

Service Component Architecture JMS
Binding Specification Version 1.1
Committee Draft 01 revision 4

21st January, 2009
Specification URIs:
This Version:

http://docs.oasis-open.org/opencsa/sca-bindings/sca-binding-jms-1.1-spec-cd01-rev4.html
http://docs.oasis-open.org/opencsa/sca-bindings/sca-binding-jms-1.1-spec-cd01-rev4.doc
http://docs.oasis-open.org/opencsa/sca-bindings/sca-binding-jms-1.1-spec-cd01-rev4.pdf
(Authoritative)

Previous Version:
http://docs.oasis-open.org/opencsa/sca-bindings/sca-jmsbinding-1.1-spec-cd01.html
http://docs.oasis-open.org/opencsa/sca-bindings/sca-jmsbinding-1.1-spec-cd01.doc
http://docs.oasis-open.org/opencsa/sca-bindings/sca-jmsbinding-1.1-spec-cd01.pdf
(Authoritative)

Latest Version:
http://docs.oasis-open.org/opencsa/sca-bindings/sca-binding-jms-1.1-spec.html
http://docs.oasis-open.org/opencsa/sca-bindings/sca-binding-jms-1.1-spec.doc
http://docs.oasis-open.org/opencsa/sca-bindings/sca-binding-jms-1.1-spec.pdf (Authoritative)

Latest Approved Version:

Technical Committee:
OASIS Service Component Architecture / Bindings (SCA-Bindings) TC

Chair(s):
Simon Holdsworth, IBM

Editor(s):
Simon Holdsworth, IBM
Khanderao Kand, Oracle
Anish Karmarkar, Oracle
Sanjay Patil, SAP
Piotr Przybylski, IBM

Related work:
This specification replaces or supercedes:

• Service Component Architecture JMS Binding Specification Version 1.00, March 21 2007
This specification is related to:

• Service Component Architecture Assembly Model Specification Version 1.1
• Service Component Architecture Policy Framework Specification Version 1.1

Declared XML Namespace(s):
http://docs.oasis-open.org/ns/opencsa/sca/200712

sca-binding-jms-1.1-spec-cd01-rev4 21st January 2009
Copyright © OASIS® 2006, 2008. All Rights Reserved. Page 1 of 30

http://docs.oasis-open.org/opencsa/sca-bindings/sca-binding-jms-1.1-spec-cd01-rev4.html
http://docs.oasis-open.org/opencsa/sca-bindings/sca-binding-jms-1.1-spec-cd01-rev4.doc
http://docs.oasis-open.org/opencsa/sca-bindings/sca-binding-jms-1.1-spec-cd01-rev4.pdf
http://docs.oasis-open.org/opencsa/sca-bindings/sca-jmsbinding-1.1-spec-cd01.html
http://docs.oasis-open.org/opencsa/sca-bindings/sca-jmsbinding-1.1-spec-cd01.doc
http://docs.oasis-open.org/opencsa/sca-bindings/sca-jmsbinding-1.1-spec-cd01.pdf
http://docs.oasis-open.org/opencsa/sca-bindings/sca-binding-jms-1.1-spec.html
http://docs.oasis-open.org/opencsa/sca-bindings/sca-binding-jms-1.1-spec.pdf
http://www.oasis-open.org/committees/sca-bindings

sca-binding-jms-1.1-spec-cd01-rev4 21st January 2009
Copyright © OASIS® 2006, 2008. All Rights Reserved. Page 2 of 30

Abstract:
This document defines the concept and behavior of a messaging binding, and a concrete JMS-
based binding that provides that behavior.
The binding specified in this document applies to an SCA composite’s services and references.
The binding is especially well suited for use by services and references of composites that are
directly deployed, as opposed to composites that are used as implementations of higher-level
components. Services and references of deployed composites become system-level services and
references, which are intended to be used by non-SCA clients.
The messaging binding describes a common pattern of behavior that may be followed by
messaging-related bindings, including the JMS binding. In particular it describes the manner in
which operations are selected based on message content, and the manner in which messages
are mapped into the runtime representation. These are specified in a language-neutral manner.
The JMS binding provides JMS-specific details of the connection to the required JMS resources.
It supports the use of Queue and Topic type destinations.

Status:
This document was last revised or approved by the OASIS Service Component Architecture /
Bindings (SCA-Bindings) TC on the above date. The level of approval is also listed above. Check
the “Latest Version” or “Latest Approved Version” location noted above for possible later revisions
of this document.
Technical Committee members should send comments on this specification to the Technical
Committee’s email list. Others should send comments to the Technical Committee by using the
“Send A Comment” button on the Technical Committee’s web page at http://www.oasis-
open.org/committees/sca-bindings/.
For information on whether any patents have been disclosed that may be essential to
implementing this specification, and any offers of patent licensing terms, please refer to the
Intellectual Property Rights section of the Technical Committee web page (http://www.oasis-
open.org/committees/sca-bindings/ipr.php.
The non-normative errata page for this specification is located at http://www.oasis-
open.org/committees/sca-bindings/.

http://www.oasis-open.org/committees/sca-bindings/
http://www.oasis-open.org/committees/sca-bindings/
http://www.oasis-open.org/committees/sca-bindings/ipr.php
http://www.oasis-open.org/committees/sca-bindings/ipr.php
http://www.oasis-open.org/committees/sca-bindings/
http://www.oasis-open.org/committees/sca-bindings/

sca-binding-jms-1.1-spec-cd01-rev4 21st January 2009
Copyright © OASIS® 2006, 2008. All Rights Reserved. Page 3 of 30

Notices
Copyright © OASIS® 2006, 2008. All Rights Reserved.
All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.
This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must
be followed) or as required to translate it into languages other than English.
The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.
This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.
OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard,
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that
produced this specification.
OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this specification by a patent
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such
claims on its website, but disclaims any obligation to do so.
OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be
found on the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of this OASIS Committee
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no
representation that any information or list of intellectual property rights will at any time be complete, or
that any claims in such list are, in fact, Essential Claims.
The names "OASIS", [insert specific trademarked names and abbreviations here] are trademarks of
OASIS, the owner and developer of this specification, and should be used only to refer to the organization
and its official outputs. OASIS welcomes reference to, and implementation and use of, specifications,
while reserving the right to enforce its marks against misleading uses. Please see http://www.oasis-
open.org/who/trademark.php for above guidance.

http://www.oasis-open.org/who/trademark.php
http://www.oasis-open.org/who/trademark.php

sca-binding-jms-1.1-spec-cd01-rev4 21st January 2009
Copyright © OASIS® 2006, 2008. All Rights Reserved. Page 4 of 30

Table of Contents
1 Introduction ... 5

1.1 Terminology .. 5
 ... Error! Bookmark not defined.
1.2 Normative References .. 5
1.3 Non-Normative References .. 6

2 Messaging Bindings ... 7
3 JMS Binding Schema ... 8
4 Operation Selectors and Wire Formats .. 13

4.1 Default Operation Selection .. 13
4.2 Default Wire Format .. 13

5 Policy .. 15
6 Message Exchange Patterns ... 16

6.1 One-way message exchange (no Callbacks) ... 16
6.2 Request/response message exchange (no Callbacks) .. 16
6.3 JMS User Properties ... 16
6.4 Callbacks .. 17

6.4.1 Invocation of operations on a bidirectional interface ... 17
6.4.2 Invocation of operations on a callback interface ... 17
6.4.3 Use of JMSReplyTo for callbacks for non-SCA JMS applications .. 17

6.5 Conversations ... 18
6.5.1 Starting a conversation .. 18
6.5.2 Continuing a conversation ... 18
6.5.3 Ending a conversation ... 18

7 Examples .. 19
7.1 Minimal Binding Example ... 19
7.2 URI Binding Example .. 19
7.3 Binding with Existing Resources Example ... 19
7.4 Resource Creation Example ... 20
7.5 Request/Response Example .. 20
7.6 Use of Predefined Definitions Example .. 21
7.7 Subscription with Selector Example ... 21
7.8 Policy Set Example ... 21

8 Conformance .. 23
A. JMS Binding Schema ... 24
B. Acknowledgements .. 27
C. Non-Normative Text ... 28
D. Revision History .. 29

sca-binding-jms-1.1-spec-cd01-rev4 21st January 2009
Copyright © OASIS® 2006, 2008. All Rights Reserved. Page 5 of 30

1 Introduction 1

This document defines the concept and behavior of a messaging binding, and a concrete JMS-based
[

2
3
4
5
6
7
8
9

10
11
12
13

15
16
17
18
19
20

JMS] binding that provides that behavior. The binding specified in this document applies to an SCA
composite’s services and references. The binding is especially well suited for use by services and
references of composites that are directly deployed, as opposed to composites that are used as
implementations of higher-level components. Services and references of deployed composites become
system-level services and references, which are intended to be used by non-SCA clients.
The messaging binding describes a common pattern of behavior that may be followed by messaging-
related bindings, including the JMS binding. In particular it describes the manner in which operations are
selected based on message content, and the manner in which messages are mapped into the runtime
representation. These are specified in a language-neutral manner.
The JMS binding provides JMS-specific details of the connection to the required JMS resources. It
supports the use of Queue and Topic type destinations.

1.1 Terminology 14

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD
NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described
in RFC2119.
This specification uses predefined namespace prefixes throughout; they are given in the following list.
Note that the choice of any namespace prefix is arbitrary and not semantically significant.
Table 1-1 Prefixes and Namespaces used in this specification

Prefix Namespace Notes

xs "http://www.w3.org/2001/XMLSchema" Defined by XML Schema 1.0 specification

sca "http://docs.oasis-open.org/ns/opencsa/sca/200712" Defined by the SCA specifications

1.2 Normative References 21

[RFC2119] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, 22
23
24
25
26
27
28
29
30
31

http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997.
[JMS] JMS Specification http://java.sun.com/products/jms/
[WSDL] E. Christensen et al, Web Service Description Language (WSDL) 1.1,

http://www.w3.org/TR/2001/NOTE-wsdl-20010315, W3C Note, March 15 2001.
 R. Chinnici et al, Web Service Description Language (WSDL) Version 2.0 Part 1:

Core Language, http://www.w3.org/TR/2007/REC-wsdl20-20070626/, W3C
Recommendation, June 26 2007.

[JCA15] Java Connector Architecture Specification Version 1.5
http://java.sun.com/j2ee/connector/

http://www.ietf.org/rfc/rfc2119.txt
http://java.sun.com/products/jms/
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.w3.org/TR/2007/REC-wsdl20-20070626/
http://java.sun.com/j2ee/connector/

sca-binding-jms-1.1-spec-cd01-rev4 21st January 2009
Copyright © OASIS® 2006, 2008. All Rights Reserved. Page 6 of 30

32
33
34

36

[IETFJMS] IETF URI Scheme for Java™ Message Service 1.0
http://www.ietf.org/internet-drafts/draft-merrick-jms-uri-05.txt1

[SCA-Assembly] http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-spec.html

1.3 Non-Normative References 35

TBD TBD

1 Note that this URI scheme is currently in draft. The reference for this specification will be updated when
the IETF standard is finalized

http://www.ietf.org/internet-drafts/draft-merrick-jms-uri-05.txt
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-spec.html

sca-binding-jms-1.1-spec-cd01-rev4 21st January 2009
Copyright © OASIS® 2006, 2008. All Rights Reserved. Page 7 of 30

2 Messaging Bindings 37

Messaging bindings form a category of SCA bindings that represent the interaction of SCA composites
with messaging providers. It is felt that documenting, and following this pattern is beneficial for
implementers of messaging bindings, although it is not strictly necessary.

38
39
40
41
42
43
44
45
46

This pattern is embodied in the JMS binding, described later.
Messaging bindings utilize operation selector and wire format elements to provide the mapping from the
native messaging format to an invocation on the target component. A default operation selection and
data binding behavior is identified, along with any associated properties.
In addition, each operation may have specific properties defined, that may influence the way native
messages are processed depending on the operation being invoked.

sca-binding-jms-1.1-spec-cd01-rev4 21st January 2009
Copyright © OASIS® 2006, 2008. All Rights Reserved. Page 8 of 30

3 JMS Binding Schema 47

The JMS binding element is defined by the following schema. 48

<binding.jms correlationScheme=”QName”? 49
 initialContextFactory=”xs:anyURI”? 50
 jndiURL=”xs:anyURI”? 51
 requestConnection=”QName”? 52
 responseConnection=”QName”? 53
 operationProperties=”QName”? 54
 name=”NCName”? 55
 requires=”list of QName”? 56
 uri=”xs:anyURI”? 57
 ... > 58
 <destination jndiName=”xs:anyURI” type=”queue or topic”? 59
 create=”always or never or ifnotexist”?> 60
 <property name=”NMTOKEN” type=”NMTOKEN”?>* 61
 </destination>? 62
 <connectionFactory jndiName=”xs:anyURI” 63
 create=”always or never or ifnotexist”?> 64
 <property name=”NMTOKEN” type=”NMTOKEN”?>* 65
 </connectionFactory>? 66
 <activationSpec jndiName=”xs:anyURI” 67
 create=”always or never or ifnotexist”?> 68
 <property name=”NMTOKEN” type=”NMTOKEN”?>* 69
 </activationSpec>? 70
 71
 <response> 72
 <destination jndiName=”xs:anyURI” type=”queue or topic”? 73
 create=”always or never or ifnotexist”?> 74
 <property name=”NMTOKEN” type=”NMTOKEN”?>* 75
 </destination>? 76
 <connectionFactory jndiName=”xs:anyURI” 77
 create=”always or never or ifnotexist”?> 78
 <property name=”NMTOKEN” type=”NMTOKEN”?>* 79
 </connectionFactory>? 80
 <activationSpec jndiName=”xs:anyURI” 81
 create=”always or never or ifnotexist”?> 82
 <property name=”NMTOKEN” type=”NMTOKEN”?>* 83
 </activationSpec>? 84
 <wireFormat/>? 85
 </response>? 86
 87
 <resourceAdapter name=”NMTOKEN”>? 88
 <property name=”NMTOKEN” type=”NMTOKEN”?>* 89
 </resourceAdapter>? 90
 91
 <headers JMSType=”string”? 92
 JMSDeliveryMode=”PERSISTENT or NON_PERSISTENT”? 93
 JMSTimeToLive=”long”? 94
 JMSPriority=”0 .. 9”?> 95
 <property name=”NMTOKEN” type=”NMTOKEN”?>* 96
 </headers>? 97
 98
 <subscriptionHeaders JMSSelector="string"?> 99
 <property name=”NMTOKEN” type=”NMTOKEN”?>* 100
 </headers>? 101
 102
 <operationProperties name=”string” nativeOperation=”string”?> 103
 <property name=”NMTOKEN” type=”NMTOKEN”?>* 104
 <headers JMSType=”string”? 105

sca-binding-jms-1.1-spec-cd01-rev4 21st January 2009
Copyright © OASIS® 2006, 2008. All Rights Reserved. Page 9 of 30

 JMSDeliveryMode=”PERSISTENT or NON_PERSISTENT”? 106
 JMSTimeToLive=”long”? 107
 JMSPriority=”0 .. 9”?> 108
 <property name=”NMTOKEN” type=”NMTOKEN”?>* 109
 </headers>? 110
 </operationProperties>* 111
 112
 <wireFormat/>? 113
 <operationSelector/>? 114
</binding.jms> 115

116

117
118
119

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

143
144
145
146
147
148

152
153
154

156
157

The binding can be used in one of two ways, either identifying existing JMS resources using JNDI names,
or providing the required information to enable the JMS resources to be created.
The binding.jms element has the following attributes:
• /binding.jms – This is the generic JMS binding type. The type is extensible so that JMS binding 120

implementers can add additional JMS provider-specific attributes and elements although such
extensions are not guaranteed to be portable across runtimes.

• /binding.jms/@uri – (from binding) URI that identifies the destination, connection factory or activation
spec, and other properties to be used to send/receive the JMS message

The value of the @uri attribute MUST have the following format, defined by the IETF URI Scheme for
Java™ Message Service 1.0 IETFJMS. The following illustrates the structure of the URI and the set
of property names that have specific semantics - all other property names are treated as user
property names:
– jms:<jms-dest>?

connectionFactoryName=<Connection-Factory-Name> &
destinationType={queue|topic}
deliveryMode=<Delivery-Mode> &
timeToLive=<Time-To-Live> &
priority=<Priority> &
selector=<Selector> &
<User-Property>=<User-Property-Value> & …

When the @uri attribute is specified, the SCA runtime MUST raise an error if the referenced
resources do not already exist.

• /binding.jms/@name - as defined in the SCA Assembly specification in Section 9, “Binding” 140
• /binding.jms/@requires - as defined in the SCA Assembly specification in Section 9, “Binding” 141
• /binding.jms/@correlationScheme – identifies the correlation scheme used when sending reply or 142

callback messages. Possible values for the @correlationScheme attribute are “sca:MessageID”
(the default) where the SCA runtime MUST set the correlation ID of replies to the message ID of the
corresponding request; “sca:CorrelationID” where the SCA runtime MUST set the correlation ID of
replies to the correlation ID of the corresponding request, and “sca:None” which indicates that the
SCA runtime MUST NOT set the correlation ID. SCA runtimes MAY allow other values to indicate
other correlation schemes.

• /binding.jms/@initialContextFactory – the name of the JNDI initial context factory. 149
• /binding.jms/@jndiURL – the URL for the JNDI provider. 150
• /binding.jms/@requestConnection – identifies a binding.jms element that is present in a definition 151

document, whose destination, connectionFactory, activationSpec and resourceAdapter children
are used to define the values for this binding. In this case this binding.jms element MUST NOT also
contain the corresponding elements.

• /binding.jms/@responseConnection – identifies a binding.jms element that is present in a 155
definition document, whose response child element is used to define the values for this binding. In
this case this binding.jms element MUST NOT contain a response element.

sca-binding-jms-1.1-spec-cd01-rev4 21st January 2009
Copyright © OASIS® 2006, 2008. All Rights Reserved. Page 10 of 30

159
160

162

164
165

167
168

169
170
171
172

173
174
175
176
177

178
179
180
181

183
184

186

188
189
190

192
193
194
195

197

199
200
201

203
204
205

207
208

• /binding.jms/@operationProperties – identifies a binding.jms element that is present in a definition 158
document, whose operationProperties children are used to define the values for this binding. In this
case this binding.jms element MUST NOT contain an operationProperties element.

• /binding.jms/destination – identifies the destination that is to be used to process requests by this 161
binding.

• /binding.jms/destination/@type - the type of the request destination. Valid values are “queue” and 163
“topic”. The default value is “queue”. In either case the runtime MUST ensure a single response is
delivered for request/response operations.

• binding.jms/destination/@jndiName – the JNDI name of the JMS Destination that the binding uses 166
to send or receive messages. The behaviour of this attribute is determined by the value of the
@create attribute as follows:
– If the @create attribute value is "always" then the @jndiName attribute is optional; if the

destination cannot be created at the specified location then the SCA runtime MUST raise an
error. If the @jndiName attribute is omitted this specification places no restriction on the JNDI
location of the created resource.

– If the @create attribute value is "ifnotexist" then the @jndiName attribute MUST specify the
location of the possibly existing destination; if the destination does not exist at this location, but
cannot be created there then the SCA runtime MUST raise an error. If the @jndiName refers to
an existing resource other than a JMS Destination of the specified type then the SCA runtime
MUST raise an error.

– If the @create attribute value is "never" then the @jndiName attribute MUST specify the location
of the existing destination; If the destination is not present at the location, or the location refers to
a resource other than a JMS Destination of the specified type then the SCA runtime MUST raise
an error.

• /binding.jms/destination/@create – indicates whether the destination should be created when the 182
containing composite is deployed. Valid values are “always”, “never” and “ifnotexist”. The default
value is “ifnotexist”..

• /binding.jms/destination/property – defines properties to be used to create the destination, if 185
required.

• /binding.jms/connectionFactory – identifies the connection factory that the binding uses to process 187
request messages. The attributes of this element follow those defined for the destination element.
A binding.jms element MUST NOT include both this element and an activationSpec element. When
this element is present, the destination element MUST also be present

• /binding.jms/activationSpec – identifies the activation spec that the binding uses to connect to a 191
JMS destination to process request messages. The attributes of this element follow those defined for
the destination element. If a destination element is also specified it MUST refer to the same JMS
destination as the activationSpec. This element MUST NOT be present when the binding is being
used for an SCA reference.

• /binding.jms/response – defines the resources used for handling response messages (receiving 196
responses for a reference, and sending responses from a service).

• /binding.jms/response/destination – identifies the destination that is to be used to process 198
responses by this binding. Attributes are as for the parent’s destination element. For a service, this
destination is used to send responses to messages that have a null value for the JMSReplyTo
destination. For a reference, this destination is used to receive reply messages

• /binding.jms/response/connectionFactory – identifies the connection factory that the binding uses 202
to process response messages. The attributes of this element follow those defined for the
destination element. A response element MUST NOT include both this element and an
activationSpec element.

• /binding.jms/response/activationSpec – identifies the activation spec that the binding uses to 206
connect to a JMS destination to process response messages. The attributes of this element follow
those defined for the destination element. If a response destination element is also specified it

sca-binding-jms-1.1-spec-cd01-rev4 21st January 2009
Copyright © OASIS® 2006, 2008. All Rights Reserved. Page 11 of 30

209
210

212

214
215

217
218
219
220

222

224
225

227
228
229
230
231
232
233
234

236

239
240
241
242

244
245
246

248
249

251
252
253

255

257

MUST refer to the same JMS destination as the activationSpec. This element MUST NOT be
present when the binding is being used for an SCA service.

• /binding.jms/response/wireFormat – identifies the wire format used by responses sent or received 211
by this binding. This value overrides the wireFormat specifed at the binding level.

• /binding.jms/headers – this element specifies values for standard JMS headers that the SCA 213
runtime MUST set to the given values for all operations. These values apply to requests from a
reference and responses from a service.

• /binding.jms/headers/@JMSType, @JMSDeliveryMode, @JMSTimeToLive, @JMSPriority – 216
specifies the value to use for the JMS header property. The value of the @uri attribute MUST NOT
include values for these properties if they are specified using these attributes. Valid values for
@JMSDeliveryMode are “PERSISTENT” and “NON_PERSISTENT”; valid values for @JMSPriority
are “0” to “9”.

• /binding.jms/headers/property – specifies the value that the SCA runtime MUST set for the 221
specified JMS user property when creating messages..

• /binding.jms/subscriptionHeaders - this element allows JMS subscription options to be set. These 223
values apply to a service subscribing to the destination or for a reference subscribing to the callback
or reply-to destinations.

• /binding.jms/subscriptionHeaders/@JMSSelector - specifies the value to use for the JMS selector. 226
The value of the @uri attribute MUST NOT include values for this property if it is specified using this
attribute.

• /binding.jms/resourceAdapter – specifies name, type and properties of the Resource Adapter Java
bean. This element MUST be present when the JMS resources are to be created for a JMS provider
that implements the JCA 1.5 specification JCA15, and is ignored otherwise. SCA runtimes MAY place
restrictions on the properties of the RA Java bean that can be set. For JMS providers that do not
implement the JCA 1.5 specification, information necessary for resource creation can be added in
provider-specific elements or attributes allowed by the extensibility of the binding.jms element.

• /binding.jms/operationProperties – specifies various properties that are specific to the processing 235
of a particular operation.

• /binding.jms/operationProperties/@name – The name of the operation in the interface. 237
• /binding.jms/operationProperties/@selectedOperation – The value generated by the 238

operationSelector that corresponds to the operation in the service or reference interface identified
by the operationProperties/@name attribute. If this attribute is omitted then the value defaults to
the value of the operationProperties/@name attribute. The value of this attribute MUST be unique
across the containing binding.jms element..

• /binding.jms/operationProperties/property – specifies properties specific to this operation. These 243
properties are intended to be used to parameterize the wireFormat identified for the binding for a
particular operation. The SCA runtime SHOULD make the operationProperties element
corresponding to the selectedOperation available to the wireFormat implementation.

• /binding.jms/operationProperties/headers – this element specifies values for standard JMS 247
headers that the SCA runtime MUST set to the given values for the given operation. These values
apply to requests from a reference and responses from a service.

• /binding.jms/operationProperties/headers/@JMSType, @JMSDeliveryMode, @JMSTimeToLive, 250
@JMSPriority – specifies the value to use for the JMS header property. The SCA runtime MUST
use values specified for particular operations in preference to those defined for all operations in the
binding.jms/headers element or via the binding’s @uri attribute.

• /binding.jms/operationProperties/headers/property – specifies the value that the SCA runtime 254
MUST set for the specified JMS user property when creating messages.

• /binding.jms/wireFormat – identifies the wire format used by requests and responses sent or 256
received by this binding.

sca-binding-jms-1.1-spec-cd01-rev4 21st January 2009
Copyright © OASIS® 2006, 2008. All Rights Reserved. Page 12 of 30

259
260

263
264
265
266

• /binding.jms/operationSelector – identifies the operation selector used when receiving requests for 258
a service. If specified for a reference this provides the default operation selector for callbacks if not
specified via a callback service element.

• /binding.jms/@{any} - this is an extensibility mechanism to allow extensibility via attributes. 261
• /binding.jms/any – this is an extensibility mechanism to allow extensibility via elements. 262
Deployers/assemblers can configure NON_PERSISTENT for @JMSDeliveryMode in order to provide
higher performance with a decreased quality of service. A binding.jms element configured in this way
cannot satisfy either of the "atLeastOnce" and "exactlyOnce" policy intents. The SCA Runtime MUST
raise an error for this invalid combination at deployment time.

sca-binding-jms-1.1-spec-cd01-rev4 21st January 2009
Copyright © OASIS® 2006, 2008. All Rights Reserved. Page 13 of 30

4 Operation Selectors and Wire Formats 267

In general messaging providers deal with message formats and destinations. There is not usually a built-
in concept of “operation” that corresponds to that defined in a WSDL portType [

268
269
270
271
272
273
274
275
276
277
278
279
280
281

283
284

286

288

290

292
293
294
295
296
297

299
300
301
302
303

306
307

309

WSDL]. Messages have
a wire format which corresponds in some way to the schema of an input or output message of an
operation in the interface of a service or reference, however additional information is required in order for
an SCA runtime to know how to identify the operation and understand the wire format of messages.
The process of identifying the operation to be invoked is operation selection; the information that
describes the contents of messages is a wire format. The binding element as described in the SCA
Assembly specification [SCA-Assembly] provides the means to identify specific operation selection via the
operationSelector element and the wire format of messages received and to be sent using the
wireFormat element.
No standard means is provided for linking the wireFormat or operationSelector elements with the
runtime components that implement their behaviour.
This section describes the default operationSelector and wireFormat for a JMS binding. The SCA
runtime MUST support this default behavior, and MAY provide additional means to override it.

4.1 Default Operation Selection 282

When receiving a request at a service, or a callback at a reference, the selected operation name is
determined as follows:
• If there is only one operation on the service’s interface, then that operation is assumed as the 285

selected operation name.
• Otherwise, if the JMS user property “scaOperationName” is present, then its value is used as the 287

selected operation name.
• Otherwise, if the message is a JMS text or bytes message containing XML, then the selected 289

operation name is taken from the local name of the root element of the XML payload.
• Otherwise, the selected operation name is assumed to be “onMessage”. 291
The selected operation name is then mapped to an operation in the service’s interface via a matching
operationProperties element in the JMS binding. If there is no matching element, the operation name is
assumed to be the same as the selected operation name.
The use of this operation selector can be explicitly specified in a binding.jms using the
operationSelector.jmsdefault element; if no operationSelector element is specified then SCA runtimes
MUST use this as the default.

4.2 Default Wire Format 298

The default wire format maps between a JMSMessage and the object(s) expected by the component
implementation. We encourage component implementers to avoid exposure of JMS APIs to component
implementations, however in the case of an existing implementation that expects a JMSMessage, this
provides for simple reuse of that as an SCA component.
The message body is mapped to the parameters or return value of the target operation as follows:
• If there is a single parameter that is a JMSMessage, then the JMSMessage is passed as is. 304
• Otherwise, the JMSMessage must be a JMS text message or bytes message containing XML; an 305

SCA runtime MUST be able to receive both forms. When sending messages either form may be
used; an SCA runtime MAY provide additional configuration to allow one or other to be selected.

• If there is a single parameter, or for the return value, the JMS text or bytes XML payload is the XML 308
serialization of that parameter according to the WSDL schema for the message.

sca-binding-jms-1.1-spec-cd01-rev4 21st January 2009
Copyright © OASIS® 2006, 2008. All Rights Reserved. Page 14 of 30

311

313
314
315
316
317

• If there are multiple parameters, then they are encoded in XML using the document wrapped style, 310
according to the WSDL schema for the message.

• When sending request messages, if there is a single parameter and the interface includes more than 312
one operation, the SCA runtime MUST set the JMS user property "scaOperationName" to the name
of the operation being invoked.

The use of this wire format can be explicitly specified in a binding.jms using the wireFormat.jmsdefault
element; if no wireFormat element is specified then SCA runtimes MUST use this as the default.
For example, for the following interface definition:

<wsdl:definitions name="Coordinates" 318
targetNamespace="http://tempuri.org/coordinates" 319
xmlns:tns="http://tempuri.org/coordinates" 320
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" 321
xmlns:xsd="http://www.w3.org/2001/XMLSchema"> 322
 <wsdl:types> 323
 <xsd:schema targetNamespace="http://tempuri.org/coordinates"> 324
 <xsd:element name="setCoordinates"> 325
 <xsd:complexType> 326
 <xsd:sequence> 327
 <xsd:element name="x" type="xsd:int"/> 328
 <xsd:element name="y" type="xsd:int"/> 329
 </xsd:sequence> 330
 </xsd:complexType> 331
 </xsd:element> 332
 </xsd:schema> 333
 </wsdl:types> 334
 335
 <wsdl:message name="setCoordinatesRequestMsg"> 336
 <wsdl:part element="tns:setCoordinates" name="setCoordinatesParameters"/> 337
 </wsdl:message> 338
 339
 <wsdl:portType name="Coordinates"> 340
 <wsdl:operation name="setCoordinates"> 341
 <wsdl:input message="tns:setCoordinatesRequestMsg" 342
name="setCoordinatesRequest"/> 343
 </wsdl:operation> 344
 </wsdl:portType> 345
</wsdl:definitions> 346

347
348
349
350

When the setCoordinates operation is invoked via a reference with a JMS binding that uses the default
wire format, the message sent from the JMS binding is a JMS text or bytes message with the following
content:

<setCoordinates xmlns="http://tempuri.org/coordinates"> 351
 <x>10</x> 352
 <y>5</y> 353
</setCoordinates> 354

sca-binding-jms-1.1-spec-cd01-rev4 21st January 2009
Copyright © OASIS® 2006, 2008. All Rights Reserved. Page 15 of 30

5 Policy 355

The JMS binding provides attributes that control the sending of messages, requests from references and
replies from services. These values can be set directly on the binding element for a particular service or
reference, or they can be set using policy intents. An example of setting these via intents is shown later.

356
357
358
359
360

JMS binding implementations MAY support the following standard intents, as defined by the JMS
binding’s bindingType:

<bindingType type=”binding.jms” 361
 alwaysProvides=”jms” 362
 mayProvide=”atLeastOnce atMostOnce ordered conversational”/> 363

364
365
366

The atLeastOnce, atMostOnce and ordered intent are defined in the SCA Policy Specification document
in section 8, "Reliability Policy". The conversational intent is defined in the SCA Assembly Specification
document in section 8.3, "Conversational Interfaces".

sca-binding-jms-1.1-spec-cd01-rev4 21st January 2009
Copyright © OASIS® 2006, 2008. All Rights Reserved. Page 16 of 30

6 Message Exchange Patterns 367

This section describes the message exchange patterns that are possible when using the JMS binding,
including one-way, request/response, callbacks and conversations. JMS has a looser concept of
message exchange patterns than WSDL, so this section explains how JMS messages that are sent and
received by the SCA runtime relate to the WSDL input/output messages. Each operation in a WSDL
interface is either one-way or request/response. Callback interfaces may include both one-way and
request/response operations.

368
369
370
371
372
373

375
376
377
378
379
380
381
382
383
384

386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403

405

407

409

6.1 One-way message exchange (no Callbacks) 374

A one-way message exchange is one where a request message is sent that does not require or expect a
corresponding response message. These are represented in WSDL as an operation with an input
element and no output elements and no fault elements.
When a request message is sent by a reference with a JMS binding for a one-way MEP, the SCA runtime
SHOULD NOT set the JMSReplyTo destination header in the JMS message that it creates, regardless of
whether the JMS binding has a response element with a destination defined.
When a request message is received by a service with a JMS binding for a one-way MEP, the SCA
runtime MUST ignore the JMSReplyTo destination header in the JMS message, and MUST NOT raise
an error.
The use of one-way exchanges when using a bidirectional interface is described in section 7.4.

6.2 Request/response message exchange (no Callbacks) 385

A request/response message exchange is one where a request message is sent and a response
message is expected, possibly identified by its correlation identifier. These are represented in WSDL as
an operation with an input element and an output and/or a fault element.
When a request message is sent by a reference with a JMS binding for a request/response MEP, the
SCA runtime MUST set a non-null value for the JMSReplyTo header in the JMS message it creates for
the request. If the JMS binding has a response element with a destination defined, then the SCA
runtime MUST use that destination for the JMSReplyTo header value, otherwise the SCA runtime MUST
provide an appropriate destination on which to receive response messages. The SCA runtime MAY
choose to receive the response message on the basis of its correlation ID as defined by the binding’s
@correlationScheme attribute, or use a unique destination for each response.
When a response message is sent by a service with a JMS binding for a request/response MEP, the SCA
runtime MUST send the response message to the destination identified by the request message's
JMSReplyTo header value if it is not null, otherwise the SCA runtime MUST send the response message
to the destination identified by the JMS binding's response element if specified. If there is no destination
defined by either means then an error SHOULD be raised by the SCA runtime. The SCA runtime MUST
set the correlation identifier in the JMS message that it creates for the response as defined by the JMS
binding's @correlationScheme attribute.
The use of request/response exchanges when using a bidirectional interface is described in section 7.4.

6.3 JMS User Properties 404

This protocol assigns specific behavior to JMS user properties:
• "scaCallbackDestination" holds the name of the JMS Destination to which callback messages are 406

sent.
• "scaConversationStart" indicates that a conversation is to be started, its value is the identifier for the 408

conversation.

sca-binding-jms-1.1-spec-cd01-rev4 21st January 2009
Copyright © OASIS® 2006, 2008. All Rights Reserved. Page 17 of 30

411

414
415
416
417
418
419
420
421

423
424
425
426
427
428
429
430
431
432
433
434

436
437
438
439
440
441
442

446
447
448
449

451
452
453
454
455

• "scaConversationMaxIdleTime" defines the maximum time that should be allowed between 410
operations in the conversation.

• "scaConversationId" holds the identifier for the conversation. 412

6.4 Callbacks 413

Callbacks are SCA's way of representing bidirectional interfaces, where messages are sent in both
directions between a client and a service. A callback is the invocation of an operation on a service's
callback interface. A callback operation can be one-way or request/response. Messages that correspond
to one-way or request/response operations on a bidirectional interface use either the
scaCallbackDestination user property or the JMSReplyTo destination, or both, to identify the
destination to which messages are to be sent when operations are invoked on the callback interface. The
use of JMSReplyTo for this purpose is to enable interaction with non-SCA JMS applications, as
described below.

6.4.1 Invocation of operations on a bidirectional interface 422

When a request message is sent by a reference with a JMS binding for a one-way MEP with a
bidirectional interface, the SCA runtime MUST set the destination to which callback messages are to be
sent as the value of the scaCallbackDestination user property in the message it creates. The SCA
runtime MAY also set the JMSReplyTo destination to this value.
When a request message is sent by a reference with a JMS binding for a request/response MEP with a
bidirectional interface, the SCA runtime MUST set the scaCallbackDestination user property in the
message it creates to identify the destination from which it will read callback messages. The SCA runtime
MUST set the JMSReplyTo header in the message it creates as described in section 7.2.
For both one-way and request/response operations, if the reference has a callback service element with a
JMS binding with a request destination, then the SCA runtime MUST use that destination as the one to
which callback messages are to be sent, otherwise the SCA runtime MUST provide an appropriate
destination for this purpose.

6.4.2 Invocation of operations on a callback interface 435

An SCA service with a callback interface can invoke operations on that callback interface by sending
messages to the destination identified by the scaCallbackDestination user property in a message that it
has received, the JMSReplyTo destination of a one-way message that it has received, or the destination
identified by the service's callback reference JMS binding.
When a callback request message is sent by a service with a JMS binding for either a one-way or
request/response MEP, the SCA runtime MUST send the callback request message to the JMS
destination identified as follows, in order of priority:
• The scaCallbackDestination identified by an earlier request, if not null; 443
• the JMSReplyTo destination identified by an earlier one-way request, if not null; 444
• the request destination of the service’s callback reference JMS binding, if specified. 445
If no destination is identified then the SCA runtime SHOULD raise an error, and MUST throw an
exception to the caller of the callback operation.
The SCA runtime MUST set the JMSReplyTo destination and correlation identifier in the callback request
message as defined in sections 7.1 or 7.2 as appropriate for the type of the callback operation invoked.

6.4.3 Use of JMSReplyTo for callbacks for non-SCA JMS applications 450

When interacting with non-SCA JMS applications, the assembler can choose to model a
request/response message exchange using a bidirectional interface. In this case it is likely that the non-
SCA JMS application does not support the use of the scaCallbackDestination user property. To support
this, for one-way messages the JMSReplyTo header can be used to identify the destination to be used to
deliver callback messages, as described in sections 7.4.1 and 7.4.2.

sca-binding-jms-1.1-spec-cd01-rev4 21st January 2009
Copyright © OASIS® 2006, 2008. All Rights Reserved. Page 18 of 30

457
458
459
460
461
462

464
465
466
467
468
469
470
471
472
473
474
475
476
477
478

480
481
482
483
484
485
486
487
488
489
490

492
493
494
495
496
497
498
499
500
501
502

6.5 Conversations 456

A conversation is a sequence of operations between two parties that have a common context. The
conversation can include a mixture of operations in either direction between the two parties, if the
interface is also bidirectional. Interfaces are marked as conversational in order to ensure that the runtime
manages the lifecycle of this context. Component implementation specifications define the manner in
which the context that is associated with the conversation identifier is made available to component
implementations.

6.5.1 Starting a conversation 463

A conversation is started when an operation is invoked on a conversational interface and there is no
active conversation with the target of the invocation. When this happens the SCA runtime MUST supply
an identifier for the conversation, if the client component has not already supplied an identifier, and the
SCA runtime MUST set the scaConversationStart user property to this value in the JMS message that it
sends for the request, and associate a new runtime context with this conversation identifier.
When a message is received that contains a value for the scaConversationStart user property, the SCA
runtime MUST associate a new runtime context with the given conversation identifier.
The SCA runtime MAY include in the message that starts the conversation the
scaConversationMaxIdleTime user property; if this value is not present the SCA runtime MUST derive
the maximum idle time for the conversation by subtracting the current time from the value of the
JMSExpiration property, unless the JMSExpiration property value is zero, in which case the maximum
idle time is unlimited.
The SCA runtime MUST consider operations invoked on or by other parties to be outside of a
conversation with a given party, and MUST use different conversation identifiers if those operations are
conversational.

6.5.2 Continuing a conversation 479

When creating messages for subsequent operations between the sender and receiver that are part of this
conversation, the SCA runtime MUST include the scaConversationId user property in the JMS message,
set to the conversation identifier. The SCA runtime MAY also include an updated value of the
scaConversationMaxIdleTime property. Once a conversation has been started, the SCA runtime MUST
use the initial value of the scaCallbackDestination user property for all messages in the conversation,
and MUST ignore the value of the scaCallbackDestination user property in subsequent messages in the
same conversation.
The SCA runtime MUST deal with messages received either containing a conversation identifier that does
not correspond to a started conversation, or containing the scaConversationStart user property with a
conversation identifier that matches an active conversation, by raising an error, and MUST NOT deliver
such messages.

6.5.3 Ending a conversation 491

When an operation is invoked by either party that is marked as “endsConversation”, or the maximum
idle time is exceeded, then the SCA runtime MUST discard the conversation identifier and associated
context after the operation has been processed. The idle time is defined as the amount of time since the
SCA runtime last completed processing of an operation that is part of the conversation. There may be
times when one party ends the conversation before the other does. In that case if one party does invoke
an operation on the other, the SCA runtime MUST NOT deliver the message and SHOULD raise an error.
The SCA runtime MAY reuse conversation identifiers. In particular, the SCA runtime does not have to
guarantee unique conversation identifiers and does not have to be able to identify an ended conversation
indefinitely, although it MAY do so for some period after the conversation ends. Due to the long-running
nature of conversations, the SCA runtime SHOULD ensure conversation context is available across
server restarts, although it MAY choose to treat a server restart as implicitly ending the conversation.

sca-binding-jms-1.1-spec-cd01-rev4 21st January 2009
Copyright © OASIS® 2006, 2008. All Rights Reserved. Page 19 of 30

7 Examples 503

The following snippets show the sca.composite file for the MyValueComposite file containing the
service element for the MyValueService and a reference element for the StockQuoteService. Both the
service and the reference use a JMS binding.

504
505
506

508
509

7.1 Minimal Binding Example 507

The following example shows the JMS binding being used with no further attributes or elements. In this
case, it is left to the deployer to identify the resources to which the binding is connected.

<?xml version=”1.0” encoding=”ASCII”?> 510
<composite xmlns=”http://docs.oasis-open.org/ns/opencsa/sca/200712” 511
 name=”MyValueComposite”> 512
 513
 <service name=”MyValueService”> 514
 <interface.java interface=”services.myvalue.MyValueService”/> 515
 <binding.jms/> 516
 </service> 517
 518
 <reference name=”StockQuoteService”> 519
 <interface.java interface=”services.stockquote.StockQuoteService”/> 520
 <binding.jms/> 521
 </reference> 522
</composite> 523

525
526

7.2 URI Binding Example 524

The following example shows the JMS binding using the @uri attribute to specify the connection type and
its information:

<?xml version=”1.0” encoding="ASCII”?> 527
<composite xmlns=”http://docs.oasis-open.org/ns/opencsa/sca/200712” 528
 name=”MyValueComposite”> 529
 530
 <service name=”MyValueService”> 531
 <interface.java interface=”services.myvalue.MyValueService”/> 532
 <binding.jms uri=”jms:MyValueServiceQueue? 533
 activationSpecName=MyValueServiceAS& 534
 ... ”/> 535
 </service> 536
 537
 <reference name=”StockQuoteService”> 538
 <interface.java interface=”services.stockquote.StockQuoteService”/> 539
 <binding.jms uri=”jms:StockQuoteServiceQueue? 540
 connectionFactoryName=StockQuoteServiceQCF& 541
 deliveryMode=1& 542
 ... ”/> 543
 </reference> 544
</composite> 545

547

7.3 Binding with Existing Resources Example 546

The following example shows the JMS binding using existing resources:

<?xml version=”1.0” encoding=”ASCII”?> 548
<composite xmlns=”http://docs.oasis-open.org/ns/opencsa/sca/200712” 549
 name=”MyValueComposite”> 550
 551

sca-binding-jms-1.1-spec-cd01-rev4 21st January 2009
Copyright © OASIS® 2006, 2008. All Rights Reserved. Page 20 of 30

 <service name=”MyValueService”> 552
 <interface.java interface=”services.myvalue.MyValueService”/> 553
 <binding.jms> 554
 <destination jndiName=”MyValueServiceQ” create=”never”/> 555
 <activationSpec jndiName=”MyValueServiceAS” create=”never”/> 556
 </binding.jms> 557
 </service> 558
</composite> 559

561
562

7.4 Resource Creation Example 560

The following example shows the JMS binding providing information to create JMS resources rather than
using existing ones:

<?xml version=”1.0” encoding=”ASCII”?> 563
<composite xmlns=”http://docs.oasis-open.org/ns/opencsa/sca/200712” 564
 name=”MyValueComposite”> 565
 566
 <service name=”MyValueService”> 567
 <interface.java interface=”services.myvalue.MyValueService”/> 568
 <binding.jms> 569
 <destination jndiName=”MyValueServiceQueue” create=”always”> 570
 <property name=”prop1” type=”string”>XYZ</property> 571
 <property name=”destName” type=”string”>MyValueDest</property> 572
 </destination> 573
 <activationSpec jndiName=”MyValueServiceAS”/ create=”always”> 574
 <resourceAdapter jndiName=”com.example.JMSRA”/> 575
 </binding.jms> 576
 </service> 577
 578
 <reference name=”StockQuoteService”> 579
 <interface.java interface=”services.stockquote.StockQuoteService”/> 580
 <binding.jms> 581
 <destination jndiName=”StockQuoteServiceQueue”/> 582
 <connectionFactory jndiName=”StockQuoteServiceQCF”/> 583
 <resourceAdapter name=”com.example.JMSRA”/> 584
 </binding.jms> 585
 </reference> 586
</composite> 587

589
590
591

7.5 Request/Response Example 588

The following example shows the JMS binding using existing resources to support request/response
operations. The service uses the JMSReplyTo destination to send response messages, and does not
specify a response queue:

<?xml version=”1.0” encoding=”ASCII”?> 592
<composite xmlns=”http://docs.oasis-open.org/ns/opencsa/sca/200712” 593
 name=”MyValueComposite”> 594
 595
 <service name=”MyValueService”> 596
 <interface.java interface=”services.myvalue.MyValueService”/> 597
 <binding.jms correlationScheme=”sca:MessageId”> 598
 <destination jndiName=”MyValueServiceQ” create=”never”/> 599
 <activationSpec jndiName=”MyValueServiceAS” create=”never”/> 600
 </binding.jms> 601
 </service> 602
 603
 <reference name=”StockQuoteService”> 604
 <interface.java interface=”services.stockquote.StockQuoteService”/> 605
 <binding.jms correlationScheme=”sca:MessageId”> 606
 <destination jndiName=”StockQuoteServiceQueue”/> 607
 <connectionFactory jndiName=”StockQuoteServiceQCF”/> 608

sca-binding-jms-1.1-spec-cd01-rev4 21st January 2009
Copyright © OASIS® 2006, 2008. All Rights Reserved. Page 21 of 30

 <response> 609
 <destination jndiName=”MyValueResponseQueue”/> 610
 <activationSpec jndiName=”MyValueResponseAS”/> 611
 </response> 612
 </binding.jms> 613
 </reference> 614
</composite> 615

7.6 Use of Predefined Definitions Example 616

 information shared by more than one
618

n connection information is defined in a separate definitions file: 619

This example shows the case where there is common connection617
reference.
The commo

<?xml version=”1.0” encoding=”ASCII”?> 620
<definitions targetNamespace=”http://acme.com” 621
 xmlns=”http://docs.oasis-open.org/ns/opencsa/sca/200712”> 622
 <binding.jms name=”StockQuoteService”> 623
 <destination jndiName=”StockQuoteServiceQueue” create=”never”/> 624
 <connectionFactory jndiName=”StockQuoteServiceQCF” create=”never”/> 625
 </binding.jms> 626
</definitions> 627

Any nt may then refer to that definition: 628 binding.jms eleme

<?xml version=”1.0” encoding=”ASCII”?> 629
<composite xmlns=”http://docs.oasis-open.org/ns/opencsa/sca/200712” 630
 xmlns:acme=”http://acme.com” 631
 name=”MyValueComposite”> 632
 <reference name=”MyValueService”> 633
 <interface.java interface=”services.myvalue.MyValueService”/> 634
 <binding.jms requestConnection=”acme:StockQuoteService”/> 635
 </reference> 636
</composite> 637

7.7 Subscription with Selector Example 638

 order to consume messages from existing
640

The following example shows how the JMS binding is used in639
JMS infrastructure. The JMS binding subscribes using selector:

<?xml version=”1.0” encoding=”ASCII”?> 641
<composite xmlns=”http://docs.oasis-open.org/ns/opencsa/sca/200712” 642
 name=”MyValueComposite”> 643
 <service name=”MyValueService”> 644
 <interface.java interface=”services.myvalue.MyValueService”/> 645
 <binding.jms> 646
 <destination jndiName=”MyValueServiceTopic” create=”never”/> 647
 <connectionFactory jndiName=”StockQuoteServiceTCF” 648
create=”never”/> 649
 <subscriptionHeaders JMSSelector=”Price>1000”/> 650
 </binding.jms> 651
 </service> 652
</composite> 653

7.8 Policy Set Example 654

hich intents map to JMS binding properties. The following illustrates
656
657

A policy set defines the manner in w655
an example of a policy set that defines values for the @JMSpriority attribute using the “priority” intent,
and also allows setting of a value for a user JMS property using the “log” intent.

<policySet name=”JMSPolicy” 658
 provides=”priority log” 659

sca-binding-jms-1.1-spec-cd01-rev4 21st January 2009
Copyright © OASIS® 2006, 2008. All Rights Reserved. Page 22 of 30

 appliesTo=”binding.jms”> 660
 661
 <intentMap provides=”priority” default=”medium”> 662
 <qualifier name=”high”> 663
 <headers JMSPriority=”9”/> 664
 </qualifier> 665
 <qualifier name=”medium”> 666
 <headers JMSPriority=”4”/> 667
 </qualifier> 668
 <qualifier name=”low”> 669
 <headers JMSPriority=”0”/> 670
 </qualifier> 671
 </intentMap> 672
 673
 <intentMap provides=”log”> 674
 <qualifier> 675
 <headers> 676
 <property name=”user_example_log”>logged</property> 677
 </headers> 678
 </qualifier> 679
 </intentMap> 680
</policySet> 681

Give tents can be required on a service or reference: 682 n this policy set, the in

<reference name=”StockQuoteService” requires=”priority.high log”> 683
 <interface.java interface=”services.stockquote.StockQuoteService”/> 684
 <binding.jms> 685
 <destination name=”StockQuoteServiceQueue”/> 686
 <connectionFactory name=”StockQuoteServiceQCF”/> 687
 </binding.jms> 688
</reference> 689

sca-binding-jms-1.1-spec-cd01-rev4 21st January 2009
Copyright © OASIS® 2006, 2008. All Rights Reserved. Page 23 of 30

8 Conformance 690

Any SCA runtime that claims to support this binding MUST abide by the requirements of this specification. 691
692
693
694

697

The XML schema available at the namespace URI, defined by this specification, is considered to be
authoritative and takes precedence over the XML Schema defined in the appendix of this document.
Within this specification, the following conformance targets are used:
• XML document elements and attributes, including binding.jms and its children, and bindingType 695
• The SCA runtime – this refers to the implementation that provides the functionality to support the SCA 696

specifications, including that specific to the JMS binding as well as other SCA capabilities
• JMS objects, including Destinations, ConnectionFactories and ActivationSpecs 698
• WSDL documents 699

sca-binding-jms-1.1-spec-cd01-rev4 21st January 2009
Copyright © OASIS® 2006, 2008. All Rights Reserved. Page 24 of 30

A. JMS Binding Schema 700

<?xml version="1.0" encoding="UTF-8"?> 701
<!-- (c) Copyright OASIS 2006, 2008 --> 702
<schema xmlns="http://www.w3.org/2001/XMLSchema" 703
 targetNamespace="http://docs.oasis-open.org/ns/opencsa/sca/200712" 704
 xmlns:sca="http://docs.oasis-open.org/ns/opencsa/sca/200712" 705
 elementFormDefault="qualified"> 706
 707
 <include schemaLocation="sca-core.xsd"/> 708
 709
 <complexType name="JMSBinding"> 710
 <complexContent> 711
 <extension base="sca:Binding"> 712
 <sequence> 713
 <choice minOccurs="0" maxOccurs="1"> 714
 <sequence> 715
 <element name="destination" type="sca:JMSDestination"/> 716
 <element name="connectionFactory" 717
 type="sca:JMSConnectionFactory"/> 718
 </sequence> 719
 <sequence> 720
 <element name="destination" 721
 type="sca:JMSDestination" minOccurs="0"/> 722
 <element name="activationSpec" type="sca:JMSActivationSpec"/> 723
 </sequence> 724
 </choice> 725
 <element name="response" type="sca:JMSResponse" minOccurs="0"/> 726
 <element name="headers" type="sca:JMSHeaders" minOccurs="0"/> 727
 <element name="subscriptionHeaders " 728
 type="sca:JMSSubscriptionHeaders" 729
 minOccurs="0"/> 730
 <element name="resourceAdapter" type="sca:JMSResourceAdapter" 731
 minOccurs="0"/> 732
 <element name="operationProperties" 733
 type="sca:JMSOperationProperties" 734
 minOccurs="0" maxOccurs="unbounded"/> 735
 <any namespace="##other" processContents="lax" 736
 minOccurs="0" maxOccurs="unbounded"/> 737
 </sequence> 738
 <attribute name="correlationScheme" type=”QName” 739
 default="sca:MessageId"/> 740
 <attribute name="initialContextFactory" type="anyURI"/> 741
 <attribute name="jndiURL" type="anyURI"/> 742
 <attribute name="requestConnection" type="QName"/> 743
 <attribute name="responseConnection" type="QName"/> 744
 <attribute name="operationProperties" type="QName"/> 745
 <anyAttribute/> 746
 </extension> 747
 </complexContent> 748
 </complexType> 749
 750
 <simpleType name="CreateResource"> 751
 <restriction base="string"> 752
 <enumeration value="always"/> 753
 <enumeration value="never"/> 754
 <enumeration value="ifnotexist"/> 755
 </restriction> 756
 </simpleType> 757
 758
 <complexType name="JMSDestination"> 759

sca-binding-jms-1.1-spec-cd01-rev4 21st January 2009
Copyright © OASIS® 2006, 2008. All Rights Reserved. Page 25 of 30

 <sequence> 760
 <element name="property" type="sca:BindingProperty" 761
 minOccurs="0" maxOccurs="unbounded"/> 762
 </sequence> 763
 <attribute name="jndiName" type="anyURI" use="required"/> 764
 <attribute name="type" use="optional" default="queue"> 765
 <simpleType> 766
 <restriction base="string"> 767
 <enumeration value="queue"/> 768
 <enumeration value="topic"/> 769
 </restriction> 770
 </simpleType> 771
 </attribute> 772
 <attribute name="create" type="sca:CreateResource" 773
 use="optional" default="ifnotexist"/> 774
 </complexType> 775
 776
 <complexType name="JMSConnectionFactory"> 777
 <sequence> 778
 <element name="property" type="sca:BindingProperty" 779
 minOccurs="0" maxOccurs="unbounded"/> 780
 </sequence> 781
 <attribute name="jndiName" type="anyURI" use="required"/> 782
 <attribute name="create" type="sca:CreateResource" 783
 use="optional" default="ifnotexist"/> 784
 </complexType> 785
 786
 <complexType name="JMSActivationSpec"> 787
 <sequence> 788
 <element name="property" type="sca:BindingProperty" 789
 minOccurs="0" maxOccurs="unbounded"/> 790
 </sequence> 791
 <attribute name="jndiName" type="anyURI" use="required"/> 792
 <attribute name="create" type="sca:CreateResource" 793
 use="optional" default="ifnotexist"/> 794
 </complexType> 795
 796
 <complexType name="JMSResponse"> 797
 <sequence> 798
 <element name="destination" type="sca:JMSDestination" minOccurs="0"/> 799
 <choice minOccurs="0"> 800
 <element name="connectionFactory" type="sca:JMSConnectionFactory"/> 801
 <element name="activationSpec" type="sca:JMSActivationSpec"/> 802
 </choice> 803
 </sequence> 804
 </complexType> 805
 806
 <complexType name="JMSHeaders"> 807
 <sequence> 808
 <element name="property" type="sca:BindingProperty" 809
 minOccurs="0" maxOccurs="unbounded"/> 810
 </sequence> 811
 <attribute name="JMSType" type="string"/> 812
 <attribute name="JMSDeliveryMode"> 813
 <simpleType> 814
 <restriction base="string"> 815
 <enumeration value="PERSISTENT"/> 816
 <enumeration value="NON_PERSISTENT"/> 817
 </restriction> 818
 </simpleType> 819
 </attribute> 820
 <attribute name="JMSTimeToLive" type="long"/> 821
 <attribute name="JMSPriority"> 822
 <simpleType> 823

sca-binding-jms-1.1-spec-cd01-rev4 21st January 2009
Copyright © OASIS® 2006, 2008. All Rights Reserved. Page 26 of 30

 <restriction base="string"> 824
 <enumeration value="0"/> 825
 <enumeration value="1"/> 826
 <enumeration value="2"/> 827
 <enumeration value="3"/> 828
 <enumeration value="4"/> 829
 <enumeration value="5"/> 830
 <enumeration value="6"/> 831
 <enumeration value="7"/> 832
 <enumeration value="8"/> 833
 <enumeration value="9"/> 834
 </restriction> 835
 </simpleType> 836
 </attribute> 837
 </complexType> 838
 839
 <complexType name="JMSSubscriptionHeaders"> 840
 <sequence> 841
 <element name="property" type="sca:BindingProperty" 842
 minOccurs="0" maxOccurs="unbounded"/> 843
 </sequence> 844
 <attribute name="JMSSelector" type="string"/> 845
 </complexType> 846
 847
 <complexType name="JMSResourceAdapter"> 848
 <sequence> 849
 <element name="property" type="sca:BindingProperty" 850
 minOccurs="0" maxOccurs="unbounded"/> 851
 </sequence> 852
 <attribute name="name" type="string" use="required"/> 853
 </complexType> 854
 855
 <complexType name="JMSOperationProperties"> 856
 <sequence> 857
 <element name="property" type="sca:BindingProperty" 858
 minOccurs="0" maxOccurs="unbounded"/> 859
 <element name="headers" type="sca:Headers"/> 860
 </sequence> 861
 <attribute name="name" type="string" use="required"/> 862
 <attribute name="nativeOperation" type="string"/> 863
 </complexType> 864
 865
 <complexType name="BindingProperty"> 866
 <simpleContent> 867
 <extension base="string"> 868
 <attribute name="name" type="NMTOKEN"/> 869
 <attribute name="type" type="string" use="optional" 870
 default="xs:string"/> 871
 </extension> 872
 </simpleContent> 873
 </complexType> 874
 875
 <element name="binding.jms" type="sca:JMSBinding" 876
 substitutionGroup="sca:binding"/> 877
 878
 <element name="wireFormat.jmsdefault" type="sca:WireFormatType" 879
 substitutionGroup="sca:wireFormat"/> 880
 881
 <element name="operationSelector.jmsdefault" type="sca:OperationSelectorType" 882
 substitutionGroup="sca:operationSelector"/> 883
</schema> 884

885

sca-binding-jms-1.1-spec-cd01-rev4 21st January 2009
Copyright © OASIS® 2006, 2008. All Rights Reserved. Page 27 of 30

B. Acknowledgements 886

The following individuals have participated in the creation of this specification and are gratefully
acknowledged:

887
888
889
890
891
892

Participants:
[Participant Name, Affiliation | Individual Member]
[Participant Name, Affiliation | Individual Member]

sca-binding-jms-1.1-spec-cd01-rev4 21st January 2009
Copyright © OASIS® 2006, 2008. All Rights Reserved. Page 28 of 30

C. Non-Normative Text 893

sca-binding-jms-1.1-spec-cd01-rev4 21st January 2009
Copyright © OASIS® 2006, 2008. All Rights Reserved. Page 29 of 30

D. Revision History 894

[optional; should not be included in OASIS Standards] 895
896

Revision Date Editor Changes Made

1 2007-09-25 Anish Karmarkar Applied the OASIS template + related changes
to the Submission

2 2008-03-12 Simon Holdsworth Updated text for RFC2119 conformance
Updates to resolve following issues:
BINDINGS-1
BINDINGS-5
BINDINGS-6
BINDINGS-12
BINDINGS-14
BINDINGS-18
BINDINGS-26
Applied updates discussed at Bindings TC
meeting of 27th March

3 2008-06-19 Simon Holdsworth * Applied most of the editorial changes from
Eric Johnson’s review

cd01 2008-08-01 Simon Holdsworth Updates to resolve following issues:
BINDINGS-13 (JMS part)
BINDINGS-20 (complete)
BINDINGS-30 (JMS part)
BINDINGS-32 (JMS part)
BINDINGS-33 (complete)
BINDINGS-34 (complete)
BINDINGS-35 (complete)
BINDINGS-38 (JMS part)

cd01-rev1 2008-10-16 Simon Holdsworth Updated text for RFC2119 conformance
throughout
Updates to resolve following issues:
BINDINGS-41
BINDINGS-46
BINDINGS-47

cd01-rev2 2008-12-01 Simon Holdsworth Added comments identifying those updates
that relate to RFC2119 language (issue 52)

cd01-rev3 2008-12-02 Simon Holdsworth Final RFC2119 language updates
BINDINGS-52

cd01-rev4 2009-01-09 Simon Holdsworth Updates to resolve following issues:

sca-binding-jms-1.1-spec-cd01-rev4 21st January 2009
Copyright © OASIS® 2006, 2008. All Rights Reserved. Page 30 of 30

BINDINGS-7
BINDINGS-31
BINDINGS-40
BINDINGS-42
BINDINGS-44
BINDINGS-50

 897

	1 Introduction
	1.1 Terminology
	1.2 Normative References
	1.3 Non-Normative References

	2 Messaging Bindings
	3 JMS Binding Schema
	4 Operation Selectors and Wire Formats
	4.1 Default Operation Selection
	4.2 Default Wire Format

	5 Policy
	6 Message Exchange Patterns
	6.1 One-way message exchange (no Callbacks)
	6.2 Request/response message exchange (no Callbacks)
	6.3 JMS User Properties
	6.4 Callbacks
	6.4.1 Invocation of operations on a bidirectional interface
	6.4.2 Invocation of operations on a callback interface
	6.4.3 Use of JMSReplyTo for callbacks for non-SCA JMS applications

	6.5 Conversations
	6.5.1 Starting a conversation
	6.5.2 Continuing a conversation
	6.5.3 Ending a conversation

	7 Examples
	7.1 Minimal Binding Example
	7.2 URI Binding Example
	7.3 Binding with Existing Resources Example
	7.4 Resource Creation Example
	7.5 Request/Response Example
	7.6 Use of Predefined Definitions Example
	7.7 Subscription with Selector Example
	7.8 Policy Set Example

	8 Conformance

