 129

1066

1067

1068

1069

1070

1071

1072
1073

1074
1075

1076
1077

1078

1079
1080

1081

1082

1083

1084

1085
1086

1087

1088
1089

5 Lifecycle Management Protocols
This section defines the protocols supported by Lifecycle Management service interface of the Registry. The
Lifecycle Management protocols provide the functionality required by RegistryClients to manage the
lifecycle of RegistryObjects and RepositoryItems within the registry.

The XML schema for the Lifecycle Management protocols is described in [RR-LCM-XSD].

5.1 Submit Objects Protocol
This SubmitObjects allows a RegistryClient to submit one or more RegistryObjects and/or repository items.

Figure 5: Submit Objects Protocol

5.1.1 SubmitObjectsRequest
The SubmitObjectsRequest is used by a client to submit RegistryObjects and/or repository items to the
registry.

5.1.1.1 Syntax:

 <element name="SubmitObjectsRequest">
 <complexType>
 <complexContent>
 <extension base="rs:RegistryRequestType">
 <sequence>
 <element ref="rim:RegistryObjectList"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
 </element>

5.1.1.2 Parameters:

 RegistryObjectList: This parameter specifies a collection of RegistryObject instances that

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 34 of 129

1090

1091

1092
1093

1094

1095

1096

1098

1099

1100

1101

1102

1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113

1114

1115

are being submitted to the registry. The RegistryObjects in the list may be brand new
objects being submitted to the registry or they may be current objects already existing in
the registry. In case of existing objects the registry MUST treat them in the same manner as
UpdateObjectsRequest and simply update the existing objects.

5.1.1.3 Returns:

This request returns a RegistryResponse. See section 2.1.4for details.

5.1.1.4 Exceptions:

In addition to the exceptions common to all requests defined in 2.1.1.4, the following exceptions MAY be
returned:

 UnresolvedReferenceException: Indicates that the requestor referenced an object within
the request that was not resolved during the processing of the request.

 UnsignedRepositoryItemException: Indicates that the requestor attempted to submit a
RepositoryItem that was not signed.

 QuotaExceededException: Indicates that the requestor attempted to submit more content
than the quota allowed for them by the registry.

5.1.2 Unique ID Generation
A Submitter MUST supply the id attribute for submitted objects. If the id is not specified then the registry
MUST return an InvalidRequestException.

If the id and lid match the id and lid of an existing RegistryObject within the home registry, then the registry
MUST treat it as an Update action upon the existing RegistryObject.

If the id matches the id of an existing RegistryObject within the home registry but the lid does not match that
existing object's lid, then the registry MUST return an InvalidRequestException.

If the lid matches the lid of an existing RegistryObject within the home registry but the id does not match that
existing object's id, then the registry MUST create the newly submitted object as a new version of the
existing object.

If the Submitter supplies the id and it is a valid URN then the registry MUST honor the Submitter-supplied id
value and use it as the value of the id attribute of the object in the registry. If the id is not a valid URN then
the registry MUST treat it as a temporary id and replace it, and all references to it within the request, with a
registry generated universally unique id. A registry generated universally unique id value MUST conform to
the format of a URN that specifies a DCE 128 bit UUID as specified in [UUID]:

(e.g. urn:uuid:a2345678-1234-1234-123456789012)

5.1.3 ID Attribute And Object References
The id attribute of an object MAY be used by other objects to reference that object. Within a
SubmitObjectsRequest, the id attribute MAY be used to refer to an object within the same
SubmitObjectsRequest as well as to refer to an object within the registry. An object in the
SubmitObjectsRequest that needs to be referred to within the request document MAY be assigned an id by
the submitter so that it can be referenced within the request. The submitter MAY give the object a valid
URN, in which case the id is permanently assigned to the object within the registry. Alternatively, the
submitter MAY assign an arbitrary id that is not a valid URN as long as the id is a unique anyURI value
within the request document. In this case the id serves as a linkage mechanism within the request document
but MUST be replaced with a registry generated id upon submission.

When an object in a SubmitObjectsRequest needs to reference an object that is already in the registry, the
request MAY contain an ObjectRef whose id attribute is the id of the object in the registry. This id is by
definition a valid URN. An ObjectRef MAY be viewed as a proxy within the request for an object that is in the
registry.

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 35 of 129

1116

1117
1118

1119

1120

1121

1122

1123
1124

1125
1126

1127
1128

1129
1130

1131

1132
1133

1134
1135

1136
1137

1138
1139

1140

1141

1142
1143

1144
1145

1146

1147

1148

1149
1150

1151
1152

1153
1154

1155
1156

1157

1158

1159
1160

1161

5.1.4 Audit Trail
The registry MUST create a single AuditableEvent object with eventType Created for all the RegistryObjects
created by a SubmitObjectsRequest.

5.1.5 Sample SubmitObjectsRequest
The following example shows a simple SubmitObjectsRequest that submits a single Organization object to
the registry. It does not show the complete SOAP Message with the message header and additional
payloads in the message for the repository items.

<lcm:SubmitObjectsRequest>
 <rim:RegistryObjectList>
 <rim:Organization lid="${LOGICAL_ID}"

id="${ID}"
primaryContact="${CONTACT_USER_ID}">

 <rim:Name>
 <rim:LocalizedString value="Sun Microsystems Inc." xml:lang="en-
US"/>
 </rim:Name>
 <rim:Address city="Burlington" country="USA" postalCode="01867"
stateOrProvince="MA" street="Network Dr." streetNumber="1"/>
 <rim:TelephoneNumber areaCode="781" countryCode="1" number="123-
456" phoneType="office"/>
 </rim:Organization>
 </rim:RegistryObjectList>
</SubmitObjectsRequest>

5.2 The Update Objects Protocol
The UpdateObjectsRequest protocol allows a Registry Client to update one or more existing
RegistryObjects and/or repository items in the registry.

Figure 6: Update Objects Protocol

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 36 of 129

1162

1163

1164

1165

1166

1167
1168

1169

1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185

1186

1187

1188

1190

5.2.1 UpdateObjectsRequest
The UpdateObjectsRequest is used by a client to update RegistryObjects and/or repository items that
already exist within the registry.

5.2.1.1 Syntax:

 <element name="UpdateObjectsRequest">
 <complexType>
 <complexContent>
 <extension base="rs:RegistryRequestType">
 <sequence>
 <element ref="rim:RegistryObjectList"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
 </element>

5.2.1.2 Parameters:

 RegistryObjectList: This parameter specifies a collection of RegistryObject instances that
are being updated within the registry. All immediate RegistryObject children of the
RegistryObjectList MUST be current RegistryObjects already in the registry.
RegistryObjects MUST include all required attributes, even those the user does not intend
to change. A missing attribute MUST be interpreted as a request to set that attribute to
NULL or in case it has a default value, the default value will be assumed. If this collection
contains an immediate child RegistryObject that does not already exists in the registry, then
the registry MUST return an InvalidRequestException. If the user wishes to submit a mix of
new and updated objects then he or she SHOULD use a SubmitObjectsRequest.
If an ExtrinsicObject is being updated and no RepositoryItem is provided in the
UpdateObjectsRequest then the registry MUST maintain any previously existing
RepositoryItem associated with the original ExtrinsicObject with the updated
ExtrinsicObject. If the client wishes to remove the RepositoryItem from an existing
ExtrinsicObject they MUST use a RemoveObjectsRequest with
deletionScope=DeleteRepositoryItemOnly.

5.2.1.3 Returns:

This request returns a RegistryResponse. See section 2.1.4 for details.

5.2.1.4 Exceptions:

In addition to the exceptions common to all requests defined in 2.1.1.4, the following exceptions MAY be
returned:

 UnresolvedReferenceException: Indicates that the requestor referenced an object within
the request that was not resolved during the processing of the request.

 UnsignedRepositoryItemException: Indicates that the requestor attempted to submit a
RepositoryItem that was not signed.

 QuotaExceededException: Indicates that the requestor attempted to submit more content
than the quota allowed for them by the registry.

5.2.2 Audit Trail
The registry MUST create a single AuditableEvent object with eventType Updated for all RegistryObjects
updated via an UpdateObjectsRequest.

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 37 of 129

1191

1192

1193

1194

1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205

1206

1207
1208

1209
1210

1211
1212

1213
1214

1215
1216

1217
1218

1219
1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

5.3 The Approve Objects Protocol
The Approve Objects protocol allows a client to approve one or more previously submitted RegistryObject
objects using the LifeCycleManager service interface.

Figure 7: Approve Objects Protocol

5.3.1 ApproveObjectsRequest
The ApproveObjectsRequest is used by a client to approve one or more existing RegistryObject instances in
the registry.

5.3.1.1 Syntax:

 <element name="ApproveObjectsRequest">
 <complexType>
 <complexContent>
 <extension base="rs:RegistryRequestType">
 <sequence>
 <element ref="rim:AdhocQuery" minOccurs="0" maxOccurs="1" />
 <element ref="rim:ObjectRefList" minOccurs="0" maxOccurs="1"
/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
 </element>

5.3.1.2 Parameters:

 AdhocQuery: This parameter specifies a query. A registry MUST approve all objects that
match the specified query in addition to any other objects identified by other parameters.

 ObjectRefList: This parameter specifies a collection of references to existing
RegistryObject instances in the registry. A registry MUST approve all objects that are
referenced by this parameter in addition to any other objects identified by other parameters.

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 38 of 129

1237

1238

1239

1241

1242

1243

1244

1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257

1258

1259
1260

1261
1262

1263

5.3.1.3 Returns:

This request returns a RegistryResponse. See section 2.1.4 for details.

5.3.1.4 Exceptions:

In addition to the exceptions common to all requests defined in 2.1.1.4, the following exceptions MAY be
returned:

 ObjectNotFoundException: Indicates that the requestor requested an object within the
request that was not found.

5.3.2 Audit Trail
The registry MUST create a single AuditableEvent object with eventType Approved for all RegistryObject
instance approved via an ApproveObjectsRequest.

5.4 The Deprecate Objects Protocol
The Deprecate Object protocol allows a client to deprecate one or more previously submitted RegistryObject
instances using the LifeCycleManager service interface. Once a RegistryObject is deprecated, no new
references (e.g. new Associations, Classifications and ExternalLinks) to that object can be submitted.
However, existing references to a deprecated object continue to function normally.

Figure 8: Deprecate Objects Protocol

5.4.1 DeprecateObjectsRequest
The DeprecateObjectsRequest is used by a client to deprecate one or more existing RegistryObject
instances in the registry.

5.4.1.1 Syntax:

 <element name="DeprecateObjectsRequest">
 <complexType>
 <complexContent>
 <extension base="rs:RegistryRequestType">
 <sequence>

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 39 of 129

1264

1265

1266

1267
1268

1269
1270

1271

1272

1273

1274

1275

1276

1277
1278

1279

1281

1282

1283

1284

1285
1286
1287
1288
1289

 <element ref="rim:AdhocQuery" minOccurs="0" maxOccurs="1" />
 <element ref="rim:ObjectRefList" minOccurs="0" maxOccurs="1"
/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
 </element>

5.4.1.2 Parameters:

 AdhocQuery: This parameter specifies a query. A registry MUST deprecate all objects that
match the specified query in addition to any other objects identified by other parameters.

 ObjectRefList: This parameter specifies a collection of references to existing
RegistryObject instances in the registry. A registry MUST deprecate all objects that are
referenced by this parameter in addition to any other objects identified by other parameters.

5.4.1.3 Returns:

This request returns a RegistryResponse. See section 2.1.4 for details.

5.4.1.4 Exceptions:

In addition to the exceptions common to all requests defined in 2.1.1.4, the following exceptions MAY be
returned:

 UnresolvedReferenceException: Indicates that the requestor referenced an object within
the request that was not resolved during the processing of the request.

5.4.2 Audit Trail
The registry MUST create a single AuditableEvent object with eventType Deprecated for all RegistryObject
deprecated via a DeprecateObjectsRequest.

5.5 The Undeprecate Objects Protocol
The Undeprecate Objects protocol of the LifeCycleManager service interface allows a client to undo the
deprecation of one or more previously deprecated RegistryObject instances. When a RegistryObject is
undeprecated, it goes back to the Submitted status and new references (e.g. new Associations,
Classifications and ExternalLinks) to that object can now again be submitted.

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 40 of 129

1290
1291
1292
1293
1294
1295
1296
1297

1298

1299

1300

1301

1302
1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316
1317

1318

1319

Figure 9: Undeprecate Objects Protocol

5.5.1 UndeprecateObjectsRequest
The UndeprecateObjectsRequest is used by a client to undeprecate one or more existing RegistryObject
instances in the registry. The registry MUST silently ignore any attempts to undeprecate a RegistryObject
that is not deprecated.

5.5.1.1 Syntax:

 <element name="UndeprecateObjectsRequest">
 <complexType>
 <complexContent>
 <extension base="rs:RegistryRequestType">
 <sequence>
 <element ref="rim:AdhocQuery" minOccurs="0" maxOccurs="1" />
 <element ref="rim:ObjectRefList" minOccurs="0" maxOccurs="1"
/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
 </element>
 </element>

5.5.1.2 Parameters:

 AdhocQuery: This parameter specifies a query. A registry MUST undeprecate all objects
that match the specified query in addition to any other objects identified by other
parameters.

 ObjectRefList: This parameter specifies a collection of references to existing
RegistryObject instances in the registry. A registry MUST undeprecate all objects that are
referenced by this parameter in addition to any other objects identified by other parameters.

5.5.1.3 Returns:

This request returns a RegistryResponse. See section 2.1.4 for details.

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 41 of 129

1320

1321
1322

1323

1324

1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338

1339

1340
1341

1342

1343

1344
1345

1346

1347

5.5.1.4 Exceptions:

In addition to the exceptions common to all requests defined in 2.1.1.4, the following exceptions MAY be
returned:

 UnresolvedReferenceException: Indicates that the requestor referenced an object within
the request that was not resolved during the processing of the request.

5.5.2 Audit Trail
The Registry Service MUST create a single AuditableEvent object with eventType Undeprecated for all
RegistryObjects undeprecated via an UndeprecateObjectsRequest.

5.6 The Remove Objects Protocol
The Remove Objects protocol allows a client to remove one or more RegistryObject instances and/or
repository items using the LifeCycleManager service interface.

Figure 10: Remove Objects Protocol

For details on the schema for the business documents shown in this process refer to .

5.6.1 RemoveObjectsRequest
The RemoveObjectsRequest is used by a client to remove one or more existing RegistryObject and/or
repository items from the registry.

5.6.1.1 Syntax:

 <element name="RemoveObjectsRequest">
 <complexType>
 <complexContent>
 <extension base="rs:RegistryRequestType">
 <sequence>
 <element ref="rim:AdhocQuery" minOccurs="0" maxOccurs="1" />
 <element ref="rim:ObjectRefList" minOccurs="0" maxOccurs="1"
/>
 </sequence>

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 42 of 129

1348

1349
1350

1351
1352

1353

1354
1355

1356

1357
1358

1360

1361

1362

1363

1364

1365
1366
1367
1368
1369
1370
1371
1372
1373

 <attribute name="deletionScope"
default="urn:oasis:names:tc:ebxml-regrep:DeletionScopeType:DeleteAll"
type="rim:referenceURI" use="optional"/>
 </extension>
 </complexContent>
 </complexType>
 </element>

5.6.1.2 Parameters:

 deletionScope: This parameter indicates the scope of impact of the
RemoveObjectsRequest. The value of the deletionScope attribute MUST be a reference to
a ClassificationNode within the canonical DeletionScopeType ClassificationScheme as
described in appendix A of [ebRIM]. A Registry MUST support the deletionScope types as
defined by the canonical DeletionScopeType ClassificationScheme. The canonical
DeletionScopeType ClassificationScheme may easily be extended by adding additional
ClassificationNodes to it.

The following canonical ClassificationNodes are defined for the DeletionScopeType
ClassificationScheme:

DeleteRepositoryItemOnly: This deletionScope specifies that the registry MUST
delete the RepositoryItem for the specified ExtrinsicObjects but MUST NOT delete
the specified ExtrinsicObjects. This is useful in keeping references to the
ExtrinsicObjects valid. A registry MUST set the status of the ExtrinsicObject
instance to Withdrawn in this case.

DeleteAll: This deletionScope specifies that the request MUST delete both the
RegistryObject and the RepositoryItem (if any) for the specified objects. A
RegistryObject can be removed using a RemoveObjectsRequest with
deletionScope DeleteAll only if all references (e.g. Associations, Classifications,
ExternalLinks) to that RegistryObject have been removed.

 AdhocQuery: This parameter specifies a query. A registry MUST remove all objects that
match the specified query in addition to any other objects identified by other parameters.

 ObjectRefList: This parameter specifies a collection of references to existing
RegistryObject instances in the registry. A registry MUST remove all objects that are
referenced by this parameter in addition to any other objects identified by other parameters.

5.6.1.3 Returns:

This request returns a RegistryResponse. See section 2.1.4 for details.

5.6.1.4 Exceptions:

In addition to the exceptions common to all requests defined in 2.1.1.4, the following exceptions MAY be
returned:

 UnresolvedReferenceException: Indicates that the requestor referenced an object within
the request that was not resolved during the processing of the request.

 ReferencesExistException: Indicates that the requestor attempted to remove a
RegistryObject while references to it still exist. Note that it is valid to remove a
RegistryObject and all RegistryObjects that refer to it within the same request. In such
cases the ReferencesExistException MUST not be thrown.

5.7 Registry Managed Version Control
This section describes the version control features of the ebXML Registry. This feature is based upon
[DeltaV]. The ebXML Registry provides a simplified façade that provides a small subset of [DeltaV]
functionality.

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 43 of 129

1374
1375
1376
1377
1378
1379
1380

1381

1382

1383
1384

1385
1386

1387
1388

1389
1390

1391
1392

1393
1394

1395

1396

1397
1398

1399
1400

1401
1402

1403
1404

1405

1406

1407

1408

1409
1410

1411
1412

1413
1414

1415
1416

1417

1418
1419

1420

5.7.1 Version Controlled Resources
All repository items in an ebXML Registry are implicitly version-controlled resources as defined by section
2.2.1 of [DeltaV]. No explicit action is required to make them a version-controlled resource.

In addition RegistryObject instances are also implicitly version-controlled resources. However, a registry
may limit version-controlled resources to a sub-set of RegistryObject classes based upon registry specific
policies.

Minimally, a registry implementing the version control feature SHOULD make the following types as version-
controlled resources:

 ClassificationNode

 ClassificationScheme
 Organization

 ExtrinsicObject

 RegistryPackage

 Service

The above list is chosen to exclude all composed types and include most of remaining RegistryObject types
for which there are known use cases requiring versioning.

5.7.2 Versioning and Object Identification
Each version of a RegistryObject is a unique object and as such has its own unique value for its id attribute
as defined by [ebRIM].

5.7.3 Logical ID
All versions of a RegistryObject are logically the same object and are referred to as the logical
RegistryObject. A logical RegistryObject is a tree structure where nodes are specific versions of the
RegistryObject.

A specific version of a logical RegistryObject is referred to as a RegistryObject instance.

A RegistryObject instance MUST have a Logical ID (LID) to identify its membership in a particular logical
RegistryObject. Note that this is in contrast with the id attribute that MUST be unique for each version of
the same logical RegistryObject. A client may refer to the logical RegistryObject in a version independent
manner using its LID.

A RegistryObject is assigned a LID using the lid attribute of the RegistryObject class. If the submitter
assigns the lid attribute, she must guarantee that it is a globally unique URN. A registry MUST honor a valid
submitter-supplied LID. If the submitter does not specify a LID then the registry MUST assign a LID and the
value of the LID attribute MUST be identical to the value of the id attribute of the first (originally created)
version of the logical RegistryObject.

5.7.4 Version Identification
An ebXML Registry supports independent versioning of both RegistryObject metadata as well as repository
item content. It is therefore necessary to keep distinct version information for a RegistryObject instance and
its repository item if it happens to be an ExtrinsicObject instance.

5.7.4.1 Version Identification for a RegistryObject

A RegistryObject MUST have a versionInfo attribute whose type is the VersionInfo class defined by ebRIM.
The versionInfo attributes identifies the version information for that RegistryObject instance. A registry
MUST not allow two versions of the same RegistryObject to have the same versionInfo.versionName
attribute value.

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 44 of 129

1421

1422

1423

1424

1425
1426

1427
1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447
1448

1449

1450
1451

1452
1453

1454

1455
1456

1457

1458

1459
1460

1461
1462

5.7.4.2 Version Identification for a RepositoryItem

When a RegistryObject is an ExtrinsicObject with an associated repository item, the version identification for
the repository item is distinct from the version identification for the ExtrinsicObject.

An ExtrinsicObject that has an associated repository item MUST have a contentVersionInfo attribute whose
type is the VersionInfo class defined by ebRIM. The contentVersionInfo attributes identifies the version
information for that repository item instance.

An ExtrinsicObject that does not have an associated repository item MUST NOT have a contentVersionInfo
attribute defined.

A registry MUST allow two versions of the same ExtrinsicObject to have the same
contentVersionInfo.versionName attribute value because multiple ExtrinsicObject versions MAY share the
same RepositoryItem version.

5.7.5 Versioning of ExtrinsicObject and Repository Items
An ExtrinsicObject and its associated repository item may be updated independently and therefore
versioned independently.

A registry MUST maintain separate version trees for an ExtrinsicObject and its associated repository item as
described earlier.

Table 6 shows all the combinations for versioning an ExtrinsicObject and its repository item. After eliminating
invalid or impossible combinations as well as those combinations where no action is needed, the only
combinations that require versioning are showed in gray background rows. Of these there are only two
unique cases (referred to as case A and B). Note that it is not possible to version a repository item without
versioning its ExtrinsicObject.

ExtrinsicObject
Exists

RepositoryItem
Exists

ExtrinsicObject
Updated

RepositoryItem
Updated

Comment

No No Do nothing
No Yes Not possible
Yes No

No No Do nothing
No Yes Not possible
Yes No Version

ExtrinsicObject

(case A)
Yes Yes Not possible

Yes Yes
No No Do nothing
No Yes Not possible
Yes No Version

ExtrinsicObject

(case A)
Yes Yes Version

ExtrinsicObject
and
RepositoryItem

(case B)

Table 6: Versioning of ExtrinsicObject and Repository Item

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 45 of 129

1463

1464
1465

1465
1466

1467

1466

1467

1467

1468
1469

1468

1469
1470

1470
1471

1471
1472

1473
1474

1475

1472

1473

5.7.5.1 ExtrinsicObject and Shared RepositoryItem

Because an ExtrinsicObject and its repository item are versioned independently (case B) it is possible for
multiple versions of the ExtrinsicObject to share the same version of the repository item. In such cases the
contentVersionInfo attributes MUST be the same across multiple version of the ExtrinsicObject.

5.7.6 Versioning and Composed Objects
When a registry creates a new version of a RegistryObject it MUST create copies of all composed1 objects
as new objects that are composed within the new version. This is because each version is a unique object
and composed objects by definition are not shareable across multiple objects. Specifically, each new copy
of a composed object MUST have a new id since it is a different object than the original composed object in
the previous version.

A registry MUST not version composed objects.

5.7.7 Versioning and References
An object reference from a RegistryObject references a specific version of the referenced RegistryObject.
When a registry creates a new version of a referenced RegistryObject it MUST NOT move refrences from
other objects from the previous version to the new version of the referenced object. Clients that wish to
always reference the latest versions of an object MAY use the Event Notification feature to update
references when new versions are created and thus always reference the latest version.

A special case is when a SubmitObjectsRequest or an UpdateObjectRequest contains an object that is
being versioned by the registry and the request contains other objects that reference the object being
versioned. In such case, the registry MUST update all references within the submitted objects to the object
being versioned such that those objects now reference the new version of the object being created by the
request.

5.7.8 Versioning and Audit Trail
The canonical EventType ClassificationScheme used by the Audit Trail feature defines an Updated event
type and then defines a Versioned event type as a child of the Updated event type ClassificationNode. The
semantic are that a Versioned event type is specialization of the Updated event type.

A registry MUST use the Updated event type in the AuditableEvent when it updates a RegistryObject without
creating a new version.

A registry MUST use the Versioned event type in the AuditableEvent when it creates a new version of a
logical RegistryObject.

A registry MUST NOT use the Created event type in the AuditableEvent when it creates a new version of a
logical RegistryObject.

5.7.9 Inter-versions Association
Within any single branch within the version tree for an object any given version implicitly supersedes the
version immediately prior to it. Sometimes it may be necessary to explicitly indicate which version
supersedes another version for the same object. This is especially true when two versions are siblings
branch roots of the version tree for the same object.

A client MAY specify an Association between any two versions of an object within the objects version tree
using the canonical associationType “Supersedes” to indicate that the sourceObject supersedes the target
targetObject within the Association.

A client MUST NOT specify an Association between two version of an object using the canonical
associationType “Supersedes” if the sourceObject is an earlier version within the same branch in the version
tree than the targetObject as this violates the implicit “Supersedes” association between the two version.

Note that this section is functionally equivalent to the predecessor-set successor-set elements of the Version

1 Composed object types are identified in figure 1 in [ebRIM] figure 1 as classes with composition or “solid
diamond” relationship with RegistryObject type.

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 46 of 129

1474

1475
1476

1477

1478

1479

1480
1481

1482
1483

1484

1485

1486

1487
1488

1489
1490

1491
1492

1493
1494

1495

1496

1497

1498
1499

1500
1501

1502
1503

1504
1505

1506

1507
1508

1509
1510

1511
1512

1513

1514

1515
1516

1517

Properties as defined by [DeltaV].

5.7.10 Client Initiated Version Removal
An ebXML Registry MAY allow clients to remove specified versions of a RegistryObject. A client MAY delete
older version of an object using the RemoveObjectsRequest by specifying the version by its unique id.
Removing an ExtrinsicObject instance MUST remove its repository item if no other version references that
repository item.

5.7.11 Registry Initiated Version Removal
The registry MAY prune older versions based upon registry specific administrative policies in order to
manage storage resources.

5.7.12 Locking and Concurrent Modifications
This specification does not define a workspace feature with explicit checkin and checkout capabilities as
defined by [DeltaV]. An ebXML Registry MAY support such features in an implementation specific manner.

This specification does not prescribe a locking or branching model. An implementation may choose to
support an optimistic (non-locking) model. Alternatively or in addition, an implementation may support a
locking model that supports explicit checkout and checkin capability. A future technical note or specification
may address some of these capabilities.

5.7.13 Version Creation
The registry manages creation of new version of a RegistryObject or a repository item automatically. A
registry that supports versioning MUST implicitly create a new version for a repository item if the repository
item is updated via a SubmitObjectsRequest or UpdateObjectsRequest. In such cases it MUST also create
a new version of its ExtrinsicObject.

If the client only wishes to update and version the ExtrisnicObject it may do so using an
UpdateObjectsRequest without providing a repository item. In such cases the registry MUST assign the
repository item version associated with the previous version of the ExtrinsicObject.

5.7.14 Versioning Override
A client MAY specify a dontVersion hint on a per RegistryObject basis when doing a submit or update of a
RegistryObject. A registry SHOULD not create a new version for that RegistryObject when the dontVersion
hint has value of “true”. The dontVersion hint MAY be specified as a canonical Slot with the following name:

urn:oasis:names:tc:ebxml-regrep:rim:RegistryObject:dontVersion

The value of the dontVersion Slot, if specified, MUST be either “true” or “false”.

A client MAY specify a dontVersionContent hint on a per ExtrinsicObject basis when doing a submit or
update of an ExtrinsicObject with a repository item. A registry SHOULD not create a new version for that
repository item when the dontVersionContent hint has value of “true”. The dontVersionContent hint MAY be
specified as a canonical Slot with the following name:

urn:oasis:names:tc:ebxml-regrep:rim:RegistryObject:dontVersionContent

The value of the dontVersionContent Slot, if specified, MUST be either “true” or “false”.

A client MAY also specify the dontVersion and dontVersionContent Slots on the RegistryRequest using the
<rs:RequstSlotList> element. A registry MUST treat these Slots when specified on the request as equivalent
to being specified on every RegistryObject within the request. The value of these Slots as specified on the
request take precedence over value of these Slots as specified on RegistryObjects within the request.

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 47 of 129

1518

1519

1520
1521

1522
1523

1524

1525
1526

1527

1528
1529

1530
1531

1532
1533

1534

1535
1536

1537
1538

1539
1540

1541

1542

1543

1544
1545

1546
1547

1549

1550

1551
1552

1553

1554
1555

1557

1558
1559

1560
1561

6 Query Management Protocols
This section defines the protocols supported by QueryManager service interface of the Registry. The Query
Management protocols provide the functionality required by RegistryClients to query the registry and
discover RegistryObjects and RepositoryItems.

The XML schema for the Query Management protocols is described in [RR-QUERY-XSD].

6.1 Ad Hoc Query Protocol
The Ad hoc Query protocol of the QueryManager service interface allows a client to query the registry and
retrieve RegistryObjects and/or RepositoryItems that match the specified query.

A client submits an ad hoc query to the QueryManager by sending an AdhocQueryRequest. The
AdhocQueryRequest contains a sub-element that specifies a query in one of the query syntaxes supported
by the registry.

The QueryManager sends an AdhocQueryResponse back to the client as response. The
AdhocQueryResponse returns a collection of objects that match the query. The collection is potentially
heterogeneous depending upon the query expression and request options.

Figure 11: Ad Hoc Query Protocol

6.1.1 AdhocQueryRequest
The AdhocQueryRequest is used to submit a query to the registry.

6.1.1.1 Syntax:

 <element name="AdhocQueryRequest">
 <complexType>
 <complexContent>
 <extension base="rs:RegistryRequestType">
 <sequence>
 <element maxOccurs="1" minOccurs="1"

ref="tns:ResponseOption"/>
 <element ref="rim:AdhocQuery" />
 </sequence>
 <attribute default="false" name="federated"

type="boolean" use="optional"/>

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 48 of 129

1562

1563

1564
1565

1566

1567

1568

1569

1570

1571
1572

1573
1574

1575

1576

1577

1578

1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589

 <attribute name="federation" type="anyURI" use="optional"/>
 <attribute default="0" name="startIndex" type="integer"/>
 <attribute default="-1" name="maxResults" type="integer"/>
 </extension>
 </complexContent>
 </complexType>
 </element>

6.1.1.2 Parameters:

 AdhocQuery: This parameter specifies the actual query. It is decsribed in detail in section
6.1.3.

 federated: This optional parameter specifies that the registry must process this query as a
federated query. By default its value is false. This value MUST be false when a registry
routes a federated query to another registry in order to avoid an infinite loop in federated
query processing.

 federation: This optional parameter specifies the id of the target Federation for a federated
query in case the registry is a member of multiple federations. In the absence of this
parameter a registry must route the federated query to all federations of which it is a
member. This value MUST be unspecified when a registry routes a federated query to
another registry in order to avoid an infinite loop in federated query processing.

 maxResults: This optional parameter specifies a limit on the maximum number of results
the client wishes the query to return. If unspecified, the registry SHOULD return either all
the results, or in case the result set size exceeds a registry specific limit, the registry
SHOULD return a sub-set of results that are within the bounds of the registry specific limit.
See section 6.2.1 for an illustrative example.

 ResponseOption: This required parameter allows the client to control the format and
content of the AdhocQueryResponse generated by the registry in response to this request.
See section 6.1.4 for details.

 startIndex: This optional integer value is used to indicate which result must be returned as
the first result when iterating over a large result set. The default value is 0, which returns
the result set starting with index 0 (first result). See section 6.2.1 for an illustrative example.

6.1.1.3 Returns:

This request returns an AdhocQueryResponse. See section 6.1.2 for details.

6.1.1.4 Exceptions:

In addition to the exceptions common to all requests defined in 2.1.1.4, the following exceptions MAY be
returned:

 InvalidQueryException: signifies that the query syntax or semantics was invalid. Client must
fix the query syntax or semantic error and re-submit the query.

6.1.2 AdhocQueryResponse
The AdhocQueryResponse is sent by the registry as a response to an AdhocQueryRequest.

6.1.2.1 Syntax:

 <element name="AdhocQueryResponse">
 <complexType>
 <complexContent>
 <extension base="rs:RegistryResponseType">
 <sequence>
 <element ref="rim:RegistryObjectList" />

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 49 of 129

1590
1591
1592
1593
1594
1595
1596

1597

1598

1599

1600

1601
1602

1603

1604

1605
1606

1607
1608

1609
1610

1611
1612

1613

1614

1615
1616

1617
1618

1619

1620

1621

1622

1623
1624

1625
1626

1627

1628

1629

1630
1631
1632
1633
1634
1635

 </sequence>
 <attribute default="0" name="startIndex" type="integer"/>
 <attribute name="totalResultCount" type="integer"
use="optional"/>
 </extension>
 </complexContent>
 </complexType>
 </element>

6.1.2.2 Parameters:

 RegistryObjectList: This is the element that contains the RegistryObject instances that
matched the specified query.

 startIndex: This optional integer value is used to indicate the index for the first result in the
result set returned by the query, within the complete result set matching the query. By
default, this value is 0. See section 6.2.1 for an illustrative example.

 totalResultCount: This optional parameter specifies the size of the complete result set
matching the query within the registry. When this value is unspecified, the client should
assume it is the size of the result set contained within the result. See section 6.2.1 for an
illustrative example.

6.1.3 AdhocQuery
A client specifies a <rim:AdhocQuery> element within an AdhocQueryRequest to specify the actual query
being submitted.

6.1.3.1 Syntax:

 <complexType abstract="true" name="AdhocQueryType">
 <complexContent>
 <extension base="tns:RegistryObjectType">
 <sequence>
 <element ref="tns:QueryExpression"

minOccurs="0" maxOccurs="1" />
 </sequence>
 </extension>
 </complexContent>
 </complexType>
 <element name="AdhocQuery" type="tns:AdhocQueryType"

substitutionGroup="tns:RegistryObject" />

6.1.3.2 Parameters:

 queryExpression: This element contains the actual query expression. The schema for
queryExpression is extensible and can support any query syntax supported by the registry.

6.1.4 ReponseOption
A client specifies a ResponseOption structure within an AdhocQueryRequest to indicate the format of the
results within the corresponding AdhocQueryResponse.

6.1.4.1 Syntax:

 <complexType name="ResponseOptionType">
 <attribute default="RegistryObject" name="returnType">

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 50 of 129

1636
1637
1638
1639
1640
1641
1642
1643

1644

1645

1646

1647

1648
1649

1650
1651

1652
1653

1654

1655
1656

1657

1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679
1680

 <simpleType>
 <restriction base="NCName">
 <enumeration value="ObjectRef"/>
 <enumeration value="RegistryObject"/>
 <enumeration value="LeafClass"/>
 <enumeration value="LeafClassWithRepositoryItem"/>
 </restriction>
 </simpleType>
 </attribute>
 <attribute default="false" name="returnComposedObjects"
type="boolean"/>
 </complexType>
 <element name="ResponseOption" type="tns:ResponseOptionType"/>

6.1.4.2 Parameters:

 returnComposedObjects: This optional parameter specifies whether the RegistryObjects
returned should include composed objects as defined by Figure 1 in [ebRIM]. The default is
to return all composed objects.

 returnType: This optional enumeration parameter specifies the type of RegistryObject to
return within the response. Values for returnType are as follows:

• ObjectRef - This option specifies that the AdhocQueryResponse MUST contain
a collection of <rim:ObjectRef> elements. The purpose of this option is to return
references to registry objects rather than the actual objects.

• RegistryObject - This option specifies that the AdhocQueryResponse MUST
contain a collection of <rim:RegistryObject> elements.

• LeafClass - This option specifies that the AdhocQueryResponse MUST contain
a collection of elements that correspond to leaf classes as defined in [RR-RIM-
XSD].

• LeafClassWithRepositoryItem - This option is same as LeafClass option with
the additional requirement that the response include the RepositoryItems, if any,
for every <rim:ExtrinsicObject> element in the response.

If “returnType” specified does not match a result returned by the query, then the registry
must use the closest matching semantically valid returnType that matches the result.

To illustrate, consider a case where OrganizationQuery is asked to return
LeafClassWithRepositoryItem. As this is not possible, QueryManager will assume
LeafClass option instead.

6.2 Iterative Query Support
The AdhocQueryRequest and AdhocQueryResponse support the ability to iterate over a large result set
matching a logical query by allowing multiple AdhocQueryRequest requests to be submitted such that each
query requests a different subset of results within the result set. This feature enables the registry to handle
queries that match a very large result set, in a scalable manner. The iterative query feature is accessed via
the startIndex and maxResults parameters of the AdhocQueryRequest and the startIndex and
totalResultCount parameters of the AdhocQueryResponse as described earlier.

The iterative queries feature is not a true Cursor capability as found in databases. The registry is not
required to maintain transactional consistency or state between iterations of a query. Thus it is possible for
new objects to be added or existing objects to be removed from the complete result set in between
iterations. As a consequence it is possible to have a result set element be skipped or duplicated between
iterations.

Note that while it is not required, an implementations MAY implement a transactionally consistent iterative
query feature.

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 51 of 129

1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693

1694

1695

1696

1697
1698

1699
1700

1701
1702

1703

1704

1705

1706

1707
1708

1709
1710

1711

1712

1713

1714

1715
1716

1717

1718

1719

1720
1721

1722
1723

1724

1725

1726
1727

1728
1729

1730
1731

6.2.1 Query Iteration Example
Consider the case where there are 1007 Organizations in a registry. The user wishes to submit a query that
matches all 1007 Organizations. The user wishes to do the query iteratively such that Organizations are
retrieved in chunks of 100. The following table illustrates the parameters of the AdhocQueryRequest and
those of the AdhocQueryResponses for each iterative query in this example.

AdhocQueryRequest Parameters AdhocQueryResponse Parameters

startIndex maxResults startIndex totalResultCount # of Results
0 100 0 1007 100
100 100 100 1007 100
200 100 200 1007 100
300 100 300 1007 100
400 100 400 1007 100
500 100 500 1007 100
600 100 600 1007 100
700 100 700 1007 100
800 100 800 1007 100
900 100 900 1007 100
1000 100 1000 1007 7

6.3 Stored Query Support
The AdhocQuery protocol allow clients to submit queries that may be as general or as specific as the use
case demands. As the queries get more specific they also get more complex. In these situations it is
desirable to hide the complexity of the query from the client using parameterized queries stored in the
registry. When using parameterized stored queries the client is only required to specify the identity of the
query and the parameters for the query rather than the query expression itself.

Parameterized stored queries are useful to Registry Administrators because they provide a system wide
mechanism for the users of the registry to share a set of commonly used queries.

Parameterized stored queries are useful to vertical standards because the standard can define domain
specific parameterized queries and require that they be stored within the registry.

An ebXML Registry MUST support parameterized stored queries as defined by this section.

6.3.1 Submitting a Stored Query
A stored query is submitted using the standard SubmitObjectsRequest protocol where the object submitted
is an AdhocQueryType instance.

6.3.1.1 Declaring Query Parameters

When submitting a stored query, the submitter MAY declare zero or more parameters for that query. A
parameter MUST be declared using a parameter name that begins with the ‘$’ character followed
immediately by a letter and then followed by any combination of letters and numbers. The following BNF
defines how a parameter name MUST be declared.

QueryParameter := '$' [a-zA-Z] ([a-zA-Z] | [0-9])*

A query parameter MAY be used as a placeholder for any part of the stored query.

The following example illustrates how a parameterized stored query may be submitted:

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 52 of 129

1732

1733

1734
1735

1736

1737

1738

1739

1740
1741

1742
1743

1744

1745

1746

1747

1748

1749

1750

1751
1752

1753

1754

1755
1756

1757

1758

1759

1760

1761

1762

1763

<SubmitObjectsRequest>
 <rim:RegistryObjectList>
 <rim:AdhocQuery id="${QUERY_ID}">
 <rim:QueryExpression queryLanguage="${SQL_QUERY_LANG_ID}">
 SELECT * from $tableName ro, Name_ nm, Description d
 WHERE
 objectType = ''$objectType''
 AND (nm.parent = ro.id AND UPPER (nm.value) LIKE UPPER
(''$name''))
 AND (d.parent = ro.id AND UPPER (d.value) LIKE UPPER
(''$description''))
 AND (ro.id IN (SELECT classifiedObject FROM Classification WHERE
classificationNode IN (SELECT id
 FROM ClassificationNode WHERE path LIKE ''$classificationPath1%''
)))
 </rim:QueryExpression>
 </rim:AdhocQuery>
 </rim:RegistryObjectList>
</SubmitObjectsRequest>

Listing 1: Example of Stored Query Submission

The above query takes parameters $objectType, $name, $description and $classificationPath1 and find all
objects for that match specified objectType, name, description and classification.

6.3.1.2 Canonical Context Parameters

A query MAY contain one or more context parameters as defined in this section. Context parameters are
special query parameters whose value does not need to be supplied by the client. Instead the value for a
context parameter is supplied by the registry based upon the context within which the client request is being
processed.

When processing a query, a registry MUST replace all context parameters present in the query with the
context sensitive value for the parameter. A registry MUST ignore any context parameter values supplied by
the client.

Context Parameter Replacement Value
$currentUser Must be replaced with the id attribute of the user

associated with the query.
$currentTime Must be replaced with the currentTime. The time

format is same as the format defined for the
timestamp attribute of AuditableEvent class.

6.3.2 Invoking a Stored Query
A stored query is invoked using the AdhocQueryRequest with the following constraints:

• The <rim:AdhocQuery> element MUST not contain a <rim:queryExpression> element.

• The <rim:AdhocQuery> element's id attribute value MUST match the id attribute value of the stored
query.

• The <rim:AdhocQuery> element MAY have a Slot for each non-context parameter defined for the stored
query being invoked. These Slots provide the value for the query parameters.

6.3.2.1 Specifying Query Invocation Parameters

A stored query MAY be defined with zero or more parameters. A client may specify zero or more of the
parameters defined for the stored query when submitting the AdhocQueryRequest for the stored query. It is
important to note that the client MAY specify fewer parameters than those declared for the stored query. A

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 53 of 129

1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782

1783

1784

1785

1786

1787

1788
1789

1790
1791

1792
1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805
1806

1807

registry MUST prune any predicates of the stored query that contain parameters that were not supplied by
the client during invocation of the stored query.

In essence, the client may narrow or widen the specificity of the search by supplying more or less
parameters.

A client specifies a query invocation parameter by using a Slot whose name matches the parameter name
and whose value MUST be a single value that matches the specified value for the parameter.

A registry MUST ignore any parameters specified by the client for a stored query that do not match the
parameters defined by the stored query.

The following listing shows an example of how the stored query shown earlier is invoked. It shows:

• The stored query being identified by the value of the canonical slot with name
"urn:oasis:names:tc:ebxml-regrep:rs:AdhocQueryRequest:queryId"The stored query being identified by
the value of the id attribute of the <rim:AdhocQuery> element.

• The value for the $name parameter being supplied

• The value of other parameters defined by the query not being supplied. This indicates that the client does
not wish to use those parameters as search criterea.criteria.

<AdhocQueryRequest xmlns="urn:oasis:names:tc:ebxml-regrep:xsd:query:3.0"
xmlns:lcm="urn:oasis:names:tc:ebxml-regrep:xsd:lcm:3.0"
xmlns:query="urn:oasis:names:tc:ebxml-regrep:xsd:query:3.0"
xmlns:rim="urn:oasis:names:tc:ebxml-regrep:xsd:rim:3.0"
xmlns:rs="urn:oasis:names:tc:ebxml-regrep:xsd:rs:3.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:oasis:names:tc:ebxml-regrep:xsd:query:3.0
http://oasis-open.org/committees/regrep/documents/3.0/schema/query.xsd">
 <rs:RequestSlotList>
 <rim:Slot name="urn:oasis:names:tc:ebxml-
regrep:rs:AdhocQueryRequest:queryId">
 <rim:ValueList>
 <rim:Value>urn:freebxml:registry:query:BusinessQuery</rim:Value>
 </rim:ValueList>
 </rim:Slot>
 <rim:Slot name="$name">
 <rim:ValueList>
 <rim:Value>%ebXML% </rim:Value>
 </rim:ValueList>
 </rim:Slot>
 </rs:RequestSlotList>
 <query:ResponseOption returnComposedObjects="true"
returnType="LeafClassWithRepositoryItem" />
 <rim:AdhocQuery id="temporaryId">
 <rim:QueryExpression queryLanguage="urn:oasis:names:tc:ebxml-
regrep:QueryLanguage:SQL-92">
 <!-- No need for an actual query since it is fetched from registry
using the queryId -->
 </rim:QueryExpression>
 </rim:AdhocQuery>
</AdhocQueryRequest>
<AdhocQueryRequest>
 <query:ResponseOption returnComposedObjects="true"
returnType="LeafClassWithRepositoryItem"/>

 <rim:AdhocQuery id="${STORED_QUERY_ID}">
 <rim:Slot name="$name">
 <rim:ValueList>
 <rim:Value>%ebXML%</rim:Value>
 </rim:ValueList>
 </rim:Slot>
 </rim:AdhocQuery>

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 54 of 129

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817
1818

1819

1820

1821
1822

1823

1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865

</AdhocQueryRequest>

Listing 2: Example of Stored Query Invocation

6.3.3 Response to Stored Query Invocation
A registry MUST send a standard AdhocQueryResponse when a client invokes a stored query using an
AdhocQueryRequest.

6.3.4 Access Control on a Stored Query
A stored query is a RegistryObject. Like all RegistryObjects, access to the stored query is governed by the
Access Control Policy defined the stored query. By default a stored query is assigned the default Access
Control Policy that allows any client to read and invoke that query and only the owner of the query and the
Registry Administrator role to update or delete the query. The owner of the query may define a custom
Access Control Policy for the query that restricts the visibility of the query, and ability to invoke it, to specific
users, roles or groups. Thus the owner of the query or the Registry Administrator may control who gets to
invoke which stored queries.

6.3.5 Canonical Query: Get Client’s User Object
A registry MUST support a canonical stored query with

id="urn:oasis:names:tc:ebxml-regrep:query:GetCallersUser".

This query MUST return the User object associated with the client invoking the stored query. The client
MUST not provide any parameters for this query. The stored query SHOULD use the canonical context
parameter $currentUser.

The following is a non-normative example of a stored SQL query that MAY be used by a registry for this
canonical stored query:

<rim:AdhocQuery id="urn:oasis:names:tc:ebxml-regrep:query:GetCallersUser">
 <rim:QueryExpression
 queryLanguage="urn:oasis:names:tc:ebxml-regrep:QueryLanguage:SQL-92">
 SELECT u.* FROM User u WHERE u.id = $currentUser;
 </rim:QueryExpression>
</rim:AdhocQuery>

Note that a registry MAY use an equivalent stored filter query instead of a stored SQL query.

6.4 SQL Query Syntax
An ebXML Registry MAY support SQL as a supported query syntax within the <rim:queryExpression>
element of AdhocQueryRequest. This section normatively defines the SQL syntax that an ebXML Registry
MAY support. Note that the support for SQL syntax within a registry does not imply a requirement that the
registry must use a relational database in its implementation.

The registry SQL syntax is a proper subset of the “SELECT” statement of Intermediate level SQL as defined
by ISO/IEC 9075:1992, Database Language SQL [SQL].

The terms below enclosed in angle brackets are defined in [SQL] or in [SQL/PSM]. The SQL query syntax
conforms to the <query specification> with the following additional restrictions:

1. A <derived column> MAY NOT have an <as clause>.

2. A <table expression> does not contain the optional <group by clause> and <having clause>
clauses.

3. A <table reference> can only consist of <table name> and <correlation name>.

4. A <table reference> does not have the optional AS between <table name> and <correlation name>.

5. Restricted use of sub-queries is allowed by the syntax as follows. The <in predicate> allows for the

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 55 of 129

1866

1867

1868
1869

1870

1871
1872

1873
1874

1875
1876

1877

1878

1879

1880

1881
1882

1883

1884

1885

1886

1887
1888
1889
1890
1891
1892

1893

1894

1895

1896
1897

1898

1899

1900

1901

1902

1903

1904
1905

1906

1907

1908

right hand side of the <in predicate> to be limited to a restricted <query specification> as defined
above.

As defined by [SQL], a registry MUST process table names and attribute names in a case insensitive
manner.

6.4.1 Relational Schema for SQL Queries
The normative Relational Schema definition that is the target of registry SQL queries can be found at the
following location on the web:

http://www.oasis-open.org/committees/regrep/documents/3.0/sql/database.sql

6.4.2 SQL Query Results
The result of an SQL query resolves to a collection of objects within the registry. It never resolves to partial
attributes. The objects related to the result set may be returned as an ObjectRef, RegistryObject or leaf
class depending upon the returnType attribute of the responseOption parameter specified by the client on
the AdHocQueryRequest. The entire result set is returned as an <rim:RegistryObjectList>.

6.5 Filter Query Syntax
This section normatively defines an XML syntax for querying an ebXML Registry called Filter Query syntax.
An ebXML Registry MUST support the Filter Query syntax as a supported query syntax within the
<rim:queryExpression> element of AdhocQueryRequest.

The Filter Query syntax is defined in [RR-QUERY-XSD] and is derived from a mapping from [ebRIM] to XML
Schema following certain mapping patterns.

The Filter Query operational model views the network of RegistryObjects in the registry as a virtual XML
document and a query traverses a specified part of the tree and prunes or filters objects from the virtual
document using filter expressions and ultimately returns a collection of objects that are left after filtering out
all objects that do not match the filters specified in the query.

Unlike SQL query syntax, the filter query syntax does not support joins across classes. This constrains the
expressive capabilities of the query and may also be somehat less efficient in processing.

6.5.1 Filter Query Structure
The <rim:queryExpression> element of AdhocQueryRequest MUST contain a Query element derived from
the <query:RegistryObjectQueryType> type.

A Query element MAY contain a <query:PrimaryFilter> element and MAY contain additional Filter, Branch
and Query elements within it as shown in the asbtract example below. The normative schema is defined by
[RR-QUERY-XSD].

<${QueryElement}>
 <PrimaryFilter ... />
 <${OtherFilterElement} ... />
 <${BranchElement} .../>
 <${QueryElement} ... />
</${QueryElement}>

The role of Query, Filter and Branch elements will be defined next.

6.5.2 Query Elements
A Query element is the top level element in the Filter Query syntax to query the registry. The [RR-QUERY-
XSD] XML Schema defines a Query element for the RegistryObject class and all its descendant classes as
defined by [ebRIM] using the following pattern:

• For each class in model descendant from RegistryObject class define a complexType with name

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 56 of 129

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918
1919

1920
1921

1922

1923
1924

1925

1926

1927

1928

1929
1930

1931

1932

1933

1934

1935

1936

1937

1938
1939

1940
1941
1942
1943
1944
1945
1946

1947

1948

1949

1950

1951
1952

1953

http://www.oasis-open.org/committees/regrep/documents/2.1/sql/database.sql
http://www.oasis-open.org/committees/regrep/documents/2.1/sql/database.sql
http://www.oasis-open.org/committees/regrep/documents/2.1/sql/database.sql

<class>QueryType. For example there is an OrganizationQueryType complexType defined for the
Organization class in [ebRIM].

• The QueryType of a descendant of RegistryObject class MUST extend the QueryType for its super class.
For example the OrganizationQueryType extends the RegistryObjectQueryType.

• For RegistryObject class and each of its descendants define an element with name <class>Query and
with type <class>QueryType. For example the OrganizationQuery element is defined with type
OrganizationQueryType.

The class associated with a Query element is referred to as the Query domain class.

The following example shows the Query syntax where the Query domain class is the Organization class
defined by [ebRIM]:

 <complexType name="OrganizationQueryType">
 <complexContent>
 <extension base="tns:RegistryObjectQueryType">
 ...Relevant Filters, Queries and Branches are defined here...
 </extension>
 </complexContent>
 </complexType>
 <element name="OrganizationQuery" type="tns:OrganizationQueryType"/>

A Query element MAY have Filter, Branch or nested Query Elements. These are described in subsequent
sections.

6.5.3 Filter Elements
A Query element MAY contain one or more Filter sub-elements. A Filter element is used to filter or select a
subset of instances of a specific [ebRIM] class. The class that a Filter filters is referred to as the Filter
domain class. A Filter element specifies a restricted predicate clause over the attributes of the Filter domain
class.

[RR-QUERY-XSD] XML Schema defines zero or more Filter elements within a Query element definition
using the following pattern:

• PrimaryFilter: A Filter element is defined within the RegistryObjectQueryType with name PrimaryFilter.
This Filter is used to filter the instances of the Query domain class based upon the value of its primitive
attributes. The cardinality of the Filter element is zero or one. The PrimaryFilter element is inherited by all
descendant QueryTypes of RegistryObjectQueryType.

• Additional Filters: Additional Filters in a Query element used to filter the instances of the Query domain
class based upon whether the candidate domain class instance has a referenced object that satisfies the
additional filter.
Additional filter elements are defined for those attributes of the Query domain class that satisfy all of the
following criterea:

• The attribute's domain is not a primitive type (e.g. string, float, dateTime, int etc.).

• The attribute's domain class is not RegistryObject or its descendant.

• The attribute's domain class does not have any reference attributes (use Branch or sub-Query if
attribute's domain class has reference attributes).

The attribute for which the Filter is defined is referred to as the Filter domain attribute. The domain
class of the Filter domain attribute is the Filter domain class for such Filters. This type of Filter is used
to filter the instances of the Query domain class based upon the attribute values within the Filter
domain class.

• The name of the Filter element is <Filter Domain Attribute Name>Filter.

• The type of the Filter element is the FilterType complex type that is decsribed in 6.5.3.1.

• The cardinality of the Filter element matches the cardinality of the Filter domain attribute in the Query
domain class.

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 57 of 129

1954

1955

1956

1957

1958

1959
1960

1961

1962

1963

1964

1965
1966
1967
1968
1969
1970
1971
1972

1973

1974

1975

1976

1977

1978
1979

1980

1981

1982

1983

1984
1985

1986

1987

1988
1989

1990
1991

1992

1993

1994
1995

1996
1997

1998
1999

2000

2001

2002
2003

The following example shows the how [RR-QUERY-XSD] XML Schema uses the above pattern to define
Filters for the OrganizationQueryType for the Organization class defined by [ebRIM].

 <complexType name="OrganizationQueryType">
 <complexContent>
 <extension base="tns:RegistryObjectQueryType">
 <sequence>
 <element maxOccurs="unbounded" minOccurs="0"
 name="AddressFilter" type="tns:FilterType"/>
 <element maxOccurs="unbounded" minOccurs="0"
 name="TelephoneNumberFilter" type="tns:FilterType"/>
 <element maxOccurs="unbounded" minOccurs="0"
 name="EmailAddresseFilter" type="tns:FilterType"/>
 ...Branches and sub-Queries go here...
 </sequence>
 </extension>
 </complexContent>
 </complexType>

The following UML class diagram describing the Filter class structure as defined in [RR-QUERY-XSD] XML
Schema. Note that the classes whose name ends in “Type” map to complexTypes and other Filter classes
map to elements in the [RR-QUERY-XSD] XML Schema.

Figure 12: Filter Type Hierarchy

6.5.3.1 FilterType

The FilterType is an abstract complexType that is the root type in the inheritence hierarchy for all Filter

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 58 of 129

2004

2005
2006

2007

2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022

2023

2024
2025

2026

2027

2028

2029

2030

2031

2032

types.

6.5.3.1.1 Parameters:

 negate: This parameter specifies that the boolean value that the Filter evaluates to MUST
be negated to complete the evaluation of the filter. It is functionally equivalent to the NOT
operator in SQL syntax.

6.5.3.2 SimpleFilterType

The SimpleFilter is the abstract base type for several concrete Filter types defined for primitive type such as
boolean, float, integer and string.

6.5.3.2.1 Parameters:

 domainAttribute: This parameter specifies the attribute name of a primitive attribute within
the Filter domain class. A registry MUST return an InvalidQueryException if this
parameter's value does not match the name of primitive attribute within the Filter domain
class. A registry MUST perform the attribute name match in a case insensitive manner.

 comparator: This parameter specifies the comparison operator for comparing the value of
the attribute with the value supplied by the filter. The following comparators are defined:

• LE: abbreviation for LessThanOrEqual

• LT: abbreviation for LessThan

• GE: abbreviation for GreaterThanOrEqual

• GT: abbreviation for GreaterThan

• EQ: abbreviation for Equal

• NE: abbreviation for NotEqual

• Like: Same as LIKE operator in SQL-92. MUST only be used in StringFilter.

• NotLike: Same as NOT LIKE operator in SQL-92. MUST only be used in
StringFilter.

6.5.3.3 BooleanFilter
The BooleanFilter MUST only be used for matching primitive attributes whose domain is of type boolean.

6.5.3.3.1 Parameters:

 value: This parameter specifies the value that MUST be compared with the attribute value
being tested by the Filter. It MUST be a boolean value.

The following example shows the use of a BooleanFilter to match the isInternal attribute of the
ClassificationScheme class defined by [ebRIM]:

<BooleanFilter
domainAtribute="isInternal" comparator="EQ" value="true"/>

6.5.3.4 FloatFilter
The FloatFilter MUST only be used for matching primitive attributes whose domain is of type float.

6.5.3.4.1 Parameters:

 value: This parameter specifies the value that MUST be compared with the attribute value

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 59 of 129

2033

2034

2035

2036
2037

2038

2039

2040

2041

2042
2043

2044
2045

2046
2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061
2062

2063
2064

2065
2066

2067

2068

2069

2070

2071

being tested by the Filter. It MUST be a float value.

The following example shows the use of a FloatFilter to match fictitious amount float attribute since [ebRIM]
currently has no float attributes defined:

<FloatFilter
domainAtribute="amount" comparator="GT" value="9.99"/>

6.5.3.5 IntegerFilter
The IntegerFilter MUST only be used for matching primitive attributes whose domain is of type integer.

6.5.3.5.1 Parameters:

 value: This parameter specifies the value that MUST be compared with the attribute value
being tested by the Filter. It MUST be an integer value.

The following example shows the use of a BooleanFilter to match a fictitious count integer attribute since
[ebRIM] currently has no integer attributes defined:

<IntegerFilter
domainAtribute="amount" comparator="LT" value="100"/>

6.5.3.6 DateTimeFilter
The DateTimeFilter MUST only be used for matching primitive attributes whose domain is of type datetime.

6.5.3.6.1 Parameters:

 value: This parameter specifies the value that MUST be compared with the attribute value
being tested by the Filter. It MUST be a datetime value.

The following example shows the use of a DateTimeFilter to match a the timestamp attribute of the
Auditable class defined by [ebRIM] where the timestamp value is greater than (later than) the specified
datetime value:

<DateTimeFilter
domainAtribute="timestamp"
comparator="GT" value="1997-07-16T19:20+01:00"/>

6.5.3.7 StringFilter
The StringFilter MUST only be used for matching primitive attributes whose domain is of type string.

6.5.3.7.1 Parameters:

 value: This parameter specifies the value that MUST be compared with the attribute value
being tested by the Filter. It MUST be a string value.

The following example shows the use of a StringFilter to match a the firstName attribute of the Person class
defined by [ebRIM] where the firstName value matches the pattern specified by the value:

<StringFilter
domainAtribute="firstName"
comparator="Like" value="Farid%"/>

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 60 of 129

2072

2073
2074

2075
2076

2077

2078

2079

2080

2081

2082

2083

2084

2085
2086

2087

2088

2089

2090

2091
2092

2093
2094

2095

2096
2097
2098

2099

2100

2101

2102

2103
2104

2105
2106

2107
2108
2109

2110

6.5.3.8 CompoundFilter

The CompoundFilter MAY be used to specify a boolean conjunction (AND) or disjunction (OR) between two
Filters. It allows a query to express a combination of predicate clauses within a Filter Query.

6.5.3.8.1 Parameters:

 LeftFilter: This parameter specifies the first of two Filters for the CompoundFilter.

 RightFilter: This parameter specifies the second of two Filters for the CompoundFilter.

 logicalOperator: This parameter specifies the logical operator. The value of this
parameter MUST be “AND” or “OR”

The following example shows the use of a BooleanFilter to match the isInternal attribute of the
ClassificationScheme class defined by [ebRIM]:

<CompoundFilter logicalOperator="AND">
 <LeftFilter domainAttribute="targetObject" comparator="EQ"
 value="${REGISTRY_OBJECT_ID}" type="StringFilter"/>
 <RightFilter domainAttribute="associationType" comparator="EQ"
 value="${HAS_MEMBER_ASSOC_TYPE_NODE_ID}" type="StringFilter"/>
</CompoundFilter>

6.5.4 Nested Query Elements
A Query element MAY contain one or more nested Query sub-elements. The purpose of the nested Query
element is to allow traversal of the branches within the network of relationships defined by the information
model and prune or filter those branches that do not meet the predicates specified in the corresponding
Branch element.

The [RR-QUERY-XSD] XML Schema defines zero or more nested Query elements within a Query element
definition using the following pattern:

• A nested Query element is defined for each attribute of the Query domain class that satisfy all of the
following criterea:

• The attribute's domain class is a descendant type of the RegistryObjectType.

• The attribute's domain class contains reference attributes that link the domain class to some third
class via the reference.

The attribute for which the nested Query is defined is referred to as the Nested Query domain
attribute. The domain class of the nested Query domain attribute is the Query domain class for the
nested Query element.

• The name of the nested Query element is <Nested Query Domain Attribute Name>Query.

• The type of the nested Query element matches the QueryType for the domain class for the Query
domain attribute.

• The cardinality of the nested Query element matches the cardinality of the nested Query domain attribute
in the Query domain class.

The following example shows the how [RR-QUERY-XSD] XML Schema uses the above pattern to define
nested Query elements for the OrganizationQueryType for the Organization class defined by [ebRIM].

 <complexType name="OrganizationQueryType">
 <complexContent>
 <extension base="tns:RegistryObjectQueryType">
 <sequence>
 ...Filters and Branches go here ...
 <element maxOccurs="1" minOccurs="0"
 name="ParentQuery" type="tns:OrganizationQueryType"/>
 <element maxOccurs="unbounded" minOccurs="0"
 name="ChildOrganizationQuery" type="tns:OrganizationQueryType"/>
 <element maxOccurs="1" minOccurs="0"
 name="PrimaryContactQuery" type="tns:PersonQueryType"/>

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 61 of 129

2111

2112
2113

2114

2115

2116

2117

2118

2119

2120

2121
2122
2123
2124
2125
2126

2127

2128

2129
2130

2131

2132

2133

2134

2135

2136

2137
2138

2139
2140

2141

2142

2143
2144

2145
2146

2147
2148

2149

2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160

 </sequence>
 </extension>
 </complexContent>
 </complexType>

6.5.5 Branch Elements
A Query element MAY contain one or more Branch sub-elements. A Branch element is similar to the nested
Query element as it too can have sub-elements that are Filter, Branch and subQuery elements. However, it
is different from Query elements because its type is not a descendant type of RegistryObjectQueryType.
The purpose of the branch element is to allow traversal of the branches within the network of relationships
defined by the information model and prune or filter those branches that do not meet the predicates
specified in the corresponding Branch element.

The [RR-QUERY-XSD] XML Schema defines zero or more Branch elements within a Query element
definition using the following pattern:

• A Branch element is defined for each attribute of the Query domain class that satisfies all of the following
criterea:

• The attribute's domain is not a primitive type (e.g. String, float, dateTime, int etc.).

• The attribute's domain class contains reference attributes that link the domain class to some third
class via the reference.

The attribute for which the Branch is defined is referred to as the Branch domain attribute. The
domain class of the Branch domain attribute is the Branch domain class for the Branch element.

• The name of the Branch element is <Branch Domain Attribute Name>Branch.

• The cardinality of the Branch element matches the cardinality of the Branch domain attribute in the
Query domain class.

The following example shows how the [RR-QUERY-XSD] XML Schema uses the above pattern to define
Branches for the RegistryObjectQueryType for the RegistryObject class defined by [ebRIM].

 <complexType name="RegistryObjectQueryType">
 <complexContent>
 <extension base="tns:FilterQueryType">
 <sequence>
 <element maxOccurs="unbounded" minOccurs="0"
 name="SlotBranch" type="tns:SlotBranchType"/>
 <element maxOccurs="1" minOccurs="0" name="NameBranch"
 type="tns:InternationalStringBranchType"/>
 <element maxOccurs="1" minOccurs="0" name="DescriptionBranch"
 type="tns:InternationalStringBranchType"/>
 ... Relevant Filters, queries go here...
 </sequence>
 </extension>
 </complexContent>
 </complexType>

6.6 Query Examples
This section provides examples in both SQL and Filter Query syntax for some common query use cases.
Each example gives the SQL syntax for the query followed by blank line followed by the equivalent Filter
Query syntax for it.

6.6.1 Name and Description Queries
The following queries matches all RegistryObject instances whose name contains the word ‘Acme’ and
whose description contains the word “bicycle”.

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 62 of 129

2161
2162
2163
2164

2165

2166

2167
2168

2169
2170

2171

2172

2173

2174

2175

2176

2177
2178

2179
2180

2181

2182

2183

2184

2185

2186

2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201

2202

2203

2204

2205
2206

2207

2208
2209

2210

SELECT ro.* from RegistryObject ro, Name nm, Description d WHERE
nm.value LIKE '%Acme%' AND

d.value LIKE '%bicycle%' AND
(ro.id = nm.parent AND ro.id = d.parent);

<RegistryObjectQuery>
 <NameBranch>
 <LocalizedStringFilter comparator="Like" domainAttribute="value"
 value="%Acme%" xsi:type="StringFilterType"/>
 </NameBranch>
 <DescriptionBranch>
 <LocalizedStringFilter comparator="Like" domainAttribute="value"
 value="%bicycle%" xsi:type="StringFilterType"/>
 </DescriptionBranch>
</RegistryObjectQuery>

6.6.2 Classification Queries
This section describes various classification related queries.

6.6.2.1 Retrieving ClassificationSchemes

The following query retrieves the collection of all ClassificationSchemes. Note that the above query may
also specify additional Filters, Querys and Branches as search criterea if desired.

SELECT scheme.* FROM ClassificationScheme scheme;

<ClassificationSchemeQuery/>

6.6.2.2 Retrieving Children of Specified ClassificationNode

The following query retrieves the children of a ClassificationNode given the “id” attribute of the parent
ClassificationNode:

SELECT cn.* FROM ClassificationNode cn WHERE parent = ${PARENT_ID};

<ClassificationNodeQuery>
 <PrimaryFilter comparator="Like" domainAttribute="parent"
 value="${PARENT_ID}" xsi:type="StringFilterType"/>
</ClassificationNodeQuery>

6.6.2.3 Retrieving Objects Classified By a ClassificationNode

The following query retrieves the collection of ExtrinsicObjects that are classified by the Automotive Industry
and the Japan Geography. Note that the query does not match ExtrinsicObjects classified by descendant
ClassificationNodes of the Automotive Industry and the Japan Geography. That would require a slightly
more complex query.

SELECT eo.* FROM ExtrinsicObject eo WHERE
 id IN (SELECT classifiedObject FROM Classification

 WHERE
 classificationNode IN (SELECT id FROM ClassificationNode

WHERE path = ‘/${GEOGRAPHY_SCHEME_ID}/Asia/Japan’))
 AND

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 63 of 129

2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226

2227

2228

2229

2230

2231
2232

2233

2234
2235
2236

2237

2238

2239

2240

2241

2242
2243
2244
2245
2246
2247

2248

2249

2250
2251

2252
2253

2254

2255
2256
2257
2258
2259
2260

 id IN (SELECT classifiedObject FROM Classification
 WHERE
 classificationNode IN (SELECT id FROM ClassificationNode

WHERE path = ‘/${INDUSTRY_SCHEME_ID}/Automotive’))

<ExtrinsicObjectQuery>
 <ClassificationQuery>
 <ClassificationNodeQuery>
 <PrimaryFilter comparator="EQ" domainAttribute="path"
 value="/${GEOGRAPHY_SCHEME_ID}/Asia/Japan"
 xsi:type="StringFilterType"/>
 </ClassificationNodeQuery>
 </ClassificationQuery>
 <ClassificationQuery>
 <ClassificationNodeQuery>
 <PrimaryFilter comparator="EQ" domainAttribute="path"
 value="/${INDUSTRY_SCHEME_ID}/Automotive"
 xsi:type="StringFilterType"/>
 </ClassificationNodeQuery>
 </ClassificationQuery>
</ExtrinsicObjectQuery>

6.6.2.4 Retrieving Classifications that Classify an Object

The following query retrieves the collection of Classifications that classify a object with id matching ${ID}:

SELECT c.* FROM Classification c
WHERE c.classifiedObject = ${ID};

<ClassificationQuery>
 <PrimaryFilter comparator="EQ" domainAttribute="classifiedObject"
 value="${ID}" xsi:type="StringFilterType"/>
</ClassificationQuery>

6.6.3 Association Queries
This section describes various Association related queries.

6.6.3.1 Retrieving All Associations With Specified Object As Source

The following query retrieves the collection of Associations that have the object with id matching
${SOURCE_ID} as their source:

SELECT a.* FROM Association a WHERE sourceObject = ${SOURCE_ID}

<AssociationQuery>
 <PrimaryFilter comparator="EQ" domainAttribute="sourceObject"
 value="${SOURCE_ID}" xsi:type="StringFilterType"/>
</AssociationQuery>

6.6.3.2 Retrieving All Associations With Specified Object As Target

The following query retrieves the collection of Associations that have the object with id matching
${TARGET_ID} as their target:

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 64 of 129

2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281

2282

2283

2284

2285

2286
2287
2288
2289
2290
2291
2292

2293

2294

2295

2296

2297
2298

2299

2300
2301
2302
2303
2304
2305

2306

2307

2308

2309

2310

SELECT a.* FROM Association a WHERE targetObject = ${TARGET_ID}

<AssociationQuery>
 <PrimaryFilter comparator="EQ" domainAttribute="targetObject"
 value="${TARGET_ID}" xsi:type="StringFilterType"/>
</AssociationQuery>

6.6.3.3 Retrieving Associated Objects Based On Association Type

Select Associations whose associationType attribute value matches the value specified by the
${ASSOC_TYPE_ID}. The ${ASSOC_TYPE_ID} value MUST reference a ClassificationNode that is a
descendant of the canonical AssociationType ClassificationScheme.

SELECT a.* FROM Association a WHERE
associationType = ${ASSOC_TYPE_ID}

<AssociationQuery>
 <PrimaryFilter comparator="EQ" domainAttribute="associationType"
 value="${ASSOC_TYPE_ID}" xsi:type="StringFilterType"/>
</AssociationQuery>

6.6.3.4 Complex Association Query

The various forms of Association queries may be combined into complex predicates. The following query
selects Associations that match specified specific sourceObject, targetObject and associationType:

SELECT a.* FROM Association a WHERE
sourceObject = ${SOURCE_ID} AND
targetObject = ${TARGET_ID} AND
associationType = ${ASSOC_TYPE_ID};

<AssociationQuery>
 <PrimaryFilter logicalOperator="AND" xsi:type="CompoundFilterType">
 <LeftFilter comparator="EQ" domainAttribute="sourceObject"
 xsi:type="StringFilterType" value="${SOURCE_ID}"/>
 <RightFilter logicalOperator="AND" xsi:type="CompoundFilterType">
 <LeftFilter comparator="EQ" domainAttribute="targetObject"
 xsi:type="StringFilterType" value="${TARGET_ID}"/>
 <RightFilter comparator="EQ" domainAttribute="associationType"
 xsi:type="StringFilterType" value="${ASSOC_TYPE_ID}"/>
 </RightFilter>
 </PrimaryFilter>
</AssociationQuery>

6.6.4 Package Queries
The following query retrieves all Packages that have as member the RegistryObject specified by
${REGISTRY_OBJECT_ID}:

SELECT p.* FROM Package p, Association a WHERE
a.sourceObject = p.id AND
a.targetObject = ${REGISTRY_OBJECT_ID} AND

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 65 of 129

2311
2312
2313
2314
2315
2316

2317

2318

2319

2320
2321

2322

2323

2324
2325
2326
2327
2328
2329
2330

2331

2332

2333

2334

2335

2336

2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353

2354

2355

2356

2357

2358

2359
2360
2361

a.associationType = ${HAS_MEMBER_ASSOC_TYPE_NODE_ID};

<RegistryPackageQuery>
 <SourceAssociationQuery>
 <PrimaryFilter logicalOperator="AND" xsi:type="CompoundFilterType">
 <LeftFilter comparator="EQ" domainAttribute="targetObject"
 value="${REGISTRY_OBJECT_ID}"
 xsi:type="StringFilterType"/>
 <RightFilter comparator="EQ" domainAttribute="associationType"
 value="${HAS_MEMBER_ASSOC_TYPE_NODE_ID}"
 xsi:type="StringFilterType"/>
 </PrimaryFilter>
 </SourceAssociationQuery>
</RegistryPackageQuery>

Note that the ${HAS_MEMBER_ASSOC_TYPE_NODE_ID} is a placeholder for the value of the id attribute
of the canonical HasMember AssociationType ClassificationNode.

6.6.5 ExternalLink Queries
The following query retrieves all ExternalLinks that serve as ExternalLink for the RegistryObject specified by
${REGISTRY_OBJECT_ID}:

SELECT el.* From ExternalLink el, Association a WHERE
a.sourceObject = el.id AND
a.targetObject = ${REGISTRY_OBJECT_ID} AND
a.associationType = ${EXTERNALLY_LINKS_ASSOC_TYPE_NODE_ID};

<ExternalLinkQuery>
 <SourceAssociationQuery>
 <PrimaryFilter logicalOperator="AND" xsi:type="CompoundFilterType">
 <LeftFilter comparator="EQ" domainAttribute="targetObject"
 value="${REGISTRY_OBJECT_ID}"
 xsi:type="StringFilterType"/>
 <RightFilter comparator="EQ" domainAttribute="associationType"
 value="${EXTERNALLY_LINKS_ASSOC_TYPE_NODE_ID}"
 xsi:type="StringFilterType"/>
 </PrimaryFilter>
 </SourceAssociationQuery>
</ExternalLinkQuery>

Note that the ${EXTERNALLY_LINKS_ASSOC_TYPE_NODE_ID} is a placeholder for the value of the id
attribute of the canonical ExternallyLinks AssociationType ClassificationNode.

The following query retrieves all ExtrinsicObjects that are linked to an ExternalLink specified by
${EXTERNAL_LINK_ID}:

SELECT eo.* From ExtrinsicObject eo, Association a WHERE
a.sourceObject = ${EXTERNAL_LINK_ID} AND
a.targetObject = eo.id AND
a.associationType = ${EXTERNALLY_LINKS_ASSOC_TYPE_NODE_ID};

<ExtrinsicObjectQuery>
 <TargetAssociationQuery>
 <PrimaryFilter logicalOperator="AND" xsi:type="CompoundFilterType">
 <LeftFilter comparator="EQ" domainAttribute="sourceObject"
 value="${EXTERNAL_LINK_ID}"
 xsi:type="StringFilterType"/>
 <RightFilter comparator="EQ" domainAttribute="associationType"

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 66 of 129

2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

2376

2377
2378

2379

2380
2381

2382

2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399

2400

2401
2402

2403
2404

2405

2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417

 value="${EXTERNALLY_LINKS_ASSOC_TYPE_NODE_ID}"
 xsi:type="StringFilterType"/>
 </PrimaryFilter>
 </TargetAssociationQuery>
</ExtrinsicObjectQuery>

6.6.6 Audit Trail Queries
The following query retrieves all the AuditableEvents for the RegistryObject specified by
${REGISTRY_OBJECT_ID}:

SELECT ae.* FROM AuditableEvent ae, AffectedObject ao WHERE
ao.eventId = ae.id AND
ao.id = ${REGISTRY_OBJECT_ID}

<AuditableEventQuery>
 <AffectedObjectQuery>
 <PrimaryFilter comparator="EQ" domainAttribute="id"
 value="${REGISTRY_OBJECT_ID}" xsi:type="StringFilterType"/>
 </AffectedObjectQuery>
</AuditableEventQuery>

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 67 of 129

2418
2419
2420
2421
2422

2423

2424

2425
2426

2427

2428
2429
2430
2431
2432
2433
2434
2435
2436
2437

2438

7 Event Notification Protocols
This chapter defines the Event Notification feature of the OASIS ebXML Registry.

Event Notification feature allows OASIS ebXML Registries to notify its users and / or other registries about
events of interest. It allows users to stay informed about registry events without being forced to periodically
poll the registry. It also allows a registry to propagate internal changes to other registries whose content
might be affected by those changes.

ebXML registries support content-based Notification where interested parties express their interest in form of
a query. This is different from subject–based (sometimes referred to as topic-based) notification, where
information is categorized by subjects and interested parties express their interests in those predefined
subjects.

7.1 Use Cases
The following use cases illustrate different ways in which ebXML registries notify users or other registries.

7.1.1 CPP Has Changed
A user wishes to know when the CPP [ebCPP] of a partner is updated or superseded by another CPP. When
that happens he may wish to create a CPA [ebCPP] based upon the new CPP.

7.1.2 New Service is Offered
A user wishes to know when a new plumbing service is offered in her town and be notified every 10 days.
When that happens, she might try to learn more about that service and compare it with her current plumbing
service provider’s offering.

7.1.3 Monitor Download of Content
User wishes to know whenever his CPP [ebCPP] is downloaded in order to evaluate on an ongoing basis
the success of his recent advertising campaign. He might also want to analyze who the interested parties
are.

7.1.4 Monitor Price Changes
User wishes to know when the price of a product that she is interested in buying drops below a certain
amount. If she buys it she would also like to be notified when the product has been shipped to her.

7.1.5 Keep Replicas Consistent With Source Object
In order to improve performance and availability of accessing some registry objects, a local registry MAY
make replicas of certain objects that are hosted by another registry. The registry would like to be notified
when the source object for a replica is updated so that it can synchronize the replica with the latest state of
the source object.

7.2 Registry Events
Activities within a registry result in meaningful events. Typically, registry events are generated when a
registry processes client requests. In addition, certain registry events may be caused by administrative
actions performed by a registry operator. [ebRIM] defines the AuditableEvent class, instances of which
represent registry events. When such an event occurs, an AuditableEvent instance is generated by the
registry.

7.3 Subscribing to Events
A user MAY create a subscription with a registry if he or she wishes to receive notification for a specific type
of event. A user creates a subscription by submitting a Subscription instance to a registry using the

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 68 of 129

2439

2440

2441
2442

2443
2444

2445
2446

2447
2448

2449

2450

2451

2452

2453

2454

2455

2456
2457

2458

2459
2460

2461

2462

2463

2464

2465

2466

2467
2468

2469

2470

2471

2472
2473

2474
2475

2476

2477
2478

SubmitObjectsRequest. If a Subscription is submitted to a registry that does not support event notification
then the registry MUST return an UnsupportedCapabilityException.

The listing below shows a sample Subscription using a pre-defined SQL query as its selector that will result
in an email notification to the user whenever a Service is created that is classified as a “Plumbing” service
and located in “A Little Town.”

The SQL query within the selector in plain English says the following:

Find all Services that are Created AND classified by ClassificationNode
where ClassificationNode's Path ends with string "Plumbing", AND classified by ClassificationNode where
ClassificationNode's Code contains string "A Little Town.”

<rim:Subscription id="${SUBSCRIPTION_ID}" selector="${QUERY_ID}">
 <!--
 The selector is a reference to a query object that has the
following query defined
 SELECT * FROM Service s, AuditableEvent e, AffectectedObject ao,
 Classification c1, Classification c2
 ClassificationNode cn1, ClassificationNode cn2 WHERE
 e.eventType = 'Created' AND ao.id = s.id AND ao.parent=e.id AND
 c1.classifiedObject = s.id AND c1.classificationNode = cn1.id AND
 cn1.path LIKE '%Plumbing' AND
 c2.classifiedObject = s.id AND c2.classificationNode = cn2.id AND
 cn2.path LIKE '%A Little Town%'
 -->
 <!-- Next endPoint is an email address -->
 <rim:NotifyAction notificationOption="urn:oasis:names:tc:ebxml-
regrep:NotificationOptionType:Objects"
endPoint="mailto:farrukh.najmi@sun.com"/>
 <!-- Next endPoint is a service via reference to its ServiceBinding
object -->
 <rim:NotifyAction notificationOption="urn:oasis:names:tc:ebxml-
regrep:NotificationOptionType:ObjectRefs"
endPoint="urn:freebxml:registry:demoDB:serviceBinding:EpidemicAlertListen
erServiceBinding"/>
</rim:Subscription>

7.3.1 Event Selection
In order to only be notified of specific events of interest, the user MUST specify a reference to a stored
AdHocQuery object via the selector attribute within the Subscription instance. The query determines
whether an event qualifies for that Subscription or not. For details on query syntax see chapter 6.

7.3.2 Notification Action
When creating a Subscription, a user MAY also specify Actions within the subscription that specify what the
registry must do when an event matching the Subscription (subscription event) transpires.

A user MAY omit specifying an Action within a Subscription if he does not wish to be notified by the registry.
A user MAY periodically poll the registry and pull the pending Notifications.

[ebRIM] defines two standard ways that a NotifyAction may be used:

• Email NotifyAction that allows delivery of event notifications via email to a human user or to an
email end point for a software component or agent.

• Service NotifyAction that allows delivery of event notifications via a programmatic interface by
invoking a specified listener web service.

If the registry supports event notification, at some time after the successful processing of each request, it
MUST check all registered and active Subscriptions and see if any Subscriptions match the event. If a

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 69 of 129

2479

2480

2481

2482
2483

2484

2485

2486
2487

2488

2489

2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513

2514

2515

2516

2517
2518

2519

2520
2521

2522
2523

2524

2525

2526

2527

2528

2529

2530

match is found then the registry performs the Notification Actions required for the Subscription. A registry
MAY periodically perform such checks and corresponding notification actions in a batch mode based upon
registry specific policies.

7.3.3 Subscription Authorization
A registry operator or content owner MAY use custom Access Control Policies to decide which users are
authorized to create a subscription and to what events. A Registry MUST return an AuthorizationException in
the event that an unauthorized user submits a Subscription to a registry. It is up to registry implementations
whether to honour the existing subscription if an access control policy governing subscriptions becomes
more restrictive after subscription have already been created based on the older policy.

7.3.4 Subscription Quotas
A registry MAY use registry specific policies to decide an upper limit on the number of Subscriptions a user
is allowed to create. A Registry MUST return a QuotaExceededException in the event that an authorized
user submits more Subscriptions than allowed by their registry specific quota.

7.3.5 Subscription Expiration
Each subscription defines a startTime and and endTime attribute which determines the period within which a
Subscription is active. Outside the bounds of the active period, a Subsription MAY exist in an expired state
within the registry. A registry MAY remove an expired Subscription at any time. In such cases the identity of
a RegistryOperator user MUST be used for the request in order to have sufficient authorization to remove a
user’s Subscription.

A Registry MUST NOT consider expired Subscriptions when delivering notifications for an event to its
Subscriptions. An expired Subscription MAY be renewed by submitting a new Subscription.

7.3.6 Subscription Rejection
A Registry MAY reject a Subscription if it is too costly to support. For instance a Subscription that wishes to
be notified of any change in any object may be too costly for most registries. A Registry MUST return a
SubscriptionTooCostlyException in the event that an Authorized User submits a Subscription that is too
costly for the registry to process.

7.4 Unsubscribing from Events
A user MAY terminate a Subscription with a registry if he or she no longer wishes to be notified of events
related to that Subscription. A user terminates a Subscription by deleting the corresponding Subscription
object using the RemoveObjectsRequest to the registry.

Removal of a Subscription object follows the same rules as removal of any other object.

7.5 Notification of Events
A registry performs the Actions for a Subscription in order to actually deliver the events information to the
subscriber. However, regardless of the specific delivery Action, the registry MUST communicate the
Subscription events. The Subscription events are delivered within a Notification instance as described by
[ebRIM]. In case of Service NotifyAction, the Notification is delivered to a handler service conformant to the
RegistryClient interface. In case of an Email NotifyAction the notification is delivered an email address.

The listing below shows a sample Notification matching the subscription example in section 7.3:

<rim:Notification subscription="${SUBSCRIPTION_ID}">
 <rim:RegistryObjectList>
 <rim:Service id="f3373a7b-4958-4e55-8820-d03a191fb76a">
 <rim:Name>
 <rim:LocalizedString value="A Little Town Plumbing"/>
 </rim:Name>

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 70 of 129

2531

2532
2533

2534

2535
2536

2537
2538

2539

2540

2541

2542
2543

2544

2545
2546

2547
2548

2549

2550

2551

2552

2553

2554
2555

2556

2557

2558

2559
2560

2561

2562

2563

2564
2565

2566
2567

2568

2569

2570
2571
2572
2573
2574
2575

 <rim:Classification id="a3373a7b-4958-4e55-8820-d03a191fb76a"
classifiedObject="f3373a7b-4958-4e55-8820-d03a191fb76a"/>
 <rim:Classification id="b3373a7b-4958-4e55-8820-d03a191fb76a"
classifiedObject="f3373a7b-4958-4e55-8820-d03a191fb76a"/>
 </rim:Service>
 </rim:RegistryObjectList>
</rim:Notification>

A Notification MAY contain actual RegistryObjects or ObjectRefs to RegistryObjects within the
<rim:RegistryObjectList>. A client MAY specify the whether they wish to receive RegistryObjects or
ObjectRefs to RegistryObjects using the notificationOption attribute of the Action within the Subscription.
The registry MAY override this notificationOption based upon registry specific operational policies.

7.6 Retrieval of Events
The registry provides asynchronous PUSH style delivery of Notifications via notify Actions as described
earlier. However, a client MAY also use a PULL style to retrieve any pending events for their Subscriptions.
Pulling of events is done using the AdHocQuery protocol and querying the Notification class. A registry
SHOULD buffer undelivered notifications for some period to allow clients to PULL those notifications. The
period that a registry SHOULD buffer undelivered notifications MAY be defined using registry specific
policies.

7.7 Pruning of Events
A registry MAY periodically prune AuditableEvents in order to manage its resources. It is up to the registry
when such pruning occurs. It is up to the registry to determine when undelivered events are purged. A
registry SHOULD perform such pruning by removing the older information in its Audit Trail content. However,
it MUST not remove the original Create Event at the beginning of the audit trail since the Create Event
establishes the owner of the RegistryObject.

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 71 of 129

2576
2577
2578
2579
2580
2581
2582

2583

2584
2585

2586
2587

2588

2589
2590

2591
2592

2593
2594

2595

2596
2597

2598
2599

2600

8 Content Management Services
This chapter describes the Content Management services of the ebXML Registry. Examples of Content
Management Services include, but are not limited to, content validation and content cataloging. Content
Management Services result in improved quality and integrity of registry content and metadata as well as
improved ability for clients to discover that content and metadata.

The Content Management Services facility of the registry is based upon a pluggable architecture that allows
clients to publish and discover new Content Management Services as Service objects that conform to a
normative web service interface specified in this chapter. Clients MAY configure a Content Management
Service that is specialized for managing a specific type of content.

8.1 Content Validation
The Content Validation feature provides the ability to enforce domain specific validation rules upon
submitted content and metadata in a content specific manner.

 Content
Validation
Service

Invocation Control File

Success | Failure

Original
Content

Content +
Metadata

 Figure 13: Content Validation Service

A registry uses one or more Content Validation Services to automatically validate the RegistryObjects and
repository items when they are submitted to the registry. A registry MUST reject a submission request in its
entirety if it contains invalid data. In such cases a ValidationException MUST be returned to the client.

Content Validation feature improves the quality of data in the registry.

8.1.1 Content Validation: Use Cases
The following use cases illustrate the Content Validation feature:

8.1.1.1 Validation of HL7 Conformance Profiles

The Healthcare Standards organization HL7 uses content validation to enforce consistency rules and
semantic checks whenever an HL7 member submits an HL7 Conformance Profile. HL7 is also planning to
use the feature to improve the quality of other types of HL7 artifacts.

8.1.1.2 Validation of Business Processes

Content validation may be used to enforce consistency rules and semantic checks whenever a Business
Process is submitted to the registry. This feature may be used by organizations such as UN/CEFACT, OAGi,
and RosettaNet.

8.1.1.3 Validation of UBL Business Documents

Content validation may be used by the UBL technical committee to enforce consistency rules and semantic
checks whenever a UBL business document is submitted to the registry.

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 72 of 129

2601

2602

2603
2604

2605

2606

2607
2608

2609

2610

2611

2612

2613
2614

2615

2616
2617

2618

2619

2620

2621

2622

2623
2624

2625

2626

2627
2628

2629

2630

2631

8.2 Content Cataloging
The Content Cataloging feature provides the ability to selectively convert submitted RegistryObject and
repository items into metadata defined by [ebRIM], in a content specific manner.

 Content
Cataloging

Service

Original
Content

Content +
Metadata

Cataloged
Content

Content +
Metadata

Invocation Control File

 Figure 14: Content Cataloging Service

A registry uses one or more Content Cataloging Services to automatically catalog RegistryObjects and
repository items. Cataloging creates and/or updates RegistryObject metadata such as ExtrinsicObject or
Classification instances. The cataloged metadata enables clients to discover the repository item based upon
content from the repository item, using standard query capabilities of the registry. This is referred to as
Content-based Discovery.

The main benefit of the Content Cataloging feature is to enable Content-based Discovery.

8.2.1 Content-based Discovery: Use Cases
There are many scenarios where content-based discovery is necessary.

8.2.1.1 Find All CPPs Where Role is “Buyer”

A company that sells a product using the RosettaNet PIP3A4 Purchase Order process wants to find CPPs
for other companies where the Role element of the CPP is that of “Buyer”.

8.2.1.2 Find All XML Schema’s That Use Specified Namespace

A client may wish to discover all XML Schema documents in the registry that use an XML namespace
containing the word “oasis”.

8.2.1.3 Find All WSDL Descriptions with a SOAP Binding

An ebXML registry client is attempting to discover all repository items that are WSDL descriptions that have
a SOAP binding defined. Note that SOAP binding related information is content within the WSDL document
and not metadata.

8.3 Abstract Content Management Service
This section describes in abstract terms how the registry supports pluggable, user-defined Content
Management Services. A Content Management Service is invoked in response to content being submitted to
the registry via the standard Submit/UpdateObjectsRequest method. The Service invocation is on a per
request basis where one request may result in many invocations, one for each RegistryObject for which a
Content Management Service is configured within the registry.

The registry may perform such invocation in one of two ways.

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 73 of 129

2632

2633

2634

2635
2636

2637

2638
2639

2640
2641

2642

2643

2644

2645

2646

2647

2648

2649
2650

2651

2652

2653
2654

2655

2656
2657

2658
2659

2660

2661

2662

• Inline Invocation Model: Content Management Service may be invoked inline with the processing
of the Submit/UpdateObjectsRequest and prior to committing the content. This is referred to as
Inline Invocation Model.

• Decoupled Invocation Model: Content Management Service may be invoked decoupled from the
processing of the Submit/UpdateObjectsRequest and some time after committing the content. This
is referred to as Decoupled Invocation Model.

8.3.1 Inline Invocation Model
In an inline invocation model a registry MUST invoke a Content Management Service inline with
Submit/UpdateObjectsRequest processing and prior to committing the Submit/UpdateObjectsRequest. All
metadata and content from the original Submit/UpdateObjectsRequest request or from the Content
Management Service invocation MUST be committed as an atomic transaction.

Figure 15 shows an abstract Content Management Service and how it is used by an ebXML Registry using
an inline invocation model. The steps are as follows:

1. A client submits a Content Management Service S1 to an ebXML Registry. The client
typically belongs to an organization responsible for defining a specific type of content. For
example the client may belong to RosettaNet.org and submit a Content Validation Service
for validating RosettaNet PIPs. The client uses the standard Submit/UpdateObjectsRequest
interface to submit the Service. This is a one-time step to configure this Content
Management Service in the registry.

2. Once the Content Management Service has been submitted, a potentially different client
may submit content to the registry that is of the same object type for which the Content
Management Service has been submitted. The client uses the standard
Submit/UpdateObjectsRequest interface to submit the content.

3. The registry determines there is a Content Management Service S1 configured for the
object type for the content submitted. It invokes S1 using a
ContentManagementServiceRequest and passes it the content.

4. The Content Management Service S1 processes the content and sends back a
ContentManagementServiceResponse.

5. The registry then commits the content to the registry if there are no errors encountered.
6. The registry returns a RegistryResponse to the client for the Submit/UpdateObjectsRequest

in step 2.

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 74 of 129

2663

2664
2665

2666

2667

2668

2669

2670

2671
2672

2673
2674

2675
2676

2677

2678

2679

2680

2681

2682

2683

2684

2685

2686

2687

2688

2689

2690

2691

2692

2693

2694

2695

2696

 Content
Management

Service

2. SubmitObjectRequest

 ebXML RegistryRegistry Client

3. Content

Management

Service

Request

4. Content

Management

Service

Response

Content +
Metadata

Content +
Metadata

Invocation
Control

File

6. RegistryResponse

5. commit

1. SubmitObjectRequest Service

Persistent
Store

 Figure 15: Content Management Service: Inline Invocation Model

8.3.2 Decoupled Invocation Model
In a decoupled invocation model a registry MUST invoke a Content Management Service independent of or
decoupled from the Submit/UpdateObjectsRequest processing. Any errors encountered during Content
Management Service invocation MUST NOT have any impact on the original Submit/UpdateObjectsRequest
processing.

All metadata and content from the original Submit/UpdateObjectsRequest request MUST be committed as
an atomic transaction that is decoupled from the metadata and content that may be generated by the
Content Management Service invocation.

Figure 16 shows an abstract Content Management Service and how it is used by an ebXML Registry using
a decoupled invocation model. The steps are as follows:

1. Same as in inline invocation model (Content Management Service is submitted).
2. Same as in inline invocation model (client submits content using

Submit/UpdateObjectsRequest).
3. The registry processes the Submit/UpdateObjectsRequest and commits it to persistent

store.
4. The registry returns a RegistryResponse to the client for the Submit/UpdateObjectsRequest

in step 2.
5. The registry determines there is a Content Management Service S1 configured for the

object type for the content submitted. It invokes S1 using a
ContentManagementServiceRequest and passes it the content.

6. The Content Management Service S1 processes the content and sends back a
ContentManagementServiceResponse.

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 75 of 129

2697
2698

2699

2700

2701
2702

2703

2704

2705
2706

2707
2708

2709

2710

2711

2712

2713

2714

2715

2716

2717

2718

2719

2720

2721

7. If the ContentManagementServiceResponse includes any generated or modified content it
is committed to the persistent store as separate transaction. If there are any errors
encountered during decoupled invocation of a Content Management Service then these
errors are logged by the registry in a registry specific manner and MUST NOT be reported
back to the client.

 Content
Management

Service

2. SubmitObjectRequest

 ebXML RegistryRegistry Client

5. Content

Management

Service

Request

6. Content

Management

Service

Response

Content +
Metadata

Content +
Metadata

Invocation
Control

File

4. RegistryResponse

3. commit

1. SubmitObjectRequest Service

7. commit

Persistent
Store

 Figure 16: Content Management Service: Decoupled Invocation Model

8.4 Content Management Service Protocol
This section describe the abstract Content Management Service protocol that is the base- protocol for other
concrete protocols such as Validate Content protocol and Catalog Content protocol. The concrete protocols
will be defined later in this document.

8.4.1 ContentManagementServiceRequestType
The ContentManagementServiceRequestType MUST be the abstract base type for all requests sent from a
registry to a Content Management Service.

8.4.1.1 Syntax:

<complexType name="ContentManagementServiceRequestType">
 <complexContent>
 <extension base="rs:RegistryRequestType">
 <sequence>
 <element name="OriginalContent"
type="rim:RegistryObjectListType"/>
 <element name="InvocationControlFile"
type="rim:ExtrinsicObjectType" maxOccurs="unbounded" minOccurs="0"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 76 of 129

2722

2723

2724

2725

2726

2727

2728
2729

2730

2731

2732
2733

2734

2735
2736

2737

2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749



8.4.1.2 Parameters:

The following parameters are parameters that are either newly defined for this type or are inherited and
have additional semantics beyond those defined in the base type description.

 InvocationControlFile: This parameter specifies the ExtrinsicObject for a repository item
that the caller wishes to specify as the Invocation Control File. This specification does not
specify the format of this file. There MUST be a corresponding repository item as an
attachment to this request. The corresponding repository item SHOULD follow the same
rules as attachments in Submit/UpdateObjectsRequest.

 OriginalContent: This parameter specifies the RegistryObjects that will be processed by
the content management service. In case of ExtrinsicObject instances within the
OriginalContent there MAY be repository items present as attachments to the
ContentManagementServiceRequest. This specification does not specify the format of such
repository items. The repository items SHOULD follow the same rules as attachments in
Submit/UpdateObjectsRequest.

8.4.1.3 Returns:

This request returns a ContentManagementServiceResponse. See section 8.4.2 for details.

8.4.1.4 Exceptions:

In addition to the exceptions returned by base request types, the following exceptions MAY be returned:

 MissingRepositoryItemException: signifies that the caller did not provide a repository item
as an attachment to this request when the Service requires it.

 InvocationControlFileException: signifies that the InvocationControlFile(s) provided by the
caller do not match the InvocationControlFile(s) expected by the Service.

 UnsupportedContentException: signifies that this Service does not support the content
provided by the caller.

8.4.2 ContentManagementServiceResponseType
The ContentManagementServiceResponseType is sent by a Content Management Service as a response to
a ContentManagementServiceRequestType. The ContentManagementServiceResponseType is the abstract
base type for all responses sent to a registry from a Content Management Service. It extends the
RegistryResponseType and does not define any new parameters.

8.4.2.1 Syntax:

<complexType name="ContentManagementServiceResponseType">
 <complexContent>
 <extension base="rs:RegistryResponseType">
 <sequence>
 </sequence>
 </extension>
 </complexContent>
 </complexType>



regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 77 of 129

2750

2751

2752

2753

2754

2755
2756

2757
2758

2759
2760

2761
2762

2763
2764

2765

2766

2767

2768

2769

2770

2771

2772

2773

2774

2775

2776

2777

2778
2779

2780
2781

2782

2783

2784
2785
2786
2787
2788
2789
2790
2791

2792

8.4.2.2 Parameters:

No new parameters are defined other than those inherited from RegistryResponseType.

8.5 Publishing / Configuration of a Content Management Service
Any Submitter MAY submit an arbitrary Content Management Service to an ebXML Registry. The Content
Management Service MUST be published using the standard LifeCycleManager interface.

The Submitter MUST use the standard Submit/UpdateObjectsRequest to publish:

o A Service instance for the Content Management Service. In Figure 17 this is exemplified by the
defaultXMLCatalogingService in the upper-left corner. The Service instance MUST have an
Association with a ClassificationNode in the canonical ObjectType ClassificationScheme as defined
by [ebRIM]. The Service MUST be the sourceObject while a ClassificationNode MUST be the
targetObject. This association binds the Service to that specific ObjectType. The associationType
for this Association instance MUST be “ContentManagementServiceFor.” The Service MUST be
classified by the canonical ContentManagementService ClassificationScheme as defined by
[ebRIM]. For example it may be classified as a “ContentValidationService” or a
“ContentCatalogingService.”

o The Service instance MAY be classified by a ClassificationNode under the canonical
InvocationModel ClassificationScheme as defined by [ebRIM], to determine whether it uses the
Inline Invocation model or the Decoupled Invocation model.

o The Service instance MAY be classified by a ClassificationNode under the canonical
ErrorHandlingModel ClassificationScheme as defined by [ebRIM], to determine whether the Service
should fail on first error or simply log the error as a warning and continue. See section 8.6.4 for
details.

o A ServiceBinding instance contained within the Service instance that MUST provide the accessURI
to the Cataloging Service.

o An optional ExternalLink instance on the ServiceBinding that is resolvable to a web page describing:

 The format of the supported content to be Cataloged

 The format of the supported Invocation Control File

Note that no SpecificationLink is required since this specification [ebRS] is implicit for Content
Cataloging Services.

o One or more Invocation Control File(s) consisting of an ExtrinsicObject and a repository item pair.
The ExtrinsicObject for the Invocation Control File MUST have a required Association with
associationType value that references a descendant ClassificationNode of the canonical
ClassificationNode “InvocationControlFileFor.” This is exemplified by the
cppCatalogingServiceXSLT and the oagBODCatalogingServiceXSLT objects in Figure 17 (left side
of picture). The Invocation Control File MUST be the sourceObject while a ClassificationNode in the
canonical ObjectType ClassificationScheme MUST be the targetObject.

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 78 of 129

2793

2794

2795

2796

2797
2798

2799

2800

2801

2802
2803

2804
2805

2806
2807

2808

2809

2810

2811

2812

2813

2814
2815

2816

2817

2818

2819

2820

2821

2822

2823

2824

2825
2826

2827
2828

2829

2830

 Figure 17: Cataloging Service Configuration

Figure 17 shows an example of the configuration of the Canonical XML Cataloging Service associated with
the objectType for XML content. This Cataloging Service may be used with any XML content that has its
objectType attribute hold a reference to the xmlObjectType ClassificationNode or one of its descendants.

The figure also shows two different Invocation Control Files, cppCatalogingServiceXSLT and
oagBODCatalogingServiceXSLT that may be used to catalog ebXML CPP and OAG Business Object
Documents (BOD) respectively.

8.5.1 Multiple Content Management Services and Invocation Control Files
This specification allows clients to submit multiple Content Management Services of the same type (e.g.
validation, cataloging) and multiple Invocation Control Files for the same objectType. Content Management
Services of the same type of service for the same ObjectType are referred to as peer Content Management
Services.

When there are multiple Content Management Services and Invocation Control Files for the same
ObjectType there MUST be an unambiguous association between a Content Management Service and its
Invocation Control File(s). This MUST be defined by an Association instance with associationType value that
references a ClassificationNode that is a descendant of the canonical ClassificationNode
“InvocationControlFileFor” where the ExtrinsicObject for each Invocation Control File is the sourceObject
and the Service is the targetObject.

The order of invocation of peer Content Management Services is undefined and MAY be determined in a
registry specific manner.

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 79 of 129

2831
2832

2833
2834

2835

2836

2837
2838

2839

2840
2841

2842
2843

2844

2845

2846
2847

2848
2849

2850

2851

2852

8.6 Invocation of a Content Management Service
This section describes how a registry invokes a Content Management Service.

8.6.1 Resolution Algorithm For Service and Invocation Control File
When a registry receives a submission of a RegistryObject, it MUST use the following algorithm to
determine or resolve the Content Management Services and Invocation Control Files to be used for dynamic
content management for the RegistryObject:

1. Get the objectType attribute of the RegistryObject.

2. Query to see if the ClassificationNode referenced by the objectType is the targetObject of an Association with
associationType of ContentManagementServiceFor. If the desired Association is not found for this
ClassificationNode then repeat this step with its parent ClassificationNode. Repeat until the desired
Association is found or until the parent is the ClassificationScheme. If desired Association(s) is found then
repeat following steps for each such Association instance.

3. Check if the sourceObject of the desired Association is a Service instance. If not, log an
InvalidConfigurationException. If it is a Service instance, then use this Service as the Content Management
service for the RegistryObject.

4. Query to see if the objectType ClassificationNode is the targetObject of one or more Associations whose
associationType value references a ClassificationNode that is a descendant of the canonical
ClassificationNode InvocationControlFileFor. If desired Association is not found for this ClassificationNode
then repeat this step with its parent ClassificationNode. Repeat until the desired Association is found or until
the parent is the ClassificationScheme.

5. If desired Association(s) is found then check if the sourceObject of the desired Association is an
ExtrinsicObject instance. If not, log an InvalidConfigurationException. If sourceObject is an ExtrinsicObject
instance, then use its repository item as an Invocation Control File. If there are multiple
InvocationControlFiles then all of them MUST be provided when invoking the Service.

The above algorithm allows for objectType hierarchy to be used to configure Content Management Services
and Invocation Control Files with varying degrees of specificity or specialization with respect to the type of
content.

8.6.2 Audit Trail and Cataloged Content
The Cataloged Content generated as a result of the invocation of a Content Management Service has an
audit trail consistent with RegistryObject instances that are submitted by Registry Clients. However, since a
Registry Client does not submit Cataloged Content, the user attribute of the AuditableEvent instances for
such Cataloged Content references the Service object for the Content Management Service that generated
the Cataloged Content. This allows an efficient way to distinguish Cataloged Content from content submitted
by Registry Clients.

8.6.3 Referential Integrity
A registry MUST maintain referential integrity between the RegistryObjects and repository items invocation
of a Content Management Service.

8.6.4 Error Handling
If the Content Management Service is classified by the “FailOnError” ClassificationNode under canonical
ErrorHandlingModel ClassificationScheme as defined by [ebRIM], then the registry MUST stop further
processing of the Submit/UpdateObjectsRequest and return status of “Failure” upon first error returned by a
Content Management Service Invocation.

If the Content Management Service is classified by the “LogErrorAndContinue” ClassificationNode under
ErrorHandlingModel then the registry MUST continue to process the Submit/UpdateObjectsRequest and not
let any Content Management Service invocation error affect the storing of the RegistryObjects and

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 80 of 129

2853

2854

2855

2856
2857

2858

2859

2860

2861
2862
2863
2864
2865

2866
2867
2868

2869
2870
2871
2872
2873

2874
2875
2876
2877

2878
2879

2880

2881

2882

2883
2884

2885
2886

2887

2888

2889

2890

2891

2892

2893
2894

2895

2896

2897
2898

repository items that were submitted. Such errors SHOULD be logged as Warnings within the
RegistryResponse returned to the client. In this case a registry MUST return a normal response with status
of “Success” if the submitted content and metadata is stored successfully even when there are errors
encountered during dynamic invocation of one or more Content Management Services.

8.7 Validate Content Protocol
The interface of a Content Validation Service MUST implement a single method called validateContent. The
validateContent method accepts a ValidateContentRequest as parameter and returns a
ValidateContentResponse as its response if there are no errors.

The OriginalContent element within a ValidateContentRequest MUST contain exactly one RegistryObject
that needs to be cataloged. The resulting ValidateContentResponse contains the status attribute that
communicates whether the RegistryObject (and its content) are valid or not.

The Validate Content protocol does not specify the implementation details of any specific Content Validation
Service.

 Figure 18: Validate Content Protocol

8.7.1 ValidateContentRequest
The ValidateContentRequest is used to pass content to a Content Validation Service so that it can validate
the specified RegistryObject and any associated content. The RegistryObject typically is an ExternalLink (in
the case of external content) or an ExtrinsicObject. The ValidateContentRequest extends the base type
ContentManagementServiceRequestType.

8.7.1.1 Syntax:

<element name="ValidateContentRequest">
 <complexType>
 <complexContent>
 <extension base="cms:ContentManagementServiceRequestType">
 <sequence>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
 </element>



regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 81 of 129

2899

2900
2901

2902

2903

2904

2905
2906

2907
2908

2909

2910

2911

2912
2913

2914

2915
2916

2917
2918

2919

2920
2921
2922
2923
2924
2925
2926
2927
2928
2929

2930

8.7.1.2 Parameters:

The following parameters are parameters that are either newly defined for this type or are inherited and
have additional semantics beyond those defined in the base type description.

 InvocationControlFile: Inherited from base type. This parameter may not be present. If
present its format is defined by the Content Validation Service.

 OriginalContent: Inherited from base type. This parameter MUST contain exactly one
RegistryObject (e.g. ExternalLink, ExtrinsicObject) and potentially an associated content.
This specification does not specify the format of the content. If it is an ExtrinsicObject then
there MAY be a corresponding repository item as an attachment to this request that is the
content. The corresponding repository item SHOULD follow the same rules as attachments
in Submit/UpdateObjectsRequest.

8.7.1.3 Returns:

This request returns a ValidateContentResponse. See section 8.7.2 for details.

8.7.1.4 Exceptions:

In addition to the exceptions returned by base request types, the following exceptions MAY be returned:

 InvalidContentException: signifies that the specified content was found to be invalid. The
exception SHOULD include enough detail for the client to be able to determine how to
make the content valid.

8.7.2 ValidateContentResponse
The ValidateContentResponse is sent by the Content Validation Service as a response to a
ValidateContentRequest.

8.7.2.1 Syntax:

<element name="ValidateContentResponse">
 <complexType>
 <complexContent>
 <extension base="cms:ContentManagementServiceResponseType">
 <sequence>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
 </element>



8.7.2.2 Parameters:

The following parameters are parameters that are either newly defined for this type or are inherited and
have additional semantics beyond those defined in the base type description.

 status: Inherited attribute. This enumerated value is used to indicate the status of the
request. Values for status are as follows:

• Success - This status specifies that the content specified in the
ValidateContentRequest was valid.

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 82 of 129

2931

2932
2933

2934
2935

2936
2937

2938
2939

2940
2941

2942

2943

2944

2945

2946

2947

2948
2949

2950

2951

2952

2953

2954

2955

2956
2957
2958
2959
2960
2961
2962
2963
2964
2965

2966

2967

2968

2969

2970

2971

2972

2973

2974

• Failure - This status specifies that the request failed. If the error returned is
an InvalidContentException then the content specified in the
ValidateContentRequest was invalid. If there was some other failure
encountered during the processing of the request then a different error MAY
be returned.

8.8 Catalog Content Protocol
The interface of the Content Cataloging Service MUST implement a single method called catalogContent.
The catalogContent method accepts a CatalogContentRequest as parameter and returns a
CatalogContentResponse as its response if there are no errors.

The CatalogContentRequest MAY contain repository items that need to be cataloged. The resulting
CatalogContentResponse contains the metadata and possibly content that gets generated or updated by
the Content Cataloging Service as a result of cataloging the specified repository items.

The Catalog Content protocol does not specify the implementation details of any specific Content
Cataloging Service.

 Figure 19: Catalog Content Protocol

8.8.1 CatalogContentRequest
The CatalogContentRequest is used to pass content to a Content Cataloging Service so that it can create
catalog metadata for the specified RegistryObject and any associated content. The RegistryObject typically
is an ExternalLink (in case of external content) or an ExtrinsicObject. The CatalogContentRequest extends
the base type ContentManagementServiceRequestType.

8.8.1.1 Syntax:

<element name="CatalogContentRequest">
 <complexType>
 <complexContent>
 <extension base="cms:ContentManagementServiceRequestType">
 <sequence>
 </sequence>
 </extension>
 </complexContent>

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 83 of 129

2975

2976

2977

2978

2979

2980

2981

2982

2983
2984

2985
2986

2987

2988

2989

2990
2991

2992

2993
2994

2995
2996

2997

2998
2999
3000
3001
3002
3003
3004
3005

 </complexType>
 </element>



8.8.1.2 Parameters:

The following parameters are parameters that are either newly defined for this type or are inherited and
have additional semantics beyond those defined in the base type description.

 InvocationControlFile: Inherited from base type. If present its format is defined by the
Content Cataloging Service.

 OriginalContent: Inherited from base type. This parameter MUST contain exactly one
RegistryObject (e.g. ExternalLink, ExtrinsicObject) and potentially an associated content.
This specification does not specify the format of the content. If it is an ExtrinsicObject then
there MAY be a corresponding repository item as an attachment to this request that is the
content. The corresponding repository item SHOULD follow the same rules as attachments
in Submit/UpdateObjectsRequest.

8.8.1.3 Returns:

This request returns a CatalogContentResponse. See section 8.8.2 for details.

8.8.1.4 Exceptions:

In addition to the exceptions returned by base request types, the following exceptions MAY be returned:

 CatalogingException: signifies that an exception was encountered in the Cataloging
algorithm for the service.

8.8.2 CatalogContentResponse
The CatalogContentResponse is sent by the Content Cataloging Service as a response to a
CatalogContentRequest.

8.8.2.1 Syntax:

<element name="CatalogContentResponse">
 <complexType>
 <complexContent>
 <extension base="cms:ContentManagementServiceResponseType">
 <sequence>
 <element name="CatalogedContent"
type="rim:RegistryObjectListType"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
 </element>



8.8.2.2 Parameters:

The following parameters are parameters that are either newly defined for this type or are inherited and
have additional semantics beyond those defined in the base type description.

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 84 of 129

3006
3007

3008

3009

3010

3011
3012

3013
3014

3015
3016

3017
3018

3019
3020

3021

3022

3023

3024

3025

3026

3027

3028

3029

3030
3031

3032

3033

3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045

3046

3047

3048
3049

 CatalogedContent: This parameter specifies a collection of RegistryObject instances that
were created or updated as a result of dynamic content cataloging by a content cataloging
service. The Content Cataloging Service may add metadata such as Classifications,
ExternalIdentifiers, name, description etc. to the CatalogedContent element. There MAY be
an accompanying repository item as an attachment to this response message if the original
repository item was modified by the request.

8.9 Illustrative Example: Canonical XML Cataloging Service
Figure 20 shows a UML instance diagram to illustrate how a Content Cataloging Service is used. This
Content Cataloging Service is the normative Canonical XML Cataloging Service described in section 8.10.

o In the center we see a Content Cataloging Service name defaultXMLCataloger Service.

o On the left we see a CPP repository item and its ExtrinsicObject inputExtObjForCPP being input as
Original Content to the defaultXMLCataloging Service.

o On top we see an XSLT style sheet repository item and its ExtrinsicObject that is configured as an
Invocation Control File for the defaultXMLCataloger Service.

o On the right we see the outputExtObjForCPP, which is the modified ExtrinsicObject for the CPP. We
also see a Classification roleClassification, which classifies the CPP by the Role element within the
CPP. These are the Cataloged Content generated as a result of the Cataloging Service cataloging
the CPP.

Invocation Control File

CatalogedContentOriginalContent

 Figure 20: Example of CPP cataloging using Canonical XML Cataloging Service

8.10 Canonical XML Content Cataloging Service
An ebXML Registry MUST provide the canonical XML Content Cataloging Service natively as a built-in
service with the following constraints:

• There is exactly one Service instance for the Canonical XML Content Cataloging Service

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 85 of 129

3050

3051
3052

3053
3054

3055

3056

3057

3058

3059

3060

3061

3062

3063

3064

3065

3066

3067

3068
3069

3070
3071

3072

3073

3074

3075

3076

• The Service is an XSLT engine

• The Service may be invoked with exactly one Invocation Control File

• The Original Content for the Service MUST be XML document(s)

• The Cataloged Content for the Service MUST be XML document(s)

• The Invocation Control File MUST be an XSLT style sheet

• Each invocation of the Service MAY be with different Invocation Control File (XSLT style sheet)
depending upon the objectType of the RegistryObject being cataloged. Each objectType SHOULD
have its own unique XSLT style sheet. For example, ebXML CPP documents SHOULD have a
specialized ebXML CPP Invocation Control XSLT style sheet.

• The Service MUST have at least one input XML document that is a RegistryObject. Typically this is
an ExtrinsicObject or an ExternalLink.

• The Service MAY have at most one additional input XML document that is the content represented
by the RegistryObject (e.g. a CPP document or an HL7 Conformance Profile). The optional second
input MUST be referenced within the XSLT Style sheet by a using the “document” function with the
document name specified by variable “repositoryItem” as in “document($repositoryItem).” A registry
MUST define the variable “repositoryItem” when invoking the Canonical XML Cataloging Service.

• The canonical XML Content Cataloging Service MUST apply the XSLT style sheet to the input XML
instance document(s) in an XSLT transformation to generate the Cataloged Output.

The Canonical XML Content Cataloging Service is a required normative feature of an ebXML Registry.

8.10.1 Publishing of Canonical XML Content Cataloging Service
An ebXML Registry MUST provide the canonical XML Content Cataloging Service natively as a built-in
service. This built-in service MUST be published to the registry as part of the intrinsic bootstrapping of
required canonical data within the registry.

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 86 of 129

3077

3078

3079

3080

3081

3082

3083

3084
3085

3086

3087

3088

3089

3090
3091

3092

3093

3094

3095

3096

3097
3098

3099

9 Cooperating Registries Support
This chapter describes the capabilities and protocols that enable multiple ebXML registries to cooperate with
each other to meet advanced use cases.

9.1 Cooperating Registries Use Cases
The following is a list of use cases that illustrate different ways that ebXML registries cooperate with each
other.

9.1.1 Inter-registry Object References
A Submitting Organization wishes to submit a RegistryObject to a registry such that the submitted object
references a RegistryObject in another registry.

An example might be where a RegistryObject in one registry is associated with a RegistryObject in another
registry.

 Figure 21: Inter-registry Object References

9.1.2 Federated Queries
A client wishes to issue a single query against multiple registries and get back a single response that
contains results based on all the data contained in all the registries. From the client’s perspective it is
issuing its query against a single logical registry that has the union of all data within all the physical
registries.

9.1.3 Local Caching of Data from Another Registry
A destination registry wishes to cache some or all the data of another source registry that is willing to share
its data. The shared dataset is copied from the source registry to the destination registry and is visible to
queries on the destination registry even when the source registry is not available.

Local caching of data may be desirable in order to improve performance and availability of accessing that
object.

An example might be where a RegistryObject in one registry is associated with a RegistryObject in another
registry, and the first registry caches the second RegistryObject locally.

9.1.4 Object Relocation
A Submitting Organization wishes to relocate its RegistryObjects and/or repository items from the registry
where it was submitted to another registry.

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 87 of 129

3100

3101

3102

3103

3104

3105

3106

3107

3108

3109

3110

3111
3112

3113

3114

3115

3116
3117

3118

3119

3120

3121
3122

3123
3124

3125
3126

3127

3128
3129

9.2 Registry Federations
A registry federation is a group of registries that have voluntarily agreed to form a loosely coupled union.
Such a federation may be based on common business interests and specialties that the registries may
share. Registry federations appear as a single logical registry to registry clients.

 Figure 22: Registry Federations

Registry federations are based on a peer-to-peer (P2P) model where all participating registries are equal.
Each participating registry is called a registry peer. There is no distinction between the registry operator that
created a federation and those registry operators that joined that Federation later.

Any registry operator MAY form a registry federation at any time. When a federation is created it MUST have
exactly one registry peer which is the registry operated by the registry operator that created the federation.

Any registry MAY choose to voluntarily join or leave a federation at any time.

9.2.1 Federation Metadata
The Registry Information model defines the Registry and Federation classes. Instances of these classes
and the associations between these instances describe a federation and its members. Such instance data is
referred to as Federation Metadata. The Registry and Federation classes are described in detail in [ebRIM].

The Federation information model is summarized here as follows:

o A Federation instance represents a registry federation.

o A Registry instance represents a registry that is a member of the Federation.

o An Association instance with associationType of HasFederationMember represents membership of
the registry in the federation. This Association links the Registry instance and the Federation
instance.

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 88 of 129

3130

3131

3132
3133

3134
3135

3136

3137
3138

3139
3140

3141

3142

3143

3144
3145

3146

3147

3148

3149

3150

3151

3152

 Figure 23: Federation Metadata Example

9.2.2 Local Vs. Federated Queries
A federation appears to registry clients as a single unified logical registry. An AdhocQueryRequest sent by a
client to a federation member MAY be local or federated. A new boolean attribute named federated is added
to AdhocQueryRequest to indicate whether the query is federated or not.

9.2.2.1 Local Queries

When the federated attribute of AdhocQueryRequest has the value of false then the query is a local query.
In the absence of a federated attribute the default value of federated attribute is false.

A local AdhocQueryRequest is only processed by the registry that receives the request. A local
AdhocQueryRequest does not operate on data that belongs to other registries.

9.2.2.2 Federated Queries

When the federated attribute of AdhocQueryRequest has the value of true then the query is a federated
query.

A federation member MUST route a federated query received by it to all other federation member registries
on a best attempt basis. If a member is not reachable for any reason then it MAY be skipped.

When a registry routes a federated query to other federation members it MUST set the federated attribute
value to false and the federation attribute value to null to avoid infinite loops.

A federated query operates on data that belongs to all members of the federation.

When a client submits a federated query to a registry such that the query specifies no federation and no
federations exist in the registry, then the registry MUST treat it as a local query.

When a client submits a federated query that invokes a parameterized stored query, the registry MUST
resolve the parameterized stored query into its non-stored formed and MUST replace all variables with user-
supplied parameters on registry supplied contextual parameters before routing it to a federation member.

When a client submits a federated iterative query, the registry MUST use the startIndex attribute value of the
original request as the startIndex attribute value of the routed request sent to each federation member. The
response to the original request MUST be the union of the results from each routed query. In such cases the
registry MUST return a totalResultCount attribute value on the federated query response to be equal to the

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 89 of 129

3153
3154

3155

3156
3157

3158

3159

3160
3161

3162
3163

3164

3165

3166

3167

3168

3169

3170

3171

3172
3173

3174
3175

3176

3177

3178
3179

3180

maximum of all totalResultCount attribute values returned by each federation member.

9.2.2.3 Membership in Multiple Federations

A registry MAY be a member of multiple federations. In such cases if the federated attribute of
AdhocQueryRequest has the value of true then the registry MUST route the federated query to all
federations that it is a member of.

Alternatively, the client MAY specify the id of a specific federation that the registry is a member of, as the
value of the federation parameter. The type of the federation parameter is anyURI and identifies the “id”
attribute of the desired Federation.

In such cases the registry MUST route the federated query to the specified federation only.

9.2.3 Federated Lifecycle Management Operations
Details on how to create and delete federations and how to join and leave a federation are described in
9.2.8.

All lifecycle operations SHOULD be performed on a RegistryObject within its home registry using the
operations defined by the LifeCycleManager interface. Unlike query requests, lifecycle management
requests do not support any federated capabilities.

9.2.4 Federations and Local Caching of Remote Data
A federation member is not required to maintain a local cache of replicas of RegistryObjects and repository
items that belong to other members of the federation.

A registry MAY choose to locally cache some or all data from any other registry whether that registry is a
federation member or not. Data caching is orthogonal to registry federation and is described in section 9.3.

Since by default there is minimal replication in the members of a federation, the federation architecture
scales well with respect to memory and disk utilization at each registry.

Data replication is often necessary for performance, scalability and fault-tolerance reasons.

9.2.5 Caching of Federation Metadata
A special case for local caching is the caching of the Federation and Registry instances and related
Associations that define a federation and its members. Such data is referred to as federation metadata. A
federation member is required to locally cache the federation metadata, from the federation home for each
federation that it is a member of. The reason for this requirement is consistent with a Peer-to-Peer (P2P)
model and ensures fault-tolerance in case the Federation home registry is unavailable.

The federation member MUST keep the cached federation metadata synchronized with the master copy in
the Federation home, within the time period specified by the replicationSyncLatency attribute of the
Federation. Synchronization of cached Federation metadata may be done via synchronous polling or
asynchronous event notification using the event notification feature of the registry.

9.2.6 Time Synchronization Between Registry Peers
Federation members are not required to synchronize their system clocks with each other. However, each
Federation member SHOULD keep its clock synchronized with an atomic clock server within the latency
described by the replicationSyncLatency attribute of the Federation.

9.2.7 Federations and Security
Federated operations abide by the same security rules as standard operations against a single registry.
However, federation operations often require registry-to-registry communication. Such communication is
governed by the same security rules as a Registry Client to registry communication. The only difference is
that the requesting registry plays the role of Registry Client. Such registry-to-registry communication
SHOULD be conducted over a secure channel such as HTTP/S. Federation members SHOULD be part of
the same SAML Federation if member registries implement the Registry SAML Profile described in chapter

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 90 of 129

3181

3182

3183

3184
3185

3186
3187

3188

3189

3190

3191
3192

3193
3194

3195

3196

3197

3198

3199

3200

3201

3202

3203

3204

3205
3206

3207
3208

3209

3210

3211
3212

3213

3214

3215

3216
3217

3218

3219
3220

3221
3222

3223
3224

11.

9.2.8 Federation Lifecycle Management Protocols
This section describes the various operations that manage the lifecycle of a federation and its membership.
Federation lifecycle operations are done using standard LifeCycleManager interface of the registry in a
stylized manner. Federation lifecycle operations are privileged operations. A registry SHOULD restrict
Federation lifecycle operations to registry User’s that have the RegistryAdministrator role.

9.2.8.1 Joining a Federation

The following rules govern how a registry joins a federation:

• Each registry SHOULD have exactly one Registry instance within that registry for which it is a
home. The Registry instance is owned by the RegistryOperator and may be placed in the registry
using any operator specific means. The Registry instance SHOULD never change its home registry.

• A registry MAY request to join an existing federation by submitting an instance of an Extramural
Association that associates the Federation instance as sourceObject, to its Registry instance as
targetObject, using an associationType of HasFederationMember. The home registry for the
Association and the Federation objects MUST be the same.

9.2.8.2 Creating a Federation

The following rules govern how a federation is created:

• A Federation is created by submitting a Federation instance to a registry using
SubmitObjectsRequest.

• The registry where the Federation is submitted is referred to as the federation home.

• The federation home may or may not be a member of that Federation.

• A federation home MAY contain multiple Federation instances.

9.2.8.3 Leaving a Federation

The following rules govern how a registry leaves a federation:

A registry MAY leave a federation at any time by removing its HasFederationMember Association instance
that links it with the Federation instance. This is done using the standard RemoveObjectsRequest.

9.2.8.4 Dissolving a Federation

The following rules govern how a federation is dissolved:

• A federation is dissolved by sending a RemoveObjectsRequest to its home registry and removing its
Federation instance.

• The removal of a Federation instance is controlled by the same Access Control Policies that govern
any RegistryObject.

• The removal of a Federation instance is controlled by the same lifecycle management rules that
govern any RegistryObject. Typically, this means that a federation MUST NOT be dissolved while it
has federation members. It MAY however be deprecated at any time. Once a Federation is
deprecated no new members can join it.

9.3 Object Replication
RegistryObjects within a registry MAY be replicated in another registry. A replicated copy of a remote object
is referred to as its replica. The remote object MAY be an original object or it MAY be a replica. A replica

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 91 of 129

3225

3226

3227
3228

3229
3230

3231

3232

3233

3234

3235

3236

3237
3238

3239

3240

3241

3242

3243

3244

3245

3246

3247

3248

3249

3250

3251

3252

3253

3254

3255

3256

3257

3258

3259
3260

3261

3262

3263

3264
3265

from an original is referred to as a first-generation replica. A replica of a replica is referred to as a second-
generation replica (and so on).

The registry that replicates a remote object locally is referred to as the destination registry for the replication.
The registry that contains the remote object being replicated is referred to as the source registry for the
replication.

 Figure 24: Object Replication

9.3.1 Use Cases for Object Replication
A registry MAY create a local replica of a remote object for a variety of reasons. A few sample use cases
follow:

o Improve access time and fault tolerance by locally caching remote objects. For example, a registry
MAY automatically create a local replica when a remote ObjectRef is submitted to the registry.

o Improve scalability by distributing access to hotly contested objects, such as NAICS scheme,
across multiple replicas.

o Enable cooperating registry features such as hierarchical registry topology and local caching of
federation metadata.

9.3.2 Queries And Replicas
A registry MUST support client queries to consider a local replica of remote object as if it were a local object.
Local replicas are considered within the extent of the data set of a registry as far as local queries are
concerned.

When a client submits a local query that retrieves a remote object by its id attribute, if the registry contains a
local replica of that object then the registry SHOULD return the state defined by the local replica.

9.3.3 Lifecycle Operations And Replicas
LifeCycle operations on an original object MUST be performed at the home registry for that object. LifeCycle
operations on replicas of an original object should result in an InvalidRequestException.

9.3.4 Object Replication and Federated Registries
Object replication capability is orthogonal to the registry federation capability. Objects MAY be replicated

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 92 of 129

3266

3267

3268

3269
3270

3271

3272
3273

3274

3275

3276
3277

3278

3279

3280

3281

3282

3283

3284

3285

3286
3287

3288
3289

3290

3291
3292

3293

3294

from any registry to any other registry without any requirement that the registries belong to the same
federation.

9.3.5 Creating a Local Replica
Any Submitting Organization can create a replica by using the standard SubmitObjectsRequest. If a registry
receives a SubmitObjectsRequest that has a RegistryObjectList containing a remote ObjectRef, then it
MUST create a replica for that remote ObjectRef. In such cases the User that submitted the ObjectRef (via
a SubmitObjectsRequest) owns the replica while the original RegistryObject is owned by its original owner.

In addition to Submitting Organizations, a registry itself MAY create a replica under specific situations in a
registry specific manner.

Creating a local replica requires the destination registry to read the state of the remote object from the
source registry and then create a local replica of the remote object.

A registry SHOULD use standard QueryManager interface to read the state of a remote object (whether it is
an original or a replica). No new APIs are needed to read the state of a remote object. Since query
functionality does not need prior registration, no prior registration or contract is needed for a registry to read
the state of a remote object.

Once the state of the remote object has been read, a registry MAY use registry specific means to create a
local replica of the remote object. Such registry specific means MAY include the use of the
LifeCycleManager interface.

A replica of a RegistryObject may be distinguished from an original since a replica MUST have its home
attribute point to the remote registry where the original for the replica resides.

9.3.6 Transactional Replication
Transactional replication enables a registry to replicate events in another registry in a transactionally
consistent manner. This is typically the case when entire registries are replicated to another registry.

This specification defines a more loosely coupled replication model as an alternative to transactional
replication for the following reasons:

• Transactional replication requires a tight coupling between registries participating in the
replication

• Transactional replication is not a typical use case for registries

• Loosely coupled replication as defined by this specification typically suffices for most use cases

• Transaction replication is very complex and error prone

Registry implementations are not required to implement transactional replication.

9.3.7 Keeping Replicas Current
A registry MUST keep its replicas current within the latency specified by the value of the
replicationSyncLatency attribute defined by the registry. This includes removal of the replica when its original
is removed from its home registry.

Replicas MAY be kept current using the event notification feature of the registry or via periodic polling.

9.3.8 Lifecycle Management of Local Replicas
Local Replicas are read-only objects. Lifecycle management actions are not permitted on local replicas with
the exception of the Delete action which is used to remove the replica. All other lifecycle management
actions MUST be performed on the original RegistryObject in the home registry for the object.

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 93 of 129

3295

3296

3297

3298

3299
3300

3301

3302

3303

3304

3305

3306

3307
3308

3309

3310

3311
3312

3313
3314

3315

3316
3317

3318
3319

3320

3321

3322

3323

3324

3325

3326

3327

3328
3329

3330

3331

3332

3333
3334

3335

9.3.9 Tracking Location of a Replica
A local replica of a remote RegistryObject instance MUST have exactly one ObjectRef instance within the
local registry. The home attribute of the ObjectRef associated with the replica tracks its home location. A
RegistryObject MUST have exactly one home. The home for a RegistryObject MAY change via Object
Relocation as described in section 9.4. It is optional for a registry to track location changes for replicas
within it.

9.3.10 Remote Object References to a Replica
It is possible to have a remote ObjectRef to a RegistryObject that is a replica of another RegistryObject. In
such cases the home attribute of the ObjectRef contains the base URI to the home registry for the replica.

9.3.11 Removing a Local Replica
A client can remove a replica by using the RemoveObjectsRequest. If a registry receives a
RemoveObjectsRequest that has an ObjectRefList containing a remote ObjectRef, then it MUST remove the
local replica for that remote ObjectRef assuming that the client was authorized to remove the replica.

9.4 Object Relocation Protocol
Every RegistryObject has a home registry and a User within the home registry that is the Submitter or owner
of that object. Initially, the home registry is the where the object is originally submitted. Initially, the owner is
the User that submitted the object.

A RegistryObject MAY be relocated from one home registry to another home registry using the Object
Relocation protocol.

Within the Object Relocation protocol, the new home registry is referred to as the destination registry while
the previous home registry is called the source registry.

 Figure 25: Object Relocation

The User at the source registry who owns the objects being relocated is referred to as the ownerAtSource.
The User at the destination registry, who is the new owner of the objects, is referred to as the
ownerAtDestination. While the ownerAtSource and the ownerAtDestination may often be the same, the
Object Relocation protocol treats them as two distinct identities.

A special case usage of the Object Relocation protocol is to transfer ownership of RegistryObjects from one
User to another within the same registry. In such cases the protocol is the same except for the fact that the
source and destination registries are the same.

Following are some notable points regarding object relocation:

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 94 of 129

3336

3337

3338
3339

3340
3341

3342

3343
3344

3345

3346
3347

3348

3349

3350

3351
3352

3353
3354

3355
3356

3357
3358

3359

3360
3361

3362

3363

3364
3365

3366

• Object relocation does not require that the source and destination registries be in the same
federation or that either registry have a prior contract with the other.

• Object relocation MUST preserve object id. While the home registry for a RegistryObject MAY
change due to object relocation, its id never changes.

• ObjectRelocation MUST preserve referential integrity of RegistryObjects. Relocated objects that
have references to an object that did not get relocated MUST preserve their reference. Similarly
objects that have references to a relocated object MUST also preserve their reference. Thus,
relocating an object may result in making the value of a reference attribute go from being a local
reference to being a remote reference or vice versa.

• AcceptObjectsRequest does not include ObjectRefList. It only includes an opaque transactonId
identifying the relocateObjects transaction.

• The requests defined by the Relocate Objects protocol MUST be sent to the source or destination
registry only.

• When an object is relocated an AuditableEvent of type “Relocated” MUST be recorded by the
sourceRegistry. Relocated events MUST have the source and destination registry’s base URIs
recorded as two Slots on the Relocated event. The names of these Slots are:

o urn:oasis:names:tc:ebxml­regrep:rs:events:sourceRegistry

o urn:oasis:names:tc:ebxml­regrep:rs:events:destinationRegistry

 Figure 26: Relocate Objects Protocol

Figure 26 illustrates the Relocate Objects Protocol. The participants in the protocol are the ownerAtSource
and ownerAtDestination User instances as well as the LifeCycleManager interfaces of the sourceRegistry
and destinationRegistry.

The steps in the protocol are described next:

1. The protocol is initiated by the ownerAtSource sending a RelocateObjectsRequest message to the
LifeCycleManager interface of the sourceRegistry. The sourceRegistry MUST make sure that the
ownerAtSource is authorized to perform this request. The id of this RelocateObjectsRequest is used
as the transaction identifier for this instance of the protocol. This RelocateObjectsRequest message
MUST contain an ad hoc query that specifies the objects that are to be relocated.

2. Next, the sourceRegistry MUST relay the same RelocateObjectsRequest message to the
LifeCycleManager interface of the destinationRegistry. This message enlists the detsinationRegistry

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 95 of 129

3367

3368

3369

3370

3371

3372
3373

3374
3375

3376

3377

3378

3379

3380

3381

3382

3383

3384

3385

3386
3387

3388

3389
3390

3391

3392

3393
3394

3395
3396

3397
3398

to participate in relocation protocol. The destinationRegistry MUST store the request information
until the protocol is completed or until a registry specific period after which the protocol times out.

3. The destinationRegistry MUST relay the RelocateObjectsRequest message to the
ownerAtDestination. This notification MAY be done using the event notification feature of the
registry as described in chapter 7. The notification MAY be done by invoking a listener Service for
the ownerAtDestination or by sending an email to the ownerAtDestination. This concludes the first
phase of the Object Relocation protocol.

4. The ownerAtDestination at a later time MAY send an AcceptObjectsRequest message to the
destinationRegistry. This request MUST identify the object relocation transaction via the
correlationId. The value of this attribute MUST be the id of the original RelocateObjectsRequest.

5. The destinationRegistry sends an AdhocQueryRequest message to the sourceRegistry. The source
registry returns the objects being relocated as an AdhocQueryResponse. In the event of a large
number of objects this may involve multiple AdhocQueryRequest/responses as described by the
iterative query feature described in section 6.2.

6. The destinationRegistry submits the relocated data to itself assigning the identity of the
ownerAtDestination as the owner. The relocated data MAY be submitted to the destination registry
using any registry specific means or a SubmitObjectsRequest. However, the effect SHOULD be the
same as if a SubmitObjectsRequest was used.

7. The destinationRegistry notifies the sourceRegistry that the relocated objects have been safely
committed using the Event Notification feature of the registry as described in chapter 7.

8. The sourceRegistry removes the relocated objects using any registry specific means and logging an
AuditableEvent of type Relocated. This concludes the Object Relocation transaction.

9.4.1 RelocateObjectsRequest
<element name="RelocateObjectsRequest">
 <complexType>
 <complexContent>
 <extension base="rs:RegistryRequestType">
 <sequence>
 <element name="Query" type="rim:AdhocQueryType"/>
 <element name="SourceRegistry" type="rim:ObjectRefType"/>
 <element name="DestinationRegistry" type="rim:ObjectRefType"/>
 <element name="OwnerAtSource" type="rim:ObjectRefType"/>
 <element name="OwnerAtDestination" type="rim:ObjectRefType"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
 </element>



9.4.1.1 Parameters:

 id: the attribute id provides the transaction identifier for this instance of the protocol.
 AdhocQuery: This element specifies an ad hoc query that selects the RegistryObjects that are being

relocated.
 sourceRegistry: This element specifies the ObjectRef to the sourceRegistry Registry instance. The

value of this attribute MUST be a local reference when the message is sent by the ownerAtSource to
the sourceRegistry.

 destinationRegistry: This element specifies the ObjectRef to the destinationRegistry Registry
instance.

 ownerAtSource: This element specifies the ObjectRef to the ownerAtSource User instance.
 ownerAtDestination: This element specifies the ObjectRef to the ownerAtDestination User instance.

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 96 of 129

3399

3400

3401

3402
3403

3404
3405

3406
3407

3408

3409

3410
3411

3412

3413

3414
3415

3416

3417

3418

3419

3420

3421

3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436

3437

3438

3439

3440
3441

3442
3443
3444

3445
3446

3447

3448

3449

9.4.1.2 Returns:

This request returns a RegistryResponse. See section 2.1.4 for details.

9.4.1.3 Exceptions:

In addition to the exceptions common to all requests, the following exceptions MAY be returned:

 ObjectNotFoundException: signifies that the specified Registry or User was not found in the
registry.

9.4.2 AcceptObjectsRequest
<element name="AcceptObjectsRequest">
 <complexType>
 <complexContent>
 <extension base="rs:RegistryRequestType">
 <attribute name="correlationId" use="required"
type="{http://www.w3.org/2001/XMLSchema}anyURI" />
 </extension>
 </complexContent>
 </complexType>
 </element>



9.4.2.1 Parameters:

 correlationId: Provides the transaction identifier for this instance of the protocol.

9.4.2.2 Returns:

This request returns a RegistryResponse. See section 2.1.4 for details.

9.4.2.3 Exceptions:

In addition to the exceptions common to all requests, the following exceptions MAY be returned:

 InvalidRequestException: signifies that the specified correlationId was not found to match
an ongoing RelocateObjectsRequest in the registry.

9.4.3 Object Relocation and Remote ObjectRefs
The following scenario describes what typically happens when a person moves:

1. When a person moves from one house to another, other persons may have their old postal
addresses.

2. When a person moves, they leave their new address as the forwarding address with the post office.

3. The post office forwards their mail for some time to their new address.

4. Eventually the forwarding request expires and the post office no longer forwards mail for that
person.

5. During this forwarding interval the person notifies interested parties of their change of address.

The Object Relocation feature supports a similar model for relocation of RegistryObjects. The following
steps describe the expected behavior when an object is relocated.

1. When a RegistryObject O1 is relocated from one registry R1 to another registry R2, other
RegistryObjects may have remote ObjectRefs to O1.

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 97 of 129

3450

3451

3452

3453

3454

3455

3456

3457

3458
3459
3460
3461
3462
3463
3464
3465
3466
3467

3468

3469

3470

3471

3472

3473

3474

3475

3476
3477

3478

3479

3480

3481
3482

3483

3484

3485
3486

3487

3488

3489

3490

3491

2. The registry R1 MUST create an AuditableEvent of type Relocated that includes the home URI for
the new registry R2.

3. As long as the AuditableEvent exists in R1, if R1 gets a request to retrieve O1 by id, it MUST
forward the request to R2 and transparently retrieve O1 from R2 and deliver it to the client. The
object O1 MUST include the home URI to R2 within the optional home attribute of RegistryObject.
Clients are advised to check the home attribute and update the home attribute of their local
ObjectRef to match the new home URI value for the object.

4. Eventually the AuditableEvent is cleaned up after a registry specific interval. R1 is no longer
required to relay requests for O1 to R2 transparent to the client. Instead R1 MUST return an
ObjectNotFoundException.

5. Clients that are interested in the relocation of O1 and being notified of its new address may choose
to be notified by having a prior subscription using the event notification facility of the registry. For
example a Registry that has a remote ObjectRefs to O1 may create a subscription on relocation
events for O1. This however, is not required behavior.

9.4.4 Notification of Object Relocation To ownerAtDestination
This section describes how the destinationRegistry uses the event notification feature of the registry to notify
the ownerAtDestination of a Relocated event.

The destinationRegistry MUST send a Notification with the following required characteristics:

• The notification MUST be an instance of a Notification element.

• The Notification instance MUST have at least one Slot as follows:

o The Slot MUST have the name:
urn:oasis:names:tc:ebxml­regrep:rs:events:correlationId

o The Slot MUST have the correlationId for the Object Relocation transaction as the value of
the Slot.

9.4.5 Notification of Object Commit To sourceRegistry
This section describes how the destinationRegistry uses the event notification feature of the registry to notify
the sourceRegistry that it has completed committing the relocated objects.

The destinationRegistry MUST send a Notification with the following required characteristics:

• The notification MUST be an instance of a Notification element.

• The Notification instance MUST have at least one Slot as follows:

o The Slot MUST have the name
urn:oasis:names:tc:ebxml­regrep:rs:events:objectsCommitted

o The Slot MUST have the value of true.

9.4.6 Object Ownership and Owner Reassignment
A registry MUST determine the ownership of a RegistryObject based upon the most recent AuditableEvent
that has the eventType matching the canonical EventType ClassificationNode for Create or Relocate events.

A special case of Object Relocation is when an ObjectRelocationRequest to a registry specifies the same
registry as sourceRegistry and destinationRegistry. In such cases the request is effectively to change the
owner of the specified objects from current owner to a new owner.

In such case if the client does not have the RegistryAdministrator role then the protocol requires the
ownerAtDestination to issue an AcceptObjectsRequest as described earlier.

However, if the client does have the RegistryAdministrator role then the registry MUST change the owner of

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 98 of 129

3492

3493

3494

3495
3496

3497
3498

3499
3500

3501

3502

3503
3504

3505

3506

3507

3508

3509

3510

3511

3512

3513

3514

3515

3516

3517

3518
3519

3520

3521

3522

3523

3524

3525

3526

3527

3528
3529

3530
3531

3532

3533

3534

3535

the object to the user specified as ownerAtDestination without the ownerAtDestination to issue an
AcceptObjectsRequest.

9.4.7 Object Relocation and Timeouts
No timeouts are specified for the Object Relocation protocol. Registry implementations MAY cleanup
incomplete Object Relocation transactions in a registry specific manner as an administrative task using
registry specific policies.

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 99 of 129

3536

3537

3538

3539

3540
3541

3542

10 Registry Security
This chapter describes the security features of ebXML Registry. A glossary of security terms can be
referenced from [RFC 2828]. The registry security specification incorporates by reference the following
specifications:

• [WSI-BSP] WS-I Basic Security Profile 1.0

• [WSS-SMS] Web Services Security: SOAP Message Security 1.0

• [WSS-SWA] Web Services Security: SOAP Messages with Attachments (SwA) Profile 1.0

This chapter provides registry specific details not present in above specifications.

10.1 Security Use Cases
This section describes various use cases that require security features from the registry. Subsequent
sections describe specific registry mechanisms that enable each of these use cases.

10.1.1 Identity Management
An organization deploys an ebXML Registry and needs to define the set of users and services that are
authorized to use the services offered by the registry. They require that the registry provide some
mechanism for registering and subsequently managing the identity and credentials associated with such
authorized users and services.

10.1.2 Message Security
A Registered User sends a request message to the registry and receives a response back from the registry.
The user requires that the message integrity be protected during transmission from tampering (man-in-the-
middle attack). The user may also require that the message communication is not available to unauthorized
parties (confidentiality).

10.1.3 Repository Item Security
A Registered User submits a repository item to the registry. The user requires that the registry provide
mechanisms to protect the integrity of the repository item during transmission on the wire and as long as it is
stored in the registry. The user may also require that the content of the RepositoryItem is not available to
unauthorized parties (confidentiality).

10.1.4 Authentication
An organization that deploys an ebXML Registry requires that when a Registered User sends a request to
the registry, the registry checks the credentials provided by the user to ensure that the user is a Registered
User and to unambiguously determine the user’s identity.

10.1.5 Authorization and Access Control
An organization that deploys an ebXML Registry requires that the registry provide a mechanism that protect
its resources from unauthorized access. Specifically, when a Registry Requestor sends a request to the
registry, the registry restricts the actions of the requestor to specific actions on specific resources for which
the requestor is authorized.

10.1.6 Audit Trail
An organization that deploys an ebXML Registry requires that the registry keep a journal or Audit Trail of all
significant actions performed by Registry Requestors on registry resources. This provides a basic form of
non-repudiation where a Registry Requestor cannot repudiate that that they performed actions that are
logged in the Audit Trail.

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 100 of 129

3543

3544

3545
3546

3547

3548

3549

3550

3551

3552
3553

3554

3555
3556

3557
3558

3559

3560
3561

3562
3563

3564

3565
3566

3567
3568

3569

3570
3571

3572

3573

3574

3575
3576

3577

3578

3579

3580
3581

3582

10.2 Identity Management
An ebXML Registry MUST provide an Identity Management mechnism that allows identities and credentials
to be registered for authorized users of the registry and subsequently managed.

If a registry implements the Registry SAML Profile as described in chapter 11 then the Identity Management
capability MUST be provided by an Identity Provider service that integrates with the registry using the SAML
2.0 protocols as defined by [SAMLCore].

If a registry does not implement the Registry SAML Profile then it MUST provide User Registration and
Identity Management functionality in an implementation specific manner.

10.3 Message Security
A registry MUST provide mechanisms to securely exchange messages between a Registry Requestor and
the registry to ensure data and source integrity as described in this section.

10.3.1 Transport Layer Security
A registry MUST support HTTP/S communication between an HTTP Requestor and its HTTP interface
binding. A registry MUST also support HTTP/S communication between a SOAP Requestor and its SOAP
interface binding when the underlying transport protocol is HTTP.

HTTP/S support SHOULD allow for both SSL and TLS as transport protocols.

10.3.2 SOAP Message Security
A registry MUST support signing and verification of all registry protocol messages (requests and responses)
between a SOAP Requestor and its SOAP binding. Such mechanisms MUST conform to [WSI-BSP], [WSS-
SMS], [WSS-SWA] and [XMLDSIG]. The reader should refer to these specifications for details on these
message security mechanisms.

10.3.2.1 Request Message Signature

When a Registered User sends a request message to the registry, the requestor SHOULD sign the request
message with a Message Signature. This ensures the integrity of the message and also enables the registry
to perform authentication and authorization for the request. If the registry receives a request that does not
include a Message signature then it MUST implicitly treat the request as coming from a Registry Guest. A
Registered User need not sign a request message with a Message Signature when the SOAP
communication is conducted over HTTP/S as the message security is handled by the transport layer
security provided by HTTP/S in this case.

When a Registered User sends a request message to the registry that contains a RepositoryItem as a
SOAP Attachment, the requestor MUST also reference and sign the RepositoryItem from the message
signature. This MUST conform to [RFC2392] and [WSS-SWA].

If the registry receives a request containing an unsigned RepositoryItem then it MUST return an
UnsignedRepositoryItemException.

10.3.2.2 Response Message Signature

When a Registered User sends a request message to the registry, the registry MAY use a pre-established
preference policy or a default policy to determine whether the response message SHOULD be signed with a
Message Signature. When a Registry Guest sends a request, the Registration Authority MAY use a default
policy to determine whether the response contains a header signature. A registry need not sign a response
message with a Message Signature when the SOAP communication is conducted over HTTP/S as the
message security is handled by the transport layer security provided by HTTP/S in this case.

When a registry sends a signed response message to a Registry Client that contains a RepositoryItem as a
SOAP Attachement, the registry MUST also reference and sign the RepositoryItem from the message
signature. This MUST conform to [RFC2392] and [WSS-SWA].

If the Registry Client receives a signed response with a RepositoryItem that does not include a

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 101 of 129

3583

3584

3585

3586

3587
3588

3589
3590

3591

3592
3593

3594

3595
3596

3597

3598

3599

3600
3601

3602
3603

3604

3605

3606
3607

3608
3609

3610
3611

3612
3613

3614

3615

3616

3617

3618
3619

3620
3621

3622
3623

3624
3625

3626

3627

RepositoryItem Signature then it SHOULD not trust the integrity of the response and treat it as an error
condition.

10.3.2.3 KeyInfo Requirements

The sender of a registry protocol message (Registry Requestor and Registry) SHOULD provide their public
key under the <wsse:Security> element. If provided, it MUST be contained in a
<wsse:BinarySecurityToken> element and MUST be referenced from the <ds:KeyInfo> element in the
Message Signature. The value of wsu:Id attribute of the <wsse:BinarySecurityToken> containing the
senders public key MUST be urn:oasis:names:tc:ebxml-regrep:rs:security:SenderCert.
The <wsse:BinarySecurityToken> SHOULD contain a X509 Certificate.

Listing 3 shows an example of Message signature including specifying the KeyInfo.

10.3.2.4 Message Signature Validation

Signature validation ensures message and attached RepositoryItems integrity and security, concerning both
data and source.

If the registry receives a request containing a Message Signature then it MUST validate the Message
Signature as defined by [WSS-SMS]. In case the request contains an attached RepositoryItem it MUST
validate the RepositoryItems signature as defined by [WSS-SWA].

If the Registry Requestor receives a response containing a Message Signature then it SHOULD validate the
Message Signature as defined by [WSS-SMS]. In case the response contains an attached RepositoryItem
then it SHOULD validate the RepositoryItem signature as defined by [WSS-SWA].

10.3.2.5 Message Signature Example

The following example shows the format of a Message Signature:
<soap:Envelope>
 <soap:Header>
 <wsse:Security>
 <wsse:BinarySecurityToken EncodingType="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-soap-message-security-
1.0#Base64Binary" ValueType="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3"
wsu:Id="urn:oasis:names:tc:ebxml-regrep:rs:security:SenderCert">
 lui+Jy4WYKGJW5xM3aHnLxOpGVIpzSg4V486hHFe7sHET/uxxVBovT7JV1A2RnWSW
kXm9jAEdsm/
 hs+f3NwvK23bh46mNmnCQVsUYHbYAREZpykrd/eRwNgx8T+ByeFhmSviW77n6yTcI
7XU7xZT54S9
 hTSyBLN2Sce1dEQpQXh5ssZK9aZTMrsFT1NBvNHC3Qq7w0Otr5V4axH3MXffsuI9W
zxPCfHdalN4
 rLRfNY318pc6bn00zAMw0omUWwBEJZxxBGGUc9QY3VjwNALgGDaEAT7gpURkCI85H
jdnSA5SM4cY
 7jAsYX/CIpEkRJcBULlTEFrBZIBYDPzRWlSdsJRJngF7yCoGWJ+/HYOyP8P4OM59F
Di0kM8GwOE0
 WgYrJHH92qaVhoiPTLi7
 </wsse:BinarySecurityToken>
 <ds:Signature>

<!--The Message Signature -->
 <ds:SignedInfo>
 <ds:CanonicalizationMethod
Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" ">
 <c14n:InclusiveNamespaces PrefixList="wsse soap"
xmlns:c14n="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 </ds:CanonicalizationMethod>
 <ds:SignatureMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
 <ds:Reference URI="#TheBody">
 <ds:Transforms>

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 102 of 129

3628

3629

3630

3631
3632

3633
3634

3635

3636

3637

3638

3639

3640

3641

3642
3643

3644
3645

3646

3647

3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680

 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-
c14n#">
 <c14n:InclusiveNamespaces PrefixList=""
xmlns:c14n="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 </ds:Transform>
 </ds:Transforms>
 <ds:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <ds:DigestValue>i3qi5GjhHnfoBn/jOjQp2mq0Na4=</ds:DigestValue>
 </ds:Reference>
 </ds:SignedInfo>
 <ds:SignatureValue>PipXJ2Sfc+LTDnq4pM5JcIYt9gg=</ds:SignatureValu
e>
 <ds:KeyInfo>
 <wsse:SecurityTokenReference>
 <wsse:Reference URI="#urn:oasis:names:tc:ebxml-
regrep:rs:security:SenderCert" ValueType="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3"/>
 </wsse:SecurityTokenReference>
 </ds:KeyInfo>
 </ds:Signature>
 </wsse:Security>
 </soap:Header>
 <soap:Body wsu:Id="TheBody">
 <lcm:SubmitObjectsRequest/>
 </soap:Body>
</soap:Envelope>

 Listing 3: Message Signature Example

10.3.2.6 Message With RepositoryItem: Signature Example

The following example shows the format of a Message Signature that also signs the
attached RespositoryItem:

Content-Type: multipart/related; boundary=”BoundaryStr” type=”text/xml”
--BoundaryStr
Content-Type: text/xml
<soap:Envelope>
 <soap:Header>
 <wsse:Security>
 <wsse:BinarySecurityToken EncodingType="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-soap-message-security-
1.0#Base64Binary" ValueType="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3"
wsu:Id="urn:oasis:names:tc:ebxml-regrep:rs:security:SenderCert">
 lui+Jy4WYKGJW5xM3aHnLxOpGVIpzSg4V486hHFe7sHET/uxxVBovT7JV1A2RnWSW
kXm9jAEdsm/
 hs+f3NwvK23bh46mNmnCQVsUYHbYAREZpykrd/eRwNgx8T+ByeFhmSviW77n6yTcI
7XU7xZT54S9
 hTSyBLN2Sce1dEQpQXh5ssZK9aZTMrsFT1NBvNHC3Qq7w0Otr5V4axH3MXffsuI9W
zxPCfHdalN4
 rLRfNY318pc6bn00zAMw0omUWwBEJZxxBGGUc9QY3VjwNALgGDaEAT7gpURkCI85H
jdnSA5SM4cY
 7jAsYX/CIpEkRJcBULlTEFrBZIBYDPzRWlSdsJRJngF7yCoGWJ+/HYOyP8P4OM59F
Di0kM8GwOE0
 WgYrJHH92qaVhoiPTLi7
 </wsse:BinarySecurityToken>
 <ds:Signature>
 <!-- The Message Signature -->
 <ds:SignedInfo>

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 103 of 129

3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707

3708

3709

3710

3711

3712

3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738

 <ds:CanonicalizationMethod
Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" ">
 <c14n:InclusiveNamespaces PrefixList="wsse soap"
xmlns:c14n="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 </ds:CanonicalizationMethod>
 <ds:SignatureMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
 <ds:Reference URI="#TheBody">
 <ds:Transforms>
 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-
c14n#">
 <c14n:InclusiveNamespaces PrefixList=""
xmlns:c14n="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 </ds:Transform>
 </ds:Transforms>
 <ds:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <ds:DigestValue>i3qi5GjhHnfoBn/jOjQp2mq0Na4=</ds:DigestValue>
 </ds:Reference>
 </ds:SignedInfo>

 <!--A reference to a RepositoryItem (one for each RepositoryItem)
-->
 <ds:SignedInfo>
 <ds:CanonicalizationMethod
Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" ">
 <c14n:InclusiveNamespaces PrefixList="wsse soap"
xmlns:c14n="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 </ds:CanonicalizationMethod>
 <ds:SignatureMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
 <ds:Reference URI="cid:${REPOSITORY_ITEM1_ID}">
 <ds:Transforms>
 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-
c14n#">
 <ds:Transform Algorithm="http://docs.oasis-
open.org/wss/2004/XX/oasis-2004XX-wss-swa-profile-1.0#Attachment-Content-
Only-Transform"/>
 </ds:Transform>
 </ds:Transforms>
 <ds:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <ds:DigestValue>j6lwx3rvEPO0vKtMup4NbeVu8nk=</ds:DigestValue>
 </ds:Reference>
 </ds:SignedInfo>

 <ds:SignatureValue>PipXJ2Sfc+LTDnq4pM5JcIYt9gg=</ds:SignatureValu
e>

 <ds:KeyInfo>
 <wsse:SecurityTokenReference>
 <wsse:Reference URI="#urn:oasis:names:tc:ebxml-
regrep:rs:security:SenderCert" ValueType="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3"/>
 </wsse:SecurityTokenReference>
 </ds:KeyInfo>

 </ds:Signature>
 </wsse:Security>
 </soap:Header>
 <soap:Body wsu:Id="TheBody">
 <lcm:SubmitObjectsRequest/>
 </soap:Body>

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 104 of 129

3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801

</soap:Envelope>
--BoundaryStr
Content-Type: image/png
Content-ID: <${REPOSITORY_ITEM1_ID}>
Content-Transfer-Encoding: base64
the repository item (e.g. PNG Image) goes here..

Listing 4: RepositoryItem Signature Example

10.3.2.7 SOAP Message Security and HTTP/S

When using HTTP/S between a Registry Client and a registry, SOAP message security MUST NOT be
used. Specifically:

• The Registry Client MUST NOT sign the request message or any repository items in the request.

• The registry MUST NOT verify request or RepositoryItem signatures.

• The registry MUST NOT sign the response message or any repository items in the response.

• The Registry Client MUST NOT verify response or RepositoryItem signatures.

10.3.3 Message Confidentiality
A registry SHOULD support encryption of protocol messages as defined section 9 of [WSI-BSP] as a
mechanism to support confidentiality of protocol messages during transmission on the wire.

A Registry Client MAY use encryption of RepositoryItems as defined by [WSS-SWA] as a mechanism to
support confidentiality of RepositoryItems during transmission on the wire.

A registry SHOULD support the submission of encrypted repository items.

10.3.4 Key Distribution Requirements
The registry and Registered Users MUST mutually exchange their public keys. This is necessary to enable:

• Mutual Authentication of Registry Client and registry using SSL/TLS handshake for transport layer
security over HTTP/S

• Validation of Message Signature and RepositoryItem Signature (described in section).

• Decryption of encrypted messages

In order to enable Message Security the following requirements MUST be met:

1. A Certificate is associated with the registry.

2. A Certificate is associated with Registry Client.

3. A Registry Client registers its public key certificate with the registry. This is typically done during User
Registration and is implementation specific.

4. Registry Client obtains the registry’s public key certificate and stores it in its own local key store. This is
done in an implementation specific manner.

10.4 Authentication
The Registry MUST be able to authenticate the identity of the User associated with client requests in order
to perform authorization and access control and to maintain an Audit Trail of registry access. In security
terms a service that provides the ability to authenticate requestors is referred to as an Authentication
Authority.

A registry MUST provide one or more of the following Authentication mechanisms:

• Registry as Authentication Authority

• External Authentication Authority

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 105 of 129

3802
3803
3804
3805
3806
3807

3808

3809

3810

3811

3812

3813

3814

3815

3816

3817

3818

3819

3820

3821

3822

3823

3824

3825

3826

3827

3828

3829

3830

3831
3832

3833
3834

3835

3836

3837

3838
3839

3840

3841

3842

3843

10.4.1 Registry as Authentication Authority
A registry MAY provide authentication capability by serving as an Authentication Authority. In this role the
registry uses the <ds:KeyInfo> in the Message Signature as credentials to authenticate the requestor. This
typically requires checking that the public key supplied in the <ds:KeyInfo> of the Message Signature
matches the public key of a Registered User. This also requires that the registry maintain a “registry
keystore” that contains the public keys of Registered Users. The remaining details of registry as an
authentication authority are implementation specific.

Alternatively, if the Registry Client communicates with the registry over HTTP/S, the registry MUST
authenticate the Registry Client User if a registered certificate is provided through SSL Client Authentication.
If the certificate is not known to the registry then the Registry MUST assign the RegistryGuest principal with
the Registry Client.

10.4.2 External Authentication Authority
A registry MAY also use an external Authentication Authority to auhenticate client requests. The use of an
external Authentication Authority requires that the registry implement the Registry SAML Profile as described
in chapter 11.

10.4.3 Authenticated Session Support
Once a request is authenticated a Registry SHOULD establish an authenticated session using
implementation specific means to avoid having to re-authenticate subsequent request from the same
requestor. When the underlying transport protocol is HTTP, a registry SHOULD implement authenticated
session support based upon HTTP session capability as defined by [RFC2965].

10.5 Authorization and Access Control
Once a registry has authenticated the identity of the Registered User associated with a client request it
MUST perform authorization and subsequently enforce access control rules based upon the authorization
decision.

Authorization and access control is an operation conducted by the registry that decides WHO can do WHAT
ACTION on WHICH RESOURCE.

• The WHO is the User determined by the authentication step.

• The WHAT ACTION is determined by the registry protocol request sent by the client.

• The WHICH RESOURCE consists of the RegistryObjects and RepositoryItems impacted by the
registry protocol request.

The Access Control Policy associated with the resource that is impacted by the action determines
authorization and access control.

A registry MUST provide an access control and authorization mechanism based upon chapter titled “Access
Control Information Model” in [ebRIM]. This model defines a default access control policy that MUST be
supported by the registry. In addition it also defines a binding to [XACML] that allows fine-grained access
control policies to be defined.

10.6 Audit Trail
Once a registry has performed authorization checks, enforced access control and allowed a client request to
proceed it services the client request. A registry MUST create an Audit Trail of all LifeCycleManager
operations. A registry MAY create an Audit Trail of QueryManager operations. To conserve storage
resources, a registry MAY prune the Audit Trail information it stores in an implementation specific manner. A
registry SHOULD perform such pruning by removing the older information in its Audit Trail content. However,
it MUST not remove the original Create Event at the beginning of the audit trail since the Create Event
establishes the owner of the RegistryObject.

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 106 of 129

3844

3845

3846
3847

3848
3849

3850
3851

3852
3853

3854
3855

3856

3857
3858

3859

3860

3861

3862
3863

3864

3865

3866

3867
3868

3869
3870

3871

3872

3873

3874

3875
3876

3877
3878

3879
3880

3881

3882
3883

3884
3885

3886
3887

3888

Details of how a registry maintains an Audit Trail of client requests is described in the chapter title “Event
Information Model” of [ebRIM].

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 107 of 129

3889

3890

11 Registry SAML Profile
This chapter defines the Registry SAML Profile that a registry MAY implement in order to support SAML 2.0
protocols defined by [SAMLCore]. A specific focus of the Registry SAML Profile is the Web Single Sign On
(SSO) profile defined by [SAMLProf].

11.1 Terminology
The reader should refer to the SAML Glossary [SAMLGloss] for various terms used in the Registry SAML
profile. A few terms are described here for convenience:

Term Definition
Authentication
Authority

An Authentication Authority is a system entity (typically a service) that enables other
system entities (typically a user or service) to establish an authenticated session by
proving their identity by providing necessary credentials (e.g. username / password,
certificate alias / password). An Authentication Authority produces authentication
assertions as a result of successful authentication.

Enhanced Client
Proxy (ECP)

Describes a client that operates under certain constraints such as not being able to
support HTTP Redirect protocol. Typically these are clients that do not have a Web
Browser environment. In this document the main example of an ECP is a Registry
Client that uses SOAP to communicate with the registry (SOAP Requestor).

Identity Provider
(IdP)

A kind of service provider that creates, maintains, and manages identity
information for principals (e.g. users). An Identity Provider is usually also an
Authentication Authority.

Principal A system entity whose identity can be authenticated. This maps to User in [ebRIM].
SAML Requestor A system entity that utilizes the SAML protocol to request

services from another system entity (a SAML authority, a

responder). The term “client” for this notion is not used because

many system entities simultaneously or serially act as both

clients and servers.

Service Provider
(SP)

A role donned by a system entity where the system entity provides services to
principals or other system entities. The Registry Service is a SP

Single Sign On
(SSO)

The ability to share a single authenticated session across multiple SSO enabled
services and application. The client may establish the authenticated session by
authenticating with any Authentication Authority within the system. The client may
then perform secure operations with any SSO enabled service within the system
using the authenticated session.

Single Logout The ability to logout nearly simultaneously from multiple Service Providers within a
federated system.

11.2 Use Cases for SAML Profile
The Registry SAML Profile is intended to address following use cases using the protocols defined by
[SAMLCore].

11.2.1 Registry as SSO Participant:
A large enterprise is deploying an ebXML Registry. The enterprise already has an existing Identity Provider
(e.g. an Access Manager service) where it maintains user information and credentials. The enterprise also
has an existing Authentication Authority (which may be the same service as the Identity Provider) that is
used to authenticate users and enable Single Sign On (SSO) across all their enterprise services

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 108 of 129

3891

3892

3893
3894

3895

3896
3897

3898

3899

3900

3901
3902

3903

3904
3905

3906
3907

applications.

The enterprise wishes to use its existing Identity Provider to manage registry users and to avoid duplicating
the user database contained in the Identity Provider within the registry. The enterprise also wishes to use its
existing Authentication Authority to authenticate registry users and expects the registry to participate in SSO
capability provided by their Authentication Authority service.

Destination Web Site
(Travel.com)

Source Web Site
(Company.com)

Web User

Asserting Party

Relying Party

1. A
uthenticate

2. Access Resource

 Figure 27: SAML SSO Typical Scenario

11.3 SAML Roles Played By Registry
In order to conform to the registry SAML Profile an ebXML Registry plays the Service Provider (SP) role
based upon conformance with SAML 2.0 protocols.

11.3.1 Service Provider Role
The Service Provider role enables the registry to participate in SAML protocols. Specifically it allows the
registry to utilize an Identity Provider to perform client authentication on its behalf.

11.3.1.1 Service Provider Requirements

The following are a list of requirements for the Service Provider role of the registry:

• MUST support the protocols, messages and bindings that are the responsibility of the Service
Provider as defined by Web SSO Profile in [SAMLProf]. Specifically it MUST be able to intiate and
participate in the Authentication Request Protocol with an Identity Provider.

• MUST be able to use a SAML Identity Provider to authenticate client requests.

• MUST support the ability to maintain a security context for registry clients across multiple client
requests.

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 109 of 129

3908

3909
3910

3911
3912

3913

3914
3915

3916

3917
3918

3919

3920
3921

3922

3923

3924

3925

3926

3927

3928

3929

3930

11.4 Registry SAML Interface
In order to conform to the registry SAML Profile an ebXML Registry MUST implement a new SAML interface
in addition to its service interfaces such as QueryManager and LifeCycleManager.

Details of the registry’s SAML interface are not described by this specification. Instead they are described by
the SAML 2.0 specifications and MUST support SAML HTTP and SOAP requests.

A registry uses its SAML interface to participate in SAML protocols with SAML Clients and SAML Identity
Providers. Specifically, an IdentityProvider uses the registry’s SAML Service Provider interface to deliver the
Response to an Authentication Request.

11.5 Requirements for Registry SAML Profile
In order to conform to the Registry SAML Profile a registry MUST implement specific SAML protocol that
support specific SAML protocol message exchanges using specific protocol bindings.

Table 7 lists the matrix of SAML Profiles, Protocols Messages and their Bindings that a registry MUST
support in order to conform to the registry SAML Profile.

The reader should refer to:

• [SAMLProf] for description of profiles listed

• [SAMLCore] for description of Message Flows listed

• [SAMLBind] for description of Bindings listed

Profile Message Flows Binding Implementation

Requirement

Web SSO <AuthnRequest> from Registry to
IdentityProvider

HTTP redirect MUST

IdentityProvider <Response> to
Registry

HTTP POST MUST

HTTP artifact MUST

Single Logout <LogoutRequest> HTTP redirect MUST

SOAP MAY

<LogoutResponse> HTTP redirect MUST

SOAP MAY

Artifact Resolution
<ArtifactResolve>, SOAP MUST

<ArtifactResponse> SOAP MUST

Enhanced Client/Proxy
SSO

ECP to Registry, Registry to ECP to
IdentityProvider

PAOS MUST

IdentityProvider to ECP to Registry,
Registry to ECP

PAOS MUST

 Table 7: Required SAML Profiles, Protocols and Bindings

11.6 SSO Operation
This section describes the interaction sequnce for various types of SSO operations.

11.6.1 Scenario Actors
The following are the actors that will be participating the various SSO Operation scenarios described in

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 110 of 129

3931

3932

3933

3934

3935

3936

3937
3938

3939

3940
3941

3942
3943

3944

3945

3946

3947

3948

3949

3950

3951

3952

3953

3954

subsequent section:

• HTTP Requestor: This represents a Registry Client that accesses the registry using the HTTP
binding of the registry protocols typically through a User Agent such as a Web Browser.

• SOAP Requestor: This represents a Registry Client that accesses the registry using the SOAP
binding of the registry protocols.

• Registry: This represents a Registry and includes all Registry interfaces such as QueryManager,
LifeCycleManager and the registry’s SAML Service Provider. The Registry participates in ebXML
Registry protocols as well as SAML protocols.

• IdentityProvider: This represents the IdentityProvider used by the registry to perform Authentication
on its behalf.

11.6.2 SSO Operation – Unauthenticated HTTP Requestor
Figure 28 shows a high level view of the Single Sign On (SSO) operation when the SOAP Requestor is
unauthenticated and accesses the registry over HTTP via a User Agent such as a Web Browser.

 Figure 28: SSO Operation – Unauthenticated HTTP Requestor

11.6.2.1 Scenario Sequence

Figure 28 shows the following sequence of steps for the operation:

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 111 of 129

3955

3956

3957

3958

3959

3960

3961

3962

3963

3964

3965

3966

3967

3968
3969

3970

3971

1 The HTTP Requestor sends a HTTP GET or POST request to a Registry interface such as the
QueryManager or LifeCycleManager.

1.1 The Registry checks to see if it already has a security context established for the Subject associated
with the request. It determines that there is no pre-existing security context.

1.2 In order to establish a security context, the Registry therefor initiates the <samlp:AuthnRequest>
protocol with the IdentityProvider. The <AuthnRequest> is sent using HTTP Redirect via the User
Agent (e.g. Web Browser) used by the HTTP Requestor.

1.2.1 The IdentityProvider uses implementation specific means to identify the Subject. Typically this
requires communicating with the User Agent being used by the HTTP Requestor to get the
credentials associated with the Subject and then using the credentials to authenticate that the
IdentityProvider knows the Subject. In case of SSL/TLS based communication the credetials are
acquired without any user intervention directly from the User Agent. The figure assumes that the
IdentityProvider is able to authenticate the Subject.

1.2.2 The IdentityProvider sends a <sampl:Response> message containing a
<saml:AuthenticationStatement> to the Registry using either HTTP POST or HTTP Artifact SAML
Binding via the User Agent.

1.2.2.1 The Registry uses implementation specific means to establish a security context for the Subject
authenticated by the IdentityProvider based upon the information contained about the Subject in
the <samlp:Response> message. This may include creating an HTTP Session for the HTTP
Requestor.

1.2.2.2 The Registry maps the information about the Subject in the <samlp:Response> message into a
<rim:User> instance. This establishes the <rim:User>context for the security context.

1.2.2.3 The Registry then performs authorization decision based upon the original HTTP request and the
<rim:User>. The figure assumes that authorization decision was to allow the request to be
processed. The Registry processes the request and subsequently return the requested resource
to the HTTP Requestor via the HTTP response.

11.6.3 SSO Operation – Authenticated HTTP Requestor
This is the case where the HTTP Requestor first authenticates with an IdentityProvider and then accesses
the registry over HTTP via a User Agent such as a Web Browser.

Currently there are no standard means defined for carrying SAML Assertions resulting from the Registry
Requestor authenticating with an IdentityProvider over HTTP protocol to a Service Provider such as the
registry. A registry MAY support this scenario in an implementation specific manner. Typically, the Identity
Provider will define any such implementation specific manner.

11.6.4 SSO Operation – Unuthenticated SOAP Requestor
This is the case where an unauthenticated Registry Requestor accesses the registry over SOAP.

Figure 29 shows the steps involved.

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 112 of 129

3972

3973

3974

3975

3976

3977
3978

3979
3980

3981
3982

3983
3984

3985
3986

3987

3988

3989
3990

3991

3992

3993

3994

3995
3996

3997

3998

3999

4000
4001

4002
4003

4004
4005

4006

4007

4008

 Figure 29: SSO Operation - Unauthenticated SOAP Requestor

11.6.4.1 Scenario Sequence

Figure 29 shows the following sequence of steps for the operation:

1 The SOAP Requestor sends a <rs:RegistryRequest> SOAP message such as a
<lcm:SubmitObjectsRequest> to a Registry interface such as the LifeCycleManagerManager. In the
request header the SOAP Requestor declares that it is an ECP requestor as defined by the ECP Profile
in [SAMLProf].

1.1 The Registry checks to see if it already has a security context established for the Subject associated
with the request. It determines that there is no pre-existing security context.

1.2 Because the request is from an ECP client, the registry uses the ECP Profile defined by [SAMLProf]
and sends a <samlp:AuthnRequest> SOAP message as response to the <rs:RegistryRequest>
SOAP message to the SOAP Requestor using the PAOS Binding as defined by [SAMLBind]. The
response has an HTTP Response status of OK.

1.2.1 The SOAP Requestor then initiates the <samlp:AuthnRequest> protocol with the IdentityProvider.
The <sampl:AuthnRequest> is sent using HTTP POST or Artifact Binding directly to the
IdentityProvider.

1.2.1.1 The IdentityProvider uses implementation specific means to identify the Subject. Typically this
requires communicating with the SOAP Requestor to get the credentials associated with the
Subject and then using the credentials to authenticate that the IdentityProvider knows the Subject.
In case of SSL/TLS based communication the credetials are acquired without any user
intervention directly from the SOAP Requestor. The figure assumes that the IdentityProvider is
able to authenticate the Subject.

1.2.1.2 The IdentityProvider sends a <sampl:Response> message containing a
<saml:AuthenticationStatement> to the SOAP Requestor using SAML SOAP Binding. The HTTP

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 113 of 129

4009
4010

4011

4012

4013
4014

4015
4016

4017
4018

4019
4020

4021
4022

4023
4024

4025

4026

4027
4028

4029
4030

4031

4032

4033

header specifies the Registry as the ultimate target of the response.

1.2.1.2.1 The SOAP Requestor forwards the <sampl:Response> message containing a
<saml:AuthenticationStatement> to the Registry using PAOS Binding via HTTP POST.

1.2.1.2.1.1 The Registry uses implementation specific means to establish a security context for the
Subject authenticated by the IdentityProvider based upon the information contained about the
Subject in the <samlp:Response> message. This may include creating an HTTP Session for
the HTTP Requestor.

1.2.1.2.1.2 The Registry maps the information about the Subject in the <samlp:Response> message into
a <rim:User> instance. This establishes the <rim:User>context for the security context.

1.2.1.2.1.3 The Registry then performs authorization decision based upon the original SOAP request and
the <rim:User>. The figure assumes that authorization decision was to allow the request to be
processed. The Registry processes the request and subsequently return a
<rs:RegistryResponse> SOAP message as response to the original <rs:RegistryRequest>
SOAP request.

11.6.5 SSO Operation – Authenticated SOAP Requestor
This is the case where the Registry Requestor first authenticates with an IdentityProvider directly and then
makes a request to the registry using SOAP.

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 114 of 129

4034

4035
4036

4037
4038

4039
4040

4041
4042

4043
4044

4045
4046

4047

4048

4049

4050
4051

Figure 30: SSO Operation - Authenticated SOAP Requestor

11.6.5.1 Scenario Sequence

The figure shows the following sequence of steps for the operation:

1 The SOAP Requestor then initiates the <samlp:AuthnRequest> protocol directly with the
IdentityProvider. The <sampl:AuthnRequest> is sent using HTTP POST or Artifact Binding.

1.1 The IdentityProvider uses implementation specific means to identify the Subject. Typically this
requires communicating with the SOAP Requestor to get the credentials associated with the Subject
and then using the credentials to authenticate that the IdentityProvider knows the Subject. In case of
SSL/TLS based communication the credetials are acquired without any user intervention directly from
the SOAP Requestor. The figure assumes that the IdentityProvider is able to authenticate the
Subject.

1.2 The IdentityProvider sends a <sampl:Response> message containing a
<saml:AuthenticationStatement> to the SOAP Requestor using SAML HTTP POST or HTTP Artifact
Binding.

2 The SOAP Requestor sends a <rs:RegistryRequest> SOAP message such as a
<lcm:SubmitObjectsRequest> to a Registry interface such as the LifeCycleManagerManager. The

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 115 of 129

4052
4053

4054

4055

4056

4057

4058

4059
4060

4061
4062

4063

4064

4065
4066

4067
4068

<rs:RegistryRequest> SOAP message includes SAML Tokens in the <soap:Header> of the SOAP
message as defined by [WSS-SAML]. The SAML Tokens are based upon the <sampl:Response>
during authentication.

2.1 The registry maps the SAML Tokens from the <soap:Header> of the <rs:RegistryRequest> to a
<rim:User> instance. This establishes the <rim:User> context for the request.

2.2 The Registry then performs authorization decision based upon the original SOAP request and the
<rim:User>. The figure assumes that authorization decision was to allow the request to be processed.
The Registry processes the request and subsequently return a <rs:RegistryResponse> SOAP
message as response to the original <rs:RegistryRequest> SOAP request.

11.6.6 <samlp:AuthnRequest> Generation Rules
The following rules MUST be observed when the registry or Registry Client issues a
<samlp:AuthnRequest>:

• A registry MUST specify a NameIDPolicy within the <samlp:AuthRequest>

• The Format of the NameIDPolicy MUST be urn:oasis:names:tc:SAML:2.0:nameid-format:persistent
as defined by section in [SAMLCore]. Note that it is the Persistent Identifier that maps to the id
attribute of <rim:User>.

−

11.6.7 <samlp:Response> Processing Rules
This section describes how the registry processes the <sampl:Response> to a <sampl:AuthnRequest>:

<samlp:Response> Processing

• Response Processing: The registry MUST verify the <ds:Signature> for the <sampl:Response> if
present.

• The registry MUST check the <samlp:Status> associated with <sampl:Response> for errors. If the
<samlp:Status> has a top level <samlp:StatusCode> whose value is NOT
urn:oasis:names:tc:SAML:2.0:status:Success then the registry MUST throw an
AuthenticationException. The AuthenticationException message SHOULD include the information
from the StatusCode, StatusMessage and StatusDetail from the <samlp:Status>.

<saml:Assertion> Processing

• The registry SHOULD check the <saml:Assertion> for Conditions and honour any standard
Conditions defined by [SAMLCore] if any are specified.

<saml:AuthnStatement> Processing

• The registry MUST check the SessionNotOnOrAfter attribute of the <saml:AuthnStatement> for
validity of the authenticated session.

<saml:Subject> Processing

• A registry MUST map the <saml:Subject> to a <rim:User> instance as described in 11.6.8.

11.6.8 Mapping Subject to User
As required by [SAMLCore] a <samlp:Response> to a <samlp:AuthnRequest> MUST contain a
<saml:Subject> that identifies the Subject that was authenticated by the IdentityProvider. In addition it MUST
contain a <sampl:AuthnStatement> which asserts that the IdentityProvider indeed authenticated the
Subject.

The following table defines the mapping between a <saml:Subject> and a <rim:User>:

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 116 of 129

4069

4070
4071

4072
4073

4074
4075

4076
4077

4078

4079

4080

4081

4082

4083

4084

4085
4086

4087

4088

4089

4090

4091

4092

4093

4094

4095

4096

4097

4098

4099

4100

4101

4102

4103

4104

4105

4106

4107

4108
4109

4110

4111

− Subject
Attribute

− User Attribute − Description

− NameID content − id attribute NameID Format MUST be
“urn:oasis:names:tc:SAML:1.1:nameid-
format:persistent”

Table 8: Mapping Subject to User

Note that any attribute of Subject not specified above SHOULD be ignored when mapping Subject to User.
Note that any attribute of User not specified above MUST be left unspecified when mapping Subject to User.

11.7 External Users
The SAML Profile allows registry Users to be registered in an Identity Provider external to the registry.
These are referred to as “External Users”. A registry dynamically creates such External Users by mapping a
SAML Subject to a User instance dynamically.

The following are some restrictions on External User instances:

• External User instances are transient from the registry’s perspective and MUST not be stored within
the registry as User instances

• A RegistryObject MUST not have a reference to an External User unless it is composed within that
RegistryObject. Composed RegistryObjects such as Classification instances are allowed to
reference their parent External User instance.

• Since External User instances are transient they MUST not match a registry Query.

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 117 of 129

4112

4113

4114

4115

4116

4117

4118
4119

4120

4121

4122

4123

4124
4125

4126

4127

4128

4129

4130

4131

12 Native Language Support (NLS)
This chapter describes the Native Languages Support (NLS) features of ebXML Registry.

12.1 Terminology
The following terms are used in NLS.

NLS Term Description

Coded Character Set (CCS) CCS is a mapping from a set of abstract characters
to a set of integers. [RFC 2130]. Examples of CCS
are ISO-10646, US-ASCII, ISO-8859-1, and so on.

Character Encoding Scheme (CES) CES is a mapping from a CCS (or several) to a set
of octets. [RFC 2130]. Examples of CES are ISO-
2022, UTF-8.

Character Set (charset) • charset is a set of rules for mapping from a
sequence of octets to a sequence of
characters.[RFC 2277],[RFC 2278].
Examples of character set are ISO-2022-JP,
EUC-KR.

• A list of registered character sets can be
found at [IANA].

12.2 NLS and Registry Protcol Messages
For the accurate processing of data in both registry client and registry services, it is essential for the
recipient of a protocol message to know the character set being used by it.

A Registry Client SHOULD specify charset parameter in MIME header when they specify text/xml as
Content-Type. A registry MUST specify charset parameter in MIME header when they specify text/xml as
Content-Type.

The following is an example of specifying the character set in the MIME header.

Content-Type: text/xml; charset=ISO-2022-JP

If a registry receives a protocol message with the charset parameter omitted then it MUST use the default
charset value of "us-ascii" as defined in [RFC 3023].

Also, when an application/xml entity is used, the charset parameter is optional, and registry client and
registry services MUST follow the requirements in Section 4.3.3 of [REC-XML] which directly address this
contingency.

If another Content-Type is used, then usage of charset MUST follow [RFC 3023].

12.3 NLS Support in RegistryObjects
The information model XML Schema [RR-RIM-XSD] defines the <rim:InternationalStringType> for defining
elements that contains a locale senstive string value.

 <complexType name="InternationalStringType">
 <sequence maxOccurs="unbounded" minOccurs="0">
 <element ref="tns:LocalizedString"/>

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 118 of 129

4132

4133

4134

4135

4136

4137

4138
4139

4140
4141

4142

4143
4144
4145
4146

4147

4148

4149

4150

4151
4152

4153

4154

4155

4156

4157

4158
4159
4160

 </sequence>
 </complexType>

An InternationalStringType may contain zero or more LocalizedStrings within it where each LocalizedString
contain a string value is a specified local language and character set.

<complexType name="LocalizedStringType">
 <attribute ref="xml:lang" default="en-US"/>
 <attribute default="UTF-8" name="charset"/>
 <attribute name="value" type="tns:FreeFormText" use="required"/>
</complexType>

Examples of such attributes are the “name” and “description” attributes of the RegistryObject class defined
by [ebRIM] as shown below.

 <complexType name="InternationalStringType">
 <sequence maxOccurs="unbounded" minOccurs="0">
 <element ref="tns:LocalizedString"/>
 </sequence>
 </complexType>
 <element name="InternationalString"
type="tns:InternationalStringType"/>
 <element name="Name" type="tns:InternationalStringType"/>
 <element name="Description" type="tns:InternationalStringType"/>

 <complexType name="LocalizedStringType">
 <attribute ref="xml:lang" default="en-US"/>
 <!--attribute name = "lang" default = "en-US" form = "qualified" type
= "language"/-->
 <attribute default="UTF-8" name="charset"/>
 <attribute name="value" type="tns:FreeFormText" use="required"/>
 </complexType>
 <element name="LocalizedString" type="tns:LocalizedStringType"/>

An element InternationalString is capable of supporting multiple locales within its collection of
LocalizedStrings.

The above schema allows a single RegistryObject instance to include values for any NLS sensitive element
in multiple locales.

The following example illustrates how a single RegistryObject can contain NLS sesnitive <rim:Name> and
“<rim:Description> elements with their value specified in multiple locales. Note that the <rim:Name> and
<rim:Description> use the <rim:InternationalStringType> as their type.

 <rim:ExtrinsicObject id="${ID}" mimeType="text/xml">
 <rim:Name>
 <rim:LocalizedString xml:lang="en-US" value="customACP1.xml"/>
 <rim:LocalizedString xml:lang="fi-FI" value="customACP1.xml"/>
 <rim:LocalizedString xml:lang="pt-BR" value="customACP1.xml"/>
 </rim:Name>
 <rim:Description>
 <rim:LocalizedString xml:lang="en-US" value="A sample custom
ACP"/>
 <rim:LocalizedString xml:lang="fi-FI" value="Esimerkki custom
ACP"/>
 <rim:LocalizedString xml:lang="pt-BR" value="Exemplo de ACP
customizado
"/>
 </rim:Description>
 </rim:ExtrinsicObject>

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 119 of 129

4161
4162

4163

4164
4165

4166
4167
4168
4169
4170
4171

4172

4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192

4193

4194

4195

4196

4197

4198

4199
4200

4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216

Since locale information is specified at the sub-element level there is no language or character set
associated with a specific RegistryObject instance.

12.3.1 Character Set of LocalizedString
The character set used by a locale specific String (LocalizedString) is defined by the charset attribute.
Registry Clients SHOULD specify UTF-8 or UTF-16 as the value of the charset attribute of LocalizedStrings
for maximum interoperability.

12.3.2 Language of LocalizedString
The language MAY be specified in xml:lang attribute (Section 2.12 [REC-XML]).

12.4 NLS and Repository Items
While a single instance of an ExtrinsicObject is capable of supporting multiple locales, it is always
associated with a single repository item. The repository item MAY be in a single locale or MAY be in multiple
locales. This specification does not specify any NLS requirements for repository items.

12.4.1 Character Set of Repository Items
When a submitter submits a repository item, they MAY specify the character set used by the respository
item using the MIME Content-Type mime header for the mime multipart containing the repository item as
shown below:

Content-Type: text/xml; charset="UTF-8"

Registry Clients SHOULD specify UTF-8 or UTF-16 as the value of the charset attribute of LocalizedStrings
for maximum interoperability. A registry MUST preserve the charset of a repository item as it is originally
specified when it is submitted to the registry.

12.4.2 Language of Repository Items
The Content-language mime header for the mime bodypart containing the repository item MAY specify the
language for a locale specific repository item. The value of the Content-language mime header property
MUST conform to [RFC 1766].

This document currently specifies only the method of sending the information of character set and language,
and how it is stored in a registry. However, the language information MAY be used as one of the query
criteria, such as retrieving only DTD written in French. Furthermore, a language negotiation procedure, like
registry client is asking a favorite language for messages from registry services, could be another
functionality for the future revision of this document.

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 120 of 129

4217

4218
4219

4220

4221
4222

4223

4224

4225

4226

4227
4228

4229

4230

4231

4232

4233

4234

4235

4236

4237

4238

4239
4240

4241

4242
4243

4244

4245

4246
4247

4248
4249

13 Conformance
This chapter defines the technical conformance requirements for ebXML Registry. Note that it does not
define specific conformance tests to verify compliance with various conformance profiles.

13.1 Conformance Profiles
An ebXML Registry MUST comply with one of the following conformance profiles:

• Registry Lite – This conformance profile requires the regsitry to implement a minimal set of core features
defined by this specification.

• Registry Full – This conformance profile requires the registry to implement additional set of features in
addition to those required by the Registry Lite conformance profile.

13.2 Feature Matrix
The following table identifies the implementation requirements for each feature defined by this specification
for each conformance profile defined above.

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 121 of 129

4250

4251

4252

4253

4254

4255
4256

4257
4258

4259

4260
4261

Table 9: Feature Conformance Matrix

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 122 of 129

Feature Registry Lite Registry Full

SOAP Binding

QueryManager binding MUST MUST

LifeCycleManager binding MUST MUST

HTTP Binding

RPC Encoded URL MUST MUST

User Defined URL MAY MUST

File Path URL MAY MUST

LifeCycleManager

SubmitObjects Protocol MUST MUST

UpdateObjects Protocol MUST MUST

ApproveObjects Protocol MUST MUST

DeprecateObjects Protocol MUST MUST

UnderprecateObjects Protocol MUST MUST

RemoveObjects Protocol MUST MUST

 Registry Managed Version Control MAY MUST

QueryManager

SQL Query MAY MUST

Filter Query MUST MUST

Stored Parameterized Query MAY MUST

Iterative Query MAY MUST

Event Notification MAY MUST

Content Management Services

Validate Content Protocol MAY MUST

Catalog Content Protocol MAY MUST

Canonical XML Cataloging Service MAY MUST

Cooperating Registries

Remote object references MAY MUST

Federated queries MAY MUST

Object Replication MAY MUST

Object Relocation MAY MUST

Registry Security

 Identity Management MUST MUST

Message Security

 Transport layer security MAY MUST

SOAP Message Security MUST MUST

Repository Item Security MUST MUST

Authorization and Access Control

Default Access Control Policy MUST MUST

Custom Access Control Policies MAY MUST

Audit Trail MUST MUST

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 123 of 129

Feature Registry Lite Registry Full

Registry SAML Profile MAY MUST

NLS MUST MUST

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 124 of 129

4262

14 References

14.1 Normative References
[RFC2119] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, IETF RFC

2119, March 1997, http://www.ietf.org/rfc/rfc2119.txt.
[ebRIM] ebXML Registry Information Model Version 3.0.12

http://www.oasis-open.org/committees/regrep/documents/3.0.1/specs/regrep-rim-
3.0.1-cs-012.pdf

[REC-XML] W3C Recommendation. Extensible Markup language(XML)1.0(Second Edition)
http://www.w3.org/TR/REC-xml

[RFC 1766] IETF (Internet Engineering Task Force). RFC 1766:
Tags for the Identification of Languages, ed. H. Alvestrand. 1995.
http://www.cis.ohio-state.edu/htbin/rfc/rfc1766.html

[RFC 2130] IETF (Internet Engineering Task Force). RFC 2130
The Report of the IAB Character Set Workshop held 29 February - 1 March, 1996
http://www.faqs.org/rfcs/rfc2130.html

[RFC 2277] IETF (Internet Engineering Task Force). RFC 2277:
IETF policy on character sets and languages, ed. H. Alvestrand. 1998.
http://www.cis.ohio-state.edu/htbin/rfc/rfc2277.html

[RFC 2278] IETF (Internet Engineering Task Force). RFC 2278:
IANA Charset Registration Procedures, ed. N. Freed and J. Postel. 1998.
http://www.cis.ohio-state.edu/htbin/rfc/rfc2278.html

[RFC2616] IETF (Internet Engineering Task Force). RFC 2616:
Fielding et al. Hypertext Transfer Protocol -- HTTP/1.1 . 1999.
http://www.w3.org/Protocols/rfc2616/rfc2616.html

[RFC2965] IETF (Internet Engineering Task Force). RFC 2965:
D. Kristol et al. HTTP State Management Mechanism. 2000.
http://www.w3.org/Protocols/rfc2616/rfc2616.html

[RR-CMS-XSD] ebXML Registry Content Management Services XML Schema
http://www.oasis-open.org/committees/regrep/documents/3.0/schema/rim.xsd

[RR-LCM-XSD] ebXML Registry LifeCycleManager XML Schema
http://www.oasis-open.org/committees/regrep/documents/3.0/schema/lcm.xsd

[RR-RIM-XSD] ebXML Registry Information Model XML Schema
http://www.oasis-open.org/committees/regrep/documents/3.0/schema/rim.xsd

[RR-RS-XSD] ebXML Registry Service Protocol XML Schema
http://www.oasis-open.org/committees/regrep/documents/3.0/schema/rs.xsd

[RR-QM-XSD] ebXML Registry QueryManager XML Schema
http://www.oasis-open.org/committees/regrep/documents/3.0/schema/query.xsd

[SAMLBind] S. Cantor et al., Bindings for the OASIS Security Assertion Markup Language
(SAML) V2.0. OASIS SSTC, September 2004. Document ID sstc-saml-bindings-
2.0-cd-03.
http://www.oasis-open.org/committees/security/.
Note: when this document is finalized, this URL will be updated.

[SAMLConform] P. Mishra et al. Conformance Requirements for the OASIS Security Assertion
Markup Language (SAML) V2.0. OASIS SSTC, September 2004. Document ID
sstc-saml-conformance-2.0-cd-03.
http://www.oasis-open.org/committees/security/.
Note: when this document is finalized, this URL will be updated.

[SAMLCore] S. Cantor et al., Assertions and Protocols for the OASIS Security

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 125 of 129

4263

4264

4265

4266

4267

4268
4269

4270

4271

4272

4273

4274

4275

4276

4277

4278

4279

4280

4281

4282

4283

4284

4285

4286

4287

4288

4289

4290

4291

4292

4293

4294

4295

4296

4297

4298

4299

4300
4301

4302

4303

4304

4305

4306
4307

4308

4309

4310

http://www.oasis-open.org/committees/regrep/documents/3.0/specs/regrep-rs-3.0-cd-01.pdf
http://www.oasis-open.org/committees/regrep/documents/3.0/specs/regrep-rs-3.0-cd-01.pdf
http://www.oasis-open.org/committees/regrep/documents/3.0/specs/regrep-rs-3.0-cd-01.pdf
http://www.oasis-open.org/committees/regrep/documents/3.0/specs/regrep-rs-3.0-cd-01.pdf
http://www.oasis-open.org/committees/regrep/documents/3.0/specs/regrep-rs-3.0-cd-01.pdf
http://www.oasis-open.org/committees/regrep/documents/3.0/specs/regrep-rs-3.0-cd-01.pdf
http://www.oasis-open.org/committees/regrep/documents/3.0/specs/regrep-rs-3.0-cd-01.pdf
http://www.oasis-open.org/committees/regrep/documents/3.0/specs/regrep-rs-3.0-cd-01.pdf
http://www.oasis-open.org/committees/regrep/documents/3.0/specs/regrep-rs-3.0-cd-01.pdf
http://www.oasis-open.org/committees/regrep/documents/3.0/specs/regrep-rs-3.0-cd-01.pdf
http://www.oasis-open.org/committees/regrep/documents/3.0/specs/regrep-rs-3.0-cd-01.pdf
http://www.oasis-open.org/committees/regrep/documents/3.0/specs/regrep-rs-3.0-cd-01.pdf
http://www.oasis-open.org/committees/regrep/documents/3.0/specs/regrep-rs-3.0-cd-01.pdf
http://www.oasis-open.org/committees/regrep/documents/3.0/specs/regrep-rs-3.0-cd-01.pdf
http://www.oasis-open.org/committees/regrep/documents/3.0/specs/regrep-rs-3.0-cd-01.pdf
http://www.oasis-open.org/committees/regrep/documents/3.0/specs/regrep-rs-3.0-cd-01.pdf
http://www.oasis-open.org/committees/regrep/documents/3.0/specs/regrep-rs-3.0-cd-01.pdf
http://www.oasis-open.org/committees/regrep/documents/3.0/specs/regrep-rs-3.0-cd-01.pdf
http://www.oasis-open.org/committees/regrep/documents/3.0/specs/regrep-rs-3.0-cd-01.pdf
http://www.oasis-open.org/committees/regrep/documents/3.0/specs/regrep-rs-3.0-cd-01.pdf
http://www.oasis-open.org/committees/regrep/documents/3.0/specs/regrep-rs-3.0-cd-01.pdf
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/regrep/documents/3.0/schema/query.xsd
http://www.oasis-open.org/committees/regrep/documents/3.0/schema/query.xsd
http://www.oasis-open.org/committees/regrep/documents/3.0/schema/query.xsd
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml
http://www.oasis-open.org/committees/regrep/documents/3.0/schema/rs.xsd
http://www.oasis-open.org/committees/regrep/documents/3.0/schema/rs.xsd
http://www.oasis-open.org/committees/regrep/documents/3.0/schema/rs.xsd
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml
http://www.oasis-open.org/committees/regrep/documents/3.0/schema/rim.xsd
http://www.oasis-open.org/committees/regrep/documents/3.0/schema/rim.xsd
http://www.oasis-open.org/committees/regrep/documents/3.0/schema/rim.xsd
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml
http://www.oasis-open.org/committees/regrep/documents/3.0/schema/lcm.xsd
http://www.oasis-open.org/committees/regrep/documents/3.0/schema/lcm.xsd
http://www.oasis-open.org/committees/regrep/documents/3.0/schema/lcm.xsd
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml
http://www.oasis-open.org/committees/regrep/documents/3.0/schema/rim.xsd
http://www.oasis-open.org/committees/regrep/documents/3.0/schema/rim.xsd
http://www.oasis-open.org/committees/regrep/documents/3.0/schema/rim.xsd
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc2278.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc2277.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc2277.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc2277.html
http://www.faqs.org/rfcs/rfc2130.html
http://www.faqs.org/rfcs/rfc2130.html
http://www.faqs.org/rfcs/rfc2130.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1766.html
http://www.w3.org/TR/REC-xml
http://www.oasis-open.org/committees/regrep/documents/3.0/specs/regrep-rs-3.0-cd-01.pdf
http://www.oasis-open.org/committees/regrep/documents/3.0/specs/regrep-rs-3.0-cd-01.pdf
http://www.oasis-open.org/committees/regrep/documents/3.0/specs/regrep-rs-3.0-cd-01.pdf
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt

Assertion Markup Language (SAML) V2.0. OASIS SSTC, December 2004.
Document ID sstc-saml-core-2.0-cd-03.
http://www.oasis-open.org/committees/security/.
Note: when this document is finalized, this URL will be updated.

[SAMLProf] S. Cantor et al., Profiles for the OASIS Security Assertion Markup Language
(SAML) V2.0. OASIS SSTC, September 2004. Document ID sstc-saml-profiles-2.0-
cd-03.
http://www.oasis-open.org/committees/security/.
Note: when this document is finalized, this URL will be updated.

[SAMLP-XSD] S. Cantor et al., SAML protocols schema. OASIS SSTC, September 2004.
Document ID sstc-saml-schema-protocol-2.0.
http://www.oasis-open.org/committees/security/.
Note: when this document is finalized, this URL will be updated.

[SAML-XSD] S. Cantor et al., SAML assertions schema. OASIS SSTC, September 2004.
Document ID sstc-saml-schema-assertion-2.0.
http://www.oasis-open.org/committees/security/.
Note: when this document is finalized, this URL will be updated.

[SOAP11] W3C Note. Simple Object Access Protocol, May 2000 http://www.w3.org/TR/SOAP
[SwA] W3C Note: SOAP with Attachments, Dec 2000

http://www.w3.org/TR/SOAP-attachments
[SQL] Structured Query Language (FIPS PUB 127-2)

http://www.itl.nist.gov/fipspubs/fip127-2.htm
[SQL/PSM] Database Language SQL — Part 4: Persistent Stored Modules
 (SQL/PSM) [ISO/IEC 9075-4:1996]
[UUID] DCE 128 bit Universal Unique Identifier

http://www.opengroup.org/onlinepubs/009629399/apdxa.htm#tagcjh_20
[WSDL] W3C Note. Web Services Description Language (WSDL) 1.1

http://www.w3.org/TR/wsdl
[XML] T. Bray, et al. Extensible Markup Language (XML) 1.0 (Second Edition). World

Wide Web Consortium, October 2000.
http://www.w3.org/TR/REC-xml

[XMLDSIG] XML-Signature Syntax and Processing
http://www.w3.org/TR/2001/PR-xmldsig-core-20010820/

[WSI-BSP] WS-I: Basic Security Profile 1.0
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0-2004-05-12.html
Note: when this document is finalized, this URL will be updated.

[WSS-SMS] Web Services Security: SOAP Message Security 1.0
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-
1.0.pdf

[WSS-SWA] Web Services Security: SOAP Message with Attachments (SwA) Profile 1.0
http://www.oasis-open.org/apps/org/workgroup/wss/download.php/10902/wss-swa-
profile-1.0-cd-01.pdf
Note: when this document is finalized, this URL will be updated.

14.2 Informative
[ebBPSS] ebXML Business Process Specification Schema

http://www.ebxml.org/specs
[ebCPP] ebXML Collaboration-Protocol Profile and Agreement Specification

http://www.ebxml.org/specs/
[ebMS] ebXML Messaging Service Specification, Version 1.0

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 126 of 129

4311

4312

4313

4314

4315

4316
4317

4318

4319

4320
4321

4322

4323

4324
4325

4326

4327

4328

4329

4330

4331

4332

4333

4334

4335

4336

4337

4338

4339

4340

4341

4342

4343

4344

4345

4346

4347

4348
4349

4350

4351

4352
4353

4354

4355

4356

4357

4358

4359

http://www.ebxml.org/specs
http://www.ebxml.org/specs
http://www.ebxml.org/specs
http://www.ebxml.org/specs
http://www.ebxml.org/specs
http://www.ebxml.org/specs
http://www.w3.org/TR/2001/PR-xmldsig-core-20010820/
http://www.w3.org/TR/2001/PR-xmldsig-core-20010820/
http://www.w3.org/TR/2001/PR-xmldsig-core-20010820/
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/wsdl
http://www.opengroup.org/onlinepubs/009629399/apdxa.htm#tagcjh_20%0Dhttp://www.opengroup.org/publications/catalog/c706.htmttp://www.w3.org/TR/REC-xml
http://www.opengroup.org/onlinepubs/009629399/apdxa.htm#tagcjh_20%0Dhttp://www.opengroup.org/publications/catalog/c706.htmttp://www.w3.org/TR/REC-xml
http://www.opengroup.org/onlinepubs/009629399/apdxa.htm#tagcjh_20%0Dhttp://www.opengroup.org/publications/catalog/c706.htmttp://www.w3.org/TR/REC-xml
http://www.opengroup.org/onlinepubs/009629399/apdxa.htm#tagcjh_20%0Dhttp://www.opengroup.org/publications/catalog/c706.htmttp://www.w3.org/TR/REC-xml
http://www.opengroup.org/onlinepubs/009629399/apdxa.htm#tagcjh_20%0Dhttp://www.opengroup.org/publications/catalog/c706.htmttp://www.w3.org/TR/REC-xml
http://www.opengroup.org/onlinepubs/009629399/apdxa.htm#tagcjh_20%0Dhttp://www.opengroup.org/publications/catalog/c706.htmttp://www.w3.org/TR/REC-xml
http://www.itl.nist.gov/fipspubs/fip127-2.htm
http://www.w3.org/TR/SOAP-attachments
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/

http://www.ebxml.org/specs/
[DeltaV] Versioning Extension to WebDAV, IETF RFC 3253

http://www.webdav.org/deltav/protocol/rfc3253.html
[XPT] XML Path Language (XPath) Version 1.0

http://www.w3.org/TR/xpath
[IANA] IANA (Internet Assigned Numbers Authority).

Official Names for Character Sets, ed. Keld Simonsen et al.
http://www.iana.org/

[RFC2392] E. Levinson, Content-ID and Message-ID Uniform Resource Locators, IETF
RFC 2392,
http://www.ietf.org/rfc/rfc2392.txt

[RFC 2828] IETF (Internet Engineering Task Force). RFC 2828:
Internet Security Glossary, ed. R. Shirey. May 2000.
http://www.cis.ohio-state.edu/htbin/rfc/rfc2828.html

[RFC 3023] IETF (Internet Engineering Task Force). RFC 3023:
XML Media Types, ed. M. Murata. 2001.
ftp://ftp.isi.edu/in-notes/rfc3023.txt

[SAMLMeta] S. Cantor et al., Metadata for the OASIS Security Assertion Markup Language
(SAML) V2.0. OASIS SSTC, September 2004. Document ID sstc-saml-metadata-
2.0-cd-02.
http://www.oasis-open.org/committees/security/.

[SAMLGloss] J. Hodges et al., Glossary for the OASIS Security Assertion Markup Language
(SAML) V2.0. OASIS SSTC, September 2004. Document ID sstc-saml-glossary-
2.0-cd-02.
http://www.oasis-open.org/committees/security/.

[SAMLSecure] F. Hirsch et al., Security and Privacy Considerations for the OASIS Security
Assertion Markup Language (SAML) V2.0. OASIS SSTC, September 2004.
Document ID sstc-saml-sec-consider-2.0-cd-02.
http://www.oasis-open.org/committees/security/.

[SAMLTech] J.Hughes et al.,Technical Overview of the OASIS Security
Assertion Markup Language (SAML)V2.0.
http://www.oasis-open.org/committees/download.php/7874/sstc-saml-tech-
overview-2.0-draft-01.pdf

[UML] Unified Modeling Language
http://www.uml.org
http://www.omg.org/cgi-bin/doc?formal/03-03-01

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 127 of 129

4360

4361

4362

4363

4364

4365

4366

4367

4368

4369

4370

4371

4372

4373

4374

4375

4376

4377
4378

4379

4380

4381
4382

4383

4384

4385
4386

4387

4388

4389

4390

4391
4392

4393

4394

4395

4396

http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath
http://www.uml.org/
http://www.uml.org/
http://www.uml.org/
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/
ftp://ftp.isi.edu/in-notes/rfc3023.txt
http://www.cis.ohio-state.edu/htbin/rfc/rfc2278.html
http://www.ietf.org/rfc/rfc2392.txt
http://www.ietf.org/rfc/rfc2392.txt
http://www.ietf.org/rfc/rfc2392.txt
http://www.iana.org/
http://www.iana.org/
http://www.iana.org/
http://www.w3.org/TR/xpath
http://www.ebxml.org/specs/
http://www.ebxml.org/specs/
http://www.ebxml.org/specs/
http://www.ebxml.org/specs/
http://www.ebxml.org/specs/
http://www.ebxml.org/specs/

A. Acknowledgments

The editors would like to acknowledge the contributions of the OASIS ebXML Registry Technical Committee,
whose voting members at the time of publication are listed as contributors on the title page of this document.

• Finally, the editors wish to acknowledge the following people for their contributions of material used as
input to the OASIS ebXML Registry specifications:

Name Affiliation
Aziz Abouelfoutouh Government of Canada
Ed Buchinski Government of Canada
Asuman Dogac Middle East Technical University,

Ankara Turkey
Michael Kass NIST
Richard Lessard Government of Canada
Evan Wallace NIST
David Webber Individual

•

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 128 of 129

4397

4398

4399

4400

4401

4402

4403

B. Notices

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might
be claimed to pertain to the implementation or use of the technology described in this document or the
extent to which any license under such rights might or might not be available; neither does it represent that it
has made any effort to identify any such rights. Information on OASIS's procedures with respect to rights in
OASIS specifications can be found at the OASIS website. Copies of claims of rights made available for
publication and any assurances of licenses to be made available, or the result of an attempt made to obtain
a general license or permission for the use of such proprietary rights by implementors or users of this
specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or
other proprietary rights which may cover technology that may be required to implement this specification.
Please address the information to the OASIS Executive Director.

Copyright © OASIS Open 2004. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and
distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and
this paragraph are included on all such copies and derivative works. However, this document itself does not
be modified in any way, such as by removing the copyright notice or references to OASIS, except as needed
for the purpose of developing OASIS specifications, in which case the procedures for copyrights defined in
the OASIS Intellectual Property Rights document must be followed, or as required to translate it into
languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or
assigns.

This document and the information contained herein is provided on an “AS IS” basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR
ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

regrep-rs Aug 23, 2007
Copyright © OASIS Open 2007. All Rights Reserved. Page 129 of 129

4404

4405

4406
4407

4408
4409

4410
4411

4412

4413

4414
4415

4416

4417

4418
4419

4420
4421

4422
4423

4424

4425

4426

4427

4428
4429

4430

	1 Introduction
	1.1 Audience
	1.2 Terminology
	1.3 Notational Conventions
	1.3.1 UML Diagrams
	1.3.2 Identifier Placeholders
	1.3.3 Constants
	1.3.4 Bold Text
	1.3.5 Example Values

	1.4 XML Schema Conventions
	1.4.1 Schemas Defined by ebXML Registry
	1.4.2 Schemas Used By ebXML Registry

	1.5 Registry Actors
	1.6 Registry Use Cases
	1.7 Registry Architecture
	1.7.1 Registry Clients
	1.7.1.1 Client API

	1.7.2 Registry Service Interfaces
	1.7.3 Service Interface: Protocol Bindings
	1.7.4 Authentication and Authorization
	1.7.5 Metadata Registry and Content Repository

	2 Registry Protocols
	2.1 Requests and Responses
	2.1.1 RegistryRequestType
	2.1.1.1 Syntax:
	2.1.1.2 Parameters:
	2.1.1.3 Returns:
	2.1.1.4 Exceptions:

	2.1.2 RegistryRequest
	2.1.3 RegistryResponseType
	2.1.3.1 Syntax:
	2.1.3.2 Parameters:

	2.1.4 RegistryResponse
	2.1.5 RegistryErrorList
	2.1.5.1 Syntax:
	2.1.5.2 Parameters:

	2.1.6 RegistryError
	2.1.6.1 Syntax:
	2.1.6.2 Parameters:

	3 SOAP Binding
	3.1 ebXML Registry Service Interfaces: Abstract Definition
	3.2 ebXML Registry Service Interfaces SOAP Binding
	3.3 ebXML Registry Service Interfaces SOAP Service Template
	3.4 Mapping of Exception to SOAP Fault

	4 HTTP Binding
	4.1 HTTP Interface URL Pattern
	4.2 RPC Encoding URL
	4.2.1 Standard URL Parameters
	4.2.2 QueryManager Binding
	4.2.2.1 Sample getRegistryObject Request
	4.2.2.2 Sample getRegistryObject Response
	4.2.2.3 Sample getRepositoryItem Request
	4.2.2.4 Sample getRepositoryItem Response

	4.2.3 LifeCycleManager HTTP Interface

	4.3 Submitter Defined URL
	4.3.1 Submitter defined URL Syntax
	4.3.2 Assigning URL to a RegistryObject
	4.3.3 Assigning URL to a Repository Item

	4.4 File Path Based URL
	4.4.1 File Folder Metaphor
	4.4.2 File Path of a RegistryObject
	4.4.2.1 File Path Example

	4.4.3 Matching URL To Objects
	4.4.4 URL Matches a Single Object
	4.4.5 URL Matches Multiple Object
	4.4.6 Directory Listing
	4.4.7 Access Control In RegistryPackage Hierarchy

	4.5 URL Resolution Algorithm
	4.6 Security Consideration
	4.7 Exception Handling

	5 Lifecycle Management Protocols
	5.1 Submit Objects Protocol
	5.1.1 SubmitObjectsRequest
	5.1.1.1 Syntax:
	5.1.1.2 Parameters:
	5.1.1.3 Returns:
	5.1.1.4 Exceptions:

	5.1.2 Unique ID Generation
	5.1.3 ID Attribute And Object References
	5.1.4 Audit Trail
	5.1.5 Sample SubmitObjectsRequest

	5.2 The Update Objects Protocol
	5.2.1 UpdateObjectsRequest
	5.2.1.1 Syntax:
	5.2.1.2 Parameters:
	5.2.1.3 Returns:
	5.2.1.4 Exceptions:

	5.2.2 Audit Trail

	5.3 The Approve Objects Protocol
	5.3.1 ApproveObjectsRequest
	5.3.1.1 Syntax:
	5.3.1.2 Parameters:
	5.3.1.3 Returns:
	5.3.1.4 Exceptions:

	5.3.2 Audit Trail

	5.4 The Deprecate Objects Protocol
	5.4.1 DeprecateObjectsRequest
	5.4.1.1 Syntax:
	5.4.1.2 Parameters:
	5.4.1.3 Returns:
	5.4.1.4 Exceptions:

	5.4.2 Audit Trail

	5.5 The Undeprecate Objects Protocol
	5.5.1 UndeprecateObjectsRequest
	5.5.1.1 Syntax:
	5.5.1.2 Parameters:
	5.5.1.3 Returns:
	5.5.1.4 Exceptions:

	5.5.2 Audit Trail

	5.6 The Remove Objects Protocol
	5.6.1 RemoveObjectsRequest
	5.6.1.1 Syntax:
	5.6.1.2 Parameters:
	5.6.1.3 Returns:
	5.6.1.4 Exceptions:

	5.7 Registry Managed Version Control
	5.7.1 Version Controlled Resources
	5.7.2 Versioning and Object Identification
	5.7.3 Logical ID
	5.7.4 Version Identification
	5.7.4.1 Version Identification for a RegistryObject
	5.7.4.2 Version Identification for a RepositoryItem

	5.7.5 Versioning of ExtrinsicObject and Repository Items
	5.7.5.1 ExtrinsicObject and Shared RepositoryItem

	5.7.6 Versioning and Composed Objects
	5.7.7 Versioning and References
	5.7.8 Versioning and Audit Trail
	5.7.9 Inter-versions Association
	5.7.10 Client Initiated Version Removal
	5.7.11 Registry Initiated Version Removal
	5.7.12 Locking and Concurrent Modifications
	5.7.13 Version Creation
	5.7.14 Versioning Override

	6 Query Management Protocols
	6.1 Ad Hoc Query Protocol
	6.1.1 AdhocQueryRequest
	6.1.1.1 Syntax:
	6.1.1.2 Parameters:
	6.1.1.3 Returns:
	6.1.1.4 Exceptions:

	6.1.2 AdhocQueryResponse
	6.1.2.1 Syntax:
	6.1.2.2 Parameters:

	6.1.3 AdhocQuery
	6.1.3.1 Syntax:
	6.1.3.2 Parameters:

	6.1.4 ReponseOption
	6.1.4.1 Syntax:
	6.1.4.2 Parameters:

	6.2 Iterative Query Support
	6.2.1 Query Iteration Example

	6.3 Stored Query Support
	6.3.1 Submitting a Stored Query
	6.3.1.1 Declaring Query Parameters
	6.3.1.2 Canonical Context Parameters

	6.3.2 Invoking a Stored Query
	6.3.2.1 Specifying Query Invocation Parameters

	6.3.3 Response to Stored Query Invocation
	6.3.4 Access Control on a Stored Query
	6.3.5 Canonical Query: Get Client’s User Object

	6.4 SQL Query Syntax
	6.4.1 Relational Schema for SQL Queries
	6.4.2 SQL Query Results

	6.5 Filter Query Syntax
	6.5.1 Filter Query Structure
	6.5.2 Query Elements
	6.5.3 Filter Elements
	6.5.3.1 FilterType
	6.5.3.1.1 Parameters:

	6.5.3.2 SimpleFilterType
	6.5.3.2.1 Parameters:

	6.5.3.3 BooleanFilter
	6.5.3.3.1 Parameters:

	6.5.3.4 FloatFilter
	6.5.3.4.1 Parameters:

	6.5.3.5 IntegerFilter
	6.5.3.5.1 Parameters:

	6.5.3.6 DateTimeFilter
	6.5.3.6.1 Parameters:

	6.5.3.7 StringFilter
	6.5.3.7.1 Parameters:

	6.5.3.8 CompoundFilter
	6.5.3.8.1 Parameters:

	6.5.4 Nested Query Elements
	6.5.5 Branch Elements

	6.6 Query Examples
	6.6.1 Name and Description Queries
	6.6.2 Classification Queries
	6.6.2.1 Retrieving ClassificationSchemes
	6.6.2.2 Retrieving Children of Specified ClassificationNode
	6.6.2.3 Retrieving Objects Classified By a ClassificationNode
	6.6.2.4 Retrieving Classifications that Classify an Object

	6.6.3 Association Queries
	6.6.3.1 Retrieving All Associations With Specified Object As Source
	6.6.3.2 Retrieving All Associations With Specified Object As Target
	6.6.3.3 Retrieving Associated Objects Based On Association Type
	6.6.3.4 Complex Association Query

	6.6.4 Package Queries
	6.6.5 ExternalLink Queries
	6.6.6 Audit Trail Queries

	7 Event Notification Protocols
	7.1 Use Cases
	7.1.1 CPP Has Changed
	7.1.2 New Service is Offered
	7.1.3 Monitor Download of Content
	7.1.4 Monitor Price Changes
	7.1.5 Keep Replicas Consistent With Source Object

	7.2 Registry Events
	7.3 Subscribing to Events
	7.3.1 Event Selection
	7.3.2 Notification Action
	7.3.3 Subscription Authorization
	7.3.4 Subscription Quotas
	7.3.5 Subscription Expiration
	7.3.6 Subscription Rejection

	7.4 Unsubscribing from Events
	7.5 Notification of Events
	7.6 Retrieval of Events
	7.7 Pruning of Events

	8 Content Management Services
	8.1 Content Validation
	8.1.1 Content Validation: Use Cases
	8.1.1.1 Validation of HL7 Conformance Profiles
	8.1.1.2 Validation of Business Processes
	8.1.1.3 Validation of UBL Business Documents

	8.2 Content Cataloging
	8.2.1 Content-based Discovery: Use Cases
	8.2.1.1 Find All CPPs Where Role is “Buyer”
	8.2.1.2 Find All XML Schema’s That Use Specified Namespace
	8.2.1.3 Find All WSDL Descriptions with a SOAP Binding

	8.3 Abstract Content Management Service
	8.3.1 Inline Invocation Model
	8.3.2 Decoupled Invocation Model

	8.4 Content Management Service Protocol
	8.4.1 ContentManagementServiceRequestType
	8.4.1.1 Syntax:
	8.4.1.2 Parameters:
	8.4.1.3 Returns:
	8.4.1.4 Exceptions:

	8.4.2 ContentManagementServiceResponseType
	8.4.2.1 Syntax:
	8.4.2.2 Parameters:

	8.5 Publishing / Configuration of a Content Management Service
	8.5.1 Multiple Content Management Services and Invocation Control Files

	8.6 Invocation of a Content Management Service
	8.6.1 Resolution Algorithm For Service and Invocation Control File
	8.6.2 Audit Trail and Cataloged Content
	8.6.3 Referential Integrity
	8.6.4 Error Handling

	8.7 Validate Content Protocol
	8.7.1 ValidateContentRequest
	8.7.1.1 Syntax:
	8.7.1.2 Parameters:
	8.7.1.3 Returns:
	8.7.1.4 Exceptions:

	8.7.2 ValidateContentResponse
	8.7.2.1 Syntax:
	8.7.2.2 Parameters:

	8.8 Catalog Content Protocol
	8.8.1 CatalogContentRequest
	8.8.1.1 Syntax:
	8.8.1.2 Parameters:
	8.8.1.3 Returns:
	8.8.1.4 Exceptions:

	8.8.2 CatalogContentResponse
	8.8.2.1 Syntax:
	8.8.2.2 Parameters:

	8.9 Illustrative Example: Canonical XML Cataloging Service
	8.10 Canonical XML Content Cataloging Service
	8.10.1 Publishing of Canonical XML Content Cataloging Service

	9 Cooperating Registries Support
	9.1 Cooperating Registries Use Cases
	9.1.1 Inter-registry Object References
	9.1.2 Federated Queries
	9.1.3 Local Caching of Data from Another Registry
	9.1.4 Object Relocation

	9.2 Registry Federations
	9.2.1 Federation Metadata
	9.2.2 Local Vs. Federated Queries
	9.2.2.1 Local Queries
	9.2.2.2 Federated Queries
	9.2.2.3 Membership in Multiple Federations

	9.2.3 Federated Lifecycle Management Operations
	9.2.4 Federations and Local Caching of Remote Data
	9.2.5 Caching of Federation Metadata
	9.2.6 Time Synchronization Between Registry Peers
	9.2.7 Federations and Security
	9.2.8 Federation Lifecycle Management Protocols
	9.2.8.1 Joining a Federation
	9.2.8.2 Creating a Federation
	9.2.8.3 Leaving a Federation
	9.2.8.4 Dissolving a Federation

	9.3 Object Replication
	9.3.1 Use Cases for Object Replication
	9.3.2 Queries And Replicas
	9.3.3 Lifecycle Operations And Replicas
	9.3.4 Object Replication and Federated Registries
	9.3.5 Creating a Local Replica
	9.3.6 Transactional Replication
	9.3.7 Keeping Replicas Current
	9.3.8 Lifecycle Management of Local Replicas
	9.3.9 Tracking Location of a Replica
	9.3.10 Remote Object References to a Replica
	9.3.11 Removing a Local Replica

	9.4 Object Relocation Protocol
	9.4.1 RelocateObjectsRequest
	9.4.1.1 Parameters:
	9.4.1.2 Returns:
	9.4.1.3 Exceptions:

	9.4.2 AcceptObjectsRequest
	9.4.2.1 Parameters:
	9.4.2.2 Returns:
	9.4.2.3 Exceptions:

	9.4.3 Object Relocation and Remote ObjectRefs
	9.4.4 Notification of Object Relocation To ownerAtDestination
	9.4.5 Notification of Object Commit To sourceRegistry
	9.4.6 Object Ownership and Owner Reassignment
	9.4.7 Object Relocation and Timeouts

	10 Registry Security
	10.1 Security Use Cases
	10.1.1 Identity Management
	10.1.2 Message Security
	10.1.3 Repository Item Security
	10.1.4 Authentication
	10.1.5 Authorization and Access Control
	10.1.6 Audit Trail

	10.2 Identity Management
	10.3 Message Security
	10.3.1 Transport Layer Security
	10.3.2 SOAP Message Security
	10.3.2.1 Request Message Signature
	10.3.2.2 Response Message Signature
	10.3.2.3 KeyInfo Requirements
	10.3.2.4 Message Signature Validation
	10.3.2.5 Message Signature Example
	10.3.2.6 Message With RepositoryItem: Signature Example
	10.3.2.7 SOAP Message Security and HTTP/S

	10.3.3 Message Confidentiality
	10.3.4 Key Distribution Requirements

	10.4 Authentication
	10.4.1 Registry as Authentication Authority
	10.4.2 External Authentication Authority
	10.4.3 Authenticated Session Support

	10.5 Authorization and Access Control
	10.6 Audit Trail

	11 Registry SAML Profile
	11.1 Terminology
	11.2 Use Cases for SAML Profile
	11.2.1 Registry as SSO Participant:

	11.3 SAML Roles Played By Registry
	11.3.1 Service Provider Role
	11.3.1.1 Service Provider Requirements

	11.4 Registry SAML Interface
	11.5 Requirements for Registry SAML Profile
	11.6 SSO Operation
	11.6.1 Scenario Actors
	11.6.2 SSO Operation – Unauthenticated HTTP Requestor
	11.6.2.1 Scenario Sequence

	11.6.3 SSO Operation – Authenticated HTTP Requestor
	11.6.4 SSO Operation – Unuthenticated SOAP Requestor
	11.6.4.1 Scenario Sequence

	11.6.5 SSO Operation – Authenticated SOAP Requestor
	11.6.5.1 Scenario Sequence

	11.6.6 <samlp:AuthnRequest> Generation Rules
	11.6.7 <samlp:Response> Processing Rules
	11.6.8 Mapping Subject to User

	11.7 External Users

	12 Native Language Support (NLS)
	12.1 Terminology
	12.2 NLS and Registry Protcol Messages
	12.3 NLS Support in RegistryObjects
	12.3.1 Character Set of LocalizedString
	12.3.2 Language of LocalizedString

	12.4 NLS and Repository Items
	12.4.1 Character Set of Repository Items
	12.4.2 Language of Repository Items

	13 Conformance
	13.1 Conformance Profiles
	13.2 Feature Matrix

	14 References
	14.1 Normative References
	14.2 Informative

